CN117120182A - 用于金属氮化物陶瓷的增材制造的系统和方法 - Google Patents
用于金属氮化物陶瓷的增材制造的系统和方法 Download PDFInfo
- Publication number
- CN117120182A CN117120182A CN202280027464.4A CN202280027464A CN117120182A CN 117120182 A CN117120182 A CN 117120182A CN 202280027464 A CN202280027464 A CN 202280027464A CN 117120182 A CN117120182 A CN 117120182A
- Authority
- CN
- China
- Prior art keywords
- metal nitride
- powder
- titanium nitride
- ceramic component
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 105
- 239000002184 metal Substances 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 99
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 98
- 239000000919 ceramic Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000000654 additive Substances 0.000 title claims abstract description 19
- 230000000996 additive effect Effects 0.000 title claims abstract description 19
- 239000000843 powder Substances 0.000 claims description 110
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 77
- 239000002245 particle Substances 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 34
- 239000007789 gas Substances 0.000 claims description 29
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 27
- 238000002844 melting Methods 0.000 claims description 26
- 230000008018 melting Effects 0.000 claims description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims description 21
- 239000010936 titanium Substances 0.000 claims description 21
- 239000007943 implant Substances 0.000 claims description 19
- 238000010894 electron beam technology Methods 0.000 claims description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000007639 printing Methods 0.000 abstract description 10
- 230000004927 fusion Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 28
- 238000009826 distribution Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- 230000008901 benefit Effects 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 3
- 229910011208 Ti—N Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000010952 cobalt-chrome Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- -1 titanium nitride Chemical class 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 238000000110 selective laser sintering Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58007—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
- C04B35/58014—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/653—Processes involving a melting step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/02—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2202/00—Treatment under specific physical conditions
- B22F2202/13—Use of plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/20—Nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/528—Spheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/665—Local sintering, e.g. laser sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/667—Sintering using wave energy, e.g. microwave sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/782—Grain size distributions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
- Producing Shaped Articles From Materials (AREA)
- Ceramic Products (AREA)
Abstract
本文描述了涉及金属氮化物陶瓷的增材制造(AM)(包括三维(3D)打印)的实施方案。在本文的一些实施方案中,AM可包含粉末床熔合(PBF)技术。本文还描述了通过AM技术形成的金属氮化物陶瓷组件。
Description
通过引用并入任何优先权申请
本申请要求2021年3月31日提交的美国临时申请No.63/200,841的优先权利益,其整个公开内容经此引入并入本文。
背景
领域
本公开的一些实施方案涉及用于金属氮化物陶瓷的增材制造的系统和方法,以及通过增材制造制成的金属氮化物陶瓷组件。
描述
金属氮化物,如氮化钛已经用于各种应用,包括在医疗植入物中作为保护性耐磨涂层。由例如CoCr或钛合金(例如Ti64)制成的许多当前骨科植入物具有差的耐磨性并且需要氮化钛涂层以防止植入物在体内最终失效。氮化钛是一种具有优异耐磨性和耐腐蚀性的陶瓷,并与人体相容。该涂层通常通过化学气相沉积(CVD)施加到植入物上,其中Ti蒸气与氮气反应以形成氮化钛涂层。这一过程形成非常薄的氮化钛粘结层(coherent layer)。
但是,随着增材制造(AM)的出现,植入物的设计也已经进化。现在有可能设计具有内腔的植入物,其减轻植入物的重量并为植入物内的组织生长提供位置。但是,对于复杂的内腔,在植入物内部的表面上均匀涂布氮化钛层已经变得具有挑战性。用氮化钛印刷整个植入物将消除昂贵、耗时和额外的植入物加工(CVD),并减少制造周期时间(lea time)。由于氮化钛的耐磨性和耐腐蚀性,这样的植入物不需要其它涂层。但是,以前,由于这种材料的材料性质和对AM工艺的输入材料的要求,金属陶瓷的AM是不可能的。
因此,需要生产用于AM工艺的金属氮化物的新型系统和方法,以及用于生产金属氮化物组件的AM工艺,以及通过增材制造制成的金属氮化物组件。
概述
对于这一概述,本文描述了本发明的某些方面、优点和新颖特征。要理解的是,根据本发明的任何特定实施方案不一定可以实现所有这些优点。因此,例如,本领域技术人员会认识到,本发明可以以实现如本文教导的一个优点或一组优点的方式具体化或执行,而不必实现如本文可能教导或提出的其它优点。
本文中的一些实施方案涉及一种使用增材制造工艺生产的金属氮化物陶瓷组件,所述增材制造工艺包括:粉末床扩散工艺,其包括:将激光束或电子束引导至金属氮化物粉末。
在一些实施方案中,所述粉末床扩散工艺包括电子束熔化(EBM)或选择性激光熔化(SLM)。在一些实施方案中,所述金属氮化物粉末包含大约15-45微米、大约20-63微米或大约45-106微米的粒度范围。在一些实施方案中,所述金属氮化物组件在光学显微镜下具有95%或更高的密度百分比。在一些实施方案中,所述金属氮化物陶瓷组件基本由金属氮化物组成。在一些实施方案中,所述金属氮化物包含氮化钛。在一些实施方案中,所述金属氮化物粉末包含氮化钛粉末。在一些实施方案中,所述金属氮化物粉末通过使金属粉末和含氮气体在微波等离子体内反应形成。在一些实施方案中,所述含氮气体包含氢气或氩气。在一些实施方案中,在工艺室(process chamber)内将激光束或电子束引导至金属氮化物粉末,其中所述工艺室在整个过程中保持在1200℃或更低的温度下。
本文中的一些实施方案涉及一种生产金属氮化物陶瓷组件的方法,所述方法包括:将激光束或电子束引导至金属氮化物粉末。
在一些实施方案中,所述方法包括金属氮化物粉末的电子束熔化(EBM)或选择性激光熔化(SLM)。在一些实施方案中,所述金属氮化物粉末包含大约15-45微米、大约20-63微米或大约45-106微米的粒度范围。在一些实施方案中,所述金属氮化物组件在光学显微镜下具有95%或更高的密度百分比。在一些实施方案中,在工艺室内将激光束或电子束引导至金属氮化物粉末,其中所述工艺室在整个过程中保持在1200℃或更低的温度下。在一些实施方案中,所述金属氮化物陶瓷组件基本由金属氮化物组成。在一些实施方案中,所述金属氮化物包含氮化钛。在一些实施方案中,所述金属氮化物粉末包含氮化钛粉末。在一些实施方案中,所述金属氮化物粉末通过使金属粉末和含氮气体在微波等离子体内反应形成。在一些实施方案中,所述含氮气体包含氢气或氩气。本文中的一些实施方案涉及一种打印氮化钛组件。在一些实施方案中,所述打印氮化钛组件在光学显微镜下包含95%或更高的密度百分比。在一些实施方案中,所述打印氮化钛组件包含大约4.72g/cc至4.90g/cc的密度。在一些实施方案中,所述打印氮化钛组件包含TiN0.54的化学计量。在一些实施方案中,所述打印氮化钛组件包含αTi、TiN和Ti2N的相。在一些实施方案中,所述打印氮化钛组件包含13至14重量%的氮。在一些实施方案中,所述打印钛组件基本由氮化钛组成。在一些实施方案中,所述打印氮化钛组件完全使用增材制造法打印。在一些实施方案中,所述打印氮化钛组件包含打印立方体的簇(a cluster of printed cubes)。在一些实施方案中,所述打印氮化钛组件是医疗植入物。
附图简述
提供附图以图解示例性实施方案并且无意限制本公开的范围。结合附图参考以下说明书将得到对本文描述的系统和方法的更好理解,其中:
图1图解根据本文中的一些实施方案可用于增材制造的氮化钛粉末的示例性形态。
图2图解根据本文中的一些实施方案可用于增材制造的氮化钛粉末的示例性微观结构。
图3图解根据本文中的一些实施方案可用于增材制造的钛粉末的示例性X射线粉末衍射。
图4图解根据本文中的一些实施方案可用于增材制造的钛粉末的示例性粒度分布。
图5A和5B图解根据本文所述的一些实施方案使用AM打印的氮化钛立方体的示例性图像。
图6图解根据本文中的一些实施方案的TiN粉末和打印部件的化学分析和相分析的样品表。
图7是根据本文中的一些实施方案的TiN粉末和打印部件的示例性X射线衍射。
图8图解根据本文中的一些实施方案的材料的Ti-N相图。
图9A-9E图解根据本文中的一些实施方案用于AM的TiN粉末的示例性扫描电子显微镜图像。
图10A-10G图解根据本文中的一些实施方案通过AM制成的TiN中间部件的示例性扫描电子显微镜和反向散射检测器图像。
图11A-11H图解根据本文中的一些实施方案通过AM制成的TiN最终部件的示例性扫描电子显微镜和反向散射检测器图像。
图12图解根据本文中的一些实施方案可用于生产材料的微波等离子体炬的一个实施方案。
图13A-13B图解根据本文中的一些实施方案包括侧面进料斗的示例性微波等离子体炬。
详述
尽管下面公开了某些优选实施方案和实例,但本发明的主题超出具体公开的实施方案延伸到其它替代性实施方案和/或用途及其修改和等同物。因此,所附权利要求书的范围不受下面描述的任何特定实施方案的限制。例如,在本文公开的任何方法或工艺中,该方法或工艺的动作或操作可以以任何合适的顺序执行,并且不一定限于任何特定的公开顺序。各种操作可以以可能有助于理解某些实施方案的方式描述为多个离散操作;但是,描述的顺序不应被解释为暗示这些操作是顺序相关的。另外,本文所述的结构、系统和/或装置可具体化为集成组件或单独组件。出于比较各种实施方案的目的,描述了这些实施方案的某些方面和优点。通过任何特定实施方案不一定实现所有这些方面或优点。因此,例如,各种实施方案可以以实现或优化如本文教导的一个优点或一组优点的方式执行,而不必实现如本文也可能教导或提出的其它方面或优点。
现在将描述某些示例性实施方案以提供对本文公开的装置和方法的结构、功能、制造和用途的原理的全面理解。这些实施方案的一个或多个实例在附图中示出。本领域技术人员将理解,本文具体描述并在附图中示出的装置和方法是非限制性的示例性实施方案,并且本发明的范围仅由权利要求书限定。结合一个示例性实施方案示出或描述的特征可以与其它实施方案的特征组合。这样的修改和变化旨在包括在本技术的范围内。
本文描述了涉及金属氮化物陶瓷的增材制造(AM)(包括三维(3D)打印)的实施方案。在本文中的一些实施方案中,AM可包含粉末床熔合(PBF)技术,如电子束熔化(EBM)、选择性激光熔化(SLM)、选择性激光烧结(SLS)、选择性热烧结(SHS)和直接金属激光烧结(DMLS)等。如本文所用,AM可以包括用于将材料加工成更高复杂度的组件的各种技术——通过接合或添加连续的材料层以形成物体,由计算机辅助设计(CAD)数据引导。PBF系统使用激光、电子束或热打印头在三维空间中熔化或部分熔化超细材料层。在该过程结束时,从物体上吹走多余的粉末。
以前,由于通过如铸造、压制、粉末冶金等高温加工制成的金属氮化物陶瓷的材料性质,这些材料不适用于AM工艺。例如,不受制于理论,但推测这些先前生产的金属氮化物陶瓷的高熔点、高硬度、脆性和密度使得这些材料与AM工艺不相容。例如,氮化钛的熔点为大约2,930℃,而典型的AM工艺室只能达到大约1,200℃。但是,本文中的实施方案包括能够用于AM工艺的合成金属氮化物陶瓷粉末,以及用于合成这样的AM相容金属氮化物陶瓷的方法和系统。此外,本文中的实施方案包括用于高温难熔金属氮化物陶瓷的局部熔化和此类陶瓷的受控固化以避免开裂并产生全密度材料的方法。在一些实施方案中,本文中的AM方法和系统可包含打印金属氮化物陶瓷,如氮化钛,而不改变前体材料中的金属或氮含量的化学计量。
增材制造的基本材料要求是球形形式并在指定粒度内,通常在特定微米范围(15-45微米、20-63微米、45-106微米等)内的金属合金粉末。符合这些要求的一些氮化物粉末,如氮化钛粉末不是目前已知的,并且最终,氮化钛的AM不是已知的。本文中的实施方案使得能够在AM规格内和大规模地制造氮化钛粉末。
本文中的实施方案包括使用创新性的AM参数和策略将微米级金属氮化物粉末AM加工成完全致密的固体组件的方法。这种创新性方法能够由金属氮化物粉末生产AM制造的固体。本文的系统和方法对于熔融和固化金属氮化物粉末进料而在固化过程中不开裂是至关重要的。在一些实施方案中,AM加工可包含完全熔融难熔金属氮化物并进行受控固化以生产无裂纹的固体组件。在一些实施方案中,本文的方法进一步防止金属氮化物,如氮化钛分解成组成金属和氮,以保持氮化钛粉末的化学计量。在一些实施方案中,氮化钛中的强Ti-H键可有助于保持化学计量。在一些实施方案中,本文的方法代表了使用借助电子束或激光束的粉末床熔合技术首次成功3D打印金属氮化物陶瓷。
在一些实施方案中,使用本文的系统和方法生产的金属氮化物3D打印组件可能有潜力替代用于医疗植入物的传统CoCr合金。CoCr植入物可能导致Cr和Co离子释放到患者的血流中,这在一些情况下可引起细胞毒性和细胞凋亡效应。目前,金属氮化物在医疗应用中用作CoCr和Ti64植入物的保护性耐磨涂层,并且在FDA批准材料清单上。但是,金属氮化物,如TiN的3D打印(这在以前是不可能的)将使得能够生产具有受控孔隙率的生物相容性金属氮化物植入物,以致有可能制造用于更快的骨组织生长和更快恢复的骨传导性植入物。
本文中的一些实施方案包含生产与AM工艺相容的金属氮化物粉末的方法。在一些实施方案中,该方法包括使用商业纯钛(cPTi)粉末或其它金属粉末作为前体和使用含氮气体作为反应性等离子体气体以合成金属氮化物。
一些金属,如Ti对填隙原子(interstitial)如氮、氢、碳和氧具有很大的亲和力。当存在于等离子体气体中时,这些物类可以以电离状态存在并且被认为更具“反应性”。通过仔细选择至少含有氮气并且可能含有不同量的其它气体,如氢气或氩气等的反应性等离子体气体组合物并使进料粉末瞬间穿过其中,等离子体气体中的氮气与Ti反应以产生氮化钛。通过控制反应性等离子体中的氮量和Ti粉末粒子在反应性等离子体中的停留时间,有可能控制所产生的氮化钛的化学计量(例如,化合物中的N的%)和相。
在一些实施方案中,增材制造的基本材料要求是球形形式并在指定粒度内,通常在微米范围内的金属合金、金属碳化物、金属氧化物或金属氮化物粉末。粒度分布对粉末流动性、可铺展性和提供均匀粉末床密度的能力具有直接影响。这又决定了熔融或烧结粉末粒子所需的能量输入以及影响表面光洁度。例如,适用于AM工艺的球化粉末可具有大约15-45微米、大约20-63微米、大约45-106微米或大约45-150微米的粒度分布。在一些实施方案中,粒度分布可包含D50粒度分布。但是,根据本文所述的方法和系统,球化粉末可包含在纳米范围至毫米范围内的粒度分布。例如,根据本文中的实施方案的球化粉末可包含大约0.1微米至大约1000微米的粒度分布。在一些实施方案中,根据本文中的实施方案的球化粉末可包含大约0.1微米至大约1微米、大约1微米至15微米、大约15微米至大约45微米、大约20微米至63微米、大约45微米至大约106微米、大约106微米至大约200微米、大约200微米至300微米、大约300微米至大约400微米、大约400微米至大约500微米、大约500微米至大约600微米、大约600微米至大约700微米、大约700微米至大约800微米、大约800微米至大约900微米和大约900微米至大约1000微米,或在任何上述范围之间的粒度分布。
此外,为了可用于需要高粉末流动的AM应用,金属粉末粒子应该表现出球形形状,这可以通过等离子体球化工艺实现。这种工艺涉及粒子在热环境中完全熔融、表面熔融或部分熔融,由此液态金属的表面张力将各个粒子成形为球形几何形状,然后冷却和再固化。
在一些实施方案中,通过等离子体加工获得的最终粒子可以是球形的、球化的或类球形的,这些术语可互换使用。有利地,通过使用与每种不同金属氮化物相关的关键和具体的公开内容,可以将所有原料转化成球形粉末。
本公开的一些实施方案涉及生产基本球化或已经发生显著球化的粒子。在一些实施方案中,球形、类球形或球化粒子是指球形度大于特定阈值的粒子。可以通过使用以下方程采用与该粒子匹配的体积V计算的球体的表面积A球体,理想化来计算粒子球度:
A球体,理想化=4πr理想化 2
可以将理想化表面积与粒子的实测表面积A球体,理想化进行比较:
在一些实施方案中,粒子可具有大于0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95或0.99(或大于大约0.5、大约0.6、大约0.7、大约0.75、大约0.8、大约0.8、大约0.91、大约0.95或大约0.99)的球形度。在一些实施方案中,粒子可具有0.75或更大或0.91或更大(或大约0.75或更大或大约0.91或更大)的球形度。在一些实施方案中,粒子可具有小于0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95或0.99(或小于大约0.5、大约0.6、大约0.7、大约0.75、大约0.8、大约0.8、大约0.91、大约0.95或大约0.99)的球形度。在一些实施方案中,如果粒子的球形度等于或高于任何上述球形度值,该粒子被认为是球形的、类球形的或球化的,在一些优选实施方案中,如果粒子的球形度等于或约为0.75或更大或等于或约为0.91或更大,该粒子被认为是球形的。
在一些实施方案中,给定粉末内的所有粒子的中值球形度可以大于0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95或0.99(或大于大约0.5、大约0.6、大约0.7、大约0.75、大约0.8、大约0.8、大约0.91、大约0.95或大约0.99)。在一些实施方案中,给定粉末内的所有粒子的中值球形度可以小于0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95或0.99(或小于大约0.5、大约0.6、大约0.7、大约0.75、大约0.8、大约0.8、大约0.91、大约0.95或大约0.99)。在一些实施方案中,如果对给定粉末测量的所有或一定阈值百分比(如以下任何分数所述)的粒子具有大于或等于任何上述球形度值的中值球形度,该粉末被认为是球化的,在一些优选实施方案中,如果所有或一定阈值百分比的粒子具有等于或约为0.75或更大或等于或约为0.91或更大的中值球形度,该粉末被认为是球化的。
在一些实施方案中,粉末内的可高于如上所述的给定球形度阈值的粒子的分数可以大于50%、60%、70%、80%、90%、95%或99%(或大于大约50%、大约60%、大约70%、大约80%、大约90%、大约95%或大约99%)。在一些实施方案中,粉末内的可高于如上所述的给定球形度阈值的粒子的分数可以小于50%、60%、70%、80%、90%、95%或99%(或小于大约50%、大约60%、大约70%、大约80%、大约90%、大约95%或大约99%)。
粒度分布和球形度可以通过任何合适的已知技术测定,如通过SEM、光学显微术、动态光散射、激光衍射、使用图像分析软件手动测量尺寸,例如在相同材料截面或样品的至少三个图像上每个图像大约15-30个测量,以及任何其它技术。
在上述规格内的氮化钛粉末不是目前已知的,因此使用氮化钛的AM工艺不是目前已知的。本文中的一些实施方案因此涉及用于制造在AM所需规格内的金属氮化物(包括氮化钛)粉末的系统和方法。本文中的一些实施方案涉及合成例如微米级球形氮化钛粉末。在一些实施方案中,主要合金元素是氮。关于氮化钛粉末的组成,在不同的氮浓度下,形成不同的氮化物相,如TiN、Ti2N、TiN2。这些相具有不同的物理性质。例如,TiN是具有高耐磨性的非常硬的相,而Ti2N可能是相对较软的相。因此,基于应用和所需的功能性质,需要不同的组成和最终不同的微观结构。本文中的实施方案可涉及任何所需相的氮化钛的合成,其可以通过控制反应性等离子体气体的化学计量来控制。
使用根据上述方法生产和/或具有上述规格的金属氮化物粉末,并使用特定的AM加工技术,可以获得3D打印的金属氮化物组件。通过EBM熔融或熔合金属氮化物粉末的能力可至少部分取决于在粉末表面处接收的能量密度。对于EBM,这种能量密度可以计算为电流*加速电压/扫描速度*阴影线间距(hatch spacing)*层厚度。用于粉末熔融的最佳参数可以通过各个参数的组合实现-电流、扫描时间和阴影线间距是主要参数。另一方面,室温度可能有助于控制熔融粉末料的冷却速率或固化速率。在一些实施方案中,提高室温度降低熔融料的冷却速率。在一些实施方案中,较慢的冷却速率可防止粉末的固化料开裂。EBM机器中的室温度通常可以保持在大约1000-1100℃。但是,在一些实施方案中,为了将室温度提高到超过大约1100℃的极限,可以打印立方体簇,以使更多的固体质量可存在于室中,其中立方体簇在打印的立方体周围保留更多热量。在现实世界应用中,可以通过使打印区域最大化来完成打印,因此在打印时存在更多的固体质量。此外,对于零件打印,在零件设计中可以存在一个或多个支撑结构,其可能有助于支撑悬垂部分以免下垂以及有助于热管理。这将随零件而变,其基于打印的截面厚度和打印的相邻零件的接近度。
例如,使用EBM工艺的打印通常在真空中在保持最多大约1100℃的室温度下进行。在一些实施方案中,通过增加电子束的电流以最终增加传递到粉末床的能量,可以使粉末熔融和熔合。在一些实施方案中,可以将电流升高到可实现金属氮化物的熔融但不发生室基板的翘曲的水平。例如,尽管氮化钛的熔点为大约2,930℃,但本文所用的氮化钛的熔融可以在大约1,200℃或更低的室温度下实现,其中最终部件可以在部件的结构中基本没有表现出开裂。这可以通过打印金属氮化物立方体簇实现,以使更大的质量存在于室中,以致保留更多热量,并且相对于熔融较低质量的单个金属氮化物立方体,可以实现更均匀的粉末熔融和冷却。除了使用金属氮化物立方体簇之外,可以减小AM工艺中的阴影线间距(两个相邻光束轨道的重叠),由此增加光束的重叠,并确保粉末床基本没有区域未被光束触及。使用上述AM加工技术,可以生产密度为至少95%的金属氮化物。密度%可以通过在显微镜下观察打印部件的横截面来测量,并且密度%可以是观察到的致密区域的计算%。或者,密度%可以通过作为材料(例如氮化钛)的理论密度的函数实现的立方体密度的百分比计算。
实施例
由cpTi粉末合成氮化钛粉末。该氮化钛粉末表现出45-106微米的粒度分布(PSD),并使用以含氮气体(N2)作为等离子体气体生成的微波等离子体合成。通过氢化-脱氢(HDH)法制成的cpTi在包含氮气(N2)和氢气(H2)的混合物的反应性等离子体中进行处理。在反应性氮气中引入少量氢气(~10%)以防止cpTi粉末在等离子体处理过程中氧化。等离子体处理将不规则形状的HDH cpTi粉末转化为球形氮化钛粉末。在球化过程中,由于高温和等离子体中的电离氮物类与完全熔融、表面熔融或部分熔融的cpTi粒子之间的接触,引发Ti和N之间的反应,以产生氮化钛TixNy。示例性反应如下所示:
2Ti(s)+N2(g)→2TiN(s)
4Ti(s)+N2(g)→2Ti2N(s)
合成的氮化钛具有以下元素组成:12重量%的氮、0.34重量%的氧、0.034重量%的铁、0.0068重量%的碳和85.9重量%的钛。合成的氮化钛具有如下粒度分布:其中D10为50.35微米,D50为68.5微米,且D90为97.73微米。合成的氮化钛具有以下物理性质:27s/50g的霍尔流量、2.54克/立方厘米的表观密度(AD)、4.9克/立方厘米的真密度和2.91克/立方厘米的振实密度(TD)。氮化钛粉末可以通过微波等离子体加工合成。在一些实施方案中,在等离子体、等离子体羽流或排气内,熔融金属由于液体表面张力而固有球化。由于微波生成的等离子体表现出基本均匀的温度分布,可以实现大于90%的粒子球化(例如91%、93%、95%、97%、99%、100%)。
图1图解根据本文中的一些实施方案可用于AM工艺的氮化钛粉末的示例性形态。
图2图解根据本文中的一些实施方案可用于AM工艺的氮化钛粉末的示例性微观结构。在一些实施方案中,氮化钛粉末的微观结构可包含一个或多个单独的相。例如,在一些实施方案中,相可包括α-Ti、TiN、Ti2N和/或TiN2。在一些实施方案中,氮化钛壳与cP-Ti核一起形成。
图3图解根据本文中的一些实施方案可用于AM工艺的氮化钛粉末的示例性X射线粉末衍射。
图4图解根据本文中的一些实施方案可用于AM工艺的氮化钛粉末的示例性粒度分布。在一些实施方案中,氮化钛粉末可包含大约15微米至大约150微米的粒度分布。
图5A和5B图解根据本文所述的一些实施方案使用AM打印的氮化钛立方体的示例性图像。EBM打印机用于打印氮化钛粉末以产生15x15mm正方形至大约8.6mm的高度。在构建的整个持续过程中,EBM室温度保持在大约1100℃。在没有支撑结构的不锈钢板上直接构建该结构。利用优化的参数,在打印结构上实现大约4.72g/cc至4.90g/cc的密度。TiN相的理论密度为5.4g/cc,Ti2N相的理论密度为4.88g/cc。
图6图解根据本文中的一些实施方案的TiN粉末和打印部件的化学分析和相分析的样品表。该表显示根据本文中的实施方案的金属氮化物粉末和通过先前方法形成的参考粉末的性质。在一些实施方案中,根据本文中的一些实施方案的最终打印部件可包含TiN0.54的化学计量(Ti2N等同于TiN0.5)。
图7图解根据本文中的一些实施方案的TiN粉末和打印部件的示例性X射线衍射。
图8图解Ti-N相图。如Ti-N相图中所见,Ti2N是具有大约12至13重量%N的窄相区。TiN具有大约13至25重量%N的宽范围。图7的XRD显示根据本文中的一些实施方案的粉末具有三个相:αTi+TiN+Ti2N。类似地,最终打印固体也具有3个相:αTi+TiN+Ti2N,尽管具有不同比例。%N从粉末到打印固体基本不变。因此,在一些实施方案中,EBM打印条件可以使氮扩散并将TiN转化为Ti2N。
图9A-9E图解根据本文中的一些实施方案用于AM的TiN粉末的示例性扫描电子显微镜图像。球化粉末粒子表现出再结晶层,并且粒子横截面显示均匀的化学。
图10A-10G图解根据本文中的一些实施方案通过AM制成的TiN中间部件的示例性扫描电子显微镜和反向散射检测器图像。中间打印固体表现出高孔隙率,并在微观结构中观察到富铁区,其可能吸取自室基板。
图11A-11H图解根据本文中的一些实施方案通过AM制成的TiN最终部件的示例性扫描电子显微镜和反向散射检测器图像。与中间部件相比,最终打印固体表现出较小的孔隙率和较高的密度。在微观结构中观察到富铁区,其可能吸取自室基板。
总之,根据本文中的一些实施方案,合成的氮化钛粉末可以富含TiN相,具有Ti2N和αTi相。使用根据本文所述的方法生产的TiN粉末,使用EBM形成95%致密打印品。打印的固体富含Ti2N相,具有TiN和αTi相。从粉末到打印品,氮含量一致地为大约13-14重量%。与粉末的金色相比,打印的固体呈现灰色。一些研究显示随Ti∶N化学计量的颜色变化,其中TiN相呈现金色,而Ti2N呈现银灰色。
等离子体加工
图12图解根据本文中的一些实施方案的可用于生产氮化钛AM材料的微波等离子体炬1200的一个实施方案。在一些实施方案中,可以经由一个或多个原料入口1202将原料引入微波等离子体1204中。在一些实施方案中,可以将夹带气流和/或鞘流注入微波等离子体施加器1205,以在经由微波辐射源1206点燃等离子体1204之前在等离子体施加器内创造流动条件。在一些实施方案中,夹带流和鞘流(sheath flow)都是轴对称的和层流的,而在另一些实施方案中,这些气流是涡旋的。在一些实施方案中,可以将原料引入微波等离子体炬1200中,其中原料可以被气流夹带以将该材料引向等离子体1204。
该气流可包含氮气和/或周期表的稀有气体列,如氦气、氖气、氩气等。尽管可以使用上述气体,但是要理解的是,可以根据所需的材料和加工条件使用各种气体。在一些实施方案中,在微波等离子体1204内,原料可发生物理和/或化学转变。入口1202可用于引入工艺气体以朝等离子体1204夹带和加速原料。在一些实施方案中,可以创建第二气流以为等离子体施加器1204和反应室1210的内壁提供覆盖层(sheathing),以保护这些结构避免由于来自等离子体1204的热辐射而熔融。
可以手动或自动调节由等离子体施加器1205产生的微波等离子体1204的各种参数,以获得所需材料。这些参数可以包括例如功率、等离子体气体流速、等离子体气体类型、延长管的存在、延长管材料、反应室或延长管的绝缘水平、延长管的涂覆水平、延长管的几何形状(例如锥形/阶梯形(tapered/stepped))、进料尺寸、进料注入速率、进料入口位置、进料入口取向、进料入口数量、等离子体温度、停留时间和冷却速率。所得材料可以离开等离子体进入密封室1212,在此将该材料淬火,然后收集。
在一些实施方案中,原料在微波等离子体施加器之后注入以在微波等离子体炬的“羽流(plume)”或“排气(exhaust)”中加工。因此,在等离子体炬芯管1208的出口端处或更下游接合微波等离子体炬的等离子体。在一些实施方案中,可调节的下游进料能够通过精确设定温度水平和停留时间而使原料在下游在适于原料的最佳熔融的温度下与等离子体羽流接合。调节入口位置和等离子体特性使得能够进一步定制材料特性。此外,在一些实施方案中,通过调节功率、气体流速、压力和设备配置(例如引入延长管),可以调节等离子体羽流的长度。
在一些实施方案中,进料配置可包括围绕等离子体羽流的一个或多个单独进料喷嘴。原料可以从任何方向进入等离子体,并且可以根据入口1202的布置和取向围绕等离子体以360°进给。此外,通过调节入口1202的布置,原料可以在沿等离子体1204的长度的特定位置进入等离子体,在此已经测量了特定温度并估算停留时间以提供所得材料的理想特性。
在一些实施方案中,可以调节入口1202相对于等离子体1204的角度,以使原料可以相对于等离子体1204以任何角度注入。例如,可以调节入口1202,以使原料可以相对于等离子体1204的方向以大约0度、大约5度、大约10度、大约15度、大约20度、大约25度、大约30度、大约35度、大约40度、大约45度、大约50度、大约55度、大约60度、大约65度、大约70度、大约75度、大约80度、大约85度或大约90度或在任何上述值之间的角度注入等离子体中。
在一些实施方案中,下游注入法的实施可以使用下游涡旋或淬火。下游涡旋是指可以在等离子体施加器的下游引入附加涡旋组件(additional swirl component)以使粉末保持远离施加器1205、反应室1210和/或延长管1214的壁。
在一些实施方案中,微波等离子体装置的反应室1210的长度可为大约1英尺、大约2英尺、大约3英尺、大约4英尺、大约5英尺、大约6英尺、大约7英尺、大约8英尺、大约9英尺、大约10英尺、大约11英尺、大约12英尺、大约13英尺、大约14英尺、大约15英尺、大约16英尺、大约17英尺、大约18英尺、大约19英尺、大约20英尺、大约21英尺、大约22英尺、大约23英尺、大约24英尺、大约25英尺、大约26英尺、大约27英尺、大约28英尺、大约29英尺或大约30英尺,或在上述值之间的任何值。
在一些实施方案中,可以通过调节各种加工条件和设备配置而延长的等离子体1204的长度可为大约1英尺、大约2英尺、大约3英尺、大约4英尺、大约5英尺、大约6英尺、大约7英尺、大约8英尺、大约9英尺、大约10英尺、大约11英尺、大约12英尺、大约13英尺、大约14英尺、大约15英尺、大约16英尺、大约17英尺、大约18英尺、大约19英尺、大约20英尺、大约21英尺、大约22英尺、大约23英尺、大约24英尺、大约25英尺、大约26英尺、大约27英尺、大约28英尺、大约29英尺或大约30英尺,或在上述值之间的任何值。
图13A-13B图解一种示例性微波等离子体炬,其包括侧面进料斗。因此,在这种实施方式中,原料在微波等离子体炬施加器之后注入以在微波等离子体炬的“羽流”或“排气”中加工。因此,在等离子体炬的出口端处接合微波等离子体炬的等离子体,以允许原料的下游进料。这种下游进料可以有利地延长焰炬的寿命,因为无限期地防止热区受到热区内衬壁上的任何材料沉积的影响。此外,其能够通过精确设定温度水平和停留时间而在适于粉末的最佳熔融的温度下在下游接合等离子体羽流。例如,能够使用微波功率、气体流量和含有等离子体羽流的淬火容器中的压力来调节羽流的长度。
通常,下游球化方法可以利用两种主要的硬件配置以建立稳定的等离子体羽流,所述配置是:如美国专利公开No.2018/0297122中所述的环形炬,或US 8748785 B2和US9932673 B2中所述的涡流炬。图13A和图13B显示可以用环形炬或涡流炬实施的方法的实施方案。在等离子体炬的出口处与等离子体羽流紧耦合的进料系统用于轴对称地进给粉末以保持工艺均匀性。其它进料配置可包括围绕等离子体羽流的一个或多个单独进料喷嘴。
可以将进料314引入微波等离子体炬302中。料斗306可用于在将进料314供入微波等离子体炬302、羽流或排气之前储存进料314。在替代性实施方案中,原料可以沿等离子体炬的纵轴注入。可以通过波导304将微波辐射引入等离子体炬中。将进料314供入等离子体室310,并使其与由等离子体炬302生成的等离子体接触。当与等离子体、等离子体羽流或等离子体排气接触时,进料熔融。仍然在等离子体室310中的同时,进料314冷却和固化,然后收集到容器312中。或者,进料314可以在仍为熔融相的同时离开等离子体室310,并在等离子体室的外部冷却和固化。在一些实施方案中,可以使用淬火室,其可以使用或可以不使用正压。尽管与图12分开描述,但图13A-13B的实施方案被理解为使用与图12的实施方案类似的特征和条件。
附加实施方案
在前述说明书中,已经参考其具体实施方案描述了本发明。但是,显而易见的是,可以对其作出各种修改和变动而不脱离本发明的更广泛的精神和范围。因此,说明书和附图被认为是示例性的而非限制性的。
实际上,尽管已经在某些实施方案和实例中公开了本发明,但本领域技术人员将理解,本发明超出具体公开的实施方案延伸到本发明的其它替代性实施方案和/或用途及其明显的修改和等同物。此外,尽管已经详细显示和描述了本发明的实施方案的几个变体,但在本发明范围内的其它修改将是本领域技术人员基于本公开显而易见的。还考虑到可以作出实施方案的具体特征和方面的各种组合或子组合,并且仍然落在本发明的范围内。应该理解的是,所公开的实施方案的各种特征和方面可以互相组合或替代,以形成所公开的发明的实施方案的不同模式。本文公开的任何方法不需要以所列举的顺序执行。因此,本文公开的本发明的范围不应受上述特定实施方案的限制。
要认识到,本公开的系统和方法各自具有几个创新方面,其中没有任何单个方面对本文公开的理想属性完全负责或是其唯一需要的。上述各种特征和工艺可以彼此独立地使用,或者可以以各种方式组合。所有可能的组合和子组合旨在落入本公开的范围内。
本说明书中在分开的实施方案中描述的某些特征也可以在单个实施方案中组合实现。相反,在单个实施方案中描述的各种特征也可以分开或以任何合适的子组合在多个实施方案中实现。此外,尽管特征在上文中可能被描述为以某些组合起作用并且甚至最初就这样要求保护,但是来自所要求保护的组合的一个或多个特征在一些情况下可以从该组合中删除,并且所要求保护的组合可以涉及子组合或子组合的变化。没有单个特征或特征组是对于每个实施方案都必需的或不可缺少的。
还要认识到,除非另有明确说明或在所使用的上下文中另有理解,本文所用的条件词语,例如“可以”、“可能”、“例如”等通常旨在表达某些实施方案包括某些特征、要素和/或步骤,而另一些实施方案不包括。因此,这样的条件词语通常无意暗示特征、要素和/或步骤无论如何是一个或多个实施方案所必需的或一个或多个实施方案必须包括判断在任何特定实施方案中是否包括或要执行这些特征、要素和/或步骤的逻辑(存在或不存在作者输入或提示)。术语“包含”、“包括”、“具有”等是同义的,并且以开放方式包容性地使用,不排除附加的要素、特征、动作、操作等。此外,术语“或”在其包容性意义上(而非在其排他性意义上)使用,以致当用于例如连接要素清单时,术语“或”是指该清单中的一个、一些或所有要素。此外,除非另有规定,本申请和所附权利要求书中所用的冠词“一个”、“一种”和“该”应被解释为是指“一种或多种”或“至少一种”。类似地,尽管可能在附图中以特定顺序描绘操作,但要认识到,这些操作不需要以所示的特定顺序或按先后顺序执行或不需要执行所有图示操作,以实现理想的结果。此外,附图可以以流程图的形式示意性描绘一个或多个示例性过程。但是,没有描绘的其它操作可以并入示意性图示的示例性方法和过程中。例如,可以在任何图示操作之前、之后、同时或之间执行一个或多个附加操作。另外,这些操作在另一些实施方案中可能重新排列或重新排序。在某些情况下,多任务和并行加工可能是有利的。此外,上述实施方案中的各种系统组件的分离不应被理解为在所有实施方案中都需要这样的分离,并且应该理解的是,所描述的程序组件和系统通常可以一起集成在单个软件产品中或打包到多个软件产品中。另外,其它实施方案在以下权利要求书的范围内。在一些情况下,权利要求书中列举的动作可以以不同的顺序执行,并且仍然实现理想的结果。
此外,尽管本文描述的方法和装置可能可以有各种修改和替代形式,但其具体实例已经显示在附图中并在本文中详细描述。但是,应该理解的是,本发明不限于所公开的特定形式或方法,而是相反,本发明应该覆盖落在所描述的各种实施方案和所附权利要求书的精神和范围内的所有修改、等同物和替代物。此外,本文中结合一个实施方式或实施方案公开的任何特定特征、方面、方法、性质、特性、品质、属性、要素等可用于本文阐述的所有其它实施方式或实施方案。本文公开的任何方法不需要以所列举的顺序执行。本文公开的方法可包括由从业者采取的某些操作;但是,该方法还可以包括明示或暗示的对这些操作的任何第三方指令。本文公开的范围也涵盖任何和所有重叠、子范围及其组合。如“最多”、“至少”、“大于”、“小于”、“之间”之类的语言包括所列举的数字。前面带有如“大约”或“大致”之类术语的数字包括所列举的数字,并且应该根据情况进行解释(例如,在这种情况下尽可能合理地准确,例如±5%、±10%、±15%等)。例如,“大约3.5mm”包括“3.5mm”。前面带有如“基本”之类术语的短语包括所述短语,并且应该根据情况进行解释(例如,在这种情况下尽可能合理地解释)。例如,“基本恒定”包括“恒定”。除非另有说明,所有测量都在包括温度和压力的标准条件下进行。
如本文所用,提到一系列事项的“至少一个”的短语是指这些事项的任何组合,包括单个成员。作为一个实例,“A、B或C的至少一个”旨在涵盖:A、B、C、A和B、A和C、B和C、以及A、B和C。除非明确地另有说明,如短语“X、Y和Z的至少一个”之类的连接词语随所用的上下文通常被理解为传达了事项、术语等可以是X、Y或Z的至少一个。因此,这样的连接词语通常无意暗示某些实施方案要求至少一个X、至少一个Y和至少一个Z都各自存在。本文提供的标题(如果有的话)只是为了方便起见,不一定影响本文公开的装置和方法的范围或含义。
因此,权利要求书无意限于本文所示的实施方案,而是被赋予与本公开、本文公开的原理和新颖特征相符的最宽范围。
Claims (31)
1.一种使用增材制造工艺生产的金属氮化物陶瓷组件,所述增材制造工艺包括:
粉末床扩散工艺,其包括:
将激光束或电子束引导至金属氮化物粉末。
2.权利要求1的金属氮化物陶瓷组件,其中所述粉末床扩散工艺包括电子束熔化(EBM)或选择性激光熔化(SLM)。
3.权利要求1的金属氮化物陶瓷组件,其中所述金属氮化物粉末包含大约15-45微米、大约20-63微米或大约45-106微米的粒度范围。
4.权利要求1的金属氮化物陶瓷组件,其中所述金属氮化物组件在光学显微镜下具有95%或更高的密度百分比。
5.权利要求1的金属氮化物陶瓷组件,其中所述金属氮化物陶瓷组件基本由金属氮化物组成。
6.权利要求5的金属氮化物陶瓷组件,其中所述金属氮化物包括氮化钛。
7.权利要求1的金属氮化物陶瓷组件,其中所述金属氮化物粉末包括氮化钛粉末。
8.权利要求1的金属氮化物陶瓷组件,其中所述金属氮化物粉末通过使金属粉末和含氮气体在微波等离子体内反应形成。
9.权利要求8的金属氮化物陶瓷组件,其中所述含氮气体包含氢气或氩气。
10.权利要求1的金属氮化物陶瓷组件,其中在工艺室内将激光束或电子束引导至金属氮化物粉末,其中所述工艺室在整个过程中保持在1200℃或更低的温度下。
11.权利要求1的金属氮化物陶瓷组件,其中将电子束引导至金属氮化物粉末以形成构成金属氮化物陶瓷组件的多个立方体或制品。
12.权利要求1的金属氮化物陶瓷组件,其中所述金属氮化物粉末包含高于90%的球形度。
13.一种生产金属氮化物陶瓷组件的方法,所述方法包括:
在工艺室内将激光束或电子束引导至金属氮化物粉末;和
将所述室在整个过程中保持在1,200℃或更低的温度下。
14.权利要求13的方法,其中所述方法包括金属氮化物粉末的电子束熔化(EBM)或选择性激光熔化(SLM)。
15.权利要求13的方法,其中所述金属氮化物粉末包含大约15-45微米、大约20-63微米或大约45-106微米的粒度范围。
16.权利要求13的方法,其中所述金属氮化物组件在光学显微镜下具有95%或更高的密度百分比。
17.权利要求13的方法,其中所述金属氮化物陶瓷组件基本由金属氮化物组成。
18.权利要求17的方法,其中所述金属氮化物包括氮化钛。
19.权利要求13的方法,其中所述金属氮化物粉末包括氮化钛粉末。
20.权利要求13的方法,其中所述金属氮化物粉末通过使金属粉末和含氮气体在微波等离子体内反应形成。
21.权利要求20的方法,其中所述含氮气体包含氢气或氩气。
22.一种打印氮化钛组件。
23.权利要求22的打印氮化钛组件,其在光学显微镜下包含95%或更高的密度百分比。
24.权利要求22的打印氮化钛组件,其包含大约4.72g/cc至4.90g/cc的密度。
25.权利要求22的打印氮化钛组件,其包含TiN0.54的化学计量。
26.权利要求22的打印氮化钛组件,其包含αTi、TiN和Ti2N的相。
27.权利要求22的打印氮化钛组件,其包含13至14重量%的氮。
28.权利要求22的打印氮化钛组件,其中所述组件基本由氮化钛组成。
29.权利要求22的打印氮化钛组件,其中所述组件完全使用增材制造法打印。
30.权利要求22的打印氮化钛组件,其包含打印立方体的簇。
31.权利要求22的打印氮化钛组件,其中所述组件是医疗植入物。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163200841P | 2021-03-31 | 2021-03-31 | |
US63/200841 | 2021-03-31 | ||
PCT/US2022/022214 WO2022212291A1 (en) | 2021-03-31 | 2022-03-28 | Systems and methods for additive manufacturing of metal nitride ceramics |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117120182A true CN117120182A (zh) | 2023-11-24 |
Family
ID=83448640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280027464.4A Pending CN117120182A (zh) | 2021-03-31 | 2022-03-28 | 用于金属氮化物陶瓷的增材制造的系统和方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US12042861B2 (zh) |
EP (1) | EP4313449A1 (zh) |
JP (1) | JP2024515034A (zh) |
KR (1) | KR20230164699A (zh) |
CN (1) | CN117120182A (zh) |
AU (1) | AU2022246797A1 (zh) |
CA (1) | CA3214233A1 (zh) |
TW (1) | TW202302251A (zh) |
WO (1) | WO2022212291A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE065423T2 (hu) | 2015-12-16 | 2024-05-28 | 6K Inc | Eljárás szferoidális dehidrogénezett titánötvözet részecskék elõállítására |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
EP3962678A4 (en) | 2019-04-30 | 2023-01-11 | 6K Inc. | MECHANICALLY ALLOYED POWDER STARTING MATERIAL |
KR20220100861A (ko) | 2019-11-18 | 2022-07-18 | 6케이 인크. | 구형 분말을 위한 고유한 공급원료 및 제조 방법 |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
EP4173060A1 (en) | 2020-06-25 | 2023-05-03 | 6K Inc. | Microcomposite alloy structure |
CN116547068A (zh) | 2020-09-24 | 2023-08-04 | 6K有限公司 | 用于启动等离子体的系统、装置及方法 |
AU2021371051A1 (en) | 2020-10-30 | 2023-03-30 | 6K Inc. | Systems and methods for synthesis of spheroidized metal powders |
US12040162B2 (en) * | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
US12094688B2 (en) | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
US12195338B2 (en) | 2022-12-15 | 2025-01-14 | 6K Inc. | Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production |
Family Cites Families (733)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1699205A (en) | 1925-10-10 | 1929-01-15 | Hartstoff Metall Ag | Process of producing metal-powder particles of spherical shape |
US2892215A (en) | 1954-03-26 | 1959-06-30 | Mannesmann Ag | Process for the production of metal powder |
US3293334A (en) | 1962-08-16 | 1966-12-20 | Reynolds Metals Co | Preparation of spherical metal powder |
NL299680A (zh) | 1962-10-26 | |||
GB1103396A (en) | 1966-02-07 | 1968-02-14 | Int Nickel Ltd | Manufacture of precious metal spheres and spheroids |
US3434831A (en) | 1966-09-08 | 1969-03-25 | Olin Mathieson | Fabrication of spherical powders |
FR96445E (fr) | 1968-05-14 | 1972-06-30 | Olin Mathieson | Procédé de fabrication de poudres métalliques a particules sphériques. |
USRE26879E (en) | 1969-04-22 | 1970-05-19 | Process for making metal bonded diamond tools employing spherical pellets of metallic powder-coated diamond grits | |
US3802816A (en) | 1972-06-22 | 1974-04-09 | State Street Bank & Trust Co | Production of pure,spherical powders |
AT318768B (de) | 1972-09-08 | 1974-11-11 | Boehler & Co Ag Geb | Verfahren und Vorrichtung zum Zünden eines Hochfrequenzplasmabrenners |
US3909241A (en) | 1973-12-17 | 1975-09-30 | Gte Sylvania Inc | Process for producing free flowing powder and product |
US3974245A (en) | 1973-12-17 | 1976-08-10 | Gte Sylvania Incorporated | Process for producing free flowing powder and product |
FR2366077A2 (fr) | 1976-10-01 | 1978-04-28 | Creusot Loire | Dispositif de fabrication de poudre metallique spherique non contaminee par l'atmosphere ambiante |
FR2255122B1 (zh) | 1973-12-20 | 1976-10-08 | Creusot Loire | |
US4076640A (en) | 1975-02-24 | 1978-02-28 | Xerox Corporation | Preparation of spheroidized particles |
US4212837A (en) | 1977-05-04 | 1980-07-15 | Tokyo Shibaura Electric Co., Ltd. | Method and apparatus for forming spherical particles of thermoplastic material |
US4431449A (en) | 1977-09-26 | 1984-02-14 | Minnesota Mining And Manufacturing Company | Infiltrated molded articles of spherical non-refractory metal powders |
US4221775A (en) | 1978-12-26 | 1980-09-09 | Research Dynamics, Inc. | Method of producing porous lithium oxide |
JPS55131175A (en) | 1979-03-30 | 1980-10-11 | Toshiba Corp | Surface treatment apparatus with microwave plasma |
US4423303A (en) | 1980-05-06 | 1983-12-27 | Tokyo Shibaura Denki Kabushiki Kaisha | Apparatus for treating powdery materials utilizing microwave plasma |
SE435370B (sv) | 1981-10-20 | 1984-09-24 | Skf Steel Eng Ab | Sett att framstella kisel |
US4599880A (en) | 1981-12-23 | 1986-07-15 | Belorussky Politekhnichesky Institut | Method of making metal fibers and apparatus for effecting same |
FR2525122A1 (fr) | 1982-04-16 | 1983-10-21 | Inst Francais Du Petrole | Appareillage de laboratoire pour le vapocraquage d'hydrocarbures |
FR2533397A2 (fr) | 1982-09-16 | 1984-03-23 | Anvar | Perfectionnements aux torches a plasma |
SE451549B (sv) | 1983-05-09 | 1987-10-19 | Kloster Speedsteel Ab | Pulvermetallurgisk metod att framstella metallkroppar av magnetiserbart sferiskt pulver |
US4544404A (en) | 1985-03-12 | 1985-10-01 | Crucible Materials Corporation | Method for atomizing titanium |
US4692584A (en) | 1985-11-29 | 1987-09-08 | Caneer Jr Clifford | Gas control system for a plasma arc welding apparatus |
FR2591412A1 (fr) | 1985-12-10 | 1987-06-12 | Air Liquide | Procede de fabrication de poudres et reacteur etanche a plasma micro-onde |
EP0256233B2 (en) | 1986-08-11 | 1993-08-25 | GTE Products Corporation | Process for producing spherical powder particles |
US4780131A (en) | 1986-09-08 | 1988-10-25 | Gte Products Corporation | Process for producing spherical light metal based powder particles |
US4943322A (en) | 1986-09-08 | 1990-07-24 | Gte Products Corporation | Spherical titanium based powder particles |
US4711660A (en) | 1986-09-08 | 1987-12-08 | Gte Products Corporation | Spherical precious metal based powder particles and process for producing same |
US4923509A (en) | 1986-09-08 | 1990-05-08 | Gte Products Corporation | Spherical light metal based powder particles and process for producing same |
US4778515A (en) | 1986-09-08 | 1988-10-18 | Gte Products Corporation | Process for producing iron group based and chromium based fine spherical particles |
US4783216A (en) | 1986-09-08 | 1988-11-08 | Gte Products Corporation | Process for producing spherical titanium based powder particles |
US4711661A (en) | 1986-09-08 | 1987-12-08 | Gte Products Corporation | Spherical copper based powder particles and process for producing same |
US4836850A (en) | 1986-09-08 | 1989-06-06 | Gte Products Corporation | Iron group based and chromium based fine spherical particles |
US4783218A (en) | 1986-09-08 | 1988-11-08 | Gte Products Corporation | Process for producing spherical refractory metal based powder particles |
US4670047A (en) | 1986-09-12 | 1987-06-02 | Gte Products Corporation | Process for producing finely divided spherical metal powders |
US4705560A (en) | 1986-10-14 | 1987-11-10 | Gte Products Corporation | Process for producing metallic powders |
US4714587A (en) | 1987-02-11 | 1987-12-22 | The United States Of America As Represented By The Secretary Of The Air Force | Method for producing very fine microstructures in titanium alloy powder compacts |
US4731110A (en) | 1987-03-16 | 1988-03-15 | Gte Products Corp. | Hydrometallurigcal process for producing finely divided spherical precious metal based powders |
US4731111A (en) | 1987-03-16 | 1988-03-15 | Gte Products Corporation | Hydrometallurical process for producing finely divided spherical refractory metal based powders |
US4859237A (en) | 1988-01-04 | 1989-08-22 | Gte Products Corporation | Hydrometallurgical process for producing spherical maraging steel powders with readily oxidizable alloying elements |
US5114471A (en) | 1988-01-04 | 1992-05-19 | Gte Products Corporation | Hydrometallurgical process for producing finely divided spherical maraging steel powders |
US4787934A (en) | 1988-01-04 | 1988-11-29 | Gte Products Corporation | Hydrometallurgical process for producing spherical maraging steel powders utilizing spherical powder and elemental oxidizable species |
US4772315A (en) | 1988-01-04 | 1988-09-20 | Gte Products Corporation | Hydrometallurgical process for producing finely divided spherical maraging steel powders containing readily oxidizable alloying elements |
US4802915A (en) | 1988-04-25 | 1989-02-07 | Gte Products Corporation | Process for producing finely divided spherical metal powders containing an iron group metal and a readily oxidizable metal |
US5041713A (en) | 1988-05-13 | 1991-08-20 | Marinelon, Inc. | Apparatus and method for applying plasma flame sprayed polymers |
US5022935A (en) | 1988-09-23 | 1991-06-11 | Rmi Titanium Company | Deoxidation of a refractory metal |
US4923531A (en) | 1988-09-23 | 1990-05-08 | Rmi Company | Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier |
US4944797A (en) | 1989-01-03 | 1990-07-31 | Gte Products Corporation | Low oxygen content fine spherical copper particles and process for producing same by fluid energy milling and high temperature processing |
US5431967A (en) | 1989-09-05 | 1995-07-11 | Board Of Regents, The University Of Texas System | Selective laser sintering using nanocomposite materials |
US4952389A (en) | 1989-09-15 | 1990-08-28 | Norton Company | Alumina particles |
US5032202A (en) | 1989-10-03 | 1991-07-16 | Martin Marietta Energy Systems, Inc. | Plasma generating apparatus for large area plasma processing |
US5131992A (en) | 1990-01-08 | 1992-07-21 | The United States Of America, As Represented By The Secretary Of The Interior | Microwave induced plasma process for producing tungsten carbide |
US5095048A (en) | 1990-10-01 | 1992-03-10 | Sumitomo Metal Mining Co., Ltd. | Method of manufacturing a composition for use in injection molding powder metallurgy |
US5290507A (en) | 1991-02-19 | 1994-03-01 | Runkle Joseph C | Method for making tool steel with high thermal fatigue resistance |
US5200595A (en) | 1991-04-12 | 1993-04-06 | Universite De Sherbrooke | High performance induction plasma torch with a water-cooled ceramic confinement tube |
US5876684A (en) | 1992-08-14 | 1999-03-02 | Materials And Electrochemical Research (Mer) Corporation | Methods and apparati for producing fullerenes |
US5292370A (en) | 1992-08-14 | 1994-03-08 | Martin Marietta Energy Systems, Inc. | Coupled microwave ECR and radio-frequency plasma source for plasma processing |
US5958361A (en) | 1993-03-19 | 1999-09-28 | Regents Of The University Of Michigan | Ultrafine metal oxide powders by flame spray pyrolysis |
JP3026704B2 (ja) | 1993-07-29 | 2000-03-27 | 富士通株式会社 | マグネトロン発振出力制御装置及びプラズマ処理方法 |
US5671045A (en) | 1993-10-22 | 1997-09-23 | Masachusetts Institute Of Technology | Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams |
US5376475A (en) | 1994-03-16 | 1994-12-27 | Ovonic Battery Company, Inc. | Aqueous lithium-hydrogen ion rechargeable battery |
KR970010305B1 (ko) | 1994-04-22 | 1997-06-25 | 김연식 | 복합산화물 전구체 및 그 제조방법 |
US5411592A (en) | 1994-06-06 | 1995-05-02 | Ovonic Battery Company, Inc. | Apparatus for deposition of thin-film, solid state batteries |
US6221125B1 (en) | 1994-06-22 | 2001-04-24 | Mitsubishi Steel Mfg. Co., Ltd. | Water-atomized spherical metal powders and method for producing the same |
JP3092041B2 (ja) | 1994-11-30 | 2000-09-25 | 日本原子力研究所 | Li2 O粒子の製造方法 |
US6027585A (en) | 1995-03-14 | 2000-02-22 | The Regents Of The University Of California Office Of Technology Transfer | Titanium-tantalum alloys |
JP3501552B2 (ja) | 1995-06-29 | 2004-03-02 | 株式会社神戸製鋼所 | ダイヤモンド電極 |
US5518831A (en) | 1995-07-07 | 1996-05-21 | The Dow Chemical Company | Electrocatalytic structure |
RU2196846C2 (ru) | 1995-11-13 | 2003-01-20 | Дзе Юниверсити оф Коннектикут | Наноструктурные сырьевые материалы для термического напыления |
US5750013A (en) | 1996-08-07 | 1998-05-12 | Industrial Technology Research Institute | Electrode membrane assembly and method for manufacturing the same |
US6569397B1 (en) | 2000-02-15 | 2003-05-27 | Tapesh Yadav | Very high purity fine powders and methods to produce such powders |
US6933331B2 (en) | 1998-05-22 | 2005-08-23 | Nanoproducts Corporation | Nanotechnology for drug delivery, contrast agents and biomedical implants |
US5980977A (en) | 1996-12-09 | 1999-11-09 | Pinnacle Research Institute, Inc. | Method of producing high surface area metal oxynitrides as substrates in electrical energy storage |
WO1998019965A1 (en) | 1996-11-04 | 1998-05-14 | Materials Modification, Inc. | Microwave plasma chemical synthesis of ultrafine powders |
JPH10172564A (ja) | 1996-12-04 | 1998-06-26 | Mitsubishi Electric Corp | 活物質及びその製造方法並びにその活物質を用いたリチウムイオン二次電池 |
US5969352A (en) | 1997-01-03 | 1999-10-19 | Mds Inc. | Spray chamber with dryer |
CN1188073A (zh) | 1997-01-17 | 1998-07-22 | 中国科学院金属研究所 | 富勒烯族碳素材料的制备方法及其在电池电极材料中应用 |
US5989648A (en) | 1997-05-06 | 1999-11-23 | The Penn State Research Foundation | Plasma generation of supported metal catalysts |
DE19726663A1 (de) | 1997-06-23 | 1999-01-28 | Sung Spitzl Hildegard Dr Ing | Vorrichtung zur Erzeugung von homogenen Mikrowellenplasmen |
US6200651B1 (en) | 1997-06-30 | 2001-03-13 | Lam Research Corporation | Method of chemical vapor deposition in a vacuum plasma processor responsive to a pulsed microwave source |
JP3508008B2 (ja) | 1997-08-20 | 2004-03-22 | 原子燃料工業株式会社 | トリチウム増殖用Li2 O微小球の製造方法 |
SE511834C2 (sv) | 1998-01-13 | 1999-12-06 | Valtubes Sa | Heltäta produkter framställda genom enaxlig höghastighetspressning av metallpulver |
US5909277A (en) | 1998-02-13 | 1999-06-01 | Massachusetts Institute Of Technology | Microwave plasma element sensor |
US6362449B1 (en) | 1998-08-12 | 2002-03-26 | Massachusetts Institute Of Technology | Very high power microwave-induced plasma |
US6329628B1 (en) | 1998-12-10 | 2001-12-11 | Polytechnic University | Methods and apparatus for generating a plasma torch |
US6696718B1 (en) | 1999-04-06 | 2004-02-24 | Micron Technology, Inc. | Capacitor having an electrode formed from a transition metal or a conductive metal-oxide, and method of forming same |
JP2002332531A (ja) | 1999-06-11 | 2002-11-22 | Toyota Central Res & Dev Lab Inc | チタン合金およびその製造方法 |
EP1114876B1 (en) | 1999-06-11 | 2006-08-23 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy and method for producing the same |
JP2001020065A (ja) | 1999-07-07 | 2001-01-23 | Hitachi Metals Ltd | スパッタリング用ターゲット及びその製造方法ならびに高融点金属粉末材料 |
US6713088B2 (en) | 1999-08-31 | 2004-03-30 | General Electric Company | Low viscosity filler composition of boron nitride particles of spherical geometry and process |
US20010016283A1 (en) | 1999-09-09 | 2001-08-23 | Masashi Shiraishi | Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same |
DE19945318C2 (de) | 1999-09-22 | 2001-12-13 | Hartmetall Beteiligungs Gmbh | Verfahren zur Herstellung sphäroidisierter Hartstoffpulver |
JP3971090B2 (ja) | 2000-04-05 | 2007-09-05 | 株式会社神戸製鋼所 | 針状表面を有するダイヤモンドの製造方法及び繊毛状表面を有する炭素系材料の製造方法 |
KR100341407B1 (ko) | 2000-05-01 | 2002-06-22 | 윤덕용 | 플라즈마 처리에 의한 리튬전이금속 산화물 박막의 결정화방법 |
EP1299916B1 (de) | 2000-06-29 | 2004-07-07 | Wolfgang Kollmann | Verfahren zur herstellung eines metallisierten stoffs, sowie batterie und brennstoffzelle, welche diesen enthalten |
US6261484B1 (en) | 2000-08-11 | 2001-07-17 | The Regents Of The University Of California | Method for producing ceramic particles and agglomerates |
DE60140625D1 (de) | 2000-08-15 | 2010-01-07 | Univ Illinois | Verfahren zur herstellung von mikropartikeln |
US6805822B2 (en) | 2000-09-20 | 2004-10-19 | Sumitomo Chemical Company, Limited | Method for producing thermoplastic elastomer powder |
US6793849B1 (en) | 2000-10-09 | 2004-09-21 | The University Of Chicago | N-type droping of nanocrystalline diamond films with nitrogen and electrodes made therefrom |
US6752979B1 (en) | 2000-11-21 | 2004-06-22 | Very Small Particle Company Pty Ltd | Production of metal oxide particles with nano-sized grains |
AUPR186200A0 (en) | 2000-12-04 | 2001-01-04 | Tesla Group Holdings Pty Limited | Plasma reduction processing of materials |
AU2002226001A1 (en) | 2000-12-08 | 2002-06-18 | Sulzer Metco (Us) Inc. | Pre-alloyed stabilized zirconia powder and improved thermal barrier coating |
JP4304897B2 (ja) | 2000-12-20 | 2009-07-29 | 株式会社豊田中央研究所 | 高弾性変形能を有するチタン合金およびその製造方法 |
KR100611037B1 (ko) | 2000-12-20 | 2006-08-10 | 가부시키 가이샤 도요타 츄오 겐큐쇼 | 고탄성 변형능을 갖는 티타늄 합금 및 그 제조 방법 |
US6551377B1 (en) | 2001-03-19 | 2003-04-22 | Rhenium Alloys, Inc. | Spherical rhenium powder |
AU2002303633A1 (en) | 2001-05-03 | 2002-11-18 | Travis Honeycutt | Microwave activation of fuel cell gases |
US6652822B2 (en) | 2001-05-17 | 2003-11-25 | The Regents Of The University Of California | Spherical boron nitride particles and method for preparing them |
CN1270587C (zh) | 2001-07-03 | 2006-08-16 | 瓦里安澳大利亚有限公司 | 等离子体喷灯 |
US7622693B2 (en) | 2001-07-16 | 2009-11-24 | Foret Plasma Labs, Llc | Plasma whirl reactor apparatus and methods of use |
KR100687178B1 (ko) | 2001-07-27 | 2007-02-27 | 티디케이가부시기가이샤 | 구형상 산화물 분말의 제조방법 및 구형상 분말 제조장치 |
TW521539B (en) | 2001-08-20 | 2003-02-21 | Hau-Ran Ni | A plasma reactor with multiple microwave sources |
JP4997674B2 (ja) | 2001-09-03 | 2012-08-08 | 日本電気株式会社 | 二次電池用負極および二次電池 |
US6693253B2 (en) | 2001-10-05 | 2004-02-17 | Universite De Sherbrooke | Multi-coil induction plasma torch for solid state power supply |
US20030070620A1 (en) | 2001-10-15 | 2003-04-17 | Cooperberg David J. | Tunable multi-zone gas injection system |
US6689192B1 (en) | 2001-12-13 | 2004-02-10 | The Regents Of The University Of California | Method for producing metallic nanoparticles |
US7534296B2 (en) | 2002-01-11 | 2009-05-19 | Board Of Trustees Of Michigan State University | Electrically conductive diamond electrodes |
EP1476397A4 (en) | 2002-02-19 | 2008-03-05 | Tal Materials | MIXED METAL OXIDE PARTICLES BY LIQUID SUPPLY FLAME SPREADING HYPERROLYSIS OF OXID FILLERS IN OXYGENIZED SOLVENTS |
DK1341250T3 (da) | 2002-02-28 | 2011-08-22 | Umicore Ag & Co Kg | Fremgangsmåde til fremstilling af katalysatorbelagte membraner og membram-elektroenheder til brændstofceller |
JP2005293850A (ja) | 2002-03-08 | 2005-10-20 | Akira Fujishima | 電力貯蔵体用電極、電力貯蔵体、および電力貯蔵方法 |
US20030186128A1 (en) | 2002-03-29 | 2003-10-02 | Deepika Singh | Lithium-based rechargeable batteries |
US6755886B2 (en) | 2002-04-18 | 2004-06-29 | The Regents Of The University Of California | Method for producing metallic microparticles |
WO2003095591A1 (en) | 2002-05-08 | 2003-11-20 | Dana Corporation | Plasma-assisted doping |
KR100562366B1 (ko) | 2002-05-20 | 2006-03-20 | 니치아 카가쿠 고교 가부시키가이샤 | 비수성 전해액 이차전지용 양극활성물질 |
JP2005222956A (ja) | 2002-05-20 | 2005-08-18 | Nichia Chem Ind Ltd | 非水電解液二次電池 |
AUPS245402A0 (en) | 2002-05-21 | 2002-06-13 | Varian Australia Pty Ltd | Plasma torch for microwave induced plasmas |
KR100453555B1 (ko) | 2002-06-03 | 2004-10-20 | 한국지질자원연구원 | 화염분무열분해를 이용한 리튬코발트 산화물 나노입자의제조방법 |
US6669823B1 (en) | 2002-06-17 | 2003-12-30 | Nanophase Technologies Corporation | Process for preparing nanostructured materials of controlled surface chemistry |
JP3877302B2 (ja) | 2002-06-24 | 2007-02-07 | 本田技研工業株式会社 | カーボンナノチューブの形成方法 |
US6780219B2 (en) | 2002-07-03 | 2004-08-24 | Osram Sylvania Inc. | Method of spheridizing silicon metal powders |
US7357910B2 (en) | 2002-07-15 | 2008-04-15 | Los Alamos National Security, Llc | Method for producing metal oxide nanoparticles |
US6913855B2 (en) | 2002-07-22 | 2005-07-05 | Valence Technology, Inc. | Method of synthesizing electrochemically active materials from a slurry of precursors |
JP2004079244A (ja) | 2002-08-12 | 2004-03-11 | Toshiba Corp | 燃料電池用触媒及び燃料電池 |
EP1536508B1 (en) | 2002-08-13 | 2014-06-25 | Bridgestone Corporation | Improvement of dye-sensitized solar cell |
JP3812523B2 (ja) | 2002-09-10 | 2006-08-23 | 昭栄化学工業株式会社 | 金属粉末の製造方法 |
WO2004029332A2 (en) | 2002-09-25 | 2004-04-08 | Qinetiq Limited | Purification of electrochemically deoxidised refractory metal particles by heat processing |
US6838072B1 (en) | 2002-10-02 | 2005-01-04 | The United States Of America As Represented By The United States Department Of Energy | Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries |
US7491468B2 (en) | 2002-10-18 | 2009-02-17 | Japan As Represented By The President Of The University Of Kyusyu | Method for preparing positive electrode material for secondary cell, and secondary cell |
JP2004193115A (ja) | 2002-11-27 | 2004-07-08 | Nichia Chem Ind Ltd | 非水電解質二次電池用正極活物質および非水電解質二次電池 |
JP4713886B2 (ja) | 2002-12-06 | 2011-06-29 | 株式会社東芝 | 非水電解質二次電池 |
TW583043B (en) | 2002-12-27 | 2004-04-11 | Ind Tech Res Inst | Nanostructured metal powder and the method of fabricating the same |
US7175786B2 (en) | 2003-02-05 | 2007-02-13 | 3M Innovative Properties Co. | Methods of making Al2O3-SiO2 ceramics |
WO2004089821A1 (ja) | 2003-04-07 | 2004-10-21 | Mitsubishi Chemical Corporation | 炭素粒子およびその製造方法 |
JP2004311297A (ja) | 2003-04-09 | 2004-11-04 | Mitsubishi Chemicals Corp | 粉体状リチウム二次電池正極材料、リチウム二次電池正極、及びリチウム二次電池 |
US7235118B2 (en) | 2003-04-16 | 2007-06-26 | National Research Council Of Canada | Process for agglomeration and densification of nanometer sized particles |
DE10335355B4 (de) | 2003-04-23 | 2012-05-31 | Futurecarbon Gmbh | Katalysatormaterial und Verfahren zur Herstellung von geträgertem Katalysatormaterial |
JP4283035B2 (ja) | 2003-05-13 | 2009-06-24 | 株式会社荏原製作所 | 溶融炉及びプラズマアークの再着火方法 |
JP4694108B2 (ja) | 2003-05-23 | 2011-06-08 | 東京エレクトロン株式会社 | 酸化膜形成方法、酸化膜形成装置および電子デバイス材料 |
JP2004362895A (ja) | 2003-06-03 | 2004-12-24 | Sony Corp | 負極材料およびそれを用いた電池 |
US7108733B2 (en) | 2003-06-20 | 2006-09-19 | Massachusetts Institute Of Technology | Metal slurry for electrode formation and production method of the same |
JP4293852B2 (ja) | 2003-06-26 | 2009-07-08 | 三菱化学株式会社 | 共沈物の製造方法及び置換型リチウム遷移金属複合酸化物の製造方法 |
EP1492184A1 (de) | 2003-06-27 | 2004-12-29 | Umicore AG & Co. KG | Verfahren zur Herstellung einer katalysatorbeschichteten Polymerelektrolyt-Membran |
US7223628B2 (en) | 2003-07-25 | 2007-05-29 | The Regents Of The University Of California | High temperature attachment of organic molecules to substrates |
US7297892B2 (en) | 2003-08-14 | 2007-11-20 | Rapt Industries, Inc. | Systems and methods for laser-assisted plasma processing |
US7182929B1 (en) | 2003-08-18 | 2007-02-27 | Nei, Inc. | Nanostructured multi-component and doped oxide powders and method of making same |
JP4222157B2 (ja) | 2003-08-28 | 2009-02-12 | 大同特殊鋼株式会社 | 剛性および強度が向上したチタン合金 |
CA2551020C (en) | 2003-08-28 | 2011-10-18 | Tekna Plasma Systems Inc. | Process for the synthesis, separation and purification of powder materials |
EP1673162A1 (en) | 2003-10-15 | 2006-06-28 | Dow Corning Ireland Limited | Manufacture of resins |
JP2005135755A (ja) | 2003-10-30 | 2005-05-26 | Sanyo Electric Co Ltd | 非水系二次電池の負極用炭素材料の製造方法及びこれを用いた非水系二次電池 |
KR20030093166A (ko) | 2003-11-18 | 2003-12-06 | 선양국 | 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법 |
US7297310B1 (en) | 2003-12-16 | 2007-11-20 | Dwa Technologies, Inc. | Manufacturing method for aluminum matrix nanocomposite |
JP2005187295A (ja) | 2003-12-26 | 2005-07-14 | Hitachi Maxell Ltd | カーボンナノチューブ集合体、触媒担体及び燃料電池 |
WO2005069955A2 (en) | 2004-01-21 | 2005-08-04 | Idaho Research Foundation, Inc. | Supercritical fluids in the formation and modification of nanostructures and nanocomposites |
US20050163696A1 (en) | 2004-01-28 | 2005-07-28 | Uhm Han S. | Synthesis of carbon nanotubes by making use of microwave plasma torch |
TWI233321B (en) | 2004-02-20 | 2005-05-21 | Ind Tech Res Inst | Method for producing nano oxide powder using D.C. plasma thermo-reaction |
AU2005215846B2 (en) | 2004-02-23 | 2011-01-27 | Caiteng Zhang | A solution of metal-polymer chelate(s) and applications thereof |
US7700152B2 (en) | 2004-02-27 | 2010-04-20 | The Regents Of The University Of Michigan | Liquid feed flame spray modification of nanoparticles |
US8101061B2 (en) | 2004-03-05 | 2012-01-24 | Board Of Regents, The University Of Texas System | Material and device properties modification by electrochemical charge injection in the absence of contacting electrolyte for either local spatial or final states |
DE102004010892B3 (de) | 2004-03-06 | 2005-11-24 | Christian-Albrechts-Universität Zu Kiel | Chemisch stabiler fester Lithiumionenleiter |
US7091441B1 (en) | 2004-03-19 | 2006-08-15 | Polytechnic University | Portable arc-seeded microwave plasma torch |
JP3837451B2 (ja) | 2004-03-26 | 2006-10-25 | 国立大学法人名古屋大学 | カーボンナノチューブの作製方法 |
US7442271B2 (en) | 2004-04-07 | 2008-10-28 | Board Of Trustees Of Michigan State University | Miniature microwave plasma torch application and method of use thereof |
US7381496B2 (en) | 2004-05-21 | 2008-06-03 | Tiax Llc | Lithium metal oxide materials and methods of synthesis and use |
EP1752566A4 (en) | 2004-05-27 | 2009-09-23 | Toppan Printing Co Ltd | NANOCRYSTALLINE DIAMOND FILM; MANUFACTURING METHOD AND APPARATUS USING THE NAONCRYSTALLINE DIAMOND FILM |
JP4573594B2 (ja) | 2004-07-27 | 2010-11-04 | 株式会社神戸製鋼所 | 二次電池 |
US7806077B2 (en) | 2004-07-30 | 2010-10-05 | Amarante Technologies, Inc. | Plasma nozzle array for providing uniform scalable microwave plasma generation |
WO2007001343A2 (en) | 2004-08-20 | 2007-01-04 | Ion America Corporation | Nanostructured fuel cell electrode |
KR101207602B1 (ko) | 2004-09-07 | 2012-12-03 | 닛신 엔지니어링 가부시키가이샤 | 미립자의 제조방법 및 장치 |
JP4535822B2 (ja) | 2004-09-28 | 2010-09-01 | ペルメレック電極株式会社 | 導電性ダイヤモンド電極及びその製造方法 |
GB2419132B (en) | 2004-10-04 | 2011-01-19 | C Tech Innovation Ltd | Method of production of fluorinated carbon nanostructures |
US7524353B2 (en) | 2004-10-21 | 2009-04-28 | Climax Engineered Materials, Llc | Densified molybdenum metal powder and method for producing same |
US7276102B2 (en) | 2004-10-21 | 2007-10-02 | Climax Engineered Materials, Llc | Molybdenum metal powder and production thereof |
JP4012192B2 (ja) | 2004-11-01 | 2007-11-21 | 株式会社東芝 | 燃料電池用触媒及び燃料電池 |
US7375303B2 (en) | 2004-11-16 | 2008-05-20 | Hypertherm, Inc. | Plasma arc torch having an electrode with internal passages |
JPWO2006062039A1 (ja) | 2004-12-06 | 2008-06-05 | サンレックス工業株式会社 | 金属製品の製造方法および金属製品 |
US20060127738A1 (en) | 2004-12-13 | 2006-06-15 | Bhaskar Sompalli | Design, method and process for unitized mea |
TWI265916B (en) | 2004-12-31 | 2006-11-11 | Ind Tech Res Inst | Process of making YAG fluorescence powder |
US20060291827A1 (en) | 2005-02-11 | 2006-12-28 | Suib Steven L | Process and apparatus to synthesize materials |
WO2006086979A2 (de) | 2005-02-20 | 2006-08-24 | Hahn-Meitner-Institut Berlin Gmbh | Herstellung eines platinfreien chelat-katalysatormaterials als zwischenprodukt und dessen weiterverarbeitung zu einer elektrokatalytischen beschichtung als endprodukt |
EP1873846A4 (en) | 2005-03-23 | 2013-04-03 | Pionics Co Ltd | MATERIAL PARTICLES ACTING AS A NEGATIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY, NEGATIVE ELECTRODE AND METHOD OF MANUFACTURING SAME |
WO2006099749A1 (en) | 2005-03-25 | 2006-09-28 | Institut National De La Recherche Scientifique | Methods and apparatuses for depositing nanometric filamentary structures |
CA2506104A1 (en) | 2005-05-06 | 2006-11-06 | Michel Gauthier | Surface modified redox compounds and composite electrode obtain from them |
US7622211B2 (en) | 2005-06-01 | 2009-11-24 | Gm Global Technology Operations, Inc. | Hydrophilic fuel cell bipolar plate having a plasma induced polymerization coating |
CN104973577A (zh) | 2005-06-08 | 2015-10-14 | 丰田发动机工程及制造北美公司 | 金属氧化物纳米颗粒及其制备方法 |
JP5362356B2 (ja) | 2005-08-12 | 2013-12-11 | ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド | ナノ粒子を含む被覆を有する燃料電池部品 |
US20090297496A1 (en) | 2005-09-08 | 2009-12-03 | Childrens Hospital Medical Center | Lysosomal Acid Lipase Therapy for NAFLD and Related Diseases |
US7658901B2 (en) | 2005-10-14 | 2010-02-09 | The Trustees Of Princeton University | Thermally exfoliated graphite oxide |
JP4963586B2 (ja) | 2005-10-17 | 2012-06-27 | 株式会社日清製粉グループ本社 | 超微粒子の製造方法 |
JP4855758B2 (ja) | 2005-10-19 | 2012-01-18 | 東海旅客鉄道株式会社 | 針状突起配列構造を表面に有するダイヤモンドの製造方法 |
EP1777302B1 (en) | 2005-10-21 | 2009-07-15 | Sulzer Metco (US) Inc. | Plasma remelting method for making high purity and free flowing metal oxides powder |
TWI317414B (en) | 2005-10-21 | 2009-11-21 | Foxconn Tech Co Ltd | Sintered heat pipe and method for manufacturing the same |
GB0521830D0 (en) | 2005-10-26 | 2005-12-07 | Boc Group Plc | Plasma reactor |
CN100459238C (zh) | 2005-11-16 | 2009-02-04 | 比亚迪股份有限公司 | 锂镍锰钴氧锂离子电池正极材料的制备方法 |
JP2007149513A (ja) | 2005-11-29 | 2007-06-14 | National Institute Of Advanced Industrial & Technology | 固体高分子形燃料電池用触媒担体 |
NO329785B1 (no) | 2005-12-02 | 2010-12-20 | Prototech As | Fremgangsmate for sol-gel prosessering og geler og nanopartikler produsert med nevnte fremgangsmate |
IL172837A (en) | 2005-12-27 | 2010-06-16 | Joma Int As | Methods for production of metal oxide nano particles and nano particles and preparations produced thereby |
KR20070076686A (ko) | 2006-01-19 | 2007-07-25 | 삼성에스디아이 주식회사 | 음극 활물질 및 이를 채용한 리튬 전지 |
WO2007098111A2 (en) | 2006-02-16 | 2007-08-30 | Brigham Young University | Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys |
KR100745736B1 (ko) | 2006-02-23 | 2007-08-02 | 삼성에스디아이 주식회사 | 카본나노튜브, 이를 포함한 담지 촉매 및 상기 담지 촉매를이용한 연료전지 |
US8859931B2 (en) | 2006-03-08 | 2014-10-14 | Tekna Plasma Systems Inc. | Plasma synthesis of nanopowders |
JP2007238402A (ja) | 2006-03-10 | 2007-09-20 | Chugai Ro Co Ltd | 粉体製造装置および粉体製造方法 |
EP2010312A1 (en) | 2006-03-29 | 2009-01-07 | Northwest Mettech Corporation | Method and apparatus for nanopowder and micropowder production using axial injection plasma spray |
US20070259768A1 (en) | 2006-05-03 | 2007-11-08 | Kear Bernard H | Nanocomposite ceramic and method for producing the same |
WO2007128821A2 (de) | 2006-05-09 | 2007-11-15 | Basf Se | Verfahren zur herstellung von suspensionen nanopartikulärer feststoffe |
TWI329143B (en) | 2006-05-17 | 2010-08-21 | Univ Nat Sun Yat Sen | Nano thin film diamond electrode and method for producing the same |
US8268230B2 (en) | 2006-05-24 | 2012-09-18 | Lawrence Livermore National Security, Llc | Fabrication of transparent ceramics using nanoparticles |
US8728967B2 (en) | 2006-05-26 | 2014-05-20 | Praxair S.T. Technology, Inc. | High purity powders |
US8007691B2 (en) | 2006-06-13 | 2011-08-30 | Hitachi Maxell Energy, Ltd. | Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell |
JP4875410B2 (ja) | 2006-06-13 | 2012-02-15 | トヨタ自動車株式会社 | 微粒子担持カーボン粒子およびその製造方法ならびに燃料電池用電極 |
WO2008094211A2 (en) | 2006-08-07 | 2008-08-07 | The Trustees Of The University Of Pennsylvania | Tunable ferroelectric supported catalysts and method and uses thereof |
US7776303B2 (en) | 2006-08-30 | 2010-08-17 | Ppg Industries Ohio, Inc. | Production of ultrafine metal carbide particles utilizing polymeric feed materials |
US7453566B2 (en) | 2006-08-31 | 2008-11-18 | Massachusetts Institute Of Technology | Hybrid plasma element monitor |
BRPI0717380A2 (pt) | 2006-10-23 | 2013-10-29 | Axion Power Int Inc | Eletrodo negativo para dispositivo de armazenamento de energia híbrida |
TW200823313A (en) | 2006-11-22 | 2008-06-01 | Univ Feng Chia | Method of coating carbon film on metal substrate surface at low temperature |
JP2007113120A (ja) | 2006-12-04 | 2007-05-10 | Toyota Central Res & Dev Lab Inc | チタン合金およびその製造方法 |
CN101191204A (zh) | 2006-12-22 | 2008-06-04 | 上海电机学院 | 网络互穿式金刚石涂层多孔电极的制备方法 |
US8822000B2 (en) | 2007-01-18 | 2014-09-02 | Panasonic Corporation | Nanostructure and method for manufacturing the same |
US8748785B2 (en) | 2007-01-18 | 2014-06-10 | Amastan Llc | Microwave plasma apparatus and method for materials processing |
WO2008090514A2 (en) | 2007-01-22 | 2008-07-31 | Element Six Limited | Diamond electronic devices and methods for their manufacture |
CA2619331A1 (en) | 2007-01-31 | 2008-07-31 | Scientific Valve And Seal, Lp | Coatings, their production and use |
JP4855983B2 (ja) | 2007-03-20 | 2012-01-18 | 東海旅客鉄道株式会社 | ダイヤモンド電極の製造方法 |
JP5135842B2 (ja) | 2007-03-26 | 2013-02-06 | 三菱化学株式会社 | リチウム遷移金属複合酸化物、その製造方法、および、それを用いたリチウム二次電池用正極、ならびに、それを用いたリチウム二次電池 |
JP4719184B2 (ja) | 2007-06-01 | 2011-07-06 | 株式会社サイアン | 大気圧プラズマ発生装置およびそれを用いるワーク処理装置 |
KR101088876B1 (ko) | 2007-06-11 | 2011-12-07 | 고쿠리츠다이가쿠호진 도호쿠다이가쿠 | 플라즈마 처리 장치, 급전 장치 및 플라즈마 처리 장치의 사용 방법 |
DE102007030604A1 (de) | 2007-07-02 | 2009-01-08 | Weppner, Werner, Prof. Dr. | Ionenleiter mit Granatstruktur |
MX2007008317A (es) | 2007-07-06 | 2009-02-26 | Aba Res Sa De Cv | Gasificador por microondas. |
US20120027955A1 (en) | 2007-10-09 | 2012-02-02 | University Of Louisville Research Foundation, Inc. | Reactor and method for production of nanostructures |
US9630162B1 (en) | 2007-10-09 | 2017-04-25 | University Of Louisville Research Foundation, Inc. | Reactor and method for production of nanostructures |
US9560731B2 (en) | 2007-10-16 | 2017-01-31 | Foret Plasma Labs, Llc | System, method and apparatus for an inductively coupled plasma Arc Whirl filter press |
US8919428B2 (en) | 2007-10-17 | 2014-12-30 | Purdue Research Foundation | Methods for attaching carbon nanotubes to a carbon substrate |
US20090155689A1 (en) | 2007-12-14 | 2009-06-18 | Karim Zaghib | Lithium iron phosphate cathode materials with enhanced energy density and power performance |
KR20090070140A (ko) | 2007-12-26 | 2009-07-01 | 재단법인 포항산업과학연구원 | 이차전지의 전류집천체에 코팅되는 코팅재 |
JP2009187754A (ja) | 2008-02-05 | 2009-08-20 | Toyota Motor Corp | 燃料電池用電極材料の評価方法 |
US10244614B2 (en) | 2008-02-12 | 2019-03-26 | Foret Plasma Labs, Llc | System, method and apparatus for plasma arc welding ceramics and sapphire |
US10193142B2 (en) | 2008-02-25 | 2019-01-29 | Cf Traverse Llc | Lithium-ion battery anode including preloaded lithium |
US9412998B2 (en) | 2009-02-25 | 2016-08-09 | Ronald A. Rojeski | Energy storage devices |
US9705136B2 (en) | 2008-02-25 | 2017-07-11 | Traverse Technologies Corp. | High capacity energy storage |
WO2014110604A2 (en) | 2013-01-14 | 2014-07-17 | Catalyst Power Technologies, Inc. | High capacity energy storage |
US9356281B2 (en) | 2008-05-20 | 2016-05-31 | GM Global Technology Operations LLC | Intercalation electrode based on ordered graphene planes |
US9136569B2 (en) | 2008-05-21 | 2015-09-15 | Applied Materials, Inc. | Microwave rapid thermal processing of electrochemical devices |
KR100941229B1 (ko) | 2008-07-14 | 2010-02-10 | 현대자동차주식회사 | 초고유동성 우레탄계 미세 구형 파우더 제조 장치 및 방법 |
EP2303774B1 (de) | 2008-07-15 | 2017-06-14 | Universität Duisburg-Essen | Einlagerung von silizium und/oder zinn in poröse kohlenstoffsubstrate |
CA2730169C (en) | 2008-07-17 | 2014-01-28 | Universitaet Duisburg-Essen | Process for producing carbon substrates loaded with metal oxides and carbon substrates produced in this way |
JP5290656B2 (ja) | 2008-07-22 | 2013-09-18 | 東海旅客鉄道株式会社 | ホウ素ドープダイヤモンドの製造方法 |
US8758957B2 (en) | 2008-07-29 | 2014-06-24 | GM Global Technology Operations LLC | Graphene coated SS bipolar plates |
US8497050B2 (en) | 2008-07-29 | 2013-07-30 | GM Global Technology Operations LLC | Amorphous carbon coatings for fuel cell bipolar plates |
WO2010017227A1 (en) | 2008-08-05 | 2010-02-11 | Sakti3, Inc. | Electrochemical cell including functionally graded components |
EP2315638B1 (en) | 2008-08-13 | 2014-04-02 | E. I. du Pont de Nemours and Company | Multi-element metal powders for silicon solar cells |
DE102009033251A1 (de) | 2008-08-30 | 2010-09-23 | Universität Duisburg-Essen | Einlagerung von Silizium und/oder Zinn in poröse Kohlenstoffsubstrate |
TWI365562B (en) | 2008-10-03 | 2012-06-01 | Ind Tech Res Inst | Positive electrode and method for manufacturing the same and lithium battery utilizing the same |
US8389160B2 (en) | 2008-10-07 | 2013-03-05 | Envia Systems, Inc. | Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials |
JP5483228B2 (ja) | 2008-10-20 | 2014-05-07 | 学校法人東京理科大学 | 導電性ダイヤモンド中空ファイバー膜及び導電性ダイヤモンド中空ファイバー膜の製造方法 |
US8450637B2 (en) | 2008-10-23 | 2013-05-28 | Baker Hughes Incorporated | Apparatus for automated application of hardfacing material to drill bits |
US8329090B2 (en) | 2008-10-24 | 2012-12-11 | Lawrence Livermore National Security, Llc | Compound transparent ceramics and methods of preparation thereof |
CN101728509B (zh) | 2008-10-27 | 2012-01-11 | 财团法人工业技术研究院 | 锂电池及正极与其形成方法 |
JP5827565B2 (ja) | 2008-11-07 | 2015-12-02 | サクティスリー, インク.Sakti3, Inc. | 統合された構造物内における多重電気化学電池およびエネルギー収集素子の製造および構造化方法 |
CN101391307B (zh) | 2008-11-20 | 2010-09-15 | 核工业西南物理研究院 | 一种制备精细球形钨粉的方法 |
SE534273C2 (sv) | 2009-01-12 | 2011-06-28 | Metec Powder Metal Ab | Stålprodukt och tillverkning av stålprodukt genom bland annat sintring, höghastighetspressning och varmisostatpressning |
EP2376247B8 (en) | 2009-01-12 | 2019-12-25 | Metal Additive Technologies | Process for manufactirung multilevel parts from agglomerated spherical metal powder |
US8303926B1 (en) | 2009-01-22 | 2012-11-06 | Stc.Unm | Synthetic methods for generating WS2 nanostructured materials |
US9065141B2 (en) | 2009-02-10 | 2015-06-23 | Audi Ag | Boron-doped diamond coated catalyst support |
US20120015284A1 (en) | 2009-02-10 | 2012-01-19 | Utc Power Corporation | Boron-doped diamond coated carbon catalyst support |
US9776378B2 (en) | 2009-02-17 | 2017-10-03 | Samsung Electronics Co., Ltd. | Graphene sheet comprising an intercalation compound and process of preparing the same |
TWI487668B (zh) | 2009-02-19 | 2015-06-11 | Sakai Chemical Industry Co | 金紅石型氧化鈦粒子之分散體,其製造方法,及其用途 |
GB0902784D0 (en) | 2009-02-19 | 2009-04-08 | Gasplas As | Plasma reactor |
JP5555225B2 (ja) | 2009-03-12 | 2014-07-23 | 三井化学株式会社 | 金属酸化物多孔質体の製造方法 |
US8800483B2 (en) | 2009-05-08 | 2014-08-12 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US8221934B2 (en) | 2009-05-27 | 2012-07-17 | GM Global Technology Operations LLC | Method to enhance the durability of conductive carbon coating of PEM fuel cell bipolar plates |
US9368772B1 (en) | 2009-06-15 | 2016-06-14 | Sakti3, Inc. | Packaging and termination structure for a solid state battery |
EP2448045A1 (en) | 2009-06-26 | 2012-05-02 | Asahi Glass Company, Limited | Process for production of positive electrode material for secondary batteries, and positive electrode material for secondary batteries |
US20110006254A1 (en) | 2009-07-07 | 2011-01-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Process to make electrochemically active/inactive nanocomposite material |
DE102009035546A1 (de) | 2009-07-31 | 2011-02-03 | Bayer Materialscience Ag | Elektrode und Elektrodenbeschichtung |
KR20170123711A (ko) | 2009-08-07 | 2017-11-08 | 브릴리언트 라이트 파워, 인크. | 불균일 수소-촉매 파워 시스템 |
TWI530582B (zh) | 2009-08-24 | 2016-04-21 | 應用材料股份有限公司 | 利用電漿噴塗之電池活性鋰材料的原位沉積 |
EP2292557A1 (en) | 2009-09-03 | 2011-03-09 | Clariant International Ltd. | Continuous synthesis of carbon-coated lithium-iron-phosphate |
US8685593B2 (en) | 2009-09-22 | 2014-04-01 | GM Global Technology Operations LLC | Carbon based bipolar plate coatings for effective water management |
US9520600B2 (en) | 2009-09-22 | 2016-12-13 | GM Global Technology Operations LLC | Conductive and hydrophilic bipolar plate coatings and method of making the same |
JP2011108639A (ja) | 2009-10-22 | 2011-06-02 | Ronald Anthony Rojeski | カラーストップを含む電極 |
JP5317203B2 (ja) | 2009-11-13 | 2013-10-16 | 国立大学法人福井大学 | リチウムイオン二次電池正極活物質の製造方法 |
KR101134501B1 (ko) | 2009-12-07 | 2012-04-13 | 주식회사 풍산 | 열플라즈마를 이용한 고순도 구리분말의 제조방법 |
US8478785B2 (en) | 2009-12-15 | 2013-07-02 | International Business Machines Corporation | Measuring node proximity on graphs with side information |
CN101716686B (zh) | 2010-01-05 | 2011-02-16 | 北京科技大学 | 一种微细球形钛粉的短流程制备方法 |
CN102792508A (zh) | 2010-01-19 | 2012-11-21 | 双向电池公司 | 低成本、高功率、高能量密度、固态双极金属氢化物电池 |
DE102010006440A1 (de) | 2010-02-01 | 2011-08-04 | o.m.t. GmbH, 23569 | Elektrodenmaterial für wiederaufladbare (Sekundär-)batterien auf Lithiumbasis |
US20130032753A1 (en) | 2010-02-23 | 2013-02-07 | Manabu Yamamoto | Positive electrode active substance precursor particles, positive electrode active substance particles and non-aqueous electrolyte secondary battery |
JP5324501B2 (ja) | 2010-03-09 | 2013-10-23 | 国立大学法人信州大学 | 電気化学用電極とその製造方法 |
US20130084474A1 (en) | 2010-03-18 | 2013-04-04 | Randell L. Mills | Electrochemical hydrogen-catalyst power system |
JP5746830B2 (ja) | 2010-04-09 | 2015-07-08 | 株式会社フジクラ | 金属基板、カーボンナノチューブ電極及びその製造方法 |
PL2571807T3 (pl) | 2010-05-18 | 2017-01-31 | Metasphere Technology Ab | Sferyczny proszek i jego wytwarzanie |
RU2572928C2 (ru) | 2010-05-31 | 2016-01-20 | Тохо Титаниум Ко., Лтд. | Порошковая смесь для получения титанового сплава, титановый сплав, полученный из такой смеси, и способы их получения |
KR101920721B1 (ko) | 2010-06-04 | 2018-11-22 | 삼성전자주식회사 | 그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본 |
WO2011156419A2 (en) | 2010-06-07 | 2011-12-15 | The Regents Of The University Of California | Lithium ion batteries based on nanoporous silicon |
JP2011258348A (ja) | 2010-06-07 | 2011-12-22 | Toyota Central R&D Labs Inc | リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法 |
US9196901B2 (en) | 2010-06-14 | 2015-11-24 | Lee Se-Hee | Lithium battery electrodes with ultra-thin alumina coatings |
FR2962995B1 (fr) | 2010-07-21 | 2013-07-05 | Commissariat Energie Atomique | Procede de fabrication d'une structure comprenant un feuillet de graphene muni de plots metalliques, structure ainsi obtenue et ses utilisations |
KR101133094B1 (ko) | 2010-07-26 | 2012-04-04 | 광운대학교 산학협력단 | 다중 채널 플라즈마 제트 발생 장치 |
NO339087B1 (no) | 2010-08-17 | 2016-11-14 | Gasplas As | Anordning, system og fremgangsmåte for fremstilling av hydrogen |
US8431071B2 (en) | 2010-08-27 | 2013-04-30 | The United States Of America, As Represented By The Secretary Of The Navy | Sintering of metal and alloy powders by microwave/millimeter-wave heating |
JP5716155B2 (ja) | 2010-08-30 | 2015-05-13 | 国立大学法人名古屋大学 | ナノカーボン製造用粉末及び金属内包フラーレンの生成方法 |
EP2425915B1 (en) | 2010-09-01 | 2015-12-02 | Directa Plus S.p.A. | Multi mode production complex for nano-particles of metal |
GB201014706D0 (en) | 2010-09-03 | 2010-10-20 | Nexeon Ltd | Porous electroactive material |
CN102412377B (zh) | 2010-09-24 | 2015-08-26 | 比亚迪股份有限公司 | 一种隔膜及其制备方法、一种锂离子电池 |
CN103238238B (zh) | 2010-10-22 | 2016-11-09 | 安普瑞斯股份有限公司 | 含有约束在壳内的高容量多孔活性材料的复合结构体 |
JP5419098B2 (ja) | 2010-11-22 | 2014-02-19 | 日本発條株式会社 | ナノ結晶含有チタン合金およびその製造方法 |
US8877119B2 (en) | 2010-12-17 | 2014-11-04 | University Of Connecticut Center For Science And Technology And Commercialization | Method of synthesizing multi-phase oxide ceramics with small phase domain sizes |
FR2969595A1 (fr) | 2010-12-23 | 2012-06-29 | Saint Gobain Ct Recherches | Procede de fabrication d'un produit lmo. |
US10930922B2 (en) | 2011-01-05 | 2021-02-23 | Industry-University Cooperation Foundation Hanyang University | Positive electrode active material and secondary battery comprising the same |
KR101292757B1 (ko) | 2011-01-05 | 2013-08-02 | 한양대학교 산학협력단 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
JP5730032B2 (ja) | 2011-01-20 | 2015-06-03 | 株式会社フジクラ | カーボンナノチューブ電極用構造体、カーボンナノチューブ電極及び色素増感太陽電池 |
GB201103045D0 (en) | 2011-02-22 | 2011-04-06 | Univ Ulster | Product |
US20120224175A1 (en) | 2011-03-03 | 2012-09-06 | Philippe Minghetti | Microwave plasma atomic fluorescence mercury analysis system |
CN102427130B (zh) | 2011-03-23 | 2013-11-06 | 上海中兴派能能源科技有限公司 | 磷酸铁锂-碳纳米管复合材料及其制备方法和应用 |
JP4865105B1 (ja) | 2011-04-20 | 2012-02-01 | 山陽特殊製鋼株式会社 | Si系合金負極材料 |
CN102179521B (zh) | 2011-04-20 | 2013-01-02 | 北京科技大学 | 一种超细球形镍包钛复合粉末的制备方法 |
US8911529B2 (en) | 2011-04-27 | 2014-12-16 | Materials & Electrochemical Research Corp. | Low cost processing to produce spherical titanium and titanium alloy powder |
GB2490355B (en) | 2011-04-28 | 2015-10-14 | Gasplas As | Method for processing a gas and a device for performing the method |
US20120294919A1 (en) | 2011-05-16 | 2012-11-22 | Basf Se | Antimicrobial Silver Silica Composite |
EP2711111A4 (en) | 2011-05-18 | 2015-05-20 | Tohoku Techno Arch Co Ltd | PROCESS FOR PRODUCING METALLIC POWDER AND DEVICE FOR PRODUCING METALLIC POWDER |
US8623555B2 (en) | 2011-05-27 | 2014-01-07 | Vanderbilt University | Electrode useable in electrochemical cell and method of making same |
CN102723502B (zh) | 2011-06-01 | 2014-06-11 | 中国科学院金属研究所 | 一种提高钒电池电极材料活性的表面改性方法 |
WO2012162743A1 (en) | 2011-06-03 | 2012-12-06 | The University Of Melbourne | An electrode and a feedthrough for medical device applications |
KR101878734B1 (ko) | 2011-06-24 | 2018-07-16 | 삼성전자주식회사 | 그래핀 층상 구조체, 그의 제조방법 및 이를 채용한 투명전극과 트랜지스터 |
US9322081B2 (en) | 2011-07-05 | 2016-04-26 | Orchard Material Technology, Llc | Retrieval of high value refractory metals from alloys and mixtures |
US20140216920A1 (en) | 2011-07-08 | 2014-08-07 | Pst Sensors (Proprietary) Limited | Method of Producing Nanoparticles |
EP2736635A1 (en) | 2011-07-27 | 2014-06-04 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | A substrate surface structured with thermally stable metal alloy nanoparticles, a method for preparing the same and uses thereof, in particular as a catalyst |
WO2013017216A1 (de) | 2011-08-01 | 2013-02-07 | Li-Tec Battery Gmbh | Elektrochemische zelle |
DE102011109137A1 (de) | 2011-08-01 | 2013-02-07 | Li-Tec Battery Gmbh | Lithiumionen-Batterie |
US10319537B2 (en) | 2011-08-15 | 2019-06-11 | Purdue Research Foundation | Modified graphitic electrodes for electrochemical energy storage enhancement |
WO2014011239A2 (en) | 2012-05-09 | 2014-01-16 | Purdue Research Foundation | Modified graphitic electrodes for electrochemical energy storage enhancement |
WO2013027432A1 (ja) | 2011-08-23 | 2013-02-28 | Jx日鉱日石金属株式会社 | リチウムイオン電池用正極活物質の製造方法 |
JP2013062242A (ja) | 2011-08-24 | 2013-04-04 | Sumitomo Metal Mining Co Ltd | 薄膜固体二次電池用の薄膜の製造方法とそれに用いる塗布液、及び薄膜、並びにそれを用いた薄膜固体二次電池 |
CN102328961A (zh) | 2011-09-07 | 2012-01-25 | 先进储能材料国家工程研究中心有限责任公司 | 锂离子电池用镍钴锰酸锂正极材料前驱体及其生产方法 |
JP5898437B2 (ja) | 2011-09-16 | 2016-04-06 | 太陽誘電ケミカルテクノロジー株式会社 | 非晶質炭素膜積層部材及びその製造方法 |
JP2013069602A (ja) | 2011-09-26 | 2013-04-18 | Tokyo Electron Ltd | マイクロ波処理装置および被処理体の処理方法 |
JP5999804B2 (ja) | 2011-09-30 | 2016-09-28 | 学校法人東京理科大学 | 導電性ダイヤモンド電極の製造方法 |
JP5819154B2 (ja) | 2011-10-06 | 2015-11-18 | 株式会社日立ハイテクノロジーズ | プラズマエッチング装置 |
US11193142B2 (en) | 2011-10-24 | 2021-12-07 | AgorFora ApS | Methods and apparatus for hydrogen based biogas upgrading |
JP5604017B2 (ja) | 2011-11-09 | 2014-10-08 | 国立大学法人信州大学 | 電気化学用電極とその製造方法 |
CN102394290A (zh) | 2011-11-18 | 2012-03-28 | 青岛华冠恒远锂电科技有限公司 | 一种锂离子电池正极材料及其制备方法 |
CN103182808A (zh) | 2011-12-28 | 2013-07-03 | 圣戈班高功能塑料集团 | 一种包括含氟聚合物表面层以及非氟聚合物过渡层的多层复合物 |
US8980485B2 (en) | 2011-12-30 | 2015-03-17 | Itn Energy Systems, Inc. | Rechargeable, thin-film, all solid-state metal-air battery |
KR101429806B1 (ko) | 2012-01-17 | 2014-08-12 | (주)이큐베스텍 | 다중 모드 플라즈마 발생 장치 |
CN104106156B (zh) | 2012-02-07 | 2016-05-25 | 日产自动车株式会社 | 薄膜封装电气设备的制造方法及制造装置 |
CN102554242B (zh) | 2012-02-09 | 2013-12-11 | 西安宝德粉末冶金有限责任公司 | 微细球形钛粉末的制造方法 |
KR20150016210A (ko) | 2012-03-01 | 2015-02-11 | 엑셀라트론 솔리드 스테이트 엘엘씨 | 고용량 고체상 복합물 양극, 고체상 복합물 분리막, 재충전가능한 고체상 리튬 전지 및 이의 제조 방법 |
KR101521178B1 (ko) | 2012-03-31 | 2015-05-19 | 한양대학교 산학협력단 | 리튬 이차 전지용 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 및 이를 포함하는 리튬 이차 전지용 양극활물질 |
US10477665B2 (en) | 2012-04-13 | 2019-11-12 | Amastan Technologies Inc. | Microwave plasma torch generating laminar flow for materials processing |
JP5817636B2 (ja) | 2012-04-20 | 2015-11-18 | 昭栄化学工業株式会社 | 金属粉末の製造方法 |
CN107195935A (zh) | 2012-05-21 | 2017-09-22 | 辉光能源公司 | Ciht动力系统 |
US9991458B2 (en) | 2012-05-21 | 2018-06-05 | Ramot At Tel-Aviv University Ltd. | Nanoshell, method of fabricating same and uses thereof |
US9067264B2 (en) | 2012-05-24 | 2015-06-30 | Vladimir S. Moxson | Method of manufacturing pure titanium hydride powder and alloyed titanium hydride powders by combined hydrogen-magnesium reduction of metal halides |
CN102664273B (zh) | 2012-05-25 | 2014-06-25 | 南京工业大学 | 一种提高固体氧化物燃料电池阴极性能的方法 |
CN103456926A (zh) | 2012-05-31 | 2013-12-18 | 海洋王照明科技股份有限公司 | 硅-石墨烯复合材料、锂离子电池的制备方法 |
US10224541B2 (en) | 2012-06-08 | 2019-03-05 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Positive electrode active material precursor for lithium secondary battery, positive electrode active material manufactured by using thereof, and lithium secondary battery including the same |
KR20130138073A (ko) | 2012-06-08 | 2013-12-18 | 한양대학교 산학협력단 | 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지 |
KR101634843B1 (ko) | 2012-07-26 | 2016-06-29 | 주식회사 엘지화학 | 이차전지용 전극 활물질 |
US9095829B2 (en) | 2012-08-16 | 2015-08-04 | Alter Nrg Corp. | Plasma fired feed nozzle |
TW201411922A (zh) | 2012-09-10 | 2014-03-16 | Taiwan Bluestone Technology Co Ltd | 石墨烯電極 |
US9782791B2 (en) | 2012-09-28 | 2017-10-10 | Amastan Technologies Llc | High frequency uniform droplet maker and method |
US9321071B2 (en) | 2012-09-28 | 2016-04-26 | Amastan Technologies Llc | High frequency uniform droplet maker and method |
CN104870896A (zh) | 2012-10-04 | 2015-08-26 | 高级氧化还原技术有限责任公司 | 液体汽化系统及使用方法 |
US9793525B2 (en) | 2012-10-09 | 2017-10-17 | Johnson Battery Technologies, Inc. | Solid-state battery electrodes |
CN102867940B (zh) | 2012-10-12 | 2014-12-24 | 武汉工程大学 | 一种锂硫电池改性正极的工艺 |
US9206085B2 (en) | 2012-11-13 | 2015-12-08 | Amastan Technologies Llc | Method for densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
US9023259B2 (en) | 2012-11-13 | 2015-05-05 | Amastan Technologies Llc | Method for the densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
CN102983312B (zh) | 2012-11-28 | 2014-10-15 | 武汉工程大学 | 一种锂硫电池复合纤维正极材料的制备方法 |
US9242224B2 (en) | 2012-12-04 | 2016-01-26 | Amastan Technologies Llc | Method for the production of multiphase composite materials using microwave plasma process |
US8951496B2 (en) | 2012-12-04 | 2015-02-10 | Amastan Technologies Llc | Method for making amorphous particles using a uniform melt-state in a microwave generated plasma torch |
US9196905B2 (en) | 2013-01-31 | 2015-11-24 | National Cheng Kung University | Diamond film coated electrode for battery |
EP2963707B1 (en) | 2013-02-28 | 2017-11-22 | Nissan Motor Co., Ltd | Nonaqueous-electrolyte secondary cell with active substance in electrode material of positive electrode |
US9555007B2 (en) | 2013-03-14 | 2017-01-31 | Massachusetts Institute Of Technology | Multi-layer hydrogel capsules for encapsulation of cells and cell aggregates |
US10172791B2 (en) | 2013-03-14 | 2019-01-08 | Massachusetts Institute Of Technology | Multi-layer hydrogel capsules for encapsulation of cells and cell aggregates |
KR102350354B1 (ko) | 2013-03-15 | 2022-01-14 | 에노빅스 코오퍼레이션 | 3차원 배터리들을 위한 분리기들 |
US20160045841A1 (en) | 2013-03-15 | 2016-02-18 | Transtar Group, Ltd. | New and improved system for processing various chemicals and materials |
US9079778B2 (en) | 2013-03-15 | 2015-07-14 | Kennametal Inc. | Production of near-stoichiometric spherical tungsten carbide particles |
US20140272430A1 (en) | 2013-03-15 | 2014-09-18 | Sabic Innovative Plastics Ip B.V. | Process of making dispersed polyetherimide micronized particles and process of coating and further forming of these particles products made therefrom |
CA3169580A1 (en) | 2013-03-18 | 2014-09-25 | 6K Inc. | Method for the production of multiphase composite materials using microwave plasma process |
CN103121105B (zh) | 2013-03-19 | 2015-04-01 | 北京科技大学 | 一种制备微细球形Nb-W-Mo-Zr合金粉末的方法 |
CN104064736A (zh) | 2013-03-21 | 2014-09-24 | 海洋王照明科技股份有限公司 | 碳纳米管/硅/石墨烯复合材料及其制备方法与锂离子电池 |
US10086351B2 (en) | 2013-05-06 | 2018-10-02 | Llang-Yuh Chen | Multi-stage process for producing a material of a battery cell |
JP6103499B2 (ja) | 2013-06-21 | 2017-03-29 | 東レ・ファインケミカル株式会社 | 硫化リチウムの製造方法 |
JP6178140B2 (ja) | 2013-07-10 | 2017-08-09 | 東京エレクトロン株式会社 | マイクロ波プラズマ処理装置及びマイクロ波供給方法 |
JP6124300B2 (ja) | 2013-08-30 | 2017-05-10 | 国立研究開発法人産業技術総合研究所 | グラフェン積層体の製造方法及び該グラフェン積層体を用いた透明電極の製造方法 |
KR20140001813A (ko) | 2013-12-17 | 2014-01-07 | 김우남 | 단열체 |
GB201316472D0 (en) | 2013-09-17 | 2013-10-30 | Cambridge Nanosystems Ltd | Injection system for catalyst control |
CN103515590B (zh) | 2013-09-23 | 2015-09-23 | 北京鼎能开源电池科技股份有限公司 | 一种锂离子电池三元正极材料的制备方法 |
FR3011727B1 (fr) | 2013-10-16 | 2018-03-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Microelectrodes a base de diamant structure pour des applications d'interfacage neuronale. |
TWI501455B (zh) | 2013-10-28 | 2015-09-21 | Inst Nuclear Energy Res Atomic Energy Council | 高功率密度液流電池用之電極製造方法 |
WO2015064633A1 (ja) | 2013-10-30 | 2015-05-07 | 古河電気工業株式会社 | 負極活物質及びその製造方法並びにそれを用いた負極及び非水電解質二次電池 |
US20160285090A1 (en) | 2013-11-15 | 2016-09-29 | The Regent Of The University Of California | Silicon oxide nanotube electrode and method |
CN103682372B (zh) | 2013-11-29 | 2016-08-17 | 武汉工程大学 | 一种含碳纳米管立体电极的微型无膜燃料电池及其制备方法 |
CN103682383B (zh) | 2013-11-29 | 2017-05-03 | 武汉工程大学 | 一种含三维立体多孔碳电极的微型无膜燃料电池及其制备方法 |
CN103700815A (zh) | 2013-12-11 | 2014-04-02 | 中山大学 | 一种柔性透明锂离子电池电极材料及其制备方法 |
JP6378875B2 (ja) | 2013-12-24 | 2018-08-22 | 株式会社三五 | 二次電池用負極及びその製造方法 |
CN103785860B (zh) | 2014-01-22 | 2016-06-15 | 宁波广博纳米新材料股份有限公司 | 3d打印机用的金属粉末及其制备方法 |
EA201691768A1 (ru) | 2014-03-03 | 2017-05-31 | Бриллиант Лайт Пауэр, Инк. | Фотоэлектрические системы выработки электроэнергии и относящиеся к ним способы |
US9520627B2 (en) | 2014-03-06 | 2016-12-13 | International Business Machines Corporation | Ion conducting hybrid membranes |
WO2015135075A1 (en) | 2014-03-11 | 2015-09-17 | Tekna Plasma Systems Inc. | Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member |
US10167556B2 (en) | 2014-03-14 | 2019-01-01 | The Board Of Trustees Of The University Of Illinois | Apparatus and method for depositing a coating on a substrate at atmospheric pressure |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
GB201405616D0 (en) | 2014-03-28 | 2014-05-14 | Perpetuus Res & Dev Ltd | A composite material |
KR102322827B1 (ko) | 2014-04-07 | 2021-11-08 | 에스에이치피피 글로벌 테크놀러지스 비.브이. | 분말상 용융 열가소성 폴리머 |
JP2017514273A (ja) | 2014-04-09 | 2017-06-01 | コーニング インコーポレイテッド | リチウムイオン電池アノードのための方法及び材料 |
CN103956520B (zh) | 2014-04-30 | 2017-01-11 | 泉州师范学院 | 基于三维石墨烯支架结构的高性能锂离子电池制备方法 |
EP4474502A3 (en) | 2014-05-13 | 2025-02-26 | University Of Utah Research Foundation | Production of substantially spherical metal granules |
CN106470784A (zh) | 2014-05-13 | 2017-03-01 | 金属价值联合股份公司 | 用于生产高温使用组分的新粉末金属工艺 |
WO2015174949A1 (en) | 2014-05-14 | 2015-11-19 | Amastan Technologies Llc | Method for the densification and spheroidization of solid and solution precursor droplets of materials using plasma |
EP2944401B1 (de) | 2014-05-15 | 2019-03-13 | Heraeus Deutschland GmbH & Co. KG | Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase |
US10494719B2 (en) | 2014-05-23 | 2019-12-03 | Board Of Trustees Of Michigan State University | Methods and apparatus for microwave plasma assisted chemical vapor deposition reactors |
US9738788B1 (en) | 2014-05-26 | 2017-08-22 | Hrl Laboratories, Llc | Nanoparticle-coated multilayer shell microstructures |
US9378928B2 (en) | 2014-05-29 | 2016-06-28 | Applied Materials, Inc. | Apparatus for treating a gas in a conduit |
KR101568247B1 (ko) | 2014-06-02 | 2015-11-12 | 한국에너지기술연구원 | 질소 도핑된 탄소 표면을 갖는 금속-탄소 하이브리드 복합체 및 그 제조방법 |
US9585588B2 (en) | 2014-06-03 | 2017-03-07 | Boston Scientific Scimed, Inc. | Electrode assembly having an atraumatic distal tip |
CN106413539A (zh) | 2014-06-04 | 2017-02-15 | 波士顿科学医学有限公司 | 电极组件 |
GB201410639D0 (en) | 2014-06-13 | 2014-07-30 | Fgv Cambridge Nanosystems Ltd | Apparatus and method for plasma synthesis of graphitic products including graphene |
CN104018156B (zh) | 2014-06-18 | 2017-07-28 | 浙江工业大学 | 一种金属基/金刚石激光复合涂层及其制备方法 |
JP6159757B2 (ja) | 2014-07-10 | 2017-07-05 | 東京エレクトロン株式会社 | 基板の高精度エッチングのプラズマ処理方法 |
WO2016012883A1 (en) | 2014-07-21 | 2016-01-28 | Gea Procomac S.P.A. | Moulding device for moulding a container starting with a parison in plastic material and moulding machine comprising this device |
US20160028088A1 (en) | 2014-07-23 | 2016-01-28 | Axion Power International, Inc. | Electrode Current Collector Shielding And Protection |
JP6455701B2 (ja) | 2014-07-25 | 2019-01-23 | 日立金属株式会社 | 合金構造体 |
CN104084592A (zh) | 2014-07-28 | 2014-10-08 | 中国科学院重庆绿色智能技术研究院 | 一种制备三维打印用球形粉末材料的方法 |
JP2016035913A (ja) | 2014-07-31 | 2016-03-17 | 富士フイルム株式会社 | 全固体二次電池、ならびに、無機固体電解質粒子、固体電解質組成物、電池用電極シートおよび全固体二次電池の製造方法 |
JP2016047961A (ja) | 2014-08-07 | 2016-04-07 | イーメックス株式会社 | 窒化アルミニウム薄膜、窒化アルミニウム薄膜の形成方法、及び、電極材料 |
CN104218213B (zh) | 2014-08-15 | 2017-02-22 | 中山大学 | 一种多层膜电极及其制备方法和应用 |
CN104209526B (zh) | 2014-08-26 | 2016-09-28 | 苏州智研新材料科技有限公司 | 一种微细球形钛合金粉体的制备方法 |
HUE064457T2 (hu) | 2014-09-23 | 2024-03-28 | Jiangsu Hengtron Nanotech Co Ltd | Lítium-fémoxidot tartalmazó akkumulátorok fejlesztett energiaellátási képességgel |
KR101991686B1 (ko) | 2014-09-30 | 2019-10-01 | (주)엘지하우시스 | 열가소성 엘라스토머 수지 분말 및 열가소성 엘라스토머 수지 분말의 제조 방법 |
US9999922B1 (en) | 2014-10-09 | 2018-06-19 | William George Struve | Moldable composition for use in hand or machine forming an article |
US9627709B2 (en) | 2014-10-15 | 2017-04-18 | Sakti3, Inc. | Amorphous cathode material for battery device |
US9782828B2 (en) | 2014-10-20 | 2017-10-10 | The Boeing Company | Methods for forming near net-shape metal parts from binderless metal powder |
CN204156003U (zh) | 2014-11-06 | 2015-02-11 | 南京中储新能源有限公司 | 一种二次铝电池 |
US9917299B2 (en) | 2014-11-25 | 2018-03-13 | Corning Incorporated | Method and material for lithium ion battery anodes |
WO2016082120A1 (en) | 2014-11-26 | 2016-06-02 | GM Global Technology Operations LLC | Combination of plasma coating and spray coating for lithium battery electrode fabrication |
WO2016090052A1 (en) | 2014-12-02 | 2016-06-09 | University Of Utah Research Foundation | Molten salt de-oxygenation of metal powders |
KR101708333B1 (ko) | 2014-12-02 | 2017-02-21 | 한국에너지기술연구원 | 마이크로파 플라즈마를 이용한 Sⅰ나노입자 제조장치 및 이를 이용한 Sⅰ나노입자의 제조방법 |
KR102503323B1 (ko) | 2014-12-03 | 2023-02-24 | 쿨롬, 인코포레이티드 | 전극 및 전기화학 디바이스와 전극 및 전기화학 디바이스를 제조하는 방법 |
WO2016091957A1 (en) | 2014-12-10 | 2016-06-16 | Basf Se | Process for producing an electrode containing silicon particles coated with carbon |
CN104485452B (zh) | 2014-12-30 | 2016-08-24 | 中信国安盟固利电源技术有限公司 | 一种动力锂离子电池用高温型锰酸锂正极材料及其制备方法 |
US10144065B2 (en) * | 2015-01-07 | 2018-12-04 | Kennametal Inc. | Methods of making sintered articles |
US9508976B2 (en) | 2015-01-09 | 2016-11-29 | Applied Materials, Inc. | Battery separator with dielectric coating |
TWI599748B (zh) | 2015-01-16 | 2017-09-21 | 國家中山科學研究院 | 燃燒爐 |
CN104577084A (zh) | 2015-01-20 | 2015-04-29 | 深圳市贝特瑞新能源材料股份有限公司 | 一种锂离子电池用纳米硅复合负极材料、制备方法及锂离子电池 |
US9735427B2 (en) | 2015-02-12 | 2017-08-15 | Yang Zhang | Method of producing triazine-based graphitic carbon nitride films |
CN104752734B (zh) | 2015-02-25 | 2017-01-18 | 大连理工大学 | 一种核‑壳纳米纤维结构中低温固态氧化物燃料电池阴极及其静电纺丝制备方法 |
CN107405685B (zh) | 2015-03-05 | 2019-03-08 | 东邦钛株式会社 | 钛类粉末、铸锭的制造方法和烧结制品 |
US10153133B2 (en) | 2015-03-23 | 2018-12-11 | Applied Materials, Inc. | Plasma reactor having digital control over rotation frequency of a microwave field with direct up-conversion |
US9796019B2 (en) | 2015-03-27 | 2017-10-24 | United Technologies Corporation | Powder metal with attached ceramic nanoparticles |
KR101826391B1 (ko) | 2015-03-31 | 2018-02-06 | 주식회사 엘지화학 | 다공성 실리콘-실리콘옥사이드-탄소 복합체, 및 이의 제조방법 |
JP6620029B2 (ja) | 2015-03-31 | 2019-12-11 | 山陽特殊製鋼株式会社 | 球状粒子からなる金属粉末 |
CN104772473B (zh) | 2015-04-03 | 2016-09-14 | 北京工业大学 | 一种3d打印用细颗粒球形钛粉的制备方法 |
NL2014588B1 (en) | 2015-04-07 | 2017-01-19 | Stichting Energieonderzoek Centrum Nederland | Rechargeable battery and method for manufacturing the same. |
US20160308244A1 (en) | 2015-04-14 | 2016-10-20 | Corning Incorporated | Lithium-oxide garnet batch composition and solid electrolyte membrane thereof |
CN110790263B (zh) | 2015-05-13 | 2021-12-24 | 储晞 | 三维石墨烯生产方法、装置、复合电极材料及制备与应用 |
US20160332232A1 (en) | 2015-05-14 | 2016-11-17 | Ati Properties, Inc. | Methods and apparatuses for producing metallic powder material |
WO2016187225A1 (en) | 2015-05-17 | 2016-11-24 | Massachusetts Institute Of Technology | Multi-layer hydrogel capsules for encapsulation of cells and cell aggregates |
RU2723326C2 (ru) | 2015-05-19 | 2020-06-09 | Басф Се | Газоплотная, теплопроницаемая, керамическая, многослойная композитная труба |
TWI569499B (zh) | 2015-05-22 | 2017-02-01 | 國立成功大學 | 複合電極材料及其製作方法、包含該複合電極材料之複合電極及其製作方法、以及包含該複合電極之鋰電池 |
CA2931245C (en) | 2015-05-26 | 2023-07-25 | National Research Council Of Canada | Metallic surface with karstified relief, forming same, and high surface area metallic electrochemical interface |
KR101735401B1 (ko) | 2015-05-28 | 2017-05-16 | 한국에너지기술연구원 | 질소 도핑된 다공성 그래핀 덮개의 형성방법 |
US11996564B2 (en) | 2015-06-01 | 2024-05-28 | Forge Nano Inc. | Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings |
JP6509049B2 (ja) | 2015-06-05 | 2019-05-08 | 東京エレクトロン株式会社 | マイクロ波プラズマ源およびプラズマ処理装置 |
CA2987951A1 (en) | 2015-06-05 | 2016-12-08 | Pyrogenesis Canada Inc. | Plasma apparatus for the production of high quality spherical powders at high capacity |
MY187232A (en) | 2015-07-06 | 2021-09-13 | Attero Recycling Pvt Ltd | A method of recovering metals from spent li-ion batteries |
US20170009328A1 (en) | 2015-07-10 | 2017-01-12 | General Electric Company | Coating process and coated component |
EP3323164A4 (en) | 2015-07-13 | 2019-01-09 | Sila Nanotechnologies Inc. | STABLE CATHODES ON LITHIUM FLUORIDE BASE FOR METAL AND METAL ION BATTERIES |
CA2992303C (en) | 2015-07-17 | 2018-08-21 | Ap&C Advanced Powders And Coatings Inc. | Plasma atomization metal powder manufacturing processes and systems therefor |
KR101923466B1 (ko) | 2015-09-10 | 2018-11-30 | 주식회사 엘지화학 | 이차전지용 도전재 및 이를 포함하는 이차전지 |
KR20170039922A (ko) | 2015-10-02 | 2017-04-12 | 삼성에스디아이 주식회사 | 음극 활물질, 이를 채용한 음극과 리튬 전지, 및 상기 음극 활물질의 제조방법 |
US10116000B1 (en) | 2015-10-20 | 2018-10-30 | New Jersey Institute Of Technology | Fabrication of flexible conductive items and batteries using modified inks |
EP3301745B1 (en) | 2015-10-28 | 2019-09-18 | LG Chem, Ltd. | Conductive material dispersed liquid and lithium secondary battery manufactured using the same |
WO2017074081A1 (ko) | 2015-10-29 | 2017-05-04 | ㈜에이치아이엠앤드에이코리아 | Siox-플러렌 복합체, 이의 제조방법, 제조장치 및 용도 |
KR101907912B1 (ko) | 2015-10-29 | 2018-10-15 | 주식회사 이쓰리파워 | SiOx-플러렌 복합체, 이의 제조방법, 제조장치 및 용도 |
KR101907916B1 (ko) | 2015-10-29 | 2018-10-15 | 주식회사 이쓰리파워 | SiOx의 포집장치 및 포집방법 |
WO2017074084A1 (ko) | 2015-10-29 | 2017-05-04 | ㈜에이치아이엠앤드에이코리아 | Siox의 포집장치 및 포집방법 |
CA3024473C (en) | 2015-10-29 | 2019-09-17 | Ap&C Advanced Powders & Coatings Inc. | Metal powder atomization manufacturing processes |
JP6685697B2 (ja) | 2015-10-30 | 2020-04-22 | キヤノン株式会社 | インクタンク及びインクジェット記録装置 |
US10766787B1 (en) | 2015-11-02 | 2020-09-08 | University Of Louisville Research Foundation, Inc. | Production of mixed metal oxide nanostructured compounds |
DE102015222048A1 (de) | 2015-11-10 | 2017-05-11 | Technische Universität Dresden | Verfahren zur Herstellung einer Anode für eine Lithium-Sekundärbatterie, hergestellte Anode, Lithium-Sekundärbatterie enthaltend die Anode und Verwendungen hiervon |
CN108290740B (zh) | 2015-11-25 | 2022-03-04 | 康宁股份有限公司 | 多孔硅组合物和装置以及其方法 |
GB2545172B (en) | 2015-12-03 | 2021-05-12 | Fgv Cambridge Nanosystems Ltd | Carbon nanotube/graphene composites |
TWI593484B (zh) | 2015-12-04 | 2017-08-01 | Metal Ind Res & Dev Ct | Alloy powder manufacturing equipment and methods |
CN105347400B (zh) | 2015-12-04 | 2016-11-09 | 湖北中澳纳米材料技术有限公司 | 一种生产高纯纳米三氧化钼的装置及方法 |
RU2633203C2 (ru) | 2015-12-09 | 2017-10-11 | Общество С Ограниченной Ответственностью Научно-Производственное Объединение "Металлы Урала" | Способ получения изделий из металлического иридия |
US10727477B2 (en) | 2015-12-10 | 2020-07-28 | Lg Chem, Ltd. | Conductive material dispersed liquid and lithium secondary battery manufactured using same |
KR102101006B1 (ko) | 2015-12-10 | 2020-04-14 | 주식회사 엘지화학 | 이차전지용 양극 및 이를 포함하는 이차전지 |
GB2545643B (en) | 2015-12-15 | 2022-06-15 | Levidian Nanosystems Ltd | Apparatus and method for plasma synthesis of carbon nanotubes |
HUE065423T2 (hu) | 2015-12-16 | 2024-05-28 | 6K Inc | Eljárás szferoidális dehidrogénezett titánötvözet részecskék elõállítására |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
TWI616314B (zh) | 2015-12-22 | 2018-03-01 | 財團法人工業技術研究院 | 立體物件的積層製造方法 |
WO2017115767A1 (ja) | 2015-12-28 | 2017-07-06 | トヨタ自動車株式会社 | クラスター担持触媒及びその製造方法 |
CN108886181B (zh) | 2016-01-07 | 2022-04-19 | 胡利科有限责任公司 | 氧化条件下的再锂化 |
TWI726033B (zh) | 2016-01-08 | 2021-05-01 | 印度商艾特羅回收股份有限公司 | 從具有高錳含量的廢棄鋰離子電池回收有價金屬的方法 |
CN105514373A (zh) | 2016-01-18 | 2016-04-20 | 四川富骅新能源科技有限公司 | 一种高容量锂离子电池正极材料及其制备方法 |
US10668566B2 (en) | 2016-01-27 | 2020-06-02 | H.C. Starck Inc. | Fabrication of high-entropy alloy wire and multi-principal element alloy wire |
WO2017130946A1 (ja) | 2016-01-29 | 2017-08-03 | 宇部興産株式会社 | 被覆アルカリ土類金属化合物微粒子、有機溶媒分散液、樹脂組成物及び画像表示装置 |
EP3216545B2 (de) | 2016-03-07 | 2022-09-28 | Heraeus Deutschland GmbH & Co. KG | Edelmetallpulver und dessen verwendung zur herstellung von bauteilen |
TWI648423B (zh) | 2016-03-08 | 2019-01-21 | 財團法人工業技術研究院 | 金屬摻雜石墨烯及其成長方法 |
US10050303B2 (en) | 2016-03-10 | 2018-08-14 | Ford Global Technologies, Llc | Batteries including solid and liquid electrolyte |
GB2548394A (en) | 2016-03-17 | 2017-09-20 | Fgv Cambridge Nanosystems Ltd | Multifunctional wood coatings |
KR102320010B1 (ko) | 2016-03-24 | 2021-11-02 | 주식회사 엘지에너지솔루션 | 도전재 분산액 및 이를 이용하여 제조한 이차전지 |
KR102124946B1 (ko) | 2016-03-29 | 2020-06-19 | 주식회사 엘지화학 | 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지 |
KR101684219B1 (ko) | 2016-04-05 | 2016-12-08 | 한양대학교 산학협력단 | 양극활물질, 및 이를 포함하는 이차 전지 |
EP3442726B1 (en) | 2016-04-11 | 2023-01-04 | AP&C Advanced Powders And Coatings Inc. | Reactive metal powders in-flight heat treatment processes |
WO2017178841A1 (en) | 2016-04-15 | 2017-10-19 | Fgv Cambridge Nanosystems Limited | Heater elements, heat exchangers and heater element arrays |
JP2017204437A (ja) | 2016-05-13 | 2017-11-16 | セイコーエプソン株式会社 | リチウムイオン二次電池 |
EP3474978B1 (en) | 2016-06-23 | 2021-10-13 | 6K Inc. | Lithium ion battery materials |
KR20180001799A (ko) | 2016-06-28 | 2018-01-05 | (주) 엔피홀딩스 | 복합 플라즈마 소스를 갖는 플라즈마 챔버 |
CN106086759B (zh) | 2016-07-01 | 2018-09-07 | 广州特种承压设备检测研究院 | 一种垃圾焚烧发电锅炉烟气侧的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法 |
CN106001597B (zh) | 2016-07-08 | 2018-03-20 | 武汉工程大学 | 一种元素分析仪中铜柱的回收方法 |
US10280312B2 (en) | 2016-07-20 | 2019-05-07 | Guardian Glass, LLC | Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same |
RU2644483C2 (ru) | 2016-07-21 | 2018-02-12 | Руслан Алексеевич Шевченко | Способ получения сферического порошка монокарбида вольфрама wc |
US10748745B2 (en) | 2016-08-16 | 2020-08-18 | Applied Materials, Inc. | Modular microwave plasma source |
CN106159316A (zh) | 2016-09-08 | 2016-11-23 | 海悦高科电池技术(大连)有限公司 | 一种锂离子电池正极用集流体及包含该集流体的电池 |
CN206040854U (zh) | 2016-09-08 | 2017-03-22 | 海悦高科电池技术(大连)有限公司 | 一种锂离子电池正极用集流体、包含该集流体的电池及用于制备集流体的装置 |
US9979912B2 (en) | 2016-09-12 | 2018-05-22 | Semiconductor Components Industries, Llc | Image sensors with power supply noise rejection capabilities |
US20180104745A1 (en) | 2016-10-17 | 2018-04-19 | Ecole Polytechnique | Treatment of melt for atomization technology |
WO2018079304A1 (ja) | 2016-10-25 | 2018-05-03 | 株式会社ダイヘン | 銅合金粉末、積層造形物の製造方法および積層造形物 |
CN106493350A (zh) | 2016-10-25 | 2017-03-15 | 黑龙江省科学院高技术研究院 | 一种3d打印用球形钛合金粉末的制备方法 |
JP6796450B2 (ja) | 2016-10-25 | 2020-12-09 | 東京エレクトロン株式会社 | プラズマ処理装置 |
WO2018081484A1 (en) | 2016-10-26 | 2018-05-03 | Dynamic Material Systems Llc | Carbon ceramic composites and methods |
US10710313B2 (en) | 2016-11-07 | 2020-07-14 | Iftikhar Ahmad | Near-field microwave heating system and method |
CN110088969A (zh) | 2016-11-08 | 2019-08-02 | 菲斯科公司 | 包含机械柔性陶瓷电解质的全固态Li离子电池及其制造方法 |
US10543534B2 (en) | 2016-11-09 | 2020-01-28 | Amastan Technologies Inc. | Apparatus and method for the production of quantum particles |
KR102523730B1 (ko) | 2016-11-14 | 2023-04-19 | 도쿄엘렉트론가부시키가이샤 | 이중 주파수 표면파 플라즈마 소스 |
WO2018128742A1 (en) | 2016-12-06 | 2018-07-12 | ZAF Energy Systems, Incorporated | Battery with coated active material |
JP6402163B2 (ja) | 2016-12-07 | 2018-10-10 | 三菱重工航空エンジン株式会社 | TiAl合金体の水素化脱水素化方法及びTiAl合金粉末の製造方法 |
GB201621508D0 (en) | 2016-12-16 | 2017-02-01 | Reliance Rg Ltd | Improvements relating to additive manufacture using charged particle beams |
US10033023B2 (en) | 2016-12-19 | 2018-07-24 | StoreDot Ltd. | Surface activation in electrode stack production and electrode-preparation systems and methods |
US9966591B1 (en) | 2016-12-19 | 2018-05-08 | StoreDot Ltd. | Electrode stack production methods |
CN106684387A (zh) | 2016-12-20 | 2017-05-17 | 深圳先进技术研究院 | 一种含类金刚石薄膜层的锂离子电池负极及其制备方法和锂离子电池 |
CA3045961A1 (en) | 2016-12-21 | 2018-06-28 | Albemarle Germany Gmbh | Method for producing lithium oxide |
CN106784692B (zh) | 2016-12-23 | 2019-05-28 | 浙江大学 | 石墨烯阵列负载钛酸锂/碳纳米管复合阵列电极材料及其制备方法和应用 |
CN108346802B (zh) | 2017-01-23 | 2021-03-02 | 华为技术有限公司 | 一种对集流体进行修饰的方法、集流体及储能装置 |
JP6698560B2 (ja) | 2017-02-01 | 2020-05-27 | 東京エレクトロン株式会社 | マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法 |
EP3577248A4 (en) | 2017-02-02 | 2020-07-08 | General Electric Company | MOLTEN AND GRINDED THERMAL COATING POWDER, SYSTEM FOR PROVIDING THERMAL SPRAY COATING AND ASSOCIATED METHOD |
US11923176B2 (en) | 2017-02-09 | 2024-03-05 | Lyten, Inc. | Temperature-controlled chemical processing reactor |
US9767992B1 (en) | 2017-02-09 | 2017-09-19 | Lyten, Inc. | Microwave chemical processing reactor |
JP6822218B2 (ja) | 2017-02-28 | 2021-01-27 | 住友金属鉱山株式会社 | モフォロジー予測方法、結晶の製造方法 |
US20180248175A1 (en) | 2017-02-28 | 2018-08-30 | Lyten, Inc. | Mixed allotrope particulate carbon films and carbon fiber mats |
US10522840B2 (en) | 2017-03-26 | 2019-12-31 | Intecells, Inc. | Method of making anode component by atmospheric plasma deposition, anode component, and lithium-ion cell and battery containing the component |
US10707058B2 (en) | 2017-04-11 | 2020-07-07 | Applied Materials, Inc. | Symmetric and irregular shaped plasmas using modular microwave sources |
JP6645470B2 (ja) | 2017-04-17 | 2020-02-14 | 株式会社村田製作所 | 外部電極用導電性ペーストおよびその外部電極用導電性ペーストを用いて製造する電子部品の製造方法 |
KR20170045181A (ko) | 2017-04-18 | 2017-04-26 | 삼성전기주식회사 | 연자성 금속분말과 그 연자성 금속분말을 포함하는 인덕터 |
JP6798411B2 (ja) | 2017-04-28 | 2020-12-09 | 日産自動車株式会社 | 電気デバイス用負極活物質、およびこれを用いた電気デバイス |
CN107093732B (zh) | 2017-05-10 | 2019-11-08 | 江西迪比科股份有限公司 | 一种用于锂电池正极材料的磷酸铁锂/碳纳米管纳米复合材料及其制备方法 |
EP3403994A1 (en) | 2017-05-18 | 2018-11-21 | Centre National De La Recherche Scientifique | Graphene-supported metal and/or metal oxide nanoparticle composites, method for making same and uses thereof |
CN107170973A (zh) | 2017-05-23 | 2017-09-15 | 苏州思创源博电子科技有限公司 | 一种钨包覆锂锰铝钴正极材料的制备方法 |
US11077497B2 (en) | 2017-06-07 | 2021-08-03 | Global Titanium Inc. | Deoxidation of metal powders |
IT201700062592A1 (it) | 2017-06-08 | 2018-12-08 | K Laser D O O | Apparato per laserterapia a scansione. |
US10347937B2 (en) | 2017-06-23 | 2019-07-09 | Quantumscape Corporation | Lithium-stuffed garnet electrolytes with secondary phase inclusions |
US10923324B2 (en) | 2017-07-10 | 2021-02-16 | Verity Instruments, Inc. | Microwave plasma source |
IT201700089373A1 (it) | 2017-08-03 | 2019-02-03 | Petroceramics S P A | Materiale composito fibro-rinforzato pre-impregnato e materiale composito ceramico fibro-rinforzato, ottenuto per formatura e successiva pirolisi di detto materiale pre-impregnato |
US20190061005A1 (en) | 2017-08-30 | 2019-02-28 | General Electric Company | High Quality Spherical Powders for Additive Manufacturing Processes Along With Methods of Their Formation |
US20190088996A1 (en) | 2017-09-15 | 2019-03-21 | Dyson Technology Limited | Multiple active and inter layers in a solid-state device |
US10707477B2 (en) | 2017-09-15 | 2020-07-07 | Dyson Technology Limited | High energy density multilayer battery cell with thermally processed components and method for making same |
WO2019052670A1 (en) | 2017-09-18 | 2019-03-21 | Cambridge Enterprise Limited | MANUFACTURE OF COMPOSITE NANOSTRUCTURES |
TWI638481B (zh) | 2017-09-19 | 2018-10-11 | 國立成功大學 | 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池 |
JP6962094B2 (ja) | 2017-09-21 | 2021-11-05 | トヨタ自動車株式会社 | ガーネット型イオン伝導性酸化物、及び、酸化物電解質焼結体の製造方法 |
MY197822A (en) | 2017-09-22 | 2023-07-19 | Mitsubishi Chem Corp | Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and energy device |
CN107579241B (zh) | 2017-09-22 | 2021-04-09 | 上海工程技术大学 | 一种三维帐篷型石墨烯-金属氧化物纳米复合材料的制备方法 |
EP3687681A4 (en) | 2017-09-29 | 2021-07-07 | President and Fellows of Harvard College | ENHANCED CATALYTIC MATERIALS CONTAINING PARTLY INCORPORATED CATALYTIC NANOPARTICLES |
US11999624B2 (en) | 2017-09-29 | 2024-06-04 | Lg Energy Solution, Ltd. | Yolk-shell structured particles, method for producing same, and lithium secondary battery comprising same |
FI127664B (en) | 2017-10-20 | 2018-11-30 | Crisolteq Ltd | Process for recovering components from pickling acid residue |
CN111295785B (zh) | 2017-10-31 | 2023-09-26 | 住友金属矿山株式会社 | 非水电解质二次电池正极活性物质及制造方法、及使用正极活性物质的非水电解质二次电池 |
US11784310B2 (en) | 2017-10-31 | 2023-10-10 | Sumitomo Metal Mining Co., Ltd. | Non-aqueous electrolyte secondary battery positive electrode active material, method for producing same, and non-aqueous electrolyte secondary battery which uses positive electrode active material |
US11605815B2 (en) | 2017-10-31 | 2023-03-14 | Sumitomo Metal Mining Co., Ltd. | Nonaqueous electrolyte secondary battery positive electrode active material and method for producing same, and nonaqueous electrolyte secondary battery which uses positive electrode active material |
US20200067128A1 (en) | 2017-11-08 | 2020-02-27 | Fisker Inc. | Hybrid and solid-state battery architectures with high loading and methods of manufacture thereof |
SG11202003230UA (en) | 2017-11-13 | 2020-05-28 | Silence Therapeutics Gmbh | Nucleic acids for inhibiting expression of lpa in a cell |
CN111954581A (zh) | 2017-11-14 | 2020-11-17 | 加拿大派罗杰尼斯有限公司 | 由粗的且有棱角的粉末进料生产细的球状粉末的方法和装置 |
KR101886755B1 (ko) | 2017-11-17 | 2018-08-09 | 한국원자력연구원 | 다중 펄스 플라즈마를 이용한 음이온 공급의 연속화 시스템 및 방법 |
EP3713695A1 (en) * | 2017-11-22 | 2020-09-30 | Forge Nano, Inc. | Manufacturing of workpieces having nanostructured phases from functionalized powder feedstocks |
US20190160528A1 (en) * | 2017-11-27 | 2019-05-30 | Hamilton Sundstrand Corporation | Method and apparatus for improving powder flowability |
DE102017128719A1 (de) | 2017-12-04 | 2019-06-06 | Schott Ag | Lithiumionenleitendes Verbundmaterial, umfassend wenigstens ein Polymer und lithiumionenleitende Partikel, und Verfahren zur Herstellung eines Lithiumionenleiters aus dem Verbundmaterial |
US20190341650A9 (en) | 2017-12-05 | 2019-11-07 | Lyten, Inc. | Lithium ion battery and battery materials |
US10584923B2 (en) | 2017-12-07 | 2020-03-10 | General Electric Company | Systems and methods for heat exchanger tubes having internal flow features |
CN108145170A (zh) | 2017-12-11 | 2018-06-12 | 中南大学 | 一种难熔高熵合金球形粉末的制备方法 |
WO2019126196A1 (en) | 2017-12-22 | 2019-06-27 | Lyten, Inc. | Structured composite materials |
US11522186B2 (en) | 2017-12-22 | 2022-12-06 | Umicore | Positive electrode material for rechargeable lithium ion batteries |
CN108134104B (zh) | 2017-12-26 | 2020-05-12 | 成都新柯力化工科技有限公司 | 一种燃料电池用复合催化剂载体及其制备方法和应用 |
US20190218650A1 (en) | 2018-01-12 | 2019-07-18 | General Electric Company | Methods of forming spherical metallic particles |
US11130175B2 (en) | 2018-01-18 | 2021-09-28 | The Boeing Company | Spherical metallic powder blends and methods for manufacturing the same |
CN108217612A (zh) | 2018-01-30 | 2018-06-29 | 攀枝花学院 | 制备球形氮化钛粉末的方法及设备 |
US11196045B2 (en) | 2018-02-01 | 2021-12-07 | GM Global Technology Operations LLC | Plasma pretreatment on current collectors for thin film lithium metallization |
IL277123B1 (en) | 2018-03-05 | 2025-03-01 | Global Advanced Metals Usa Inc | Anodes containing spherical powder and capacitors |
KR102490248B1 (ko) | 2018-03-05 | 2023-01-20 | 글로벌 어드밴스드 메탈스 유에스에이, 아이엔씨. | 분말 야금 스퍼터링 표적 및 그의 생성 방법 |
JP7092076B2 (ja) | 2018-03-12 | 2022-06-28 | 三菱マテリアル株式会社 | チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置 |
US11245065B1 (en) | 2018-03-22 | 2022-02-08 | Facebook Technologies, Llc | Electroactive polymer devices, systems, and methods |
KR101966584B1 (ko) | 2018-03-22 | 2019-04-05 | 한국과학기술원 | 인시츄 강화 고엔트로피 합금 분말, 합금 및 이의 제조방법 |
CN108649190B (zh) | 2018-03-28 | 2020-12-08 | 浙江大学 | 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用 |
KR102085420B1 (ko) | 2018-03-28 | 2020-03-05 | (주)세원하드페이싱 | 유동성 향상을 위한 마이크로파 플라즈마를 이용한 세라믹 분말의 표면 처리 방법 |
JP7109230B2 (ja) | 2018-03-30 | 2022-07-29 | 東京エレクトロン株式会社 | グラフェン構造体を形成する方法および装置 |
SE543241C2 (en) | 2018-04-27 | 2020-10-27 | Episurf Ip Man Ab | An implant for cartilage and / or bone repair |
EP3788666A4 (en) | 2018-04-30 | 2022-01-19 | Lyten, Inc. | LITHIUM ION BATTERY AND BATTERY MATERIALS |
WO2019217464A1 (en) | 2018-05-08 | 2019-11-14 | Commscope Technologies Llc | Proactive pusch grants to prevent rate throttling |
US11031161B2 (en) * | 2018-05-11 | 2021-06-08 | GM Global Technology Operations LLC | Method of manufacturing a bulk nitride, carbide, or boride-containing material |
CN108666563A (zh) | 2018-05-24 | 2018-10-16 | 北方奥钛纳米技术有限公司 | 一种镍钴锰酸锂正极材料的制备方法 |
CN108878862A (zh) | 2018-05-24 | 2018-11-23 | 江苏大学 | 一种锂离子电池富锂锰基正极材料及其喷雾干燥制备方法 |
EP3802418B1 (en) | 2018-06-11 | 2022-06-08 | Jozef Stefan Institute | Methods for forming carbon nanostructured materials |
AU2018428384A1 (en) | 2018-06-19 | 2021-01-21 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
EP3810820A1 (en) | 2018-06-19 | 2021-04-28 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
WO2019246257A1 (en) | 2018-06-19 | 2019-12-26 | Amastan Technologies Inc. | Process for producing spheroidized powder from feedstock materials |
CN108933239B (zh) | 2018-06-26 | 2020-11-13 | 方嘉城 | 一种锰酸锂包覆镍钴锰酸锂正极材料的制备方法 |
WO2020009955A1 (en) | 2018-07-06 | 2020-01-09 | Arconic Inc. | Method and system for processing metal powders, and articles produced therefrom |
KR102373313B1 (ko) | 2018-07-12 | 2022-03-10 | 주식회사 엘지에너지솔루션 | 무기 전해액을 포함하는 리튬 이차전지 |
CN108672709A (zh) | 2018-07-24 | 2018-10-19 | 江苏威拉里新材料科技有限公司 | 一种气雾化生产3d打印用金属粉的装置 |
CN108907210B (zh) | 2018-07-27 | 2020-04-07 | 中南大学 | 一种制备增材制造用实心球形金属粉末的方法 |
KR102407566B1 (ko) | 2018-07-27 | 2022-06-13 | 주식회사 엘지화학 | 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극 |
US20200263285A1 (en) | 2018-08-02 | 2020-08-20 | Lyten, Inc. | Covetic materials |
CN108963239B (zh) | 2018-08-14 | 2020-06-30 | 上海力信能源科技有限责任公司 | 二氧化钛包覆的镍钴锰酸锂正极材料的制备方法 |
US11350680B2 (en) | 2018-08-20 | 2022-06-07 | Celia Rutkoski | Leotard including built-in supportive bra |
CN109167070A (zh) | 2018-08-23 | 2019-01-08 | 成都新柯力化工科技有限公司 | 一种梯度结构的燃料电池气体扩散层及制备方法 |
WO2020041775A1 (en) | 2018-08-24 | 2020-02-27 | Fisker Inc. | Microscopically ordered solid electrolyte architecture manufacturing methods and processes thereof for use in solid-state and hybrid lithium ion batteries |
WO2020041767A1 (en) | 2018-08-24 | 2020-02-27 | Fisker Inc. | Hybrid and solid-state battery architectures with high loading and methods of manufacture thereof |
US11183682B2 (en) | 2018-08-31 | 2021-11-23 | Advanced Energy Materials, Llc | Spinel lithium titanium oxide (LTO) nanowire anode material for lithium ion batteries |
CN109301212A (zh) | 2018-09-29 | 2019-02-01 | 成都新柯力化工科技有限公司 | 一种抑制锂硫电池正极溶解的方法 |
JP7241499B2 (ja) | 2018-10-10 | 2023-03-17 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 情報処理方法、情報処理装置及び情報処理プログラム |
CN111099577B (zh) | 2018-10-27 | 2022-08-12 | 中国石油化工股份有限公司 | 一种掺氮碳纳米管材料 |
US11682789B2 (en) | 2018-10-29 | 2023-06-20 | Shenzhen Xworld Technology Limited | Environmentally preferable method of making solid electrolyte and integration of metal anodes thereof |
CN109616622B (zh) | 2018-10-31 | 2020-12-08 | 青岛大学 | 一种碳/锡/碳空心微球锂离子电池负极材料的制备方法 |
WO2020091854A1 (en) | 2018-10-31 | 2020-05-07 | Arconic Inc. | Method and system for processing metal powders, and articles produced therefrom |
EP3648496A1 (en) | 2018-11-01 | 2020-05-06 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Beam management methods and apparatuses for positioning measurements in a communications network |
DE102018132896A1 (de) | 2018-12-19 | 2020-06-25 | Universität Duisburg-Essen | Verfahren zur Herstellung eines Graphen-Komposits |
CA3122582A1 (en) | 2018-12-20 | 2020-06-25 | 6K Inc. | Plasma processing of lithium transition metal oxides for lithium ion batteries |
CN111370751B (zh) | 2018-12-25 | 2021-12-07 | 深圳市比亚迪锂电池有限公司 | 固态电池及其制备方法和电动汽车 |
CN109742320A (zh) | 2018-12-29 | 2019-05-10 | 北京工业大学 | 一种三维多孔铝负极及其铝电池应用 |
US11459242B2 (en) | 2019-01-15 | 2022-10-04 | Alliance For Sustainable Energy, Llc | Stabilized electrodes for ion batteries and methods of making the same |
US20200227728A1 (en) | 2019-01-16 | 2020-07-16 | GM Global Technology Operations LLC | Methods of making high performance electrodes |
JP7218864B2 (ja) | 2019-01-29 | 2023-02-07 | 住友金属鉱山株式会社 | 液相中での化合物の挙動の予測方法 |
CN113454022B (zh) | 2019-02-20 | 2024-08-23 | Ppg工业俄亥俄公司 | 含有石墨烯碳纳米粒子和分散剂树脂的分散体 |
CN109888233A (zh) | 2019-03-06 | 2019-06-14 | 广东轻工职业技术学院 | 一种可充放的全柔性钾离子电池、其制备方法及应用 |
KR102488680B1 (ko) | 2019-03-08 | 2023-01-17 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 |
CA3131641A1 (en) | 2019-03-26 | 2020-10-01 | Ning Duanmu | Segmented liner and methods of use within a microwave plasma apparatus |
CN109808049A (zh) | 2019-04-01 | 2019-05-28 | 四川大学 | 一种高温气体气雾化制备球形粉末的方法 |
CN109903722B (zh) | 2019-04-10 | 2020-11-17 | 京东方科技集团股份有限公司 | 像素驱动电路、显示装置及像素驱动方法 |
KR20240036705A (ko) | 2019-04-30 | 2024-03-20 | 6케이 인크. | 리튬 란타넘 지르코늄 산화물(llzo) 분말 |
EP3962678A4 (en) | 2019-04-30 | 2023-01-11 | 6K Inc. | MECHANICALLY ALLOYED POWDER STARTING MATERIAL |
KR102522025B1 (ko) | 2019-05-14 | 2023-04-14 | 주식회사 엘지에너지솔루션 | 리튬 이차전지 |
CN110218897B (zh) | 2019-05-24 | 2021-01-22 | 陕西斯瑞新材料股份有限公司 | 一种航空发动机燃烧室内衬用耐高温Cu-Cr-Nb-Ce合金的制备方法 |
CN110299516B (zh) | 2019-06-10 | 2022-05-10 | 天津大学 | 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法 |
US20200388857A1 (en) | 2019-06-10 | 2020-12-10 | University Of Louisville Research Foundation, Inc. | Redox flow batteries employing diamond |
WO2020251634A1 (en) | 2019-06-12 | 2020-12-17 | National Cheng Kung University | Composite electrode material, method for manufacturing the same, composite electrode comprising the same and lithium-based battery comprising the said composite electrode |
CN110153434A (zh) | 2019-06-26 | 2019-08-23 | 苏州猛犸新材料科技有限公司 | 一种超细Ni-Ti-Y多元复合金属纳米粉的快速制备方法 |
US20210002759A1 (en) | 2019-07-01 | 2021-01-07 | Samu Technology, Llc | Diamond-like carbon synthesized by atmospheric plasma |
KR20210007483A (ko) | 2019-07-11 | 2021-01-20 | 주식회사 엘지화학 | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 |
US11299397B2 (en) | 2019-07-30 | 2022-04-12 | Lyten, Inc. | 3D self-assembled multi-modal carbon-based particles integrated into a continuous electrode film layer |
NL2023642B1 (en) | 2019-08-14 | 2021-02-24 | Leydenjar Tech B V | Silicon composition material for use as battery anode |
CN112397706A (zh) | 2019-08-16 | 2021-02-23 | 中国科学院上海高等研究院 | 锂离子电池负极材料结构及其制备方法、锂离子电池 |
US11107662B2 (en) | 2019-08-19 | 2021-08-31 | Lyten, Inc. | Reactor system coupled to an energy emitter control circuit |
US11335911B2 (en) | 2019-08-23 | 2022-05-17 | Lyten, Inc. | Expansion-tolerant three-dimensional (3D) carbon-based structures incorporated into lithium sulfur (Li S) battery electrodes |
WO2021040386A1 (ko) | 2019-08-26 | 2021-03-04 | 주식회사 엘지화학 | 리튬 이차전지 및 이의 제조 방법 |
JP2022546583A (ja) | 2019-09-06 | 2022-11-04 | シックスケー インコーポレイテッド | 高エネルギー負極材料用の歪み耐性粒子構造体及びその合成方法 |
JP7414233B2 (ja) | 2019-10-02 | 2024-01-16 | 株式会社クラレ | 蓄電デバイス用炭素質材料の製造方法および蓄電デバイス用炭素質材料 |
JP7411952B2 (ja) | 2019-10-02 | 2024-01-12 | 株式会社クラレ | 蓄電デバイス用炭素質材料の製造方法および蓄電デバイス用炭素質材料 |
GB2595745B (en) | 2019-10-18 | 2022-06-08 | Echion Tech Limited | Active electrode material |
GB202013576D0 (en) | 2020-08-28 | 2020-10-14 | Echion Tech Limited | Active electrode material |
US11133495B2 (en) | 2019-10-25 | 2021-09-28 | Lyten, Inc. | Advanced lithium (LI) ion and lithium sulfur (LI S) batteries |
KR102282907B1 (ko) | 2019-10-29 | 2021-07-30 | 한국전기연구원 | 2차 전지용 3차원 전극 구조체 및 이의 제조 방법 |
KR20210057253A (ko) | 2019-11-11 | 2021-05-21 | 한국전기연구원 | 그래핀 쉘을 포함하는 코어-쉘 구조체, 및 그 제조방법 |
KR20220100861A (ko) | 2019-11-18 | 2022-07-18 | 6케이 인크. | 구형 분말을 위한 고유한 공급원료 및 제조 방법 |
CN112864453A (zh) | 2019-11-27 | 2021-05-28 | 贝特瑞新材料集团股份有限公司 | 一种去除固态电解质表面杂质的方法 |
CN110993908A (zh) | 2019-11-27 | 2020-04-10 | 浙江大学 | 一种垂直石墨烯/二氧化锰复合材料及其制备方法和应用 |
JP7431422B2 (ja) | 2019-12-11 | 2024-02-15 | インスティテュート ヨージェフ ステファン | カーボンナノ構造体の堆積のための方法及び装置 |
US11130994B2 (en) | 2019-12-13 | 2021-09-28 | Autonomous Medical Devices Inc. | Automated, cloud-based, point-of-care (POC) pathogen and antibody array detection system and method |
US11442000B2 (en) | 2019-12-16 | 2022-09-13 | Applied Materials, Inc. | In-situ, real-time detection of particulate defects in a fluid |
US11439206B2 (en) | 2019-12-17 | 2022-09-13 | Under Armour, Inc. | Method of making an article of footwear with braided upper |
US11333183B2 (en) | 2019-12-18 | 2022-05-17 | The Boeing Company | Sealant pod self-securing insert |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
FI129345B (en) | 2019-12-19 | 2021-12-15 | Crisolteq Ltd | Process for treating a regeneration residue from pickling acid |
RU2744449C1 (ru) | 2019-12-27 | 2021-03-09 | Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) | Кремнийсодержащий активный материал для отрицательного электрода и способ его получения |
US11901580B2 (en) | 2020-01-10 | 2024-02-13 | Lyten, Inc. | Selectively activated metal-air battery |
JP2021116191A (ja) | 2020-01-22 | 2021-08-10 | 昭和電工株式会社 | 複合炭素材料及びリチウムイオン二次電池 |
CA3167076A1 (en) | 2020-02-08 | 2021-08-12 | Randell L. Mills | Magnetohydrodynamic hydrogen electrical power generator |
CN111403701B (zh) | 2020-03-09 | 2022-07-26 | 南京邮电大学 | 一种铁基化合物复合氮掺杂石墨烯钠离子负极电池材料的制备方法 |
FR3108794B1 (fr) | 2020-03-26 | 2025-02-28 | Accumulateurs Fixes | Collecteur de courant amélioré pour batterie |
US11654483B2 (en) | 2020-04-07 | 2023-05-23 | General Electric Company | Method for forming high quality powder for an additive manufacturing process |
CN111342163A (zh) | 2020-04-08 | 2020-06-26 | 江西省科学院应用物理研究所 | 一种废旧锂电池正极活性材料的回收方法 |
CN111515391B (zh) | 2020-04-16 | 2022-12-20 | 陕西斯瑞新材料股份有限公司 | 一种用GRCop-42球形粉打印燃烧室内衬的方法 |
FI129638B (en) | 2020-04-30 | 2022-06-15 | Fortum Oyj | Procedure for recycling components from alkaline batteries |
GB2595761B (en) | 2020-06-03 | 2022-07-13 | Echion Tech Limited | Active electrode material |
KR102581336B1 (ko) | 2020-06-03 | 2023-09-21 | 에키온 테크놀러지스 리미티드 | 전극 활물질 |
EP4173060A1 (en) | 2020-06-25 | 2023-05-03 | 6K Inc. | Microcomposite alloy structure |
CA3183874A1 (en) | 2020-06-29 | 2022-01-06 | John C. Brewer | Anodes for lithium-based energy storage devices |
WO2022020528A1 (en) | 2020-07-23 | 2022-01-27 | Lam Research Corporation | Conformal thermal cvd with controlled film properties and high deposition rate |
JP2023537506A (ja) | 2020-08-07 | 2023-09-01 | シックスケー インコーポレイテッド | シリコン含有製品の合成 |
CN111970807A (zh) | 2020-09-17 | 2020-11-20 | 清华苏州环境创新研究院 | 一种基于滑动弧放电激发微波等离子体的装置 |
CN116547068A (zh) | 2020-09-24 | 2023-08-04 | 6K有限公司 | 用于启动等离子体的系统、装置及方法 |
NL2026635B1 (en) | 2020-10-07 | 2022-06-07 | Univ Delft Tech | Integrated manufacturing of core-shell particles for Li-ion batteries |
CN112331947B (zh) | 2020-10-10 | 2021-08-27 | 武汉工程大学 | 一种锂电池回收拆解过程中的锂电池放电方法 |
CN112259740B (zh) | 2020-10-28 | 2021-08-17 | 惠州市竤泰科技有限公司 | 一种锂电池树枝状硅碳复合负极材料及制备方法 |
AU2021371051A1 (en) | 2020-10-30 | 2023-03-30 | 6K Inc. | Systems and methods for synthesis of spheroidized metal powders |
KR102396863B1 (ko) | 2020-11-17 | 2022-05-10 | 한국전기연구원 | 황 담지 탄소나노튜브 전극의 제조 방법,이로부터 제조되는 황 담지 탄소나노튜브 전극 및 이를 포함하는 리튬황 전지 |
CN112421006A (zh) | 2020-11-19 | 2021-02-26 | 江苏大学京江学院 | 一种锂离子电池正极材料的制备方法 |
CN112447977A (zh) | 2020-11-23 | 2021-03-05 | 北京工业大学 | Si/C纳米线制造方法、Si/C纳米线锂离子电池电极制造方法 |
CN112421048A (zh) | 2020-11-30 | 2021-02-26 | 成都新柯力化工科技有限公司 | 一种低成本制备石墨包覆纳米硅锂电池负极材料的方法 |
KR20230122050A (ko) | 2020-12-09 | 2023-08-22 | 에노빅스 코오퍼레이션 | 2차 배터리용 전극 조립체의 제조를 위한 방법 및 장치 |
WO2022133585A1 (en) | 2020-12-21 | 2022-06-30 | Queen's University At Kingston | Recovery of metals from materials containing lithium and iron |
EP4020612A1 (en) | 2020-12-24 | 2022-06-29 | Vito NV | Method for applying a protective layer to an alkali metal or alkali metal alloy surface, and article comprising such protective layer |
CN112768710B (zh) | 2021-01-09 | 2022-04-29 | 广州德百顺蓝钻科技有限公司 | 燃料电池的纳米蓝钻催化剂及制备方法和燃料电池 |
CN112768711B (zh) | 2021-01-09 | 2022-04-29 | 广州德百顺蓝钻科技有限公司 | 燃料电池的表面改性蓝钻催化剂及制备方法和燃料电池 |
CN112768709A (zh) | 2021-01-09 | 2021-05-07 | 广州市德百顺电气科技有限公司 | 燃料电池的纳米蓝钻颗粒催化剂及制备方法和燃料电池 |
CN116711095A (zh) | 2021-01-11 | 2023-09-05 | 6K有限公司 | 使用微波等离子体处理用于回收锂离子阴极材料的方法和系统 |
EP4281215A1 (en) | 2021-01-19 | 2023-11-29 | 6K Inc. | Single crystal cathode materials using microwave plasma processing |
KR20230147682A (ko) | 2021-02-22 | 2023-10-23 | 6케이 인크. | 실리콘 금속을 포함하는 실리콘 옥시카바이드 세라믹 물질에 대한 시스템 및 방법 |
US20220324022A1 (en) | 2021-03-31 | 2022-10-13 | 6K Inc. | Microwave plasma processing of spheroidized copper or other metallic powders |
CN113097487B (zh) | 2021-04-01 | 2022-11-22 | 广东凯金新能源科技股份有限公司 | 一种高度致密结构硅碳复合材料、其制备方法及其应用 |
CN113104838A (zh) | 2021-04-30 | 2021-07-13 | 天津工业大学 | 一种等离子体氟掺杂改性γ型石墨单炔碳材料的制备方法 |
AU2022303174A1 (en) | 2021-06-30 | 2023-12-07 | 6K Inc. | Systems, methods, and devices for producing a material with desired characteristics using microwave plasma |
US20230032362A1 (en) | 2021-07-30 | 2023-02-02 | 6K Inc. | Lithium lanthanum zirconium oxide (llzo) materials |
CN113871581B (zh) | 2021-08-16 | 2023-03-03 | 广东轻工职业技术学院 | 一种电子密度调控锰酸锌石墨烯正极材料、化学自充电水系锌离子电池及制备方法与应用 |
KR20230026568A (ko) | 2021-08-17 | 2023-02-27 | 한양대학교 산학협력단 | 전고체전지용 양극 및 이를 포함하는 전고체전지 |
US11461298B1 (en) | 2021-08-20 | 2022-10-04 | ActionIQ, Inc. | Scoring parameter generation for identity resolution |
CN113764688B (zh) | 2021-08-27 | 2024-02-06 | 北京工业大学 | 一种三维碳结构负载GaN催化剂及其制备方法 |
WO2023137262A1 (en) | 2022-01-11 | 2023-07-20 | 6K Inc. | Systems and methods for rejuvenation of copper alloy |
CN114388822B (zh) | 2022-01-11 | 2024-02-09 | 华东师范大学重庆研究院 | 一种铝空气电池阴极C@Ni@MnO2催化材料及其制备方法 |
US20230247751A1 (en) | 2022-02-02 | 2023-08-03 | 6K Inc. | Microwave plasma apparatus and methods for processing feed material utiziling multiple microwave plasma applicators |
CN114744315B (zh) | 2022-03-09 | 2024-11-01 | 昆明理工大学 | 一种废旧磷酸铁锂正极材料直接再生方法 |
JP2023138441A (ja) | 2022-03-18 | 2023-10-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | ギャップフィル流体を成膜させる方法ならびに関連するシステムおよび装置 |
CN114824297A (zh) | 2022-03-25 | 2022-07-29 | 北京纳斯特克纳米科技有限责任公司 | 应用于液流储能电池中高性能泡沫碳电极材料制备方法 |
CN115394976A (zh) | 2022-08-04 | 2022-11-25 | 广东邦普循环科技有限公司 | 一种正极材料的制备方法及其应用 |
-
2022
- 2022-03-28 AU AU2022246797A patent/AU2022246797A1/en active Pending
- 2022-03-28 KR KR1020237036951A patent/KR20230164699A/ko active Pending
- 2022-03-28 JP JP2023560701A patent/JP2024515034A/ja active Pending
- 2022-03-28 WO PCT/US2022/022214 patent/WO2022212291A1/en active Application Filing
- 2022-03-28 CN CN202280027464.4A patent/CN117120182A/zh active Pending
- 2022-03-28 US US17/656,836 patent/US12042861B2/en active Active
- 2022-03-28 CA CA3214233A patent/CA3214233A1/en active Pending
- 2022-03-28 EP EP22781979.4A patent/EP4313449A1/en active Pending
- 2022-03-30 TW TW111112201A patent/TW202302251A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
AU2022246797A1 (en) | 2023-10-05 |
TW202302251A (zh) | 2023-01-16 |
EP4313449A1 (en) | 2024-02-07 |
WO2022212291A1 (en) | 2022-10-06 |
CA3214233A1 (en) | 2022-10-06 |
US20220314325A1 (en) | 2022-10-06 |
US12042861B2 (en) | 2024-07-23 |
KR20230164699A (ko) | 2023-12-04 |
JP2024515034A (ja) | 2024-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12042861B2 (en) | Systems and methods for additive manufacturing of metal nitride ceramics | |
US11919071B2 (en) | Systems and methods for synthesis of spheroidized metal powders | |
TWI845665B (zh) | 由機械合金進料製造球狀粉末之方法 | |
JP7562613B2 (ja) | Ods合金粉末、プラズマ処理によるその生産方法、及びその使用 | |
TW202302249A (zh) | 球狀化銅或其他金屬粉末之微波電漿處理 | |
Gan et al. | Thermal spray forming of titanium and its alloys | |
Li et al. | A comprehensive study of tantalum powder preparation for additive manufacturing | |
KR20220099107A (ko) | 3차원 물체를 제조하기 위한 구형 분말 | |
Wang et al. | Preparation of spherical tungsten powder with uniform distribution of lanthania by plasma spheroidization | |
Vijay et al. | Characterization of plasma processed ultra-fine Ni–Al powder | |
Suresh et al. | Effects of plasma parameters and collection region on synthesis of iron and nickel aluminide composite particles during thermal plasma processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |