[go: up one dir, main page]

CN108649190B - 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用 - Google Patents

具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN108649190B
CN108649190B CN201810263754.4A CN201810263754A CN108649190B CN 108649190 B CN108649190 B CN 108649190B CN 201810263754 A CN201810263754 A CN 201810263754A CN 108649190 B CN108649190 B CN 108649190B
Authority
CN
China
Prior art keywords
tinb
dimensional porous
composite material
graphene
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810263754.4A
Other languages
English (en)
Other versions
CN108649190A (zh
Inventor
夏新辉
沈盛慧
邓盛珏
涂江平
王秀丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810263754.4A priority Critical patent/CN108649190B/zh
Publication of CN108649190A publication Critical patent/CN108649190A/zh
Application granted granted Critical
Publication of CN108649190B publication Critical patent/CN108649190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用,该包括:在基体上垂直并交缠生长的石墨烯纳米片;包覆在所述石墨烯纳米片上的TiNb2O7,形成VG/TiNb2O7纳米片;以及包覆在所述VG/TiNb2O7纳米片上的硫掺杂碳层,形成VG/TiNb2O7@S‑C三维多孔阵列。本发明反合成了VG/TiNb2O7纳米阵列,以此为载体,通过恒电流阳极沉积,制备本发明复合材料。本发明复合材料具有高循环稳定性,高倍率性能和库伦效率等特点,与磷酸铁锂或三元材料匹配时,可显著提高全电池的能量密度/功率密度及循环稳定性。本发明的新型复合材料适合作为锂离子电池负极材料,可应用于各种电子设备以及电动汽车和混合动力汽车等等。

Description

具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料 及其制备方法和应用
技术领域
本发明涉及锂离子二次电池负极材料的技术领域,具体涉及一种具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和作为锂离子电池负极材料的应用。
背景技术
锂离子电池作为目前最重要的电能存储装置被广泛应用到交通运输、信息电子等领域。锂离子电池的快速发展主要取决于正负极材料的革新。而商业化应用最为广泛的负极活性石墨材料易形成枝晶,硅、锡基化物又存在严重的体积膨胀问题,而且,易形成SEI膜(固体电解质界面膜,solid electrolyte interface),安全性较差。钛酸锂虽不形成SEI膜,但是理论容量较低,铌酸钛化合物(TiNbxO2+2.5x)在循环过程中不形成SEI膜,而且理论容量相对较高,引起了极大的关注。在铌酸钛化合物中,应用较为广泛的是TiNb2O7和Ti2Nb10O29,理论容量分别为388和396mAh g-1。其中,TiNb2O7,首先被Goodenough的课题组提出,在其工作电压范围内,没有SEI膜的形成,而且理论容量较高,略高于石墨的理论容量。但是,铌酸钛材料本征电子/离子传导率较低,限制了高倍率电化学性能。因此要想将铌酸钛材料设计成高性能的锂离子电池电极,必须对其改性。
针对以上问题,国内外研究人员通常利用以下一些改性方式来优化其电化学储锂性能:主要有纳米化、金属离子掺杂和表面包覆等三种方式。将电极材料设计合成为纳米管、纳米线、纳米颗粒等纳米结构,减少电子/锂离子传输路径,加快传输速度,从而提高电子/离子传输效率;采用Ru4+,Cu2+,Mo6+等金属离子进行掺杂,提供更多的空位便于离子传输,从而提高其高倍率电化学性能;采用Ag、CNTs(碳纳米管)、graphene(石墨烯)等高导电性包覆层改善其电极/电解液之间的接触界面,降低界面电化学阻抗,提高电子传导率。但是,上述大部分改性方式基于粉末材料。粉末电极存在粘结剂和添加剂,限制了其电化学性能的进一步改善。薄膜复合材料不需要粘结剂/添加剂,适合作为粉末材料的替代品。因此,寻找一种高比表面积、高电导率的基底材料是非常迫切的,同时也是构建高性能铌酸钛基锂离子电池的首选方案。但是在所述阵列结构中,电极材料TiNb2O7将与电解液直接接触,缺少了电子快速传输通道。高效的表面导电包覆层可为其提供通道并进一步提高电化学性能。上述合成的VG/TiNb2O7@S-C复合多孔阵列电极具有高倍率性能、循环稳定性和库伦效率有望成为能商业化应用的高功率密度和能量密度的锂离子电池负极材料。
发明内容
针对背景技术中的问题,本发明的目的在于合成高比表面积的VG/TiNb2O7@S-C复合多孔阵列电极,通过三维纳米多孔阵列基底和表面包覆碳层进行协同优化,改善本征电子/离子迁移率低的问题。
本发明提供了一种具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和作为锂离子电池负极材料的应用,具有核壳结构的VG/TiNb2O7@S-C复合多孔阵列电极,所述材料包括VG纳米多孔阵列基底,TiNb2O7活性材料以及S-C无定形表面包覆碳层。VG/TiNb2O7@S-C复合多孔阵列电极采用等离子体化学气相沉积(PECVD),溶剂热法以及恒电流阳极沉积法进行制备,所述VG/TiNb2O7纳米片厚度为20-50nm,VG/TiNb2O7@S-C核壳阵列厚度为50-120nm。
具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,包括:
在基体上垂直并交缠生长的石墨烯纳米片(VG),形成三维纳米多孔结构;
包覆在所述石墨烯纳米片上的TiNb2O7(即TNO),形成VG/TiNb2O7纳米片;
以及包覆在所述VG/TiNb2O7纳米片上的硫掺杂碳层(S-C),形成VG/TiNb2O7@S-C三维多孔阵列。
所述的石墨烯纳米片的厚度为5-8nm,所述的VG/TiNb2O7纳米片的厚度为20-50nm,最后得到的VG/TiNb2O7@S-C三维多孔阵列的厚度(即VG/TiNb2O7@S-C核壳阵列纳米片厚度)为50-120nm。
具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,即用于提高电子/离子传导率的高能量密度/功率密度复合锂离子电池负极材料,该材料由三维纳米多孔阵列基底和表面包覆碳层构成并协同优化。
所述的复合VG/TiNb2O7@S-C三维多孔阵列,由交缠生长的垂直石墨烯纳米薄片(VG~5-8nm)构成的纳米多孔阵列为导电基底,溶剂热生长包覆TNO,形成(VG/TiNb2O7)核心后包覆无定形硫掺杂碳层(S-C),所述VG/TiNb2O7纳米片厚度为20-50nm,VG/TiNb2O7@S-C核壳阵列纳米片厚度为50-120nm。
一种具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料的制备方法,包括步骤如下:
(1)垂直石墨烯(VG)的制备方法:通过等离子体增强化学气相沉积方法(PECVD),将石墨烯阵列有序沉积于碳布上,得到垂直石墨烯纳米片(VG);
(2)VG/TiNb2O7的制备方法:将垂直石墨烯纳米片烘干,以该垂直石墨烯纳米片作为生长基底,利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行溶剂热反应,反应完之后清洗、烘干,热处理煅烧,得到VG/TiNb2O7纳米片;
(3)VG/TiNb2O7@S-C的制备方法:将3,4-乙撑二氧噻吩(EDOT)和LiClO4溶解于乙腈中,通过恒电流阳极沉积,在制备的VG/TiNb2O7纳米片上沉积PEDOT(EDOT的聚合物)后,煅烧,得到具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料。
步骤(1)中,等离子体增强化学气相沉积方法中,微波频率为2.2~2.6GHz和微波功率1.5kW~2.5kW,进一步优选,微波频率为2.45GHz和微波功率2kW。
具体包括:
首先,将碳布置于腔体中并使其气压达到10mTorr;
其次,将腔体温度升高到400℃后,使腔体内产生氢等离子体,氢等离子体通过500W微波等离子体在90sccm流速的H2气流中产生,同时通入甲烷,在整个反应过程中,氢气与甲烷的体积比为3:2,反应时间保持为2h;
最后,冷却,得到垂直生长在碳布上的石墨烯纳米片,即垂直石墨烯纳米片(VG)。
步骤(2)中,所述的钛酸异丙酯(C12H28O4Ti)与五氯化铌(NbCl5)的质量比为1:1.5~2.5,进一步优选,0.5684g:1.08g。
所述的溶剂热反应的反应条件为:180℃~220℃反应4h~8h,进一步优选,200℃反应6h。
所述的热处理煅烧的条件为:600℃~800℃热处理煅烧1h~3h,进一步优选,700℃热处理煅烧2h。
所述的热处理煅烧在氩气保护气氛下进行。
步骤(3)中,所述的3,4-乙撑二氧噻吩(EDOT)、LiClO4和乙腈的配比为0.3mL~0.7mL:0.5g~1.5g:80mL~120mL,进一步优选为0.5mL:1g:100ml。
所述的煅烧的条件为:600℃~800℃煅烧1h~3h,进一步优选,700℃煅烧2h。
所述的煅烧在氩气保护气氛下进行。
具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,具有三维多孔阵列结构,非常适合作为锂离子电池负极材料。
本发明相比于现有技术具有如下优点及突出效果:
本发明中,VG/TiNb2O7@S-C复合多孔阵列为薄膜材料,无添加剂和粘结剂,具有优越的循环稳定性和高倍率性能;VG多孔导电基底具有三维纳米多孔结构,增大了电极/电解液接触面积,缩短了锂离子传输路径;硫掺杂的碳层包覆为电解液与电极之间的电子传输提供快速通道,改善界面,降低界面转移电阻,从而提高电子传导率,降低材料本征低电子/离子传导率的影响。该复合负极提高了锂离子电池的安全性能与循环性能,有助于推进高能量密度、高稳定性的锂金属二次电池的发展。
附图说明
图1为实施例2中制得的VG/TiNb2O7阵列的扫描电镜图;
图2为实施例2中制得的VG/TiNb2O7阵列的透射电镜图;
图3中a为实施例2中制得的VG/TiNb2O7@S-C的扫描电镜图,图3中b为实施例2中制得的VG/TiNb2O7@S-C的Ti元素分布谱图,图3中c为实施例2中制得的VG/TiNb2O7@S-C的Nb元素分布谱图,图3中d为实施例2中制得的VG/TiNb2O7@S-C的O元素分布谱图,图3中e为实施例2中制得的VG/TiNb2O7@S-C的C元素分布谱图,图3中f为实施例2中制得的VG/TiNb2O7@S-C的S元素分布谱图;
图4为实施例2中制得的VG/TiNb2O7@S-C复合纳米多孔阵列的扫描电镜图。
具体实施方式
下面结合实施例来详细说明本发明,但本发明并不仅限于此。
(1)垂直石墨烯(VG)的制备方法:通过等离子体增强化学气相沉积方法(PECVD),将VG阵列有序沉积于碳布上(微波频率为2.45GHz和微波功率2kW)。首先,将碳布置于腔体中并使其气压达到10mTorr,其次,将腔体温度升高到400℃后,使腔体内产生氢等离子体,氢等离子体通过500W微波等离子体在90sccm流速的H2气流中产生,同时通入甲烷。在整个反应过程中,氢气与甲烷的比例为3:2,反应时间保持为2h,最后,冷却至室温25℃,VG样品制备完成。
(2)VG/TiNb2O7的制备方法:将VG基底在烘箱中12h烘干并称重,称完后以该垂直石墨烯(VG)作为生长基底,利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行溶剂热反应。取0.5684g C12H28O4Ti和1.08g NbCl5于烧杯中搅拌15分钟,后转移至水热釜中200℃反应6h,随炉冷却。然后将样品用去离子水和无水乙醇清洗数次并烘干,在氩气保护气氛下,700℃下将其在管式炉中热处理煅烧2h,升温速度为5℃/min,得到VG/TiNb2O7薄膜样品。
(3)VG/TiNb2O7@S-C的制备方法:将0.5mlEDOT和1gLiClO4溶解于100ml乙腈中,通过恒电流阳极沉积(1mA cm-2),在制备的VG/TiNb2O7薄膜上沉积PEDOT后,在700℃高温下于管式炉中煅烧2h(Ar气氛),升温速度为5℃/min,获得VG/TiNb2O7@S-C三维多孔阵列。
实施例1
将VG基底在真空烘箱中干燥。利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行200℃溶剂热反应6h,随炉冷却。所得样品用去离子水和无水乙醇清洗数次并烘干,在氩气保护气氛下,700℃下煅烧2h,升温速度为5℃/min,得到VG/TiNb2O7薄膜样品。以VG/TiNb2O7为核心,在EDOT和LiClO4的乙腈溶液中,进行恒电流阳极沉积。约10s后,PEDOT聚合物将会均匀沉积于VG/TiNb2O7阵列,形成核壳结构,随后在700℃高温下于管式炉中煅烧2h(Ar气氛),获得VG/TiNb2O7@S-C三维多孔阵列。
实施例2
将VG基底在真空烘箱中干燥。利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行200℃溶剂热反应6h,随炉冷却。所得样品用去离子水和无水乙醇清洗数次并烘干,在氩气保护气氛下,700℃下煅烧2h,升温速度为5℃/min,得到VG/TiNb2O7薄膜样品。以VG/TiNb2O7为核心,在EDOT和LiClO4的乙腈溶液中,进行恒电流阳极沉积。约20s后,
PEDOT聚合物将会均匀沉积于VG/TiNb2O7阵列,形成核壳结构,随后在700℃高温下于管式炉中煅烧2h(Ar气氛),获得VG/TiNb2O7@S-C三维多孔阵列。
实施例2中制得的VG/TiNb2O7阵列的扫描电镜图如图1所示;实施例2中制得的VG/TiNb2O7阵列的透射电镜图如图2所示;图3中a为实施例2中制得的VG/TiNb2O7@S-C的扫描电镜图,图3中b为实施例2中制得的VG/TiNb2O7@S-C的Ti元素分布谱图,图3中c为实施例2中制得的VG/TiNb2O7@S-C的Nb元素分布谱图,图3中d为实施例2中制得的VG/TiNb2O7@S-C的O元素分布谱图,图3中e为实施例2中制得的VG/TiNb2O7@S-C的C元素分布谱图,图3中f为实施例2中制得的VG/TiNb2O7@S-C的S元素分布谱图;图4为实施例2中制得的VG/TiNb2O7@S-C复合纳米多孔阵列的扫描电镜图。
由图可知,本发明具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,包括:在基体上垂直并交缠生长的石墨烯纳米片(VG),形成三维纳米多孔结构;包覆在所述石墨烯纳米片上的TiNb2O7(即TNO),形成VG/TiNb2O7纳米片;以及包覆在所述VG/TiNb2O7纳米片上的硫掺杂碳层(S-C),形成VG/TiNb2O7@S-C三维多孔阵列。所述的石墨烯纳米片的厚度为5-8nm,所述的VG/TiNb2O7纳米片的厚度为20-50nm,最后得到的VG/TiNb2O7@S-C三维多孔阵列的厚度(即VG/TiNb2O7@S-C核壳阵列纳米片厚度)为50-120nm。
实施例3
将VG基底在真空烘箱中干燥。利用钛酸异丙酯(C12H28O4Ti)和五氯化铌(NbCl5)作为前驱体进行200℃溶剂热反应6h,随炉冷却。所得样品用去离子水和无水乙醇清洗数次并烘干,在氩气保护气氛下,700℃下煅烧2h,升温速度为5℃/min,得到VG/TiNb2O7薄膜样品。以VG/TiNb2O7为核心,在EDOT和LiClO4的乙腈溶液中,进行恒电流阳极沉积。约40s后,PEDOT聚合物将会均匀沉积于VG/TiNb2O7阵列,形成核壳结构,随后在700℃高温下于管式炉中煅烧2h(Ar气氛),获得VG/TiNb2O7@S-C三维多孔阵列。
性能测试
将上述实施例1~3制成的VG/TiNb2O7@S-C三维多孔电极材料分别作为扣式电池的对电极和工作电极,金属锂圆片为对电极,1M的LiPF6+EC/DMC(1:1)为电解液。将负极片、电解液、隔膜、对电极极片依次加入电池壳中进行电池组装,组装好后将电池在全自动封装机中压紧密封,静置12h以上后进行电化学测试。充放电测试在室温进行,仪器为蓝电电池测试系统,测试主要采用恒电流充放电测试和循环伏安测试。恒流充放电测试是非常重要的电化学测试手段,其指标主要有:比容量、倍率性能、循环性能、库仑效率。测试电压范围为相对于Li/Li+1.0-2.5V,倍率测试电流为1C,2C,5C,10C,20C,40C,80C,160C,循环测试电流为10C。
性能测试结果如下:
实施例1、实施例2和实施例3的VG/TiNb2O7@S-C三维多孔电极在10C电流密度下放电比电容分别为134mAh/g、182mAh/g和165mAh/g。此外,循环10000圈循环后,放电比容量保持率达65%以上,库伦效率高达95%以上。可见,上述制得的VG/TiNb2O7@S-C三维多孔电极组装电池后循环稳定性好,库伦效率高。实施例1、实施例2和实施例3的VG/TiNb2O7@S-C三维多孔电极在160C电流密度下放电比电容分别为145mAh/g、225mAh/g和180mAh/g。可见,上述制得的VG/TiNb2O7@S-C三维多孔电极材料高倍率性能较好。
VG导电基底具有三维纳米多孔结构,纳米化为电子和锂离子增大了电极/电解液接触面积,缩短了锂离子传输路径;另一方面,三维多孔的VG基底与硫掺杂的碳层均具有较高的电子传导率,能促进颗粒与颗粒之间的电子传导,从而提高其电子/离子传导率。
因此,本发明VG/TiNb2O7@S-C三维多孔电极具有高循环稳定性,高倍率性能和库伦效率等特点,使其有望成为能商业化应用的高功率密度和能量密度的锂离子电池负极材料。

Claims (10)

1.一种具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,其特征在于,包括:
在基体上垂直并交缠生长的石墨烯纳米片;
包覆在所述石墨烯纳米片上的TiNb2O7,形成VG/TiNb2O7纳米片;
以及包覆在所述VG/TiNb2O7纳米片上的硫掺杂碳层,形成VG/TiNb2O7@S-C三维多孔阵列。
2.根据权利要求1所述的具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料,其特征在于,所述的石墨烯纳米片的厚度为5-8nm,所述的VG/TiNb2O7纳米片的厚度为20-50nm,最后得到的VG/TiNb2O7@S-C三维多孔阵列的厚度,即VG/TiNb2O7@S-C核壳阵列纳米片厚度为50-120nm。
3.根据权利要求1或2所述的具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料的制备方法,其特征在于,包括步骤如下:
(1)通过等离子体增强化学气相沉积方法,将石墨烯阵列有序沉积于碳布上,得到垂直石墨烯纳米片;
(2)将垂直石墨烯纳米片烘干,以该垂直石墨烯纳米片作为生长基底,利用钛酸异丙酯和五氯化铌作为前驱体进行溶剂热反应,反应完之后清洗、烘干,热处理煅烧,得到VG/TiNb2O7纳米片;
(3)将3,4-乙撑二氧噻吩和LiClO4溶解于乙腈中,通过恒电流阳极沉积,在制备的VG/TiNb2O7纳米片上沉积PEDOT后,煅烧,得到具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,等离子体增强化学气相沉积方法中,微波频率为2.2~2.6GHz和微波功率1.5kW~2.5kW。
5.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述的钛酸异丙酯与五氯化铌的质量比为1:1.5~2.5。
6.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述的溶剂热反应的反应条件为:180℃~220℃反应4h~8h。
7.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述的热处理煅烧的条件为:600℃~800℃热处理煅烧1h~3h;
所述的热处理煅烧在氩气保护气氛下进行。
8.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述的3,4-乙撑二氧噻吩、LiClO4和乙腈的配比为0.3mL~0.7mL:0.5g~1.5g:80mL~120mL。
9.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述的煅烧的条件为:600℃~800℃煅烧1h~3h;
所述的煅烧在氩气保护气氛下进行。
10.根据权利要求1所述的具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料作为锂离子电池负极材料的应用。
CN201810263754.4A 2018-03-28 2018-03-28 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用 Active CN108649190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810263754.4A CN108649190B (zh) 2018-03-28 2018-03-28 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810263754.4A CN108649190B (zh) 2018-03-28 2018-03-28 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108649190A CN108649190A (zh) 2018-10-12
CN108649190B true CN108649190B (zh) 2020-12-08

Family

ID=63744994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810263754.4A Active CN108649190B (zh) 2018-03-28 2018-03-28 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108649190B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3200272A1 (en) 2015-12-16 2017-06-22 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
CN109686582A (zh) * 2019-01-11 2019-04-26 中山大学 一种基于石墨烯和聚乙烯二氧噻吩制备复合电极的方法
CN109950489A (zh) * 2019-03-21 2019-06-28 浙江大学 碳布/碳纤维阵列负载钛铌氧复合材料及其制备方法和应用
CN110277554B (zh) * 2019-03-22 2022-04-19 北方奥钛纳米技术有限公司 正极材料和正极片及其制备方法、锂离子电池
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
CN112151762B (zh) * 2019-06-26 2022-06-10 重庆大学 一种锂硫电池正极材料及其制备方法、一种锂硫电池正极及其制备方法以及一种锂硫电池
CN110518251A (zh) * 2019-09-19 2019-11-29 哈尔滨工业大学(深圳) 一种三维石墨烯粉体材料及其制备方法
CA3153254A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
CN110993908A (zh) * 2019-11-27 2020-04-10 浙江大学 一种垂直石墨烯/二氧化锰复合材料及其制备方法和应用
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN111403718B (zh) * 2020-03-31 2021-06-15 浙江大学 钛铌氧/垂直石墨烯/碳化钛-碳复合材料及其制备方法和应用
AU2021297476A1 (en) 2020-06-25 2022-12-15 6K Inc. Microcomposite alloy structure
CN116547068A (zh) 2020-09-24 2023-08-04 6K有限公司 用于启动等离子体的系统、装置及方法
CN112038629B (zh) * 2020-09-30 2022-07-05 合肥国轩高科动力能源有限公司 一种一体式高倍率磷酸铁锂正极材料及其制备方法和用途
KR20230095080A (ko) 2020-10-30 2023-06-28 6케이 인크. 구상화 금속 분말을 합성하는 시스템 및 방법
EP4313449A1 (en) 2021-03-31 2024-02-07 6K Inc. Systems and methods for additive manufacturing of metal nitride ceramics
CN113921826B (zh) * 2021-10-09 2023-08-04 深圳石墨烯创新中心有限公司 一种直立石墨烯/纳米银复合材料及其制备方法和应用
US12261023B2 (en) 2022-05-23 2025-03-25 6K Inc. Microwave plasma apparatus and methods for processing materials using an interior liner
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
US12094688B2 (en) 2022-08-25 2024-09-17 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP)
US12195338B2 (en) 2022-12-15 2025-01-14 6K Inc. Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868112A (zh) * 2015-05-12 2015-08-26 吉林大学 碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法
EP2980891A1 (en) * 2014-07-30 2016-02-03 Kabushiki Kaisha Toshiba Composite
CN105304887A (zh) * 2015-12-09 2016-02-03 南阳师范学院 一种介孔微球形铌酸钛/碳复合材料及其制备方法
CN106784692A (zh) * 2016-12-23 2017-05-31 浙江大学 石墨烯阵列负载钛酸锂/碳纳米管复合阵列电极材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980891A1 (en) * 2014-07-30 2016-02-03 Kabushiki Kaisha Toshiba Composite
CN104868112A (zh) * 2015-05-12 2015-08-26 吉林大学 碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法
CN105304887A (zh) * 2015-12-09 2016-02-03 南阳师范学院 一种介孔微球形铌酸钛/碳复合材料及其制备方法
CN106784692A (zh) * 2016-12-23 2017-05-31 浙江大学 石墨烯阵列负载钛酸锂/碳纳米管复合阵列电极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
垂直取向石墨烯的常压制备及储能应用基础研究;马伟;《浙江大学研究生学位论文》;20141231;第1-70页 *

Also Published As

Publication number Publication date
CN108649190A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
CN108649190B (zh) 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用
CN103474632B (zh) 一种用于锂电池的负极材料及其制备方法和应用
Ju et al. Three-dimensional porous carbon nanofiber loading MoS2 nanoflake-flowerballs as a high-performance anode material for Li-ion capacitor
CN106784692A (zh) 石墨烯阵列负载钛酸锂/碳纳米管复合阵列电极材料及其制备方法和应用
CN106410150A (zh) 一种核壳结构MoO2‑MoS2钠离子电池负极材料及其制备方法
Wang et al. Structure interlacing and pore engineering of Zn2GeO4 nanofibers for achieving high capacity and rate capability as an anode material of lithium ion batteries
Zhu et al. Precise growth of Al2O3/SnO2/CNTs composites by a two-step atomic layer deposition and their application as an improved anode for lithium ion batteries
CN108923037B (zh) 一种富硅SiOx-C材料及其制备方法和应用
CN105186004A (zh) 一种锂离子电池负极用铜集流体及其制备方法和应用
CN107634206B (zh) 一种锂离子电池柔性负极材料及其制备方法
Ou et al. Carbon coated Si nanoparticles anchored to graphene sheets with excellent cycle performance and rate capability for Lithium-ion battery anodes
CN102709531A (zh) 一种锂离子电池及其负极
CN108306009A (zh) 一种氧化硅碳复合负极材料、其制备方法及锂离子电池
CN103413920B (zh) 一种锂离子电池用硅/取向碳纳米管复合负极材料及其制备方法
CN110304658B (zh) 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法
CN112875680B (zh) 一种片状Fe基合金催化生长碳纳米管阵列的制备方法
CN109850886B (zh) 一种多孔状石墨材料及其制备方法与应用
Lu et al. Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook
Zhao et al. A novel three-dimensional architecture of Co–Ge nanowires towards high-rate lithium and sodium storage
Chen et al. Three-dimensional flexible molybdenum oxynitride thin film as a high capacity anode for Li-ion batteries
Xin et al. Interlayer-expanded and carbon-coated VS2 nanosheets self-assembled on 3D CNTs cross-linked network skeleton for ultrastable lithium-ion storage
CN103647047A (zh) 一种碳纳米管/SnO2同轴复合阵列锂离子电池负极材料
CN108428877A (zh) 纳米Fe3O4@C原位复合多孔锂离子电池负极材料及其制备方法
CN113044840B (zh) 一种活性炭负载钼和氮双掺杂碳纳米片阵列复合材料及其制备方法和应用
Zhou et al. Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant