[go: up one dir, main page]

CN109742320A - 一种三维多孔铝负极及其铝电池应用 - Google Patents

一种三维多孔铝负极及其铝电池应用 Download PDF

Info

Publication number
CN109742320A
CN109742320A CN201811644587.4A CN201811644587A CN109742320A CN 109742320 A CN109742320 A CN 109742320A CN 201811644587 A CN201811644587 A CN 201811644587A CN 109742320 A CN109742320 A CN 109742320A
Authority
CN
China
Prior art keywords
aluminium
dimensional
dimensional porous
porous
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811644587.4A
Other languages
English (en)
Inventor
尉海军
王洁
张旭
楚维钦
刘世奇
何世满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201811644587.4A priority Critical patent/CN109742320A/zh
Publication of CN109742320A publication Critical patent/CN109742320A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明属于新能源电池技术领域,提供一种三维多孔铝负极的制备及其铝电池构筑。三维多孔铝负极包括:沉积于非金属三维基体上的多孔铝、沉积于金属三维基体上的多孔铝、表面具有保护层包覆的三维多孔铝、合金化三维多孔铝材料。通过对三维多孔铝的空间结构、孔道结构及比表面积调控、界面保护及合金化改性,优化电池电化学反应效率及动力学,提高铝负极的电化学稳定性,从而提升典型铝电池的比容量、倍率性能及循环寿命等关键性能。

Description

一种三维多孔铝负极及其铝电池应用
技术领域
本发明涉及一种三维多孔铝负极的制备及其铝电池应用,属于新能源技术领域。
背景技术
金属铝具有高理论比容量(2978mAh/g,或8034mAh/cm3)、高地壳含量、低成本、安全易操作等优势。因此,近年来铝电池引起了研究者的广泛关注。然而,现有铝电池的负极主要为铝箔,存在界面电化学反应效率低、易于被腐蚀破坏、倍率及循环性能较差、氧化层作用复杂难控等问题与挑战。因此,针对铝电池的界面电化学特性,设计制备高性能铝负极,是提升铝电池综合性能的关键策略之一。
三维多孔铝具有轻质、比表面积大、孔道结构丰富等特征,可作为优良的电极材料。本发明所提供的三维多孔铝结构,具有较高的孔隙率和优良的空间结构,为电池电化学反应提供了高效界面,增强了电解液的储存与传输能力,加速了电化学反应的动力学过程,提高了金属铝的利用效率,增强了电池在高倍率下的性能和库伦效率,并能够有效克服或延缓铝负极在电化学沉积/溶出中的结构破坏和枝晶生长,从而提高铝电池的使用寿命。
发明内容
本发明是为了克服铝箔作为铝电池负极时,存在的电化学效率低、比容量和倍率性能差、易腐蚀破坏、循环性能差等问题,旨在提高铝二次电池的倍率性能和循环寿命等关键性能。
本发明提供一种三维多孔铝负极材料。包括:沉积于非金属三维基体上的三维多孔铝、沉积于金属三维基体上的三维多孔铝、表面具有保护层包覆的三维多孔铝、合金化三维多孔铝材料。三维多孔铝的孔隙率为10%-95%,骨架(即空隙与空隙之间的材料,类似于金属网中网丝的直径)直径为0.005mm-1mm,孔道形貌为开放孔道及部分闭合孔道,孔道尺寸分布为大孔、介孔或微孔的单一或多元分布,孔道取向性包括各向同性及各向异性。孔道形貌参数由三维多孔基体控制,孔道各向异性通过施加机械外力如压缩或拉伸实现。
本发明提供了沉积于非金属三维基体上的三维多孔铝。所述非金属三维基体包含但不限于聚氯酯、聚苯乙烯、聚乙烯、聚氨酯、聚氯乙烯、聚丙烯、酚醛树脂等三维多孔泡沫塑料,及石墨烯、石墨烯组装体、碳纳米管组装体、碳纤维组装体等三维多孔碳材料。所获得多孔铝电极包括非金属三维基体-多孔铝复合电极和去除非金属三维基体的纯多孔铝电极。
本发明还提供了沉积于金属三维基体上的三维多孔铝。所述金属三维基体包含但不限于泡沫镍、泡沫铜、泡沫ZnCu、NiCu、NiCrW、NiFe、NiCrFe合金、纳米孔镍、纳米孔铜、纳米孔金、纳米孔银、纳米孔铂、纳米孔钯等三维多孔金属。所获得多孔铝电极包括金属三维基体-多孔铝复合电极和进一步合金化的多孔铝合金电极。
上述沉积于非金属或金属三维基体上的三维多孔铝负极,通过电化学沉积法或真空蒸镀法沉积制备。电化学沉积法:将非金属或金属三维基体作为阴极,高纯铝作为阳极,铝盐水溶液、铝盐有机溶液或铝基离子液体作为电解液,通过电化学沉积将铝沉积于基体之上,沉积之后进行洗涤和干燥获得。优选阳极为铝箔(纯度:99.99%),优选电解液为EMICl/AlCl3(1/1.3)型离子液体,优选温度为室温,优选洗涤剂为无水乙醇。真空蒸镀法:将非金属或金属三维基体固定于真空蒸镀仪中,以高纯铝作为靶材,加热蒸发金属铝,沉积于非金属或金属三维基体。优选靶材为铝块(纯度:99.99%),优选加热法为电加热法。
本发明还提供具有表面包覆层的三维多孔铝,以改善负极的电化学稳定性。所述表面沉积层包括但不限于碳、硅、钛、钨、镍、金、银、铂、钯、锌、碳纳米管、石墨烯、石墨炔、碳纤维、聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯、聚双炔等的一种或几种,通过在三维多孔铝表面高温或气相沉积法技术实现,或前驱体分散液在三维多孔铝表面的反应、吸附、组装等方法实现。
本发明还提供了一种合金化三维多孔铝材料。合金化材料包括但不限于金属镓、铜、铬、铁、镍、铅、铋、锡或银。合金化方式包括但不限于:制备铝基合金再进行真空蒸镀沉积、电沉积等;在制备三维多孔材料的过程中同时进行多元金属的真空蒸镀沉积、电沉积等;将沉积于金属三维基体上的多孔铝进行高温合金化所获得的合金化三维多孔铝。不同金属的比例可以通过前驱体比例控制、热蒸发等方式进行调控。
本发明进一步提供以三维多孔铝负极制备的铝电池,正极为碳材料、硫副族单质及其化合物、过渡金属氧化物或卤化物材料、硫-碳复合材料、三维多孔铝-硫复合材料等,包括但不限于:导电碳纸、石墨粉、乙炔黑、升华硫、沉降硫、单质硒、硫化钼、硫化锡、五氧化二钒等材料;电解液为卤化铝和碱金属卤化物、碱土金属卤化物、咪唑鎓有机盐、吡啶类、酰胺等物质形成的共晶盐,包括但不限于:卤化铝和NaCl、KCl、LiCl、CsCl、MgCl2、BaCl2、NaBr、1-乙基-3-甲基溴化咪唑鎓、1-乙基-3-甲基氯化咪唑鎓、1-乙基-3-甲基碘化咪唑鎓、尿素、甲酰胺、乙酰胺、丙酰胺等形成的共晶盐。所组装的电池结构包括:密封玻璃电解池、Swagelok电池、耐高温软包电池、扣式电池等电池装置。
附图说明
图1是实施例5所述电池循环性能示意图;
图2是实施例7所述电沉积铝-泡沫镍微观形貌图。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
将聚氨酯泡沫用丙酮、稀盐酸和水分别超声清洗5分钟,并在80℃下真空干燥12小时,用作电沉积铝基体。以EMICl/AlCl3(1/1.3)为沉积电解液。将该聚氨酯裁成长2cm、宽2cm、厚1mm大小的工作电极,相同尺寸的高纯铝片作为对电极和参比电极,固定于含电解液的密封电解池中,施加恒电压-0.6V沉积2小时。将沉积后的铝-聚氨酯用无水乙醇和去离子水清洗干净,并在80℃下真空干燥12小时。上述所得样品可作为电池负极。
以厚度为0.05mm的石墨纸为正极,将石墨纸裁剪为长2cm、宽1cm的片状;采用whatman GF/A玻璃纤维隔膜,裁剪为与正极面积相同的片状,并将其与石墨纸一同固定于集流体钼箔(厚度0.1mm)上,将正极及集流体一同固定于铂片电极夹上;以质量分数分别为8.75%、12.5%、78.75%的KCl、LiCl、AlCl3混合物为电解液;按比例称量所需电解质原料,搅拌混合均匀,将正负极固定于电解池内,加热至100℃并保温,待电解质熔化至液体后,其液面高度应足以浸润正负极,浸润正负极至八小时以完成活化,进行电池性能测试。该电池较普通铝箔相比,其容量虽无明显提升但其循环性能在500圈后库伦效率维持在98%。
实施例2
负极:在泡沫镍金属基体上沉积铝金属,泡沫镍清洗及干燥同实施例1。将该泡沫镍裁剪为长2cm、宽2cm、厚1mm片状,利用离子溅射仪沉积3分钟铝,该铝-泡沫镍作为电池负极。
正极、电解液及电池组装测试同实施例1。该电池较实施例1相比,其容量提升了5%,且循环性能良好。
实施例3.
负极:首先配制涂碳浆料,其质量比为4:3:92:1的炭黑、丙烯酸(成膜剂)、N-甲基吡咯烷酮(溶剂)和亚甲基二奈磺酸钠(分散剂)混合搅拌调配成浆料过筛,利用逆转辊凹版印刷装置在实施例2所得的多孔铝表面进行碳层涂覆。将所得涂碳铝烘干后,再用去离子水超声清洗,并二次烘干。该涂碳铝作为电池负极。
正极、电解液及电池组装测试同实施例1。
实施例4.
负极:在泡沫铜表面沉积多孔铝,泡沫铜前后处理及沉积过程同实施例1。将该铝-泡沫铜在1100℃氩气氛围下热处理12小时,自然降温冷却。所得合金作为电池负极。
正极、电解液及电池组装测试同实施例1。
实施例5
负极:厚度为3mm、孔隙率为70%、骨架尺寸约为1mm,经过6Mpa,持续5s的机械施压的三维多孔纯铝,将其铳成直径12mm的圆片,并夹持于铂片电极夹上。
正极、电解液及电池组装测试同实施例1。
图1为本实例的电池长循环性能示意图。由图1可见,在1A的大电流密度下,该电池可以循环2500圈而无明显衰减,充放电容量稳定在80mAh/g,库伦效率接近100%,足以证明其循环稳定性能。(注:该电池工作温度为100℃)
实施例6
负极:将泡沫镍置于离子液体(AlCl3:EMIC=1.3,mole ratio)中并作为阴极,阳极为纯铝箔,在-0.6V电压下,恒压电解铝,可在泡沫镍上镀得一层铝膜,电镀完成后将镀铝泡沫镍用无水乙醇清洗干净并烘干作为电池负极。
正极、电解液及电池组装测试同实施例1。该电池充放电容量较普通铝箔提升10%,库伦效率为90%-98%,电池性能稳定。
实施例7
负极:长2cm,宽2cm、厚度为1mm、孔隙率为60%、骨架尺寸为0.1mm-2mm的泡沫镍。清洗及干燥过程同实施例1,在2A/g电流密度下恒流沉积10h,将铝层镀于泡沫镍上,之后该电极直接作为电池负极。其微观形貌SEM图如图2所示。
正极、电解液及电池组装测试同实施例1。
实施例8
负极:将3mm厚、孔隙率为70%、骨架尺寸范围为1mm-3mm三维多孔铝进行6Mpa、持续5s机械施压,并将其浸入AlCl3:EMIC(摩尔比)=1.5的离子液体中浸泡24h,取出并擦拭干净表面残余电解液,用无水乙醇清洗并烘干,该电极微观形貌为多级腐蚀孔。
正极、电解液及电池组装测试同实施例1。
实施例9
负极:利用微波等离子体化学气相沉积装置对三维多孔铝进行石墨烯包覆。将系统抽真空至0.1Pa的基础压力,用氩气吹扫数次后,用100标准立方厘米每分钟(sccm)氢气在20分钟内将系统加热至600℃。然后,在15Pa的压力下引入7sccm甲烷,用150W的功率打开等离子体发生器,产生甲烷等离子体。沉积时间为5-10分钟,然后快速冷却到室温。至此获得石墨烯包覆的三维多孔铝。将其铳成直径为12mm的薄片,夹持于铂片电极夹上。正极、电解液及电池组装测试同实施例1。
实施例10
负极:如实施例1。
正极:将负载于有序介孔碳CMK3上的硫-碳复合材料(载硫量50%)与导电炭黑和PTFE粘结剂制成直径6mm的圆形极片,并压制到集流体钼网上。电解液:AlCl3-acetamide类离子液体(摩尔比1.3:1);隔膜:如实施例1;电池组装:该电池利用Swagelok模型组装。
实施例11
负极:利用三聚氰胺泡沫,在氮气保护下于管式炉中以5℃/min的升温速率升到800℃,保温30min碳化,冷却至室温后取出作为电沉积基体,沉积三维多孔铝过程如实施例1。将该三维多孔铝浸入AlCl3:EMIC(摩尔比)=1.5的离子液体中浸泡24h,取出并擦拭干净将表面残余电解液擦拭干净,用无水乙醇清洗并烘干。该极片作为电池负极。
正极、电解液及电池组装测试同实施例1。该电池性能同普通铝箔相比,循环及倍率性能有一定提升,循环50圈后容量可稳定在600mAh/g。

Claims (10)

1.一种三维多孔铝负极,其特征在于,该铝负极具有三维多孔形貌结构;包括:沉积于非金属三维基体上的三维多孔铝、沉积于金属三维基体上的三维多孔铝、表面具有保护层包覆的三维多孔铝、合金化三维多孔铝;该三维多孔铝负极的孔隙率为10%-98%,骨架直径为0.005mm-1mm,孔道形貌为开放孔道及部分闭合孔道,孔道尺寸分布为大孔、介孔或微孔的单一或多元分布,孔道取向性为各向同性或各向异性。
2.根据权利要求1所述的一种三维多孔铝负极,其特征在于,沉积于非金属三维基体上的三维多孔铝包括:沉积于多孔状聚氯酯、聚苯乙烯、聚乙烯、聚氨酯、聚氯乙烯、聚丙烯、酚醛树脂等泡沫塑料上的三维多孔铝;沉积于多孔石墨烯、石墨烯多孔组装体、碳纳米管多孔组装体、碳纤维多孔组装体等多孔碳材料上的三维多孔铝。
3.根据权利要求1所述的一种三维多孔铝负极,其特征在于,沉积于金属三维基体上的三维多孔铝包括:沉积于泡沫镍、泡沫铜、泡沫NiCrFe、ZnCu、NiCu、NiCrW、NiFe合金、纳米孔镍、纳米孔铜、纳米孔金、纳米孔银、纳米孔铂、纳米孔钯等具有三维多孔结构的金属或合金上的三维多孔铝。
4.根据权利要求1所述的一种三维多孔铝负极,其特征在于,表面具有保护层包覆的三维多孔铝包括:表面沉积有碳、硅、钛、钨、镍、金、银、铂、钯、锌等一种或几种原子的三维多孔铝;表面涂覆有碳纳米管、石墨烯、石墨炔、碳纤维、聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯、聚双炔等材料的三维多孔铝。
5.根据权利要求1所述的一种三维多孔铝负极,其特征在于,合金化三维多孔铝材料包括:铝与金属镓、铜、铬、铁、镍、铅、铋、锡或银形成的二元或多元多孔合金。
6.根据权利要求2所述的沉积于非金属三维基体上的三维多孔铝,其特征在于,铝沉积方法包括电化学沉积法及真空蒸镀法;所获得多孔铝电极包括非金属三维基体-多孔铝复合电极和去除非金属三维基体的纯多孔铝电极。
7.根据权利要求3所述的沉积于金属三维基体上的三维多孔铝,其特征在于,铝沉积方法包括电化学沉积法及真空蒸镀法;所获得多孔铝电极包括金属三维基体-多孔铝复合电极和进一步合金化的多孔铝合金电极。
8.权利要求1所述的三维多孔铝的应用,三维多孔铝应用于铝离子电池、铝硫电池、铝空气电池、含铝的双(多)离子电池等铝电池。
9.根据权利要求8所述的铝电池,其特征在于,铝电池由正极、电解液、隔膜和负极构成,其中负极为上述三维多孔铝。
10.根据权利要求8所述的铝电池,其特征在于,正极材料包括:导电碳纸、石墨粉、乙炔黑、升华硫、沉降硫、单质硒、硫化钼、硫化锡、五氧化二钒等材料;电解液包括:卤化铝和NaCl、KCl、LiCl、CsCl、MgCl2、BaCl2、NaBr、1-乙基-3-甲基溴化咪唑鎓、1-乙基-3-甲基氯化咪唑鎓、1-乙基-3-甲基碘化咪唑鎓、尿素、甲酰胺、乙酰胺、丙酰胺等形成的共晶盐;电池结构包括:密封玻璃电解池、Swagelok电池、扣式电池、耐高温软包电池等电池装置。
CN201811644587.4A 2018-12-29 2018-12-29 一种三维多孔铝负极及其铝电池应用 Pending CN109742320A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811644587.4A CN109742320A (zh) 2018-12-29 2018-12-29 一种三维多孔铝负极及其铝电池应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811644587.4A CN109742320A (zh) 2018-12-29 2018-12-29 一种三维多孔铝负极及其铝电池应用

Publications (1)

Publication Number Publication Date
CN109742320A true CN109742320A (zh) 2019-05-10

Family

ID=66362779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811644587.4A Pending CN109742320A (zh) 2018-12-29 2018-12-29 一种三维多孔铝负极及其铝电池应用

Country Status (1)

Country Link
CN (1) CN109742320A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444730A (zh) * 2019-08-19 2019-11-12 中南大学 一种三维网状结构纳米层锌负极的制备方法和应用
CN110688751A (zh) * 2019-09-24 2020-01-14 西南大学 铂掺杂改性石墨炔传感器检测sf6的仿真方法
CN110739454A (zh) * 2019-09-26 2020-01-31 山东玉皇新能源科技有限公司 一种负极材料及其制备方法
CN112038589A (zh) * 2019-06-04 2020-12-04 中国科学院物理研究所 高能量密度铝二次电池及其正极材料和制备方法
CN113745642A (zh) * 2021-08-09 2021-12-03 信阳师范学院 一种壳层结构铝基材料的制备方法及其在锂离子电池中的应用
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
CN116024619A (zh) * 2022-11-25 2023-04-28 梧州三和新材料科技有限公司 具有敞开式骨架的多孔金属及其制造方法
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
TWI834359B (zh) * 2022-10-27 2024-03-01 亞福儲能股份有限公司 應用於鋁電池的負極結構
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
TWI843384B (zh) * 2023-01-05 2024-05-21 亞福儲能股份有限公司 鋁電池的負極結構
EP4391098A1 (en) * 2022-12-23 2024-06-26 APh ePower Co., Ltd. Negative electrode structure applied to aluminum battery
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
US12042861B2 (en) 2021-03-31 2024-07-23 6K Inc. Systems and methods for additive manufacturing of metal nitride ceramics
EP4411885A1 (en) * 2023-01-31 2024-08-07 APh ePower Co., Ltd. Negative electrode structure applied to aluminum battery
US12094688B2 (en) 2022-08-25 2024-09-17 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP)
US12195338B2 (en) 2022-12-15 2025-01-14 6K Inc. Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production
US12214420B2 (en) 2015-12-16 2025-02-04 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US12261023B2 (en) 2022-05-23 2025-03-25 6K Inc. Microwave plasma apparatus and methods for processing materials using an interior liner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662021A (zh) * 2009-09-24 2010-03-03 无锡欧力达新能源电力科技有限公司 一种纳米包覆的正极材料及其二次铝电池的制备方法
CN101662022A (zh) * 2009-09-24 2010-03-03 无锡欧力达新能源电力科技有限公司 一种负极材料的纳米包覆及其二次铝电池制备方法
CN101764256A (zh) * 2009-11-20 2010-06-30 无锡欧力达新能源电力科技有限公司 一种可再充铝电池及其制备方法
CN204156012U (zh) * 2014-11-12 2015-02-11 南京中储新能源有限公司 一种碳铝复合材料负极及二次铝电池
JP2016060934A (ja) * 2014-09-17 2016-04-25 日立金属株式会社 多孔質アルミニウム焼結体およびその製造方法、ならびに、電極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662021A (zh) * 2009-09-24 2010-03-03 无锡欧力达新能源电力科技有限公司 一种纳米包覆的正极材料及其二次铝电池的制备方法
CN101662022A (zh) * 2009-09-24 2010-03-03 无锡欧力达新能源电力科技有限公司 一种负极材料的纳米包覆及其二次铝电池制备方法
CN101764256A (zh) * 2009-11-20 2010-06-30 无锡欧力达新能源电力科技有限公司 一种可再充铝电池及其制备方法
JP2016060934A (ja) * 2014-09-17 2016-04-25 日立金属株式会社 多孔質アルミニウム焼結体およびその製造方法、ならびに、電極の製造方法
CN204156012U (zh) * 2014-11-12 2015-02-11 南京中储新能源有限公司 一种碳铝复合材料负极及二次铝电池

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US12214420B2 (en) 2015-12-16 2025-02-04 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
CN112038589A (zh) * 2019-06-04 2020-12-04 中国科学院物理研究所 高能量密度铝二次电池及其正极材料和制备方法
CN110444730A (zh) * 2019-08-19 2019-11-12 中南大学 一种三维网状结构纳米层锌负极的制备方法和应用
CN110688751A (zh) * 2019-09-24 2020-01-14 西南大学 铂掺杂改性石墨炔传感器检测sf6的仿真方法
CN110739454A (zh) * 2019-09-26 2020-01-31 山东玉皇新能源科技有限公司 一种负极材料及其制备方法
CN110739454B (zh) * 2019-09-26 2021-04-02 山东玉皇新能源科技有限公司 一种负极材料及其制备方法
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US12176529B2 (en) 2020-06-25 2024-12-24 6K Inc. Microcomposite alloy structure
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US12042861B2 (en) 2021-03-31 2024-07-23 6K Inc. Systems and methods for additive manufacturing of metal nitride ceramics
CN113745642B (zh) * 2021-08-09 2024-08-30 信阳师范学院 一种壳层结构铝基材料的制备方法及其在锂离子电池中的应用
CN113745642A (zh) * 2021-08-09 2021-12-03 信阳师范学院 一种壳层结构铝基材料的制备方法及其在锂离子电池中的应用
US12261023B2 (en) 2022-05-23 2025-03-25 6K Inc. Microwave plasma apparatus and methods for processing materials using an interior liner
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
US12094688B2 (en) 2022-08-25 2024-09-17 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP)
TWI834359B (zh) * 2022-10-27 2024-03-01 亞福儲能股份有限公司 應用於鋁電池的負極結構
CN116024619A (zh) * 2022-11-25 2023-04-28 梧州三和新材料科技有限公司 具有敞开式骨架的多孔金属及其制造方法
US12195338B2 (en) 2022-12-15 2025-01-14 6K Inc. Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production
EP4391098A1 (en) * 2022-12-23 2024-06-26 APh ePower Co., Ltd. Negative electrode structure applied to aluminum battery
TWI843384B (zh) * 2023-01-05 2024-05-21 亞福儲能股份有限公司 鋁電池的負極結構
EP4411885A1 (en) * 2023-01-31 2024-08-07 APh ePower Co., Ltd. Negative electrode structure applied to aluminum battery

Similar Documents

Publication Publication Date Title
CN109742320A (zh) 一种三维多孔铝负极及其铝电池应用
Sun et al. Dendrite-free and long-life Na metal anode achieved by 3D porous Cu
Du et al. Long lifespan and high-rate Zn anode boosted by 3D porous structure and conducting network
US20200127294A1 (en) Three-dimensional current collector for metal secondary battery anode, its preparation and application
Fan et al. 3D nanowire arrayed Cu current collector toward homogeneous alloying anode deposition for enhanced sodium storage
US20120295169A1 (en) Air battery and electrode
Zeng et al. Bifunctional 3D hierarchical hairy foam toward ultrastable lithium/sulfur electrochemistry
CN106450196B (zh) 一种用于锂离子电池负极的硅基材料及其制备方法
CN106602062A (zh) 一种石墨烯气凝胶正极材料的制备方法及其在铝离子电池中的应用
CN110010895A (zh) 碳纤维负载氧化镁颗粒交联纳米片阵列复合材料及其制备方法和应用
CN113224314A (zh) 一种三维分级多孔集流体及其制备方法
CN111640921A (zh) 一种钒类化合物电极材料的制备方法及其在水系锌离子电池中的应用
JP2012186160A (ja) 電池
CN112018361A (zh) 碳布负载碳包覆的硒化钴纳米片电池负极材料及其制备
CN105609720A (zh) 一种NiPCCNTs/S复合材料的制备方法与应用
CN111769251A (zh) 金属电极的保护方法
Ni et al. Ordered lithium ion channels of covalent organic frameworks with lithiophilic groups enable uniform and efficient Li plating/stripping
CN108123141A (zh) 一种三维多孔泡沫石墨烯材料及其应用
CN208923279U (zh) 一种金属锂电池、及其集流体和负极
WO2023123752A1 (zh) 一种极性集流体及其制备方法
Liu et al. Boosting the performance of lithium metal capacitors with a Li composite anode
CN105489892B (zh) 一种锂硫电池复合正极片及其制备方法
Jiang et al. Long-life and efficient sodium metal anodes enabled by a sodiophilic matrix
CN111986932A (zh) 一种碗状石墨烯/聚吡咯超级电容器电极材料的制备方法
Shan et al. Interconnected 3D fluorinated graphene host enables an ultrastable lithium metal anode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190510