TW202302251A - 用於金屬氮化物陶瓷之積層製造之系統及方法 - Google Patents
用於金屬氮化物陶瓷之積層製造之系統及方法 Download PDFInfo
- Publication number
- TW202302251A TW202302251A TW111112201A TW111112201A TW202302251A TW 202302251 A TW202302251 A TW 202302251A TW 111112201 A TW111112201 A TW 111112201A TW 111112201 A TW111112201 A TW 111112201A TW 202302251 A TW202302251 A TW 202302251A
- Authority
- TW
- Taiwan
- Prior art keywords
- metal nitride
- powder
- component
- titanium nitride
- metal
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 105
- 239000002184 metal Substances 0.000 title claims abstract description 105
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 89
- 239000000919 ceramic Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000000654 additive Substances 0.000 title claims abstract description 17
- 230000000996 additive effect Effects 0.000 title claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 112
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 76
- 239000002245 particle Substances 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 45
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 32
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 30
- 239000007789 gas Substances 0.000 claims description 26
- 238000002844 melting Methods 0.000 claims description 25
- 230000008018 melting Effects 0.000 claims description 25
- 239000007943 implant Substances 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 18
- 238000010894 electron beam technology Methods 0.000 claims description 16
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000007639 printing Methods 0.000 abstract description 12
- 230000004927 fusion Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 41
- 238000009826 distribution Methods 0.000 description 14
- 230000008901 benefit Effects 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000009832 plasma treatment Methods 0.000 description 5
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 4
- 239000010952 cobalt-chrome Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 229910011208 Ti—N Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 238000000110 selective laser sintering Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- -1 titanium nitride Chemical class 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58007—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
- C04B35/58014—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/653—Processes involving a melting step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/02—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2202/00—Treatment under specific physical conditions
- B22F2202/13—Use of plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/20—Nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/528—Spheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/665—Local sintering, e.g. laser sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/667—Sintering using wave energy, e.g. microwave sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/782—Grain size distributions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
- Ceramic Products (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
本發明描述針對金屬氮化物陶瓷之積層製造(AM),包括三維(3D)印刷之實施例。在本文中之一些實施例中,AM可包含粉末床融合(PBF)技術。本文中亦描述藉由AM技術形成之金屬氮化物陶瓷組件。
Description
本發明之一些實施例係針對用於金屬氮化物陶瓷之積層製造及用於藉由積層製造製成之金屬氮化物陶瓷組件之系統及方法。
諸如氮化鈦之金屬氮化物已用於各種應用中,包括用於醫療植入物中作為保護性耐磨塗層。由例如CoCr或鈦合金(例如,Ti64)製成之許多當前矯形外科植入物具有不良耐磨性且需要氮化鈦塗層以防止植入物在體內之最終失效。氮化鈦為具有極佳耐磨性及耐腐蝕性之陶瓷且與人體相容。塗層通常藉由化學氣相沈積(CVD)塗覆至植入物,其中Ti之蒸氣與氮氣反應以形成氮化鈦塗層。此過程形成極薄的、相干的氮化鈦層。
然而,隨著積層製造(AM)之出現,植入物之設計亦已演變。現可能設計具有內部空腔之植入物,該等內部空腔減輕植入物之重量且提供用於植入物內部之組織生長的位置。然而,在複雜內部空腔之情況下,將氮化鈦層均勻地塗覆於植入體內部之表面上變得具有挑戰性。用氮化鈦印刷整個植入物將消除昂貴、耗時及額外的植入物處理(CVD),且減少製造的時間。歸因於氮化鈦之耐磨性及耐腐蝕性,此植入物將不需要其他塗層。然而,先前,歸因於此材料之材料屬性及對AM過程之輸入材料之要求,金屬陶瓷之AM尚不可能。
因此,需要產生用於AM過程之金屬氮化物的新穎系統及方法,及用於產生金屬氮化物組件之AM過程,以及藉由積層製造製成之金屬氮化物組件。
出於此概述之目的,本文中描述本發明之某些態樣、優勢及新穎特徵。應理解,根據本發明之任何特定實施例,未必可實現所有此類優勢。因此,例如,熟習此項技術者將認識到,可以實現如本文中所教示之一個優勢或一組優勢而未必實現如本文中可教示或建議之其他優勢的方式來體現或進行本發明。
本文中之一些實施例係針對一種使用積層製造過程產生之金屬氮化物陶瓷組件,該積層製造過程包含粉末床擴散過程,其包含將雷射束或電子束導引至金屬氮化物粉末。
在一些實施例中,該粉末床擴散過程包含電子束熔融(EBM)或選擇性雷射熔融(SLM)。在一些實施例中,該金屬氮化物粉末包含介於約15至45微米、約20至63微米或約45至106微米之間的粒度範圍。在一些實施例中,該金屬氮化物組件在光學顯微鏡下具有95%或更高之密度百分比。在一些實施例中,該金屬氮化物陶瓷組件基本上由金屬氮化物組成。在一些實施例中,該金屬氮化物包含氮化鈦。在一些實施例中,該金屬氮化物粉末包含氮化鈦粉末。在一些實施例中,該金屬氮化物粉末係藉由在微波電漿內使金屬粉末與含氮氣體反應而形成。在一些實施例中,該含氮氣體包含氫氣或氬氣。在一些實施例中,該雷射束或該電子束在處理腔室內經導引至該金屬氮化物粉末,其中該處理腔室在整個該過程中維持於1,200℃或更小之溫度下。
本文中之一些實施例係針對一種用於產生金屬氮化物陶瓷組件之過程,該過程包含將雷射束或電子束導引至金屬氮化物粉末。
在一些實施例中,該過程包含該金屬氮化物粉末之電子束熔融(EBM)或選擇性雷射熔融(SLM)。在一些實施例中,該金屬氮化物粉末包含介於約15至45微米、約20至63微米或約45至106微米之間的粒度範圍。在一些實施例中,該金屬氮化物組件在光學顯微鏡下具有95%或更高之密度百分比。在一些實施例中,該雷射束或該電子束在處理腔室內經導引至該金屬氮化物粉末,其中該處理腔室在整個該過程中維持於1,200℃或更小之溫度下。在一些實施例中,該金屬氮化物陶瓷組件基本上由金屬氮化物組成。在一些實施例中,該金屬氮化物包含氮化鈦。在一些實施例中,該金屬氮化物粉末包含氮化鈦粉末。在一些實施例中,該金屬氮化物粉末係藉由在微波電漿內使金屬粉末與含氮氣體反應而形成。在一些實施例中,該含氮氣體包含氫氣或氬氣。本文中之一些實施例係針對一種印刷氮化鈦組件。在一些實施例中,該印刷氮化鈦組件在光學顯微鏡下包含95%或更高之密度百分比。在一些實施例中,該印刷氮化鈦組件包含約4.72 g/cc至4.90 g/cc之密度。在一些實施例中,該印刷氮化鈦組件包含TiN
0.54之化學計量。在一些實施例中,該印刷氮化鈦組件包含αTi、TiN及Ti
2N之相。在一些實施例中,該印刷氮化鈦組件包含13至14wt.%之氮。在一些實施例中,該印刷鈦組件基本上由氮化鈦組成。在一些實施例中,該印刷氮化鈦組件使用積層製造完全印刷。在一些實施例中,該印刷氮化鈦組件包含印刷立方體簇。在一些實施例中,該印刷氮化鈦組件為醫療植入物。
以引用任何優先權申請案之方式併入
本申請案主張2021年3月31日申請之美國臨時申請案第63/200,841號之優先權權益,該申請案之全部揭示內容以引用之方式併入本文中。
儘管下文揭示某些較佳實施例及實例,但本發明主題延伸超出特定揭示之實施例至其他替代實施例及/或使用且延伸至其修改及等效物。因此,隨附至此之申請專利範圍之範疇不受下文所描述之特定實施例中之任一者限制。舉例而言,在本文中所揭示之任何方法或過程中,方法或過程之動作或操作可以任何合適序列執行且未必限於任何特定所揭示序列。可以可有助於理解某些實施例之方式將各種操作描述為依次之多個離散操作;然而,描述之次序不應解釋為暗示此等操作為次序相依的。另外,本文中所描述之結構、系統及/或裝置可體現為整合式組件或獨立組件。出於比較各種實施例之目的,描述此等實施例之某些態樣及優勢。未必所有此類態樣或優勢均藉由任何特定實施例實現。因此,舉例而言,可以實現或最佳化如本文中所教示之一個優勢或一組優勢而未必實現如本文中亦可教示或建議之其他態樣或優勢的方式來進行各種實施例。
現將描述某些例示性實施例以提供對本文中所揭示之裝置及方法之結構、功能、製造及使用之原理的總體理解。在隨附圖式中說明此等實施例之一或多個實例。熟習此項技術者應理解,本文中特定描述及隨附圖式中所說明之裝置及方法為非限制性例示性實施例且本發明之範疇僅由申請專利範圍界定。結合一個例示性實施例所說明或描述之特徵可與其他實施例之特徵組合。此類修改及變化意欲包括於本發明技術之範疇內。
本文中描述針對金屬氮化物陶瓷之積層製造(AM),包括三維(3D)印刷之實施例。在本文中之一些實施例中,AM可包含粉末床融合(PBF)技術,諸如電子束熔融(EBM)、選擇性雷射熔融(SLM)、選擇性雷射燒結(SLS)、選擇性熱燒結(SHS)及直接金屬雷射燒結(DMLS)以及其他。如本文中所使用,在藉由電腦輔助設計(CAD)資料導引之情況下,AM可包括用於藉由接合或添加連續材料層以形成物件而將材料處理成較高複雜度組件的各種技術。PBF系統使用雷射、電子束或熱印刷頭在三維空間中熔融或部分熔融超精細材料層。當過程結束時,將多餘粉末遠離物體噴出。
先前,由於藉由諸如鑄造、加壓、粉末冶金或其他之高溫處理產生之金屬氮化物陶瓷的材料屬性,此類材料對於用於AM過程而言不相容。舉例而言,在不受理論限制之情況下,假定此類先前產生之金屬氮化物陶瓷的高熔點、高硬度、脆度及密度使得彼等材料與AM過程不相容。氮化鈦例如具有約2,930℃之熔點,而典型AM處理腔室僅可達到約1,200℃。然而,本文中之實施例包括能夠用於AM過程中之合成金屬氮化物陶瓷粉末,以及用於合成此類AM-相容性金屬氮化物陶瓷之方法及系統。此外,本文中之實施例包括用於高溫耐火金屬氮化物陶瓷之局部熔融及此類陶瓷之受控固化以避免開裂及產生全密度材料的方法。在一些實施例中,本文中之AM方法及系統可包含印刷金屬氮化物陶瓷,諸如氮化鈦,而不改變前驅體材料中之金屬或氮含量的化學計量。
積層製造之基本材料要求為呈球狀形式且在指定粒度內,通常在某一微米範圍(15至45微米、20至63微米、45至106微米等)內之金屬合金粉末。當前並不知曉符合此等要求之一些氮化物粉末,諸如氮化鈦粉末,且最終並不知曉氮化鈦之AM。本文中之實施例使得能夠在AM之規格內且按比例製造氮化鈦粉末。
本文中之實施例包括使用新穎AM參數及策略將微米大小之金屬氮化物粉末AM處理成完全緻密的固體組分之方法。此新穎方法能夠自金屬氮化物粉末產生AM製造固體。本文中之系統及方法對於熔融及固化金屬氮化物粉末輸入而不在固化期間開裂為關鍵的。在一些實施例中,AM處理可包含完全熔融耐火金屬氮化物且進行受控固化以產生無裂紋固體組分。在一些實施例中,本文中之方法進一步防止金屬氮化物(諸如氮化鈦)分解成組成金屬及氮,從而保持氮化鈦粉末之化學計量。在一些實施例中,氮化鈦中之強Ti-H鍵可幫助保持該化學計量。在一些實施例中,本文中之方法表示使用粉末床融合技術利用電子束或雷射束中之任一者首次成功3D印刷金屬氮化物陶瓷。
在一些實施例中,使用本文中之系統及方法產生之金屬氮化物3D印刷組件可潛在地替換用於醫療植入物之傳統CoCr合金。CoCr植入物可能導致患者血流中釋放之Cr及Co離子,其在一些情況下可引起細胞毒性及細胞凋亡效應。當前,金屬氮化物在醫學應用中用作CoCr及Ti64植入物之保護性耐磨塗層且在FDA審批通過之材料之清單上。然而,先前不可能的金屬氮化物(諸如TiN)之3D印刷將允許產生具有受控孔隙度之生物相容性金屬氮化物植入物,使得製造用於更快骨組織生長及更快恢復之骨傳導植入物將為可能的。
本文中之一些實施例包含用於產生與AM過程相容之金屬氮化物粉末的方法。在一些實施例中,方法包含使用市售純鈦(cPTi)粉末或其他金屬粉末作為前驅體且使用含氮氣體作為反應性電漿氣體以合成金屬氮化物。
諸如Ti之一些金屬對諸如氮、氫、碳及氧之填隙子具有極大親和力。當存在於電漿氣體中時,此類物質可以電離狀態存在且視為更具「反應性」。藉由謹慎選擇至少含有氮氣且可含有不同量之其他氣體(諸如氫氣或氬氣)以及其他之反應性電漿氣體組成物,且使饋入粉末立即通過其,電漿氣體中之氮氣與Ti反應以產生氮化鈦。藉由控制反應性電漿中之氮的量及反應性電漿中Ti粉末顆粒之滯留時間,或許有可能控制所產生氮化鈦之化學計量(例如,化合物中之N%)及相。
在一些實施例中,積層製造之基本材料要求為呈球狀形式且在指定粒度內,通常在微米範圍內之金屬合金、金屬碳化物、金屬氧化物或金屬氮化物粉末。粒度分佈對粉末流動性、延展性及提供均勻粉末床密度之能力具有直接影響。此繼而確定熔融或燒結粉末顆粒所需之能量輸入且亦影響表面光潔度。舉例而言,適用於AM過程之球狀化粉末可具有介於約15至45微米、約20至63微米、約45至106微米或約45至150微米之間的粒度分佈。在一些實施例中,粒度分佈可包含D50粒度分佈。然而,根據本文中所描述之方法及系統,球狀化粉末可包含奈米範圍至毫米範圍內之粒度分佈。舉例而言,根據本文中之實施例之球狀化粉末可包含約0.1微米至約1000微米之間的粒度分佈。在一些實施例中,根據本文中之實施例之球狀化粉末可包含約0.1微米與約1微米之間、約1微米與15微米之間、約15微米與約45微米之間、約20微米與63微米之間、約45微米與約106微米之間、約106微米與約200微米之間、約200微米與約300微米之間、約300微米與約400微米之間、約400微米與約500微米之間、約500微米與約600微米之間、約600微米與約700微米之間、約700微米與約800微米之間、約800微米與約900微米之間及約900微米與約1000微米之間或上述範圍中之任一者之間的粒度分佈。
此外,為了適用於需要高粉末流之AM應用,金屬粉末顆粒應呈現球形,其可經由電漿球狀化過程來實現。此過程涉及顆粒在熱環境中之完全熔融、表面熔融或部分熔融,藉此液態金屬之表面張力使每一顆粒塑形成球形幾何,隨後冷卻及重新固化。
在一些實施例中,藉由電漿處理實現之最終顆粒可為球形、球狀化或類似球形的,此等術語可互換使用。有利地,藉由使用與不同金屬氮化物中之每一者相關之關鍵及特定揭示內容,所有原料均可轉化成球形粉末。
本發明之一些實施例係針對產生實質上球狀化或已經歷顯著球狀化之顆粒。在一些實施例中,球形、類似球形或球狀化顆粒係指具有大於某一臨限值之球度的顆粒。可藉由使用以下等式計算球面之表面積A
s,ideal來計算顆粒球度,其中體積V與顆粒之體積匹配:
在一些實施例中,顆粒可具有大於0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95或0.99 (或大於約0.5、約0.6、約0.7、約0.75、約0.8、約0.8、約0.91、約0.95或約0.99)之球度。在一些實施例中,顆粒可具有0.75或更大或0.91或更大(或約0.75或更大或約0.91或更大)之球度。在一些實施例中,顆粒可具有小於0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95或0.99 (或小於約0.5、約0.6、約0.7、約0.75、約0.8、約0.8、約0.91、約0.95或約0.99)之球度。在一些實施例中,若顆粒具有為或高於上述球度值中之任一者的球度,則認為顆粒為球形、類似球形或球狀化的,且在一些較佳實施例中,若顆粒之球度為或約0.75或更大或為或約0.91或更大,則認為顆粒為球形的。
在一些實施例中,給定粉末內之所有顆粒之中值球度可大於0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95或0.99 (或大於約0.5、約0.6、約0.7、約0.75、約0.8、約0.8、約0.91、約0.95或約0.99)。在一些實施例中,給定粉末內之所有顆粒之中值球度可小於0.5、0.6、0.7、0.75、0.8、0.9、0.91、0.95或0.99 (或小於約0.5、約0.6、約0.7、約0.75、約0.8、約0.8、約0.91、約0.95或約0.99)。在一些實施例中,若針對給定粉末所量測之全部或臨限百分比(如藉由下文部分中的任一者所描述)的顆粒具有大於或等於上述球度值中之任一者的中值球度,則認為粉末為球狀化的,且在一些較佳實施例中,若全部或臨限百分比的顆粒具有為或約0.75或更大或為或約0.91或更大之中值球度,則認為粉末為球狀化的。
在一些實施例中,粉末內可高於諸如上文所描述之給定球度臨限值的顆粒分數可大於50%、60%、70%、80%、90%、95%或99% (或大於約50%、約60%、約70%、約80%、約90%、約95%或約99%)。在一些實施例中,粉末內可高於諸如上文所描述之給定球度臨限值的顆粒分數可小於50%、60%、70%、80%、90%、95%或99% (或小於約50%、約60%、約70%、約80%、約90%、約95%或約99%)。
粒度分佈及球度可藉由任何合適之已知技術確定,諸如藉由SEM、光學顯微法、動態光散射、雷射繞射、使用影像分析軟體手動量測尺寸,例如在相同材料區段或樣本之至少三個影像上每影像約15至30個量測值,及任何其他技術。
屬於以上規格之氮化鈦粉末目前並不知曉,且因此使用氮化鈦之AM過程目前並不知曉。因此,本文中之一些實施例係針對用於製造金屬氮化物之系統及方法,包括在AM所需之規格內的氮化鈦粉末。本文中之一些實施例係針對合成例如微米大小之球形氮化鈦粉末。在一些實施例中,主要合金元素為氮。相對於氮化鈦粉末之組成物,在不同氮氣濃度下,形成不同氮化物相,諸如TiN、Ti
2N、TiN
2。此等相具有不同物理屬性。舉例而言,TiN為具有高耐磨性之極硬的相,且Ti
2N可為相對較軟的相。因此,基於應用及所需功能屬性,將需要不同組成物及最終不同微觀結構。本文中之實施例可係針對任何所需相之氮化鈦之合成,其可藉由控制反應性電漿氣體之化學計量來控制。
使用根據以上過程產生及/或具有以上規格之金屬氮化物粉末,且使用特定AM處理技術,可獲得3D印刷金屬氮化物組件。藉由EBM熔融或融合金屬氮化物粉末之能力可至少部分取決於粉末表面處所接收之能量密度。對於EBM,此能量密度可計算為電流*加速電壓/掃描速度*孔口間距*層厚度。粉末熔融之最佳參數可藉由個別參數-電流、掃描時間及孔口間距之組合為主要參數來實現。另一方面,腔室溫度可幫助控制粉末之熔融塊體的冷卻速率或固化速率。在一些實施例中,增加腔室溫度會降低熔融塊體之冷卻速率。在一些實施例中,較慢冷卻速率可防止粉末之固化塊體開裂。EBM機器中之腔室溫度通常可維持於約1000℃至1100℃下。然而,在一些實施例中,為了使腔室溫度升高超出約1100℃的限制,可印刷立方體簇,使得更多固體塊可存在於腔室中,其中立方體簇保留印刷立方體周圍之更多熱量。在現實世界應用中,印刷可藉由使印刷區域最大化而完成,因此在印刷時存在更多固體塊。此外,對於部分印刷,部分設計中可存在一或多個支撐結構,其可幫助支撐突出端免受下垂以及熱量管理。此將基於印刷之區段厚度及印刷之鄰近部分之接近度而因部分而異。
舉例而言,使用EBM過程印刷一般在維持高達約1100℃之腔室溫度下發生於真空中。在一些實施例中,藉由增加電子束之電流,最終增加遞送至粉末床之能量,可熔融及熔合粉末。在一些實施例中,電流可提高至某一位準,使得可實現金屬氮化物之熔融,但腔室基底之翹曲可能不會發生。舉例而言,儘管氮化鈦之熔點為約2,930℃,但本文中所使用之氮化鈦之熔融可在約1,200℃或更小之腔室溫度下實現,其中最終部分可在該部分之結構中呈現實質上無開裂。此可藉由印刷金屬氮化物立方體簇來實現,使得腔室中存在更大塊體,導致保持更多熱量及更均勻之粉末熔融,且可相對於熔融下部塊體之單一金屬氮化物立方體而實現冷卻。除使用金屬氮化物立方體簇以外,AM過程中之孔口間距(兩個鄰近射束軌道之重疊)可減小,藉此增加射束之重疊,且確保實質上無粉末床之區域未被射束觸及。使用上述AM處理技術,可產生密度為至少95%之金屬氮化物。密度%可藉由在顯微鏡下觀察印刷部分之橫截面來量測,且密度%可計算為所觀察緻密區域之%。否則,密度%可藉由所實現的隨材料(例如氮化鈦)之理論密度而變的立方體密度之百分比來計算。
實例
氮化鈦粉末由cpTi粉末合成。氮化鈦粉末呈現45至106微米粒度分佈(PSD),且使用微波電漿合成,該微波電漿使用含氮氣體(N
2)作為電漿氣體產生。在包含氮氣(N
2)及氫氣(H
2)之混合物的反應性電漿中處理藉由氫化物-脫氫(HDH)法製成之cpTi。在反應性氮氣中引入少量氫氣(約10%)以防止在電漿處理期間氧化cpTi粉末。電漿處理使不規則形狀之HDH cpTi粉末轉化成球形氮化鈦粉末。在球狀化期間,由於高溫及電漿中電離氮物質與完全熔融、表面熔融或部分熔融之cpTi顆粒之間的接觸,故引發Ti與N之間的反應,從而產生氮化鈦Ti
xN
y。實例反應展示如下:
2Ti (s) + N
2(g) → 2TiN (s)
4Ti (s) + N
2(g) → 2Ti
2N (s)
所合成氮化鈦具有以下元素組成:12重量%之氮、0.34重量%之氧、0.034重量%之鐵、0.0068重量%之碳及85.9重量%之鈦。所合成氮化鈦具有粒度分佈,其中D
10為50.35微米,D
50為68.5微米,且D
90為97.73微米。所合成氮化鈦具有以下物理屬性:27 s/50 g之霍爾流量、2.54 g/立方cm之表觀密度(AD)、4.9 g/立方cm之真實密度及2.91 g/立方cm之振實密度(TD)。氮化鈦粉末可經由微波電漿處理合成。在一些實施例中,在電漿、電漿羽流或排氣內,熔融金屬固有地由於液體表面張力而球狀化。當微波產生之電漿呈現實質上均勻之溫度分佈時,可實現超過90%之顆粒球狀化(例如91%、93%、95%、97%、99%、100%)。
圖1說明根據本文中之一些實施例的可與AM過程一起使用之氮化鈦粉末的實例形態。
圖2說明根據本文中之一些實施例的可與AM過程一起使用之氮化鈦粉末的實例微觀結構。在一些實施例中,氮化鈦粉末之微觀結構可包含一或多個單獨的相。舉例而言,在一些實施例中,相可包括α-Ti、TiN、Ti
2N及/或TiN
2。在一些實施例中,氮化鈦殼將用cP-Ti核形成。
圖3說明根據本文中之一些實施例的可與AM過程一起使用之氮化鈦粉末之實例X射線粉末繞射。
圖4說明根據本文中之一些實施例的可與AM過程一起使用之氮化鈦粉末之實例粒度分佈。在一些實施例中,氮化鈦粉末可包含介於約15微米與約150微米之間的粒度分佈。
圖5A及圖5B說明根據本文中所描述之一些實施例的使用AM印刷之氮化鈦立方體之實例影像。EBM印表機用於印刷氮化鈦粉末以產生15 × 15 mm方形,高度為約8.6 mm。EBM腔室溫度在整個建構期間維持於約1100℃下。該結構直接建構於不鏽鋼板上而無支撐結構。在最佳化參數之情況下,對印刷結構實現約4.72 g/cc至4.90 g/cc之密度。TiN相之理論密度為5.4 g/cc,且Ti2N相之理論密度為4.88 g/cc。
圖6說明根據本文中之一些實施例的TiN粉末及印刷部分之化學及相分析之樣本表。該表說明根據本文中之實施例之金屬氮化物粉末及藉由先前方法形成之參考粉末的屬性。在一些實施例中,根據本文中之一些實施例的最終印刷部分可包含TiN
0.54之化學計量(Ti
2N相當於TiN
0.5)。
圖7說明根據本文中之一些實施例的TiN粉末及印刷部分之實例X射線繞射。
圖8說明Ti-N相圖。如自Ti-N相圖所見,Ti
2N為具有約12至13 wt.% N之窄相區。TiN具有約13至25 wt.% N之廣範圍。圖7之XRD展示根據本文中之一些實施例的粉末具有三個相:αTi+TiN+Ti
2N。類似地,最終印刷固體亦具有3個相:αTi+TiN+Ti
2N,但具有不同比例。% N自粉末至印刷固體有效地保持不變。因此,在一些實施例中,EBM印刷條件可擴散氮且將TiN轉化為Ti
2N。
圖9A至圖9E說明根據本文中之一些實施例的用於AM之TiN粉末之實例掃描電子顯微鏡影像。球狀化粉末顆粒展示再結晶層,且顆粒橫截面展示均相化學物質。
圖10A至圖10G說明根據本文中之一些實施例的藉由AM產生之TiN中間部分之實例掃描電子顯微鏡及反向散射偵測器影像。中間印刷固體展示較高孔隙度,且在可能自腔室底板拾取之微觀結構中觀察到富鐵區。
圖11A至圖11H說明根據本文中之一些實施例的藉由AM產生之TiN最終部分之實例掃描電子顯微鏡及反向散射偵測器影像。與中間部分相比,最終印刷固體展示更小孔隙度及更高密度。在可能自腔室底板拾取之微觀結構中觀察到富鐵區。
概言之,根據本文中之一些實施例,所合成氮化鈦粉末可富含TiN相以及Ti2N及αTi相之。使用根據本文中所描述之方法產生之TiN粉末,形成使用EBM之95%緻密印刷。印刷固體富含Ti
2N相以及TiN及αTi相。氮含量自粉末至印刷於約13至14 wt.%下一致。相比於金色粉末,印刷固體呈現灰色。一些研究展示顏色隨Ti:N化學計量之變化,其中TiN相呈現金色且Ti
2N呈現銀灰色。
電漿處理
圖12說明根據本文中之一些實施例的可用於氮化鈦AM材料產生之微波電漿炬1200之實施例。在一些實施例中,原料可經由一或多個原料入口1202引入微波電漿1204中。在一些實施例中,在經由微波輻射源1206點燃電漿1204之前,夾帶氣流及/或外鞘流可注入至微波電漿施加器1205中,以在電漿施加器內創建流動條件。在一些實施例中,夾帶流及外鞘流皆為軸對稱及層狀的,而在其他實施例中,氣流為旋流。在一些實施例中,原料可引入微波電漿炬1200中,其中原料可藉由將材料導向電漿1204之氣流夾帶。
氣流可包含氮氣及/或元素週期表之惰性氣體行,諸如氦氣、氖氣、氬氣等。儘管可使用上文所描述之氣體,但應理解,可取決於所需材料及處理條件而使用各種氣體。在一些實施例中,在微波電漿1204內,原料可經歷物理及/或化學轉化。入口1202可用於引入處理氣體以夾帶原料及朝向電漿1204加速原料。在一些實施例中,可產生第二氣流以為電漿施加器1204及反應腔室1210之內壁提供護套,以保護彼等結構免於因來自電漿1204之熱輻射而熔融。
可手動地或自動地調整如藉由電漿施加器1205產生之微波電漿1204之各種參數,以便實現所需材料。此等參數可包括例如功率、電漿氣體流動速率、電漿氣體之類型、延伸管之存在、延伸管材料、反應器腔室或延伸管之隔熱水準、延伸管之塗覆水準、延伸管之幾何形狀(例如,錐形/階梯形)、饋入材料大小、饋入材料插入速率、饋入材料入口位置、饋入材料入口定向、饋入材料入口之數目、電漿溫度、滯留時間及冷卻速率。所得材料可將電漿排出至密封腔室1212中,在該密封腔室中猝滅該材料,接著收集該材料。
在一些實施例中,原料在微波電漿施加器之後注入以用於在微波電漿炬之「羽流」或「排氣」中進行處理。因此,微波電漿炬之電漿接合於電漿炬芯管1208之出口端處或進一步下游處。在一些實施例中,可調整之下游饋入允許通過精確定位溫度水準及滯留時間而在適合於最佳熔融原料之溫度下使原料與下游電漿羽流接合。調整入口位置及電漿特性可允許材料特性之進一步客製化。此外,在一些實施例中,藉由調整功率、氣體流動速率、壓力及設備組態(例如引入延伸管),可調整電漿羽流之長度。
在一些實施例中,饋入組態可包括包圍電漿羽流之一或多個個別饋入噴嘴。原料可自任何方向進入電漿,且可取決於入口1202之位置及定向而圍繞電漿以360°饋入。此外,原料可藉由調整入口1202之位置而在沿電漿1204之長度的特定位置處進入電漿,其中已量測特定溫度且估算滯留時間以用於提供所得材料之所需特徵。
在一些實施例中,可調整入口1202相對於電漿1204之角度,使得原料可以相對於電漿1204之任何角度注入。舉例而言,可調整入口1202,使得原料可以相對於電漿1204之方向約0度、約5度、約10度、約15度、約20度、約25度、約30度、約35度、約40度、約45度、約50度、約55度、約60度、約65度、約70度、約75度、約80度、約85度或約90度或上述值中之任一者之間的角度注入至電漿中。
在一些實施例中,下游注入方法之實施可使用下游旋流或淬滅。下游旋流係指可自電漿施加器下游引入以保持來自施加器1205、反應器腔室1210及/或延伸管1214之壁的粉末的額外旋流組件。
在一些實施例中,微波電漿設備之反應腔室1210的長度可為約1呎、約2呎、約3呎、約4呎、約5呎、約6呎、約7呎、約8呎、約9呎、約10呎、約11呎、約12呎、約13呎、約14呎、約15呎、約16呎、約17呎、約18呎、約19呎、約20呎、約21呎、約22呎、約23呎、約24呎、約25呎、約26呎、約27呎、約28呎、約29呎或約30呎,或上述值之間的任一值。
在一些實施例中,可藉由調整各種處理條件及設備組態而延伸的電漿1204之長度可為約1呎、約2呎、約3呎、約4呎、約5呎、約6呎、約7呎、約8呎、約9呎、約10呎、約11呎、約12呎、約13呎、約14呎、約15呎、約16呎、約17呎、約18呎、約19呎、約20呎、約21呎、約22呎、約23呎、約24呎、約25呎、約26呎、約27呎、約28呎、約29呎或約30呎,或上述值之間的任一值。
圖13A至圖13B說明包括側饋入料斗之例示性微波電漿炬。因此,在此實施中,原料在微波電漿炬施加器之後注入以用於在微波電漿炬之「羽流」或「排氣」中進行處理。因此,微波電漿炬之電漿在電漿炬之出口端接合以允許原料之下游饋入。此下游饋入可有利地延長炬之壽命,因為熱區被無限地自熱區襯裡之壁上的任何材料沈積物中保留。此外,其允許通過精確定位溫度水準及滯留時間而在適合於最佳熔融粉末之溫度下接合下游電漿羽流。舉例而言,存在使用微波粉末、氣流及含有電漿羽流之淬滅容器中之壓力來調節羽流之長度的能力。
一般而言,下游球狀化法可利用兩種主要硬件組態來建立穩定電漿羽流,該等組態為:諸如美國專利公開案第2018/0297122號中所描述之環形炬,或US 8748785 B2及US 9932673 B2中所描述之旋流炬。圖13A及圖13B兩者展示可藉由環形炬或旋流炬中之任一者實施之方法的實施例。在電漿炬之出口處與電漿羽流緊密耦合的饋入系統用於軸對稱地饋入粉末以保持過程均相性。其他饋入組態可包括包圍電漿羽流之一個或若干個個別饋入噴嘴。
饋入材料314可引入微波電漿炬302中。料斗306可用於在將饋入材料314饋入至微波電漿炬302、羽流或排氣中之前儲存饋入材料314。在替代實施例中,原料可沿電漿炬之縱向軸線注入。可經由波導304將微波輻射引入電漿炬中。饋入材料314經饋入至電漿腔室310中且置放成與由電漿炬302產生之電漿接觸。當與電漿、電漿羽流或電漿排氣接觸時,饋入材料熔融。當仍處於電漿腔室310中時,饋入材料314在經收集至容器312中之前冷卻及固化。替代地,饋入材料314可在仍處於熔融相時離開電漿腔室310且在電漿腔室外部冷卻及固化。在一些實施例中,可使用淬滅腔室,其可或可不使用正壓。雖然與圖12分開描述,但圖13A至圖13B之實施例應理解為使用與圖12之實施例類似的特徵及條件。
額外實施例
在前述說明書中,已參考本發明之特定實施例描述本發明。然而,在不脫離本發明之較寬泛精神及範疇之情況下可對其進行各種修改及改變將係明顯的。因此,應在說明性意義上而非限制性意義上看待說明書及圖式。
實際上,儘管本發明已在某些實施例及實例之上下文中揭示,但熟習此項技術者將理解,本發明延伸超出特定揭示之實施例而至本發明之其他替代實施例及/或用途以及其明顯修改及等效物。另外,雖然已詳細展示及描述本發明之實施例的若干變化,但基於本發明,在本發明之範疇內的其他修改對於熟習此項技術者而言將為顯而易見的。亦預期,可進行實施例之特定特徵及態樣的各種組合或子組合且其仍屬於本發明之範疇內。應理解,所揭示實施例之各種特徵及態樣可彼此組合或彼此取代,以便形成本發明之實施例的變化模式。本文中所揭示之任何方法不必按所列舉之次序進行。因此,預期本文中所揭示之本發明之範疇不應受上文所描述之特定實施例限制。
應瞭解,本發明之系統及方法各自具有若干創新態樣,其中無單一者單獨負責或需要用於本文中所揭示之所需性質。上文所描述之各種特徵及過程可彼此獨立地使用,或可以各種方式組合。所有可能組合及子組合意欲在本發明之範疇內。
在單獨實施例之上下文中描述於本說明書中之某些特徵亦可在單一實施例中組合地實施。相反地,在單一實施例之上下文中所描述之各種特徵亦可分別在多個實施例中或以任何合適子組合實施。此外,儘管上文可將特徵描述為以某些組合起作用且甚至最初按此來主張,但來自所主張之組合之一或多個特徵在一些情況下可自該組合刪除,且所主張之組合可針對子組合或子組合之變化。無單一特徵或特徵之群組對於每一個實施例為必需或必不可少的。
亦應瞭解,除非另外特定地陳述或另外在如所使用之上下文內理解,否則本文中所使用之條件性語言等(諸如,「可(can/could/might/may)」、「例如」及類似者)通常意欲表達某些實施例包括而其他實施例不包括某些特徵、元件及/或步驟。因此,此條件性語言大體上並非意欲暗示特徵、元件及/或步驟無論如何為一或多個實施例所需要的,或一或多個實施例必定包括用於在具有或不具有作者輸入或提示情況下決定此等特徵、元件及/或步驟係包括於任一特定實施例中或有待於在任一特定實施例中執行的邏輯。術語「包含」、「包括」、「具有」及類似者同義且以開放方式包容性地使用,且並不排除額外元件、特徵、動作、操作等。另外,術語「或」以其包容性含義使用(且不以其排他性含義),使得當用於例如連接元件清單時,術語「或」意謂清單中之元件之一者、一些或全部。另外,除非另外指定,否則如本申請案及所附申請專利範圍中所使用之冠詞「一(a/an)」及「該」應視為意謂「一或多個」或「至少一個」。類似地,雖然可以特定次序在圖式中描繪操作,但應認識到,此類操作無需以所展示之特定次序或以順序次序執行,或所有所說明之操作經執行以實現所需結果。此外,圖式可按流程圖形式示意性地描繪一或多個實例過程。然而,未描繪之其他操作可併入於示意性地說明之實例方法及過程中。舉例而言,可在所說明操作中之任一者之前、之後、同時或之間執行一或多個額外操作。另外,在其他實施例中,操作可經重新配置或重新排序。在某些情形下,多任務及並行處理可為有利的。此外,不應將上文所描述之實施例中之各種系統組件之分離理解為在所有實施例中需要此分離,且應理解,所描述程式組件及系統可通常一同整合在單一軟體產品中或封裝至多個軟體產品中。另外,其他實施例在以下申請專利範圍之範疇內。在一些情況下,申請專利範圍中所敍述之動作可以不同次序執行且仍實現所需結果。
此外,雖然本文中所描述之方法及裝置可易受各種修改及替代形式影響,但其特定實例已在圖式中展示且在本文中詳細描述。然而,應理解,本發明不限於所揭示之特定形式或方法,而相反地,本發明涵蓋屬於所描述之各種實施及隨附申請專利範圍之精神及範疇內的所有修改、等效物及替代例。此外,本文中結合實施或實施例之任何特定特徵、態樣、方法、屬性、特性、品質、性質、元素或類似者之揭示內容可用於本文中所闡述之所有其他實施或實施例中。本文中所揭示之任何方法不必按所列舉之次序進行。本文中所揭示之方法可包括由從業者採取之某些動作;然而,該等方法亦可包括彼等動作之明確或藉由暗示之任何第三方指令。本文中所揭示之範圍亦涵蓋任何及所有重疊、子範圍及其組合。諸如「至多」、「至少」、「大於」、「小於」、「介於…之間」及類似者之語言包括所列舉之數目。之前為諸如「約」或「大致」之術語的數字包括所列舉數字且應基於情形加以解釋(例如在例如±5%、±10%、±15%等情形下儘可能合理地準確)。舉例而言,「約3.5 mm」包括「3.5 mm」。之前為諸如「實質上」之術語的片語包括所列舉片語且應基於情形加以解釋(例如在該等情形下儘可能合理)。舉例而言,「實質上恆定」包括「恆定」。除非另外陳述,否則所有量測均在包括溫度及壓力之標準條件下進行。
如本文中所使用,提及項目清單「中之至少一者」的片語係指彼等項目之任何組合,包括單一成員。作為實例,「以下各者中之至少一者:A、B或C」意欲涵蓋:A;B;C;A及B;A及C;B及C;以及A、B及C。除非另外特定陳述,否則諸如片語「X、Y及Z中之至少一者」的連接語言在所使用之上下文的情況下應另外理解為一般傳達項目、術語等可為X、Y或Z中之至少一者。因此,此連接語言通常並不意欲暗示某些實施例需要X中之至少一者、Y中之至少一者及Z中之至少一者各自皆存在。本文中所提供之標題(若存在)僅為方便起見且未必影響本文中所揭示之裝置及方法之範疇或含義。
因此,申請專利範圍並不意欲限於本文中所展示之實施例,而應符合與本文中所揭示之本發明、原理及新穎特徵相一致之最廣泛範疇。
302:微波電漿炬
304:波導
306:料斗
310:電漿腔室
312:容器
314:饋入材料
1200:微波電漿炬
1202:原料入口
1204:微波電漿
1205:微波電漿施加器
1206:微波輻射源
1208:電漿炬芯管
1210:反應器腔室
1212:密封腔室
1214:延伸管
提供圖式以說明實例實施例且不意欲限制本發明之範疇。在結合隨附圖式參考以下描述時,將瞭解本文中所描述之系統及方法的較佳理解,其中:
圖1說明根據本文中之一些實施例的可用於積層製造之氮化鈦粉末之實例形態。
圖2說明根據本文中之一些實施例的可用於積層製造之氮化鈦粉末之實例微觀結構。
圖3說明根據本文中之一些實施例的可用於積層製造之鈦粉末之實例X射線粉末繞射。
圖4說明根據本文中之一些實施例的可用於積層製造之鈦粉末之實例粒度分佈。
圖5A及圖5B說明根據本文中所描述之一些實施例的使用AM印刷之氮化鈦立方體之實例影像。
圖6說明根據本文中之一些實施例的TiN粉末及印刷部分之化學及相分析之樣本表。
圖7說明根據本文中之一些實施例的TiN粉末及印刷部分之實例X射線繞射。
圖8說明根據本文中之一些實施例的材料之Ti-N相圖。
圖9A至圖9E說明根據本文中之一些實施例的用於AM之TiN粉末之實例掃描電子顯微鏡影像。
圖10A至圖10G說明根據本文中之一些實施例的藉由AM產生之TiN中間部分之實例掃描電子顯微鏡及反向散射偵測器影像。
圖11A至圖11H說明根據本文中之一些實施例的藉由AM產生之TiN最終部分之實例掃描電子顯微鏡及反向散射偵測器影像。
圖12說明根據本文中之一些實施例的可用於材料產生之微波電漿炬之實施例。
圖13A至圖13B說明根據本文中之一些實施例的包括側饋入料斗之例示性微波電漿炬。
Claims (31)
- 一種使用積層製造過程產生之金屬氮化物陶瓷組件,該積層製造過程包含: 粉末床擴散過程,其包含: 將雷射束或電子束導引至金屬氮化物粉末。
- 如請求項1之金屬氮化物陶瓷組件,其中該粉末床擴散過程包含電子束熔融(EBM)或選擇性雷射熔融(SLM)。
- 如請求項1之金屬氮化物陶瓷組件,其中該金屬氮化物粉末包含介於約15至45微米、約20至63微米或約45至106微米之間的粒度範圍。
- 如請求項1之金屬氮化物陶瓷組件,其中該金屬氮化物組件在光學顯微鏡下具有95%或更高之密度百分比。
- 如請求項1之金屬氮化物陶瓷組件,其中該金屬氮化物陶瓷組件基本上由金屬氮化物組成。
- 如請求項5之金屬氮化物陶瓷組件,其中該金屬氮化物包含氮化鈦。
- 如請求項1之金屬氮化物陶瓷組件,其中該金屬氮化物粉末包含氮化鈦粉末。
- 如請求項1之金屬氮化物陶瓷組件,其中該金屬氮化物粉末係藉由在微波電漿內使金屬粉末與含氮氣體反應而形成。
- 如請求項8之金屬氮化物陶瓷組件,其中該含氮氣體包含氫氣或氬氣。
- 如請求項1之金屬氮化物陶瓷組件,其中該雷射束或該電子束在處理腔室內經導引至該金屬氮化物粉末,其中該處理腔室在整個該過程中維持於1,200℃或更小之溫度下。
- 如請求項1之金屬氮化物陶瓷組件,其中該電子束經導引至該金屬氮化物粉末以形成複數個立方體或製品,該複數個立方體或製品形成該金屬氮化物陶瓷組件。
- 如請求項1之金屬氮化物陶瓷組件,其中該金屬氮化物粉末包含高於90%之球度。
- 一種用於產生金屬氮化物陶瓷組件之過程,該過程包含: 在處理腔室內將雷射束或電子束導引至金屬氮化物粉末;及 在整個該過程中將該腔室維持於1,200℃或更小之溫度下。
- 如請求項13之過程,其中該過程包含該金屬氮化物粉末之電子束熔融(EBM)或選擇性雷射熔融(SLM)。
- 如請求項13之過程,其中該金屬氮化物粉末包含介於約15至45微米、約20至63微米或約45至106微米之間的粒度範圍。
- 如請求項13之過程,其中該金屬氮化物組件在光學顯微鏡下具有95%或更高之密度百分比。
- 如請求項13之過程,其中該金屬氮化物陶瓷組件基本上由金屬氮化物組成。
- 如請求項17之過程,其中該金屬氮化物包含氮化鈦。
- 如請求項13之過程,其中該金屬氮化物粉末包含氮化鈦粉末。
- 如請求項13之過程,其中該金屬氮化物粉末係藉由在微波電漿內使金屬粉末與含氮氣體反應而形成。
- 如請求項20之過程,其中該含氮氣體包含氫氣或氬氣。
- 一種印刷氮化鈦組件。
- 如請求項22之印刷氮化鈦組件,其在光學顯微鏡下包含95%或更高之密度百分比。
- 如請求項22之印刷氮化鈦組件,其包含約4.72 g/cc至4.90 g/cc之密度。
- 如請求項22之印刷氮化鈦組件,其包含TiN 0.54之化學計量。
- 如請求項22之印刷氮化鈦組件,其包含αTi、TiN及Ti 2N之相。
- 如請求項22之印刷氮化鈦組件,其包含13至14wt.%之氮。
- 如請求項22之印刷氮化鈦組件,其中該組件基本上由氮化鈦組成。
- 如請求項22之印刷氮化鈦組件,其中該組件使用積層製造完全印刷。
- 如請求項22之印刷氮化鈦組件,其包含印刷立方體簇。
- 如請求項22之印刷氮化鈦組件,其中該組件為醫療植入物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163200841P | 2021-03-31 | 2021-03-31 | |
US63/200,841 | 2021-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202302251A true TW202302251A (zh) | 2023-01-16 |
Family
ID=83448640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111112201A TW202302251A (zh) | 2021-03-31 | 2022-03-30 | 用於金屬氮化物陶瓷之積層製造之系統及方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US12042861B2 (zh) |
EP (1) | EP4313449A1 (zh) |
JP (1) | JP2024515034A (zh) |
KR (1) | KR20230164699A (zh) |
CN (1) | CN117120182A (zh) |
AU (1) | AU2022246797A1 (zh) |
CA (1) | CA3214233A1 (zh) |
TW (1) | TW202302251A (zh) |
WO (1) | WO2022212291A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
CA3200272A1 (en) | 2015-12-16 | 2017-06-22 | 6K Inc. | Spheroidal dehydrogenated metals and metal alloy particles |
SG11202111576QA (en) | 2019-04-30 | 2021-11-29 | 6K Inc | Mechanically alloyed powder feedstock |
CA3153254A1 (en) | 2019-11-18 | 2021-06-17 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
AU2021297476A1 (en) | 2020-06-25 | 2022-12-15 | 6K Inc. | Microcomposite alloy structure |
CN116547068A (zh) | 2020-09-24 | 2023-08-04 | 6K有限公司 | 用于启动等离子体的系统、装置及方法 |
KR20230095080A (ko) | 2020-10-30 | 2023-06-28 | 6케이 인크. | 구상화 금속 분말을 합성하는 시스템 및 방법 |
US12261023B2 (en) | 2022-05-23 | 2025-03-25 | 6K Inc. | Microwave plasma apparatus and methods for processing materials using an interior liner |
US12040162B2 (en) * | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
US12094688B2 (en) | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
US12195338B2 (en) | 2022-12-15 | 2025-01-14 | 6K Inc. | Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production |
Family Cites Families (734)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1699205A (en) | 1925-10-10 | 1929-01-15 | Hartstoff Metall Ag | Process of producing metal-powder particles of spherical shape |
US2892215A (en) | 1954-03-26 | 1959-06-30 | Mannesmann Ag | Process for the production of metal powder |
US3293334A (en) | 1962-08-16 | 1966-12-20 | Reynolds Metals Co | Preparation of spherical metal powder |
BE639079A (zh) | 1962-10-26 | |||
GB1103396A (en) | 1966-02-07 | 1968-02-14 | Int Nickel Ltd | Manufacture of precious metal spheres and spheroids |
US3434831A (en) | 1966-09-08 | 1969-03-25 | Olin Mathieson | Fabrication of spherical powders |
FR96445E (fr) | 1968-05-14 | 1972-06-30 | Olin Mathieson | Procédé de fabrication de poudres métalliques a particules sphériques. |
USRE26879E (en) | 1969-04-22 | 1970-05-19 | Process for making metal bonded diamond tools employing spherical pellets of metallic powder-coated diamond grits | |
US3802816A (en) | 1972-06-22 | 1974-04-09 | State Street Bank & Trust Co | Production of pure,spherical powders |
AT318768B (de) | 1972-09-08 | 1974-11-11 | Boehler & Co Ag Geb | Verfahren und Vorrichtung zum Zünden eines Hochfrequenzplasmabrenners |
US3909241A (en) | 1973-12-17 | 1975-09-30 | Gte Sylvania Inc | Process for producing free flowing powder and product |
US3974245A (en) | 1973-12-17 | 1976-08-10 | Gte Sylvania Incorporated | Process for producing free flowing powder and product |
FR2255122B1 (zh) | 1973-12-20 | 1976-10-08 | Creusot Loire | |
FR2366077A2 (fr) | 1976-10-01 | 1978-04-28 | Creusot Loire | Dispositif de fabrication de poudre metallique spherique non contaminee par l'atmosphere ambiante |
US4076640A (en) | 1975-02-24 | 1978-02-28 | Xerox Corporation | Preparation of spheroidized particles |
US4212837A (en) | 1977-05-04 | 1980-07-15 | Tokyo Shibaura Electric Co., Ltd. | Method and apparatus for forming spherical particles of thermoplastic material |
US4431449A (en) | 1977-09-26 | 1984-02-14 | Minnesota Mining And Manufacturing Company | Infiltrated molded articles of spherical non-refractory metal powders |
US4221775A (en) | 1978-12-26 | 1980-09-09 | Research Dynamics, Inc. | Method of producing porous lithium oxide |
JPS55131175A (en) | 1979-03-30 | 1980-10-11 | Toshiba Corp | Surface treatment apparatus with microwave plasma |
US4423303A (en) | 1980-05-06 | 1983-12-27 | Tokyo Shibaura Denki Kabushiki Kaisha | Apparatus for treating powdery materials utilizing microwave plasma |
SE435370B (sv) | 1981-10-20 | 1984-09-24 | Skf Steel Eng Ab | Sett att framstella kisel |
US4599880A (en) | 1981-12-23 | 1986-07-15 | Belorussky Politekhnichesky Institut | Method of making metal fibers and apparatus for effecting same |
FR2525122A1 (fr) | 1982-04-16 | 1983-10-21 | Inst Francais Du Petrole | Appareillage de laboratoire pour le vapocraquage d'hydrocarbures |
FR2533397A2 (fr) | 1982-09-16 | 1984-03-23 | Anvar | Perfectionnements aux torches a plasma |
SE451549B (sv) | 1983-05-09 | 1987-10-19 | Kloster Speedsteel Ab | Pulvermetallurgisk metod att framstella metallkroppar av magnetiserbart sferiskt pulver |
US4544404A (en) | 1985-03-12 | 1985-10-01 | Crucible Materials Corporation | Method for atomizing titanium |
US4692584A (en) | 1985-11-29 | 1987-09-08 | Caneer Jr Clifford | Gas control system for a plasma arc welding apparatus |
FR2591412A1 (fr) | 1985-12-10 | 1987-06-12 | Air Liquide | Procede de fabrication de poudres et reacteur etanche a plasma micro-onde |
EP0256233B2 (en) | 1986-08-11 | 1993-08-25 | GTE Products Corporation | Process for producing spherical powder particles |
US4711660A (en) | 1986-09-08 | 1987-12-08 | Gte Products Corporation | Spherical precious metal based powder particles and process for producing same |
US4783216A (en) | 1986-09-08 | 1988-11-08 | Gte Products Corporation | Process for producing spherical titanium based powder particles |
US4923509A (en) | 1986-09-08 | 1990-05-08 | Gte Products Corporation | Spherical light metal based powder particles and process for producing same |
US4778515A (en) | 1986-09-08 | 1988-10-18 | Gte Products Corporation | Process for producing iron group based and chromium based fine spherical particles |
US4836850A (en) | 1986-09-08 | 1989-06-06 | Gte Products Corporation | Iron group based and chromium based fine spherical particles |
US4711661A (en) | 1986-09-08 | 1987-12-08 | Gte Products Corporation | Spherical copper based powder particles and process for producing same |
US4783218A (en) | 1986-09-08 | 1988-11-08 | Gte Products Corporation | Process for producing spherical refractory metal based powder particles |
US4780131A (en) | 1986-09-08 | 1988-10-25 | Gte Products Corporation | Process for producing spherical light metal based powder particles |
US4943322A (en) | 1986-09-08 | 1990-07-24 | Gte Products Corporation | Spherical titanium based powder particles |
US4670047A (en) | 1986-09-12 | 1987-06-02 | Gte Products Corporation | Process for producing finely divided spherical metal powders |
US4705560A (en) | 1986-10-14 | 1987-11-10 | Gte Products Corporation | Process for producing metallic powders |
US4714587A (en) | 1987-02-11 | 1987-12-22 | The United States Of America As Represented By The Secretary Of The Air Force | Method for producing very fine microstructures in titanium alloy powder compacts |
US4731111A (en) | 1987-03-16 | 1988-03-15 | Gte Products Corporation | Hydrometallurical process for producing finely divided spherical refractory metal based powders |
US4731110A (en) | 1987-03-16 | 1988-03-15 | Gte Products Corp. | Hydrometallurigcal process for producing finely divided spherical precious metal based powders |
US4772315A (en) | 1988-01-04 | 1988-09-20 | Gte Products Corporation | Hydrometallurgical process for producing finely divided spherical maraging steel powders containing readily oxidizable alloying elements |
US4859237A (en) | 1988-01-04 | 1989-08-22 | Gte Products Corporation | Hydrometallurgical process for producing spherical maraging steel powders with readily oxidizable alloying elements |
US4787934A (en) | 1988-01-04 | 1988-11-29 | Gte Products Corporation | Hydrometallurgical process for producing spherical maraging steel powders utilizing spherical powder and elemental oxidizable species |
US5114471A (en) | 1988-01-04 | 1992-05-19 | Gte Products Corporation | Hydrometallurgical process for producing finely divided spherical maraging steel powders |
US4802915A (en) | 1988-04-25 | 1989-02-07 | Gte Products Corporation | Process for producing finely divided spherical metal powders containing an iron group metal and a readily oxidizable metal |
US5041713A (en) | 1988-05-13 | 1991-08-20 | Marinelon, Inc. | Apparatus and method for applying plasma flame sprayed polymers |
US4923531A (en) | 1988-09-23 | 1990-05-08 | Rmi Company | Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier |
US5022935A (en) | 1988-09-23 | 1991-06-11 | Rmi Titanium Company | Deoxidation of a refractory metal |
US4944797A (en) | 1989-01-03 | 1990-07-31 | Gte Products Corporation | Low oxygen content fine spherical copper particles and process for producing same by fluid energy milling and high temperature processing |
US5431967A (en) | 1989-09-05 | 1995-07-11 | Board Of Regents, The University Of Texas System | Selective laser sintering using nanocomposite materials |
US4952389A (en) | 1989-09-15 | 1990-08-28 | Norton Company | Alumina particles |
US5032202A (en) | 1989-10-03 | 1991-07-16 | Martin Marietta Energy Systems, Inc. | Plasma generating apparatus for large area plasma processing |
US5131992A (en) | 1990-01-08 | 1992-07-21 | The United States Of America, As Represented By The Secretary Of The Interior | Microwave induced plasma process for producing tungsten carbide |
US5095048A (en) | 1990-10-01 | 1992-03-10 | Sumitomo Metal Mining Co., Ltd. | Method of manufacturing a composition for use in injection molding powder metallurgy |
US5290507A (en) | 1991-02-19 | 1994-03-01 | Runkle Joseph C | Method for making tool steel with high thermal fatigue resistance |
US5200595A (en) | 1991-04-12 | 1993-04-06 | Universite De Sherbrooke | High performance induction plasma torch with a water-cooled ceramic confinement tube |
US5876684A (en) | 1992-08-14 | 1999-03-02 | Materials And Electrochemical Research (Mer) Corporation | Methods and apparati for producing fullerenes |
US5292370A (en) | 1992-08-14 | 1994-03-08 | Martin Marietta Energy Systems, Inc. | Coupled microwave ECR and radio-frequency plasma source for plasma processing |
US5958361A (en) | 1993-03-19 | 1999-09-28 | Regents Of The University Of Michigan | Ultrafine metal oxide powders by flame spray pyrolysis |
JP3026704B2 (ja) | 1993-07-29 | 2000-03-27 | 富士通株式会社 | マグネトロン発振出力制御装置及びプラズマ処理方法 |
US5671045A (en) | 1993-10-22 | 1997-09-23 | Masachusetts Institute Of Technology | Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams |
US5376475A (en) | 1994-03-16 | 1994-12-27 | Ovonic Battery Company, Inc. | Aqueous lithium-hydrogen ion rechargeable battery |
KR970010305B1 (ko) | 1994-04-22 | 1997-06-25 | 김연식 | 복합산화물 전구체 및 그 제조방법 |
US5411592A (en) | 1994-06-06 | 1995-05-02 | Ovonic Battery Company, Inc. | Apparatus for deposition of thin-film, solid state batteries |
US6221125B1 (en) | 1994-06-22 | 2001-04-24 | Mitsubishi Steel Mfg. Co., Ltd. | Water-atomized spherical metal powders and method for producing the same |
JP3092041B2 (ja) | 1994-11-30 | 2000-09-25 | 日本原子力研究所 | Li2 O粒子の製造方法 |
US6027585A (en) | 1995-03-14 | 2000-02-22 | The Regents Of The University Of California Office Of Technology Transfer | Titanium-tantalum alloys |
JP3501552B2 (ja) | 1995-06-29 | 2004-03-02 | 株式会社神戸製鋼所 | ダイヤモンド電極 |
US5518831A (en) | 1995-07-07 | 1996-05-21 | The Dow Chemical Company | Electrocatalytic structure |
EP0866885A4 (en) | 1995-11-13 | 2000-09-20 | Univ Connecticut | NANOSTRUCTURE PRODUCTS FOR THERMAL SPRAYING |
US5750013A (en) | 1996-08-07 | 1998-05-12 | Industrial Technology Research Institute | Electrode membrane assembly and method for manufacturing the same |
US6569397B1 (en) | 2000-02-15 | 2003-05-27 | Tapesh Yadav | Very high purity fine powders and methods to produce such powders |
US6933331B2 (en) | 1998-05-22 | 2005-08-23 | Nanoproducts Corporation | Nanotechnology for drug delivery, contrast agents and biomedical implants |
US5980977A (en) | 1996-12-09 | 1999-11-09 | Pinnacle Research Institute, Inc. | Method of producing high surface area metal oxynitrides as substrates in electrical energy storage |
WO1998019965A1 (en) | 1996-11-04 | 1998-05-14 | Materials Modification, Inc. | Microwave plasma chemical synthesis of ultrafine powders |
JPH10172564A (ja) | 1996-12-04 | 1998-06-26 | Mitsubishi Electric Corp | 活物質及びその製造方法並びにその活物質を用いたリチウムイオン二次電池 |
US5969352A (en) | 1997-01-03 | 1999-10-19 | Mds Inc. | Spray chamber with dryer |
CN1188073A (zh) | 1997-01-17 | 1998-07-22 | 中国科学院金属研究所 | 富勒烯族碳素材料的制备方法及其在电池电极材料中应用 |
US5989648A (en) | 1997-05-06 | 1999-11-23 | The Penn State Research Foundation | Plasma generation of supported metal catalysts |
DE19726663A1 (de) | 1997-06-23 | 1999-01-28 | Sung Spitzl Hildegard Dr Ing | Vorrichtung zur Erzeugung von homogenen Mikrowellenplasmen |
US6200651B1 (en) | 1997-06-30 | 2001-03-13 | Lam Research Corporation | Method of chemical vapor deposition in a vacuum plasma processor responsive to a pulsed microwave source |
JP3508008B2 (ja) | 1997-08-20 | 2004-03-22 | 原子燃料工業株式会社 | トリチウム増殖用Li2 O微小球の製造方法 |
SE511834C2 (sv) | 1998-01-13 | 1999-12-06 | Valtubes Sa | Heltäta produkter framställda genom enaxlig höghastighetspressning av metallpulver |
US5909277A (en) | 1998-02-13 | 1999-06-01 | Massachusetts Institute Of Technology | Microwave plasma element sensor |
US6362449B1 (en) | 1998-08-12 | 2002-03-26 | Massachusetts Institute Of Technology | Very high power microwave-induced plasma |
US6329628B1 (en) | 1998-12-10 | 2001-12-11 | Polytechnic University | Methods and apparatus for generating a plasma torch |
US6696718B1 (en) | 1999-04-06 | 2004-02-24 | Micron Technology, Inc. | Capacitor having an electrode formed from a transition metal or a conductive metal-oxide, and method of forming same |
WO2000077267A1 (fr) | 1999-06-11 | 2000-12-21 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Alliage de titane et procede de production correspondant |
JP2002332531A (ja) | 1999-06-11 | 2002-11-22 | Toyota Central Res & Dev Lab Inc | チタン合金およびその製造方法 |
JP2001020065A (ja) | 1999-07-07 | 2001-01-23 | Hitachi Metals Ltd | スパッタリング用ターゲット及びその製造方法ならびに高融点金属粉末材料 |
US6713088B2 (en) | 1999-08-31 | 2004-03-30 | General Electric Company | Low viscosity filler composition of boron nitride particles of spherical geometry and process |
US20010016283A1 (en) | 1999-09-09 | 2001-08-23 | Masashi Shiraishi | Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same |
DE19945318C2 (de) | 1999-09-22 | 2001-12-13 | Hartmetall Beteiligungs Gmbh | Verfahren zur Herstellung sphäroidisierter Hartstoffpulver |
JP3971090B2 (ja) | 2000-04-05 | 2007-09-05 | 株式会社神戸製鋼所 | 針状表面を有するダイヤモンドの製造方法及び繊毛状表面を有する炭素系材料の製造方法 |
KR100341407B1 (ko) | 2000-05-01 | 2002-06-22 | 윤덕용 | 플라즈마 처리에 의한 리튬전이금속 산화물 박막의 결정화방법 |
AU2001270604A1 (en) | 2000-06-29 | 2002-01-08 | Helga Kollmann | Method for producing cathodes and anodes for electrochemical systems, metallised material used therein, method and device for production of said metallised material |
US6261484B1 (en) | 2000-08-11 | 2001-07-17 | The Regents Of The University Of California | Method for producing ceramic particles and agglomerates |
EP1355630B1 (en) | 2000-08-15 | 2009-11-25 | The Board Of Trustees Of The University Of Illinois | Method of forming microparticles |
US6805822B2 (en) | 2000-09-20 | 2004-10-19 | Sumitomo Chemical Company, Limited | Method for producing thermoplastic elastomer powder |
US6793849B1 (en) | 2000-10-09 | 2004-09-21 | The University Of Chicago | N-type droping of nanocrystalline diamond films with nitrogen and electrodes made therefrom |
US6752979B1 (en) | 2000-11-21 | 2004-06-22 | Very Small Particle Company Pty Ltd | Production of metal oxide particles with nano-sized grains |
AUPR186200A0 (en) | 2000-12-04 | 2001-01-04 | Tesla Group Holdings Pty Limited | Plasma reduction processing of materials |
AU2002226001A1 (en) | 2000-12-08 | 2002-06-18 | Sulzer Metco (Us) Inc. | Pre-alloyed stabilized zirconia powder and improved thermal barrier coating |
US7261782B2 (en) | 2000-12-20 | 2007-08-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy having high elastic deformation capacity and method for production thereof |
JP4304897B2 (ja) | 2000-12-20 | 2009-07-29 | 株式会社豊田中央研究所 | 高弾性変形能を有するチタン合金およびその製造方法 |
US6551377B1 (en) | 2001-03-19 | 2003-04-22 | Rhenium Alloys, Inc. | Spherical rhenium powder |
WO2002091505A2 (en) | 2001-05-03 | 2002-11-14 | Viktor Sharivker | Microwave activation of fuel cell gases |
US6652822B2 (en) | 2001-05-17 | 2003-11-25 | The Regents Of The University Of California | Spherical boron nitride particles and method for preparing them |
US6989529B2 (en) | 2001-07-03 | 2006-01-24 | Varian Australia Pty Ltd. | Plasma torch |
US7622693B2 (en) | 2001-07-16 | 2009-11-24 | Foret Plasma Labs, Llc | Plasma whirl reactor apparatus and methods of use |
US7374704B2 (en) | 2001-07-27 | 2008-05-20 | Tdk Corporation | Method of producing spherical oxide powder |
TW521539B (en) | 2001-08-20 | 2003-02-21 | Hau-Ran Ni | A plasma reactor with multiple microwave sources |
JP4997674B2 (ja) | 2001-09-03 | 2012-08-08 | 日本電気株式会社 | 二次電池用負極および二次電池 |
US6693253B2 (en) | 2001-10-05 | 2004-02-17 | Universite De Sherbrooke | Multi-coil induction plasma torch for solid state power supply |
US20030070620A1 (en) | 2001-10-15 | 2003-04-17 | Cooperberg David J. | Tunable multi-zone gas injection system |
US6689192B1 (en) | 2001-12-13 | 2004-02-10 | The Regents Of The University Of California | Method for producing metallic nanoparticles |
US7534296B2 (en) | 2002-01-11 | 2009-05-19 | Board Of Trustees Of Michigan State University | Electrically conductive diamond electrodes |
AU2003215291A1 (en) | 2002-02-19 | 2003-09-09 | Tal Materials | Mixed-metal oxide particles by liquid feed flame spray pyrolysis of oxide precursors in oxygenated solvents |
EP1341250B1 (de) | 2002-02-28 | 2011-05-11 | Umicore AG & Co. KG | Verfahren zur Herstellung von katalysatorbeschichteten Membranen und Membran-Elektrodeneinheiten für Brennstoffzellen |
JP2005293850A (ja) | 2002-03-08 | 2005-10-20 | Akira Fujishima | 電力貯蔵体用電極、電力貯蔵体、および電力貯蔵方法 |
AU2003220545A1 (en) | 2002-03-29 | 2003-10-20 | University Of Florida | Improved lithium-based rechargeable batteries |
US6755886B2 (en) | 2002-04-18 | 2004-06-29 | The Regents Of The University Of California | Method for producing metallic microparticles |
AU2003230264A1 (en) | 2002-05-08 | 2003-11-11 | Dana Corporation | Plasma assisted dry processing |
JP2005222956A (ja) | 2002-05-20 | 2005-08-18 | Nichia Chem Ind Ltd | 非水電解液二次電池 |
US20040013941A1 (en) | 2002-05-20 | 2004-01-22 | Nichia Corporation | Positive electrode active material for a nonaqueous electrolyte secondary battery |
AUPS245402A0 (en) | 2002-05-21 | 2002-06-13 | Varian Australia Pty Ltd | Plasma torch for microwave induced plasmas |
KR100453555B1 (ko) | 2002-06-03 | 2004-10-20 | 한국지질자원연구원 | 화염분무열분해를 이용한 리튬코발트 산화물 나노입자의제조방법 |
US6669823B1 (en) | 2002-06-17 | 2003-12-30 | Nanophase Technologies Corporation | Process for preparing nanostructured materials of controlled surface chemistry |
JP3877302B2 (ja) | 2002-06-24 | 2007-02-07 | 本田技研工業株式会社 | カーボンナノチューブの形成方法 |
US6780219B2 (en) | 2002-07-03 | 2004-08-24 | Osram Sylvania Inc. | Method of spheridizing silicon metal powders |
US7357910B2 (en) | 2002-07-15 | 2008-04-15 | Los Alamos National Security, Llc | Method for producing metal oxide nanoparticles |
US6913855B2 (en) | 2002-07-22 | 2005-07-05 | Valence Technology, Inc. | Method of synthesizing electrochemically active materials from a slurry of precursors |
JP2004079244A (ja) | 2002-08-12 | 2004-03-11 | Toshiba Corp | 燃料電池用触媒及び燃料電池 |
WO2004017452A1 (ja) | 2002-08-13 | 2004-02-26 | Bridgestone Corporation | 色素増感型太陽電池の改良 |
JP3812523B2 (ja) | 2002-09-10 | 2006-08-23 | 昭栄化学工業株式会社 | 金属粉末の製造方法 |
EP1543172B1 (en) | 2002-09-25 | 2009-12-16 | Metalysis Limited | Purification of metal particles by heat processing |
US6838072B1 (en) | 2002-10-02 | 2005-01-04 | The United States Of America As Represented By The United States Department Of Energy | Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries |
CA2502592C (en) | 2002-10-18 | 2014-05-06 | Japan As Represented By President Of The University Of Kyusyu | Method for producing cathode material for secondary battery and secondary battery |
JP2004193115A (ja) | 2002-11-27 | 2004-07-08 | Nichia Chem Ind Ltd | 非水電解質二次電池用正極活物質および非水電解質二次電池 |
WO2004054017A1 (ja) | 2002-12-06 | 2004-06-24 | Kabushiki Kaisha Toshiba | 非水電解質二次電池 |
TW583043B (en) | 2002-12-27 | 2004-04-11 | Ind Tech Res Inst | Nanostructured metal powder and the method of fabricating the same |
US7175786B2 (en) | 2003-02-05 | 2007-02-13 | 3M Innovative Properties Co. | Methods of making Al2O3-SiO2 ceramics |
WO2004089821A1 (ja) | 2003-04-07 | 2004-10-21 | Mitsubishi Chemical Corporation | 炭素粒子およびその製造方法 |
JP2004311297A (ja) | 2003-04-09 | 2004-11-04 | Mitsubishi Chemicals Corp | 粉体状リチウム二次電池正極材料、リチウム二次電池正極、及びリチウム二次電池 |
US7235118B2 (en) | 2003-04-16 | 2007-06-26 | National Research Council Of Canada | Process for agglomeration and densification of nanometer sized particles |
DE10335355B4 (de) | 2003-04-23 | 2012-05-31 | Futurecarbon Gmbh | Katalysatormaterial und Verfahren zur Herstellung von geträgertem Katalysatormaterial |
JP4283035B2 (ja) | 2003-05-13 | 2009-06-24 | 株式会社荏原製作所 | 溶融炉及びプラズマアークの再着火方法 |
JP4694108B2 (ja) | 2003-05-23 | 2011-06-08 | 東京エレクトロン株式会社 | 酸化膜形成方法、酸化膜形成装置および電子デバイス材料 |
JP2004362895A (ja) | 2003-06-03 | 2004-12-24 | Sony Corp | 負極材料およびそれを用いた電池 |
US7108733B2 (en) | 2003-06-20 | 2006-09-19 | Massachusetts Institute Of Technology | Metal slurry for electrode formation and production method of the same |
JP4293852B2 (ja) | 2003-06-26 | 2009-07-08 | 三菱化学株式会社 | 共沈物の製造方法及び置換型リチウム遷移金属複合酸化物の製造方法 |
EP1492184A1 (de) | 2003-06-27 | 2004-12-29 | Umicore AG & Co. KG | Verfahren zur Herstellung einer katalysatorbeschichteten Polymerelektrolyt-Membran |
US7223628B2 (en) | 2003-07-25 | 2007-05-29 | The Regents Of The University Of California | High temperature attachment of organic molecules to substrates |
US7297892B2 (en) | 2003-08-14 | 2007-11-20 | Rapt Industries, Inc. | Systems and methods for laser-assisted plasma processing |
US7182929B1 (en) | 2003-08-18 | 2007-02-27 | Nei, Inc. | Nanostructured multi-component and doped oxide powders and method of making same |
JP4222157B2 (ja) | 2003-08-28 | 2009-02-12 | 大同特殊鋼株式会社 | 剛性および強度が向上したチタン合金 |
PL1689519T3 (pl) | 2003-08-28 | 2012-11-30 | Tekna Plasma Systems Inc | Sposób syntezy, rozdzielania i oczyszczania materiałów proszkowych |
US7893182B2 (en) | 2003-10-15 | 2011-02-22 | Dow Corning Corporation | Manufacture of resins |
JP2005135755A (ja) | 2003-10-30 | 2005-05-26 | Sanyo Electric Co Ltd | 非水系二次電池の負極用炭素材料の製造方法及びこれを用いた非水系二次電池 |
KR20030093166A (ko) | 2003-11-18 | 2003-12-06 | 선양국 | 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법 |
US7297310B1 (en) | 2003-12-16 | 2007-11-20 | Dwa Technologies, Inc. | Manufacturing method for aluminum matrix nanocomposite |
JP2005187295A (ja) | 2003-12-26 | 2005-07-14 | Hitachi Maxell Ltd | カーボンナノチューブ集合体、触媒担体及び燃料電池 |
WO2005069955A2 (en) | 2004-01-21 | 2005-08-04 | Idaho Research Foundation, Inc. | Supercritical fluids in the formation and modification of nanostructures and nanocomposites |
US20050163696A1 (en) | 2004-01-28 | 2005-07-28 | Uhm Han S. | Synthesis of carbon nanotubes by making use of microwave plasma torch |
TWI233321B (en) | 2004-02-20 | 2005-05-21 | Ind Tech Res Inst | Method for producing nano oxide powder using D.C. plasma thermo-reaction |
WO2005080489A1 (fr) | 2004-02-23 | 2005-09-01 | Caiteng Zhang | Solution de chelate(s) metal/polymere et leurs utilisations |
US7700152B2 (en) | 2004-02-27 | 2010-04-20 | The Regents Of The University Of Michigan | Liquid feed flame spray modification of nanoparticles |
US8101061B2 (en) | 2004-03-05 | 2012-01-24 | Board Of Regents, The University Of Texas System | Material and device properties modification by electrochemical charge injection in the absence of contacting electrolyte for either local spatial or final states |
DE102004010892B3 (de) | 2004-03-06 | 2005-11-24 | Christian-Albrechts-Universität Zu Kiel | Chemisch stabiler fester Lithiumionenleiter |
US7091441B1 (en) | 2004-03-19 | 2006-08-15 | Polytechnic University | Portable arc-seeded microwave plasma torch |
JP3837451B2 (ja) | 2004-03-26 | 2006-10-25 | 国立大学法人名古屋大学 | カーボンナノチューブの作製方法 |
WO2005098083A2 (en) | 2004-04-07 | 2005-10-20 | Michigan State University | Miniature microwave plasma torch application and method of use thereof |
US7381496B2 (en) | 2004-05-21 | 2008-06-03 | Tiax Llc | Lithium metal oxide materials and methods of synthesis and use |
JP4719909B2 (ja) | 2004-05-27 | 2011-07-06 | 凸版印刷株式会社 | ナノクリスタルダイヤモンド膜の製造方法 |
JP4573594B2 (ja) | 2004-07-27 | 2010-11-04 | 株式会社神戸製鋼所 | 二次電池 |
US7806077B2 (en) | 2004-07-30 | 2010-10-05 | Amarante Technologies, Inc. | Plasma nozzle array for providing uniform scalable microwave plasma generation |
US20060040168A1 (en) | 2004-08-20 | 2006-02-23 | Ion America Corporation | Nanostructured fuel cell electrode |
CA2579539C (en) | 2004-09-07 | 2013-02-12 | Nisshin Seifun Group Inc. | Process and apparatus for producing fine particles |
JP4535822B2 (ja) | 2004-09-28 | 2010-09-01 | ペルメレック電極株式会社 | 導電性ダイヤモンド電極及びその製造方法 |
GB2419132B (en) | 2004-10-04 | 2011-01-19 | C Tech Innovation Ltd | Method of production of fluorinated carbon nanostructures |
US7524353B2 (en) | 2004-10-21 | 2009-04-28 | Climax Engineered Materials, Llc | Densified molybdenum metal powder and method for producing same |
US7276102B2 (en) | 2004-10-21 | 2007-10-02 | Climax Engineered Materials, Llc | Molybdenum metal powder and production thereof |
JP4012192B2 (ja) | 2004-11-01 | 2007-11-21 | 株式会社東芝 | 燃料電池用触媒及び燃料電池 |
US7375303B2 (en) | 2004-11-16 | 2008-05-20 | Hypertherm, Inc. | Plasma arc torch having an electrode with internal passages |
WO2006062039A1 (ja) | 2004-12-06 | 2006-06-15 | Sunrex Kogyo Co., Ltd. | 金属製品の製造方法および金属製品 |
US20060127738A1 (en) | 2004-12-13 | 2006-06-15 | Bhaskar Sompalli | Design, method and process for unitized mea |
TWI265916B (en) | 2004-12-31 | 2006-11-11 | Ind Tech Res Inst | Process of making YAG fluorescence powder |
US20060291827A1 (en) | 2005-02-11 | 2006-12-28 | Suib Steven L | Process and apparatus to synthesize materials |
US20080286490A1 (en) | 2005-02-20 | 2008-11-20 | Hahn-Meitner-Institut Berlin Gmbh | Production of a Platinum-Free Chelate Catalyst Material as an Intermediate Product, and Further Processing Thereof to Obtain an Electrocatalytic Coating as a Final Product |
EP1873846A4 (en) | 2005-03-23 | 2013-04-03 | Pionics Co Ltd | MATERIAL PARTICLES ACTING AS A NEGATIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY, NEGATIVE ELECTRODE AND METHOD OF MANUFACTURING SAME |
US7776384B2 (en) | 2005-03-25 | 2010-08-17 | Institut National De La Recherche Scientifique | Methods and apparatuses for depositing nanometric filamentary structures |
CA2506104A1 (en) | 2005-05-06 | 2006-11-06 | Michel Gauthier | Surface modified redox compounds and composite electrode obtain from them |
US7622211B2 (en) | 2005-06-01 | 2009-11-24 | Gm Global Technology Operations, Inc. | Hydrophilic fuel cell bipolar plate having a plasma induced polymerization coating |
WO2006133347A2 (en) | 2005-06-08 | 2006-12-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Metal oxide nanoparticles and process for producing the same |
JP5362356B2 (ja) | 2005-08-12 | 2013-12-11 | ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド | ナノ粒子を含む被覆を有する燃料電池部品 |
US20090297496A1 (en) | 2005-09-08 | 2009-12-03 | Childrens Hospital Medical Center | Lysosomal Acid Lipase Therapy for NAFLD and Related Diseases |
US7658901B2 (en) | 2005-10-14 | 2010-02-09 | The Trustees Of Princeton University | Thermally exfoliated graphite oxide |
JP4963586B2 (ja) | 2005-10-17 | 2012-06-27 | 株式会社日清製粉グループ本社 | 超微粒子の製造方法 |
JP4855758B2 (ja) | 2005-10-19 | 2012-01-18 | 東海旅客鉄道株式会社 | 針状突起配列構造を表面に有するダイヤモンドの製造方法 |
TWI317414B (en) | 2005-10-21 | 2009-11-21 | Foxconn Tech Co Ltd | Sintered heat pipe and method for manufacturing the same |
EP1777302B1 (en) | 2005-10-21 | 2009-07-15 | Sulzer Metco (US) Inc. | Plasma remelting method for making high purity and free flowing metal oxides powder |
GB0521830D0 (en) | 2005-10-26 | 2005-12-07 | Boc Group Plc | Plasma reactor |
CN100459238C (zh) | 2005-11-16 | 2009-02-04 | 比亚迪股份有限公司 | 锂镍锰钴氧锂离子电池正极材料的制备方法 |
JP2007149513A (ja) | 2005-11-29 | 2007-06-14 | National Institute Of Advanced Industrial & Technology | 固体高分子形燃料電池用触媒担体 |
NO329785B1 (no) | 2005-12-02 | 2010-12-20 | Prototech As | Fremgangsmate for sol-gel prosessering og geler og nanopartikler produsert med nevnte fremgangsmate |
IL172837A (en) | 2005-12-27 | 2010-06-16 | Joma Int As | Methods for production of metal oxide nano particles and nano particles and preparations produced thereby |
KR20070076686A (ko) | 2006-01-19 | 2007-07-25 | 삼성에스디아이 주식회사 | 음극 활물질 및 이를 채용한 리튬 전지 |
JP5355095B2 (ja) | 2006-02-16 | 2013-11-27 | ブリガム・ヤング・ユニバーシティ | 超高純度の金属酸化物、混合金属酸化物、金属、および合金の均一なナノ粒子の製造 |
KR100745736B1 (ko) | 2006-02-23 | 2007-08-02 | 삼성에스디아이 주식회사 | 카본나노튜브, 이를 포함한 담지 촉매 및 상기 담지 촉매를이용한 연료전지 |
CA2581806C (en) | 2006-03-08 | 2012-06-26 | Tekna Plasma Systems Inc. | Plasma synthesis of nanopowders |
JP2007238402A (ja) | 2006-03-10 | 2007-09-20 | Chugai Ro Co Ltd | 粉体製造装置および粉体製造方法 |
JP2009531258A (ja) | 2006-03-29 | 2009-09-03 | ノースウエスト メテック コーポレイション | 軸方向投入プラズマ溶射を用いたナノパウダーおよびマイクロパウダー製造用の方法および装置 |
US20070259768A1 (en) | 2006-05-03 | 2007-11-08 | Kear Bernard H | Nanocomposite ceramic and method for producing the same |
WO2007128821A2 (de) | 2006-05-09 | 2007-11-15 | Basf Se | Verfahren zur herstellung von suspensionen nanopartikulärer feststoffe |
TWI329143B (en) | 2006-05-17 | 2010-08-21 | Univ Nat Sun Yat Sen | Nano thin film diamond electrode and method for producing the same |
US8268230B2 (en) | 2006-05-24 | 2012-09-18 | Lawrence Livermore National Security, Llc | Fabrication of transparent ceramics using nanoparticles |
US8021762B2 (en) | 2006-05-26 | 2011-09-20 | Praxair Technology, Inc. | Coated articles |
WO2007145216A1 (ja) | 2006-06-13 | 2007-12-21 | Hitachi Maxell, Ltd. | ペロブスカイト型酸化物微粒子、ペロブスカイト型酸化物担持粒子、触媒材料、酸素還元用触媒材料、燃料電池用触媒材料、燃料電池用電極 |
JP4875410B2 (ja) | 2006-06-13 | 2012-02-15 | トヨタ自動車株式会社 | 微粒子担持カーボン粒子およびその製造方法ならびに燃料電池用電極 |
WO2008094211A2 (en) | 2006-08-07 | 2008-08-07 | The Trustees Of The University Of Pennsylvania | Tunable ferroelectric supported catalysts and method and uses thereof |
US7776303B2 (en) | 2006-08-30 | 2010-08-17 | Ppg Industries Ohio, Inc. | Production of ultrafine metal carbide particles utilizing polymeric feed materials |
US7453566B2 (en) | 2006-08-31 | 2008-11-18 | Massachusetts Institute Of Technology | Hybrid plasma element monitor |
WO2008051885A1 (en) | 2006-10-23 | 2008-05-02 | Axion Power International, Inc. | Negative electrode for hybrid energy storage device |
TW200823313A (en) | 2006-11-22 | 2008-06-01 | Univ Feng Chia | Method of coating carbon film on metal substrate surface at low temperature |
JP2007113120A (ja) | 2006-12-04 | 2007-05-10 | Toyota Central Res & Dev Lab Inc | チタン合金およびその製造方法 |
CN101191204A (zh) | 2006-12-22 | 2008-06-04 | 上海电机学院 | 网络互穿式金刚石涂层多孔电极的制备方法 |
US8748785B2 (en) | 2007-01-18 | 2014-06-10 | Amastan Llc | Microwave plasma apparatus and method for materials processing |
WO2008087957A1 (ja) | 2007-01-18 | 2008-07-24 | Panasonic Corporation | ナノ構造体およびその製造方法 |
JP2010517263A (ja) | 2007-01-22 | 2010-05-20 | エレメント シックス リミテッド | ダイヤモンド電子デバイス及びそれらの製造方法 |
CA2619331A1 (en) | 2007-01-31 | 2008-07-31 | Scientific Valve And Seal, Lp | Coatings, their production and use |
JP4855983B2 (ja) | 2007-03-20 | 2012-01-18 | 東海旅客鉄道株式会社 | ダイヤモンド電極の製造方法 |
JP5135842B2 (ja) | 2007-03-26 | 2013-02-06 | 三菱化学株式会社 | リチウム遷移金属複合酸化物、その製造方法、および、それを用いたリチウム二次電池用正極、ならびに、それを用いたリチウム二次電池 |
JP4719184B2 (ja) | 2007-06-01 | 2011-07-06 | 株式会社サイアン | 大気圧プラズマ発生装置およびそれを用いるワーク処理装置 |
KR101088876B1 (ko) | 2007-06-11 | 2011-12-07 | 고쿠리츠다이가쿠호진 도호쿠다이가쿠 | 플라즈마 처리 장치, 급전 장치 및 플라즈마 처리 장치의 사용 방법 |
DE102007030604A1 (de) | 2007-07-02 | 2009-01-08 | Weppner, Werner, Prof. Dr. | Ionenleiter mit Granatstruktur |
MX2007008317A (es) | 2007-07-06 | 2009-02-26 | Aba Res Sa De Cv | Gasificador por microondas. |
US20120027955A1 (en) | 2007-10-09 | 2012-02-02 | University Of Louisville Research Foundation, Inc. | Reactor and method for production of nanostructures |
US9630162B1 (en) | 2007-10-09 | 2017-04-25 | University Of Louisville Research Foundation, Inc. | Reactor and method for production of nanostructures |
US9560731B2 (en) | 2007-10-16 | 2017-01-31 | Foret Plasma Labs, Llc | System, method and apparatus for an inductively coupled plasma Arc Whirl filter press |
US8919428B2 (en) | 2007-10-17 | 2014-12-30 | Purdue Research Foundation | Methods for attaching carbon nanotubes to a carbon substrate |
US20090155689A1 (en) | 2007-12-14 | 2009-06-18 | Karim Zaghib | Lithium iron phosphate cathode materials with enhanced energy density and power performance |
KR20090070140A (ko) | 2007-12-26 | 2009-07-01 | 재단법인 포항산업과학연구원 | 이차전지의 전류집천체에 코팅되는 코팅재 |
JP2009187754A (ja) | 2008-02-05 | 2009-08-20 | Toyota Motor Corp | 燃料電池用電極材料の評価方法 |
US10244614B2 (en) | 2008-02-12 | 2019-03-26 | Foret Plasma Labs, Llc | System, method and apparatus for plasma arc welding ceramics and sapphire |
US10193142B2 (en) | 2008-02-25 | 2019-01-29 | Cf Traverse Llc | Lithium-ion battery anode including preloaded lithium |
WO2014110604A2 (en) | 2013-01-14 | 2014-07-17 | Catalyst Power Technologies, Inc. | High capacity energy storage |
US9412998B2 (en) | 2009-02-25 | 2016-08-09 | Ronald A. Rojeski | Energy storage devices |
US9705136B2 (en) | 2008-02-25 | 2017-07-11 | Traverse Technologies Corp. | High capacity energy storage |
US9356281B2 (en) | 2008-05-20 | 2016-05-31 | GM Global Technology Operations LLC | Intercalation electrode based on ordered graphene planes |
US9136569B2 (en) | 2008-05-21 | 2015-09-15 | Applied Materials, Inc. | Microwave rapid thermal processing of electrochemical devices |
KR100941229B1 (ko) | 2008-07-14 | 2010-02-10 | 현대자동차주식회사 | 초고유동성 우레탄계 미세 구형 파우더 제조 장치 및 방법 |
JP5390609B2 (ja) | 2008-07-15 | 2014-01-15 | ユニバーシテート デュースブルク−エッセン | 多孔質炭素基板へのシリコン及び/若しくは錫の差込 |
US9421518B2 (en) | 2008-07-17 | 2016-08-23 | Blucher Gmbh | Process for producing carbon substrates loaded with metal oxides and carbon substrates produced in this way |
JP5290656B2 (ja) | 2008-07-22 | 2013-09-18 | 東海旅客鉄道株式会社 | ホウ素ドープダイヤモンドの製造方法 |
US8758957B2 (en) | 2008-07-29 | 2014-06-24 | GM Global Technology Operations LLC | Graphene coated SS bipolar plates |
US8497050B2 (en) | 2008-07-29 | 2013-07-30 | GM Global Technology Operations LLC | Amorphous carbon coatings for fuel cell bipolar plates |
MY163851A (en) | 2008-08-05 | 2017-10-31 | Sakti3 Inc | Electrochemical cell including functionally graded components |
US8840701B2 (en) | 2008-08-13 | 2014-09-23 | E I Du Pont De Nemours And Company | Multi-element metal powders for silicon solar cells |
DE102009033251A1 (de) | 2008-08-30 | 2010-09-23 | Universität Duisburg-Essen | Einlagerung von Silizium und/oder Zinn in poröse Kohlenstoffsubstrate |
TWI365562B (en) | 2008-10-03 | 2012-06-01 | Ind Tech Res Inst | Positive electrode and method for manufacturing the same and lithium battery utilizing the same |
US8389160B2 (en) | 2008-10-07 | 2013-03-05 | Envia Systems, Inc. | Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials |
JP5483228B2 (ja) | 2008-10-20 | 2014-05-07 | 学校法人東京理科大学 | 導電性ダイヤモンド中空ファイバー膜及び導電性ダイヤモンド中空ファイバー膜の製造方法 |
US8450637B2 (en) | 2008-10-23 | 2013-05-28 | Baker Hughes Incorporated | Apparatus for automated application of hardfacing material to drill bits |
US8329090B2 (en) | 2008-10-24 | 2012-12-11 | Lawrence Livermore National Security, Llc | Compound transparent ceramics and methods of preparation thereof |
CN101728509B (zh) | 2008-10-27 | 2012-01-11 | 财团法人工业技术研究院 | 锂电池及正极与其形成方法 |
CN102210023B (zh) | 2008-11-07 | 2015-09-30 | Sakti3有限公司 | 一体式结构中的多个电化学和聚能组件的制造方法和结构 |
CN101391307B (zh) | 2008-11-20 | 2010-09-15 | 核工业西南物理研究院 | 一种制备精细球形钨粉的方法 |
WO2010080064A1 (en) | 2009-01-12 | 2010-07-15 | Metec Powder Metal Ab | Multilevel parts from agglomerated spherical metal powder |
SE534273C2 (sv) | 2009-01-12 | 2011-06-28 | Metec Powder Metal Ab | Stålprodukt och tillverkning av stålprodukt genom bland annat sintring, höghastighetspressning och varmisostatpressning |
US8303926B1 (en) | 2009-01-22 | 2012-11-06 | Stc.Unm | Synthetic methods for generating WS2 nanostructured materials |
US9065141B2 (en) | 2009-02-10 | 2015-06-23 | Audi Ag | Boron-doped diamond coated catalyst support |
WO2010093343A1 (en) | 2009-02-10 | 2010-08-19 | Utc Power Corporation | Boron-doped diamond coated carbon catalyst support |
US9776378B2 (en) | 2009-02-17 | 2017-10-03 | Samsung Electronics Co., Ltd. | Graphene sheet comprising an intercalation compound and process of preparing the same |
GB0902784D0 (en) | 2009-02-19 | 2009-04-08 | Gasplas As | Plasma reactor |
TWI487668B (zh) | 2009-02-19 | 2015-06-11 | Sakai Chemical Industry Co | 金紅石型氧化鈦粒子之分散體,其製造方法,及其用途 |
JP5555225B2 (ja) | 2009-03-12 | 2014-07-23 | 三井化学株式会社 | 金属酸化物多孔質体の製造方法 |
US8800483B2 (en) | 2009-05-08 | 2014-08-12 | Peter F. Vandermeulen | Methods and systems for plasma deposition and treatment |
US8221934B2 (en) | 2009-05-27 | 2012-07-17 | GM Global Technology Operations LLC | Method to enhance the durability of conductive carbon coating of PEM fuel cell bipolar plates |
US9368772B1 (en) | 2009-06-15 | 2016-06-14 | Sakti3, Inc. | Packaging and termination structure for a solid state battery |
KR20120030998A (ko) | 2009-06-26 | 2012-03-29 | 아사히 가라스 가부시키가이샤 | 2 차 전지용 정극 재료의 제조 방법과 2 차 전지용 정극 재료 |
US20110006254A1 (en) | 2009-07-07 | 2011-01-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Process to make electrochemically active/inactive nanocomposite material |
DE102009035546A1 (de) | 2009-07-31 | 2011-02-03 | Bayer Materialscience Ag | Elektrode und Elektrodenbeschichtung |
EP2966723A1 (en) | 2009-08-07 | 2016-01-13 | Blacklight Power, Inc. | Heterogeneous hydrogen-catalyst power system |
US8449950B2 (en) | 2009-08-24 | 2013-05-28 | Applied Materials, Inc. | In-situ deposition of battery active lithium materials by plasma spraying |
EP2292557A1 (en) | 2009-09-03 | 2011-03-09 | Clariant International Ltd. | Continuous synthesis of carbon-coated lithium-iron-phosphate |
US9520600B2 (en) | 2009-09-22 | 2016-12-13 | GM Global Technology Operations LLC | Conductive and hydrophilic bipolar plate coatings and method of making the same |
US8685593B2 (en) | 2009-09-22 | 2014-04-01 | GM Global Technology Operations LLC | Carbon based bipolar plate coatings for effective water management |
JP2011108639A (ja) | 2009-10-22 | 2011-06-02 | Ronald Anthony Rojeski | カラーストップを含む電極 |
JP5317203B2 (ja) | 2009-11-13 | 2013-10-16 | 国立大学法人福井大学 | リチウムイオン二次電池正極活物質の製造方法 |
KR101134501B1 (ko) | 2009-12-07 | 2012-04-13 | 주식회사 풍산 | 열플라즈마를 이용한 고순도 구리분말의 제조방법 |
US8478785B2 (en) | 2009-12-15 | 2013-07-02 | International Business Machines Corporation | Measuring node proximity on graphs with side information |
CN101716686B (zh) | 2010-01-05 | 2011-02-16 | 北京科技大学 | 一种微细球形钛粉的短流程制备方法 |
CN102792508A (zh) | 2010-01-19 | 2012-11-21 | 双向电池公司 | 低成本、高功率、高能量密度、固态双极金属氢化物电池 |
DE102010006440A1 (de) | 2010-02-01 | 2011-08-04 | o.m.t. GmbH, 23569 | Elektrodenmaterial für wiederaufladbare (Sekundär-)batterien auf Lithiumbasis |
ES2599646T3 (es) | 2010-02-23 | 2017-02-02 | Toda Kogyo Corporation | Polvo de partículas precursoras de sustancia activa para un electrodo activo, polvo en partículas de sustancia activa para un electrodo positivo y batería secundaria de electrolito no acuoso |
JP5324501B2 (ja) | 2010-03-09 | 2013-10-23 | 国立大学法人信州大学 | 電気化学用電極とその製造方法 |
US20130084474A1 (en) | 2010-03-18 | 2013-04-04 | Randell L. Mills | Electrochemical hydrogen-catalyst power system |
JP5746830B2 (ja) | 2010-04-09 | 2015-07-08 | 株式会社フジクラ | 金属基板、カーボンナノチューブ電極及びその製造方法 |
AU2011254574B2 (en) | 2010-05-18 | 2014-07-03 | Höganäs Ab | Spherical powder and its preparation |
JP5889786B2 (ja) | 2010-05-31 | 2016-03-22 | 東邦チタニウム株式会社 | 銅粉、クロム粉または鉄粉を配合したチタン合金混合粉およびその製造方法ならびにチタン合金材の製造方法 |
KR101920721B1 (ko) | 2010-06-04 | 2018-11-22 | 삼성전자주식회사 | 그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본 |
WO2011156419A2 (en) | 2010-06-07 | 2011-12-15 | The Regents Of The University Of California | Lithium ion batteries based on nanoporous silicon |
JP2011258348A (ja) | 2010-06-07 | 2011-12-22 | Toyota Central R&D Labs Inc | リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法 |
US9196901B2 (en) | 2010-06-14 | 2015-11-24 | Lee Se-Hee | Lithium battery electrodes with ultra-thin alumina coatings |
FR2962995B1 (fr) | 2010-07-21 | 2013-07-05 | Commissariat Energie Atomique | Procede de fabrication d'une structure comprenant un feuillet de graphene muni de plots metalliques, structure ainsi obtenue et ses utilisations |
KR101133094B1 (ko) | 2010-07-26 | 2012-04-04 | 광운대학교 산학협력단 | 다중 채널 플라즈마 제트 발생 장치 |
NO339087B1 (no) | 2010-08-17 | 2016-11-14 | Gasplas As | Anordning, system og fremgangsmåte for fremstilling av hydrogen |
US8431071B2 (en) | 2010-08-27 | 2013-04-30 | The United States Of America, As Represented By The Secretary Of The Navy | Sintering of metal and alloy powders by microwave/millimeter-wave heating |
JP5716155B2 (ja) | 2010-08-30 | 2015-05-13 | 国立大学法人名古屋大学 | ナノカーボン製造用粉末及び金属内包フラーレンの生成方法 |
EP2425915B1 (en) | 2010-09-01 | 2015-12-02 | Directa Plus S.p.A. | Multi mode production complex for nano-particles of metal |
GB201014706D0 (en) | 2010-09-03 | 2010-10-20 | Nexeon Ltd | Porous electroactive material |
CN102412377B (zh) | 2010-09-24 | 2015-08-26 | 比亚迪股份有限公司 | 一种隔膜及其制备方法、一种锂离子电池 |
US9209456B2 (en) | 2010-10-22 | 2015-12-08 | Amprius, Inc. | Composite structures containing high capacity porous active materials constrained in shells |
JP5419098B2 (ja) | 2010-11-22 | 2014-02-19 | 日本発條株式会社 | ナノ結晶含有チタン合金およびその製造方法 |
US8877119B2 (en) | 2010-12-17 | 2014-11-04 | University Of Connecticut Center For Science And Technology And Commercialization | Method of synthesizing multi-phase oxide ceramics with small phase domain sizes |
FR2969595A1 (fr) | 2010-12-23 | 2012-06-29 | Saint Gobain Ct Recherches | Procede de fabrication d'un produit lmo. |
KR101292757B1 (ko) | 2011-01-05 | 2013-08-02 | 한양대학교 산학협력단 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
US10930922B2 (en) | 2011-01-05 | 2021-02-23 | Industry-University Cooperation Foundation Hanyang University | Positive electrode active material and secondary battery comprising the same |
JP5730032B2 (ja) | 2011-01-20 | 2015-06-03 | 株式会社フジクラ | カーボンナノチューブ電極用構造体、カーボンナノチューブ電極及び色素増感太陽電池 |
GB201103045D0 (en) | 2011-02-22 | 2011-04-06 | Univ Ulster | Product |
US20120224175A1 (en) | 2011-03-03 | 2012-09-06 | Philippe Minghetti | Microwave plasma atomic fluorescence mercury analysis system |
CN102427130B (zh) | 2011-03-23 | 2013-11-06 | 上海中兴派能能源科技有限公司 | 磷酸铁锂-碳纳米管复合材料及其制备方法和应用 |
JP4865105B1 (ja) | 2011-04-20 | 2012-02-01 | 山陽特殊製鋼株式会社 | Si系合金負極材料 |
CN102179521B (zh) | 2011-04-20 | 2013-01-02 | 北京科技大学 | 一种超细球形镍包钛复合粉末的制备方法 |
CN103608141A (zh) | 2011-04-27 | 2014-02-26 | 材料和电化学研究公司 | 用于制造球形钛和钛合金粉末的低成本方法 |
GB2490355B (en) | 2011-04-28 | 2015-10-14 | Gasplas As | Method for processing a gas and a device for performing the method |
US20120294919A1 (en) | 2011-05-16 | 2012-11-22 | Basf Se | Antimicrobial Silver Silica Composite |
EP2711111A4 (en) | 2011-05-18 | 2015-05-20 | Tohoku Techno Arch Co Ltd | PROCESS FOR PRODUCING METALLIC POWDER AND DEVICE FOR PRODUCING METALLIC POWDER |
US8623555B2 (en) | 2011-05-27 | 2014-01-07 | Vanderbilt University | Electrode useable in electrochemical cell and method of making same |
CN102723502B (zh) | 2011-06-01 | 2014-06-11 | 中国科学院金属研究所 | 一种提高钒电池电极材料活性的表面改性方法 |
WO2012162743A1 (en) | 2011-06-03 | 2012-12-06 | The University Of Melbourne | An electrode and a feedthrough for medical device applications |
KR101878734B1 (ko) | 2011-06-24 | 2018-07-16 | 삼성전자주식회사 | 그래핀 층상 구조체, 그의 제조방법 및 이를 채용한 투명전극과 트랜지스터 |
WO2013006600A1 (en) | 2011-07-05 | 2013-01-10 | Orchard Material Technology, Llc | Retrieval of high value refractory metals from alloys and mixtures |
EP2729243B1 (en) | 2011-07-08 | 2016-08-24 | PST Sensors (Pty) Limited | Method of producing nanoparticles by generating an electrical spark |
WO2013013831A1 (en) | 2011-07-27 | 2013-01-31 | Max-Plank-Gesellschaft Zur Förderung Der Wissenschaften E. V. | A substrate surface structured with thermally stable metal alloy nanoparticles, a method for preparing the same and uses thereof, in particular as a catalyst |
DE102011109137A1 (de) | 2011-08-01 | 2013-02-07 | Li-Tec Battery Gmbh | Lithiumionen-Batterie |
WO2013017217A1 (de) | 2011-08-01 | 2013-02-07 | Li-Tec Battery Gmbh | Lithiumionen-batterie |
WO2014011239A2 (en) | 2012-05-09 | 2014-01-16 | Purdue Research Foundation | Modified graphitic electrodes for electrochemical energy storage enhancement |
US10319537B2 (en) | 2011-08-15 | 2019-06-11 | Purdue Research Foundation | Modified graphitic electrodes for electrochemical energy storage enhancement |
JP5567742B2 (ja) | 2011-08-23 | 2014-08-06 | Jx日鉱日石金属株式会社 | リチウムイオン電池用正極活物質の製造方法 |
JP2013062242A (ja) | 2011-08-24 | 2013-04-04 | Sumitomo Metal Mining Co Ltd | 薄膜固体二次電池用の薄膜の製造方法とそれに用いる塗布液、及び薄膜、並びにそれを用いた薄膜固体二次電池 |
CN102328961A (zh) | 2011-09-07 | 2012-01-25 | 先进储能材料国家工程研究中心有限责任公司 | 锂离子电池用镍钴锰酸锂正极材料前驱体及其生产方法 |
JP5898437B2 (ja) | 2011-09-16 | 2016-04-06 | 太陽誘電ケミカルテクノロジー株式会社 | 非晶質炭素膜積層部材及びその製造方法 |
JP2013069602A (ja) | 2011-09-26 | 2013-04-18 | Tokyo Electron Ltd | マイクロ波処理装置および被処理体の処理方法 |
JP5999804B2 (ja) | 2011-09-30 | 2016-09-28 | 学校法人東京理科大学 | 導電性ダイヤモンド電極の製造方法 |
JP5819154B2 (ja) | 2011-10-06 | 2015-11-18 | 株式会社日立ハイテクノロジーズ | プラズマエッチング装置 |
US11193142B2 (en) | 2011-10-24 | 2021-12-07 | AgorFora ApS | Methods and apparatus for hydrogen based biogas upgrading |
US20140322632A1 (en) | 2011-11-09 | 2014-10-30 | Permelec Electrode Ltd. | Electrode for electrochemistry and manufacturing method for the same |
CN102394290A (zh) | 2011-11-18 | 2012-03-28 | 青岛华冠恒远锂电科技有限公司 | 一种锂离子电池正极材料及其制备方法 |
CN103182808A (zh) | 2011-12-28 | 2013-07-03 | 圣戈班高功能塑料集团 | 一种包括含氟聚合物表面层以及非氟聚合物过渡层的多层复合物 |
US8980485B2 (en) | 2011-12-30 | 2015-03-17 | Itn Energy Systems, Inc. | Rechargeable, thin-film, all solid-state metal-air battery |
KR101429806B1 (ko) | 2012-01-17 | 2014-08-12 | (주)이큐베스텍 | 다중 모드 플라즈마 발생 장치 |
US9859569B2 (en) | 2012-02-07 | 2018-01-02 | Nissan Motor Co., Ltd. | Method and device for manufacturing film-wrapped electrical device |
CN102554242B (zh) | 2012-02-09 | 2013-12-11 | 西安宝德粉末冶金有限责任公司 | 微细球形钛粉末的制造方法 |
CN104321914B (zh) | 2012-03-01 | 2019-08-13 | 约翰逊Ip控股有限责任公司 | 高容量固态复合正极、固态复合隔膜、固态可充电锂电池及其制造方法 |
CN104247102B (zh) | 2012-03-31 | 2017-01-25 | 汉阳大学校产学协力团 | 锂二次电池用正极活性物质前驱体的制备方法、由此制备的锂二次电池用正极活性物质前驱体及包括其在内的锂二次电池用正极活性物质 |
US10477665B2 (en) | 2012-04-13 | 2019-11-12 | Amastan Technologies Inc. | Microwave plasma torch generating laminar flow for materials processing |
JP5817636B2 (ja) | 2012-04-20 | 2015-11-18 | 昭栄化学工業株式会社 | 金属粉末の製造方法 |
US9991458B2 (en) | 2012-05-21 | 2018-06-05 | Ramot At Tel-Aviv University Ltd. | Nanoshell, method of fabricating same and uses thereof |
WO2014025443A2 (en) | 2012-05-21 | 2014-02-13 | Blacklight Power, Inc. | Ciht power system |
US9067264B2 (en) | 2012-05-24 | 2015-06-30 | Vladimir S. Moxson | Method of manufacturing pure titanium hydride powder and alloyed titanium hydride powders by combined hydrogen-magnesium reduction of metal halides |
CN102664273B (zh) | 2012-05-25 | 2014-06-25 | 南京工业大学 | 一种提高固体氧化物燃料电池阴极性能的方法 |
CN103456926A (zh) | 2012-05-31 | 2013-12-18 | 海洋王照明科技股份有限公司 | 硅-石墨烯复合材料、锂离子电池的制备方法 |
US10224541B2 (en) | 2012-06-08 | 2019-03-05 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Positive electrode active material precursor for lithium secondary battery, positive electrode active material manufactured by using thereof, and lithium secondary battery including the same |
KR20130138073A (ko) | 2012-06-08 | 2013-12-18 | 한양대학교 산학협력단 | 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지 |
KR101634843B1 (ko) | 2012-07-26 | 2016-06-29 | 주식회사 엘지화학 | 이차전지용 전극 활물질 |
US9095829B2 (en) | 2012-08-16 | 2015-08-04 | Alter Nrg Corp. | Plasma fired feed nozzle |
TW201411922A (zh) | 2012-09-10 | 2014-03-16 | Taiwan Bluestone Technology Co Ltd | 石墨烯電極 |
US9782791B2 (en) | 2012-09-28 | 2017-10-10 | Amastan Technologies Llc | High frequency uniform droplet maker and method |
US9321071B2 (en) | 2012-09-28 | 2016-04-26 | Amastan Technologies Llc | High frequency uniform droplet maker and method |
US20150259220A1 (en) | 2012-10-04 | 2015-09-17 | Advanced Oxidation Reduction Technologies, Llc | Liquid Vaporization Systems and Methods of Use |
US10084168B2 (en) | 2012-10-09 | 2018-09-25 | Johnson Battery Technologies, Inc. | Solid-state battery separators and methods of fabrication |
CN102867940B (zh) | 2012-10-12 | 2014-12-24 | 武汉工程大学 | 一种锂硫电池改性正极的工艺 |
US9206085B2 (en) | 2012-11-13 | 2015-12-08 | Amastan Technologies Llc | Method for densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
US9023259B2 (en) | 2012-11-13 | 2015-05-05 | Amastan Technologies Llc | Method for the densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing |
CN102983312B (zh) | 2012-11-28 | 2014-10-15 | 武汉工程大学 | 一种锂硫电池复合纤维正极材料的制备方法 |
US9242224B2 (en) | 2012-12-04 | 2016-01-26 | Amastan Technologies Llc | Method for the production of multiphase composite materials using microwave plasma process |
US8951496B2 (en) | 2012-12-04 | 2015-02-10 | Amastan Technologies Llc | Method for making amorphous particles using a uniform melt-state in a microwave generated plasma torch |
US9196905B2 (en) | 2013-01-31 | 2015-11-24 | National Cheng Kung University | Diamond film coated electrode for battery |
CN109052494A (zh) | 2013-02-28 | 2018-12-21 | 日产自动车株式会社 | 正极活性物质、正极材料、正极及非水电解质二次电池 |
US9555007B2 (en) | 2013-03-14 | 2017-01-31 | Massachusetts Institute Of Technology | Multi-layer hydrogel capsules for encapsulation of cells and cell aggregates |
US10172791B2 (en) | 2013-03-14 | 2019-01-08 | Massachusetts Institute Of Technology | Multi-layer hydrogel capsules for encapsulation of cells and cell aggregates |
US9079778B2 (en) | 2013-03-15 | 2015-07-14 | Kennametal Inc. | Production of near-stoichiometric spherical tungsten carbide particles |
US20140272430A1 (en) | 2013-03-15 | 2014-09-18 | Sabic Innovative Plastics Ip B.V. | Process of making dispersed polyetherimide micronized particles and process of coating and further forming of these particles products made therefrom |
US20160045841A1 (en) | 2013-03-15 | 2016-02-18 | Transtar Group, Ltd. | New and improved system for processing various chemicals and materials |
KR102350354B1 (ko) | 2013-03-15 | 2022-01-14 | 에노빅스 코오퍼레이션 | 3차원 배터리들을 위한 분리기들 |
ES2930642T3 (es) | 2013-03-18 | 2022-12-20 | 6K Inc | Método para la producción de materiales compuestos de fases múltiples usando un proceso de plasma inducido por microondas |
CN103121105B (zh) | 2013-03-19 | 2015-04-01 | 北京科技大学 | 一种制备微细球形Nb-W-Mo-Zr合金粉末的方法 |
CN104064736A (zh) | 2013-03-21 | 2014-09-24 | 海洋王照明科技股份有限公司 | 碳纳米管/硅/石墨烯复合材料及其制备方法与锂离子电池 |
US20140328729A1 (en) | 2013-05-06 | 2014-11-06 | Liang-Yuh Chen | Apparatus for Preparing a Material of a Battery Cell |
JP6103499B2 (ja) | 2013-06-21 | 2017-03-29 | 東レ・ファインケミカル株式会社 | 硫化リチウムの製造方法 |
JP6178140B2 (ja) | 2013-07-10 | 2017-08-09 | 東京エレクトロン株式会社 | マイクロ波プラズマ処理装置及びマイクロ波供給方法 |
JP6124300B2 (ja) | 2013-08-30 | 2017-05-10 | 国立研究開発法人産業技術総合研究所 | グラフェン積層体の製造方法及び該グラフェン積層体を用いた透明電極の製造方法 |
KR20140001813A (ko) | 2013-12-17 | 2014-01-07 | 김우남 | 단열체 |
GB201316472D0 (en) | 2013-09-17 | 2013-10-30 | Cambridge Nanosystems Ltd | Injection system for catalyst control |
CN103515590B (zh) | 2013-09-23 | 2015-09-23 | 北京鼎能开源电池科技股份有限公司 | 一种锂离子电池三元正极材料的制备方法 |
FR3011727B1 (fr) | 2013-10-16 | 2018-03-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Microelectrodes a base de diamant structure pour des applications d'interfacage neuronale. |
TWI501455B (zh) | 2013-10-28 | 2015-09-21 | Inst Nuclear Energy Res Atomic Energy Council | 高功率密度液流電池用之電極製造方法 |
WO2015064633A1 (ja) | 2013-10-30 | 2015-05-07 | 古河電気工業株式会社 | 負極活物質及びその製造方法並びにそれを用いた負極及び非水電解質二次電池 |
KR20160086912A (ko) | 2013-11-15 | 2016-07-20 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 산화규소 나노튜브 전극 및 이의 제조 방법 |
CN103682383B (zh) | 2013-11-29 | 2017-05-03 | 武汉工程大学 | 一种含三维立体多孔碳电极的微型无膜燃料电池及其制备方法 |
CN103682372B (zh) | 2013-11-29 | 2016-08-17 | 武汉工程大学 | 一种含碳纳米管立体电极的微型无膜燃料电池及其制备方法 |
CN103700815A (zh) | 2013-12-11 | 2014-04-02 | 中山大学 | 一种柔性透明锂离子电池电极材料及其制备方法 |
JP6378875B2 (ja) | 2013-12-24 | 2018-08-22 | 株式会社三五 | 二次電池用負極及びその製造方法 |
CN103785860B (zh) | 2014-01-22 | 2016-06-15 | 宁波广博纳米新材料股份有限公司 | 3d打印机用的金属粉末及其制备方法 |
IL302612A (en) | 2014-03-03 | 2023-07-01 | Brilliant Light Power Inc | Photovoltaic power generation systems and methods regarding same |
US9520627B2 (en) | 2014-03-06 | 2016-12-13 | International Business Machines Corporation | Ion conducting hybrid membranes |
ES2822048T3 (es) | 2014-03-11 | 2021-04-28 | Tekna Plasma Systems Inc | Proceso y aparato para producir partículas de polvo por atomización de un material de alimentación en forma de miembro alargado |
US10167556B2 (en) | 2014-03-14 | 2019-01-01 | The Board Of Trustees Of The University Of Illinois | Apparatus and method for depositing a coating on a substrate at atmospheric pressure |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
GB201405616D0 (en) | 2014-03-28 | 2014-05-14 | Perpetuus Res & Dev Ltd | A composite material |
US10669437B2 (en) | 2014-04-07 | 2020-06-02 | Sabic Global Technologies B.V. | Powder bed fusing thermoplastic polymers |
US10439206B2 (en) | 2014-04-09 | 2019-10-08 | Corning Incorporated | Method and material for lithium ion battery anodes |
CN103956520B (zh) | 2014-04-30 | 2017-01-11 | 泉州师范学院 | 基于三维石墨烯支架结构的高性能锂离子电池制备方法 |
KR102322229B1 (ko) | 2014-05-13 | 2021-11-05 | 더 유니버시티 오브 유타 리서치 파운데이션 | 실질적으로 구형인 금속 분말의 제조 |
EP3142815A4 (en) | 2014-05-13 | 2017-12-20 | Metalvalue SAS | New powder metal process for production of components for high temperature useage |
JP6386091B2 (ja) | 2014-05-14 | 2018-09-05 | アマスタン・テクノロジーズ・エル・エル・シー | プラズマを使用して固体材料および材料の溶液前駆体液滴を高密度化および球状化する方法 |
PL2944401T3 (pl) | 2014-05-15 | 2019-08-30 | Heraeus Deutschland GmbH & Co. KG | Sposób wytwarzania elementu konstrukcyjnego ze stopu metali zawierającego fazę amorficzną |
WO2015187389A2 (en) | 2014-05-23 | 2015-12-10 | Board Of Trustees Of Michigan State University | Methods and apparatus for microwave plasma assisted chemical vapor deposition reactors |
US9738788B1 (en) | 2014-05-26 | 2017-08-22 | Hrl Laboratories, Llc | Nanoparticle-coated multilayer shell microstructures |
US9378928B2 (en) | 2014-05-29 | 2016-06-28 | Applied Materials, Inc. | Apparatus for treating a gas in a conduit |
KR101568247B1 (ko) | 2014-06-02 | 2015-11-12 | 한국에너지기술연구원 | 질소 도핑된 탄소 표면을 갖는 금속-탄소 하이브리드 복합체 및 그 제조방법 |
US9585588B2 (en) | 2014-06-03 | 2017-03-07 | Boston Scientific Scimed, Inc. | Electrode assembly having an atraumatic distal tip |
CN106413539A (zh) | 2014-06-04 | 2017-02-15 | 波士顿科学医学有限公司 | 电极组件 |
GB201410639D0 (en) | 2014-06-13 | 2014-07-30 | Fgv Cambridge Nanosystems Ltd | Apparatus and method for plasma synthesis of graphitic products including graphene |
CN104018156B (zh) | 2014-06-18 | 2017-07-28 | 浙江工业大学 | 一种金属基/金刚石激光复合涂层及其制备方法 |
TWI593015B (zh) | 2014-07-10 | 2017-07-21 | 東京威力科創股份有限公司 | 基板之高精度蝕刻方法 |
US10279531B2 (en) | 2014-07-21 | 2019-05-07 | Gea Procomac S.P.A. | Moulding device for moulding a container starting with a parison in plastic material and moulding machine comprising this device |
JP6455701B2 (ja) | 2014-07-25 | 2019-01-23 | 日立金属株式会社 | 合金構造体 |
US20160028088A1 (en) | 2014-07-23 | 2016-01-28 | Axion Power International, Inc. | Electrode Current Collector Shielding And Protection |
CN104084592A (zh) | 2014-07-28 | 2014-10-08 | 中国科学院重庆绿色智能技术研究院 | 一种制备三维打印用球形粉末材料的方法 |
JP2016035913A (ja) | 2014-07-31 | 2016-03-17 | 富士フイルム株式会社 | 全固体二次電池、ならびに、無機固体電解質粒子、固体電解質組成物、電池用電極シートおよび全固体二次電池の製造方法 |
JP2016047961A (ja) | 2014-08-07 | 2016-04-07 | イーメックス株式会社 | 窒化アルミニウム薄膜、窒化アルミニウム薄膜の形成方法、及び、電極材料 |
CN104218213B (zh) | 2014-08-15 | 2017-02-22 | 中山大学 | 一种多层膜电极及其制备方法和应用 |
CN104209526B (zh) | 2014-08-26 | 2016-09-28 | 苏州智研新材料科技有限公司 | 一种微细球形钛合金粉体的制备方法 |
HUE064457T2 (hu) | 2014-09-23 | 2024-03-28 | Jiangsu Hengtron Nanotech Co Ltd | Lítium-fémoxidot tartalmazó akkumulátorok fejlesztett energiaellátási képességgel |
KR101991686B1 (ko) | 2014-09-30 | 2019-10-01 | (주)엘지하우시스 | 열가소성 엘라스토머 수지 분말 및 열가소성 엘라스토머 수지 분말의 제조 방법 |
US9999922B1 (en) | 2014-10-09 | 2018-06-19 | William George Struve | Moldable composition for use in hand or machine forming an article |
US9627709B2 (en) | 2014-10-15 | 2017-04-18 | Sakti3, Inc. | Amorphous cathode material for battery device |
US9782828B2 (en) | 2014-10-20 | 2017-10-10 | The Boeing Company | Methods for forming near net-shape metal parts from binderless metal powder |
CN204156003U (zh) | 2014-11-06 | 2015-02-11 | 南京中储新能源有限公司 | 一种二次铝电池 |
CN107004830B (zh) | 2014-11-25 | 2020-04-28 | 康宁公司 | 用于锂离子电池阳极的方法和材料 |
WO2016082120A1 (en) | 2014-11-26 | 2016-06-02 | GM Global Technology Operations LLC | Combination of plasma coating and spray coating for lithium battery electrode fabrication |
KR20170101927A (ko) | 2014-12-02 | 2017-09-06 | 더 유니버시티 오브 유타 리서치 파운데이션 | 금속 분말의 용융 염 탈산소화 |
KR101708333B1 (ko) | 2014-12-02 | 2017-02-21 | 한국에너지기술연구원 | 마이크로파 플라즈마를 이용한 Sⅰ나노입자 제조장치 및 이를 이용한 Sⅰ나노입자의 제조방법 |
EP3227945B1 (en) | 2014-12-03 | 2022-01-19 | Coulombic, Inc. | Electrodes and electrochemical devices and methods of making electrodes and electrochemical devices |
WO2016091957A1 (en) | 2014-12-10 | 2016-06-16 | Basf Se | Process for producing an electrode containing silicon particles coated with carbon |
CN104485452B (zh) | 2014-12-30 | 2016-08-24 | 中信国安盟固利电源技术有限公司 | 一种动力锂离子电池用高温型锰酸锂正极材料及其制备方法 |
US10144065B2 (en) * | 2015-01-07 | 2018-12-04 | Kennametal Inc. | Methods of making sintered articles |
US9508976B2 (en) | 2015-01-09 | 2016-11-29 | Applied Materials, Inc. | Battery separator with dielectric coating |
TWI599748B (zh) | 2015-01-16 | 2017-09-21 | 國家中山科學研究院 | 燃燒爐 |
CN104577084A (zh) | 2015-01-20 | 2015-04-29 | 深圳市贝特瑞新能源材料股份有限公司 | 一种锂离子电池用纳米硅复合负极材料、制备方法及锂离子电池 |
US9735427B2 (en) | 2015-02-12 | 2017-08-15 | Yang Zhang | Method of producing triazine-based graphitic carbon nitride films |
CN104752734B (zh) | 2015-02-25 | 2017-01-18 | 大连理工大学 | 一种核‑壳纳米纤维结构中低温固态氧化物燃料电池阴极及其静电纺丝制备方法 |
US10442000B2 (en) | 2015-03-05 | 2019-10-15 | Toho Titanium Co., Ltd. | Titanium-based powder, and ingot and sintered article thereof |
US10153133B2 (en) | 2015-03-23 | 2018-12-11 | Applied Materials, Inc. | Plasma reactor having digital control over rotation frequency of a microwave field with direct up-conversion |
US9796019B2 (en) | 2015-03-27 | 2017-10-24 | United Technologies Corporation | Powder metal with attached ceramic nanoparticles |
JP6620029B2 (ja) | 2015-03-31 | 2019-12-11 | 山陽特殊製鋼株式会社 | 球状粒子からなる金属粉末 |
KR101826391B1 (ko) | 2015-03-31 | 2018-02-06 | 주식회사 엘지화학 | 다공성 실리콘-실리콘옥사이드-탄소 복합체, 및 이의 제조방법 |
CN104772473B (zh) | 2015-04-03 | 2016-09-14 | 北京工业大学 | 一种3d打印用细颗粒球形钛粉的制备方法 |
NL2014588B1 (en) | 2015-04-07 | 2017-01-19 | Stichting Energieonderzoek Centrum Nederland | Rechargeable battery and method for manufacturing the same. |
US20160308244A1 (en) | 2015-04-14 | 2016-10-20 | Corning Incorporated | Lithium-oxide garnet batch composition and solid electrolyte membrane thereof |
CN110790263B (zh) | 2015-05-13 | 2021-12-24 | 储晞 | 三维石墨烯生产方法、装置、复合电极材料及制备与应用 |
US20160332232A1 (en) | 2015-05-14 | 2016-11-17 | Ati Properties, Inc. | Methods and apparatuses for producing metallic powder material |
EP3297693A1 (en) | 2015-05-17 | 2018-03-28 | Massachusetts Institute of Technology | Multi-layer hydrogel capsules for encapsulation of cells and cell aggregates |
US10865151B2 (en) | 2015-05-19 | 2020-12-15 | Basf Se | Gas-tight, heat-permeable multilayer ceramic composite tube |
TWI569499B (zh) | 2015-05-22 | 2017-02-01 | 國立成功大學 | 複合電極材料及其製作方法、包含該複合電極材料之複合電極及其製作方法、以及包含該複合電極之鋰電池 |
US10522300B2 (en) | 2015-05-26 | 2019-12-31 | National Research Council Of Canada | Metallic surface with karstified relief, forming same, and high surface area metallic electrochemical interface |
KR101735401B1 (ko) | 2015-05-28 | 2017-05-16 | 한국에너지기술연구원 | 질소 도핑된 다공성 그래핀 덮개의 형성방법 |
US11996564B2 (en) | 2015-06-01 | 2024-05-28 | Forge Nano Inc. | Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings |
JP6509049B2 (ja) | 2015-06-05 | 2019-05-08 | 東京エレクトロン株式会社 | マイクロ波プラズマ源およびプラズマ処理装置 |
WO2016191854A1 (en) | 2015-06-05 | 2016-12-08 | Pyrogenesis Canada Inc. | Plasma apparatus for the production of high quality spherical powders at high capacity |
JP7249781B2 (ja) | 2015-07-06 | 2023-03-31 | アッテロ リサイクリング ピーヴィティ. リミテッド | 使用済みLiイオン電池から金属を回収する方法 |
US20170009328A1 (en) | 2015-07-10 | 2017-01-12 | General Electric Company | Coating process and coated component |
EP3323164A4 (en) | 2015-07-13 | 2019-01-09 | Sila Nanotechnologies Inc. | STABLE CATHODES ON LITHIUM FLUORIDE BASE FOR METAL AND METAL ION BATTERIES |
WO2017011900A1 (en) | 2015-07-17 | 2017-01-26 | Ap&C Advanced Powders & Coatings Inc. | Plasma atomization metal powder manufacturing processes and systems therefore |
KR101923466B1 (ko) | 2015-09-10 | 2018-11-30 | 주식회사 엘지화학 | 이차전지용 도전재 및 이를 포함하는 이차전지 |
KR20170039922A (ko) | 2015-10-02 | 2017-04-12 | 삼성에스디아이 주식회사 | 음극 활물질, 이를 채용한 음극과 리튬 전지, 및 상기 음극 활물질의 제조방법 |
US10116000B1 (en) | 2015-10-20 | 2018-10-30 | New Jersey Institute Of Technology | Fabrication of flexible conductive items and batteries using modified inks |
US11050061B2 (en) | 2015-10-28 | 2021-06-29 | Lg Chem, Ltd. | Conductive material dispersed liquid and lithium secondary battery manufactured using the same |
KR101907916B1 (ko) | 2015-10-29 | 2018-10-15 | 주식회사 이쓰리파워 | SiOx의 포집장치 및 포집방법 |
WO2017074084A1 (ko) | 2015-10-29 | 2017-05-04 | ㈜에이치아이엠앤드에이코리아 | Siox의 포집장치 및 포집방법 |
KR101907912B1 (ko) | 2015-10-29 | 2018-10-15 | 주식회사 이쓰리파워 | SiOx-플러렌 복합체, 이의 제조방법, 제조장치 및 용도 |
WO2017074081A1 (ko) | 2015-10-29 | 2017-05-04 | ㈜에이치아이엠앤드에이코리아 | Siox-플러렌 복합체, 이의 제조방법, 제조장치 및 용도 |
CA3003502C (en) | 2015-10-29 | 2019-01-08 | Ap&C Advanced Powders And Coatings Inc. | Metal powder atomization manufacturing processes |
JP6685697B2 (ja) | 2015-10-30 | 2020-04-22 | キヤノン株式会社 | インクタンク及びインクジェット記録装置 |
US10766787B1 (en) | 2015-11-02 | 2020-09-08 | University Of Louisville Research Foundation, Inc. | Production of mixed metal oxide nanostructured compounds |
DE102015222048A1 (de) | 2015-11-10 | 2017-05-11 | Technische Universität Dresden | Verfahren zur Herstellung einer Anode für eine Lithium-Sekundärbatterie, hergestellte Anode, Lithium-Sekundärbatterie enthaltend die Anode und Verwendungen hiervon |
CN108290740B (zh) | 2015-11-25 | 2022-03-04 | 康宁股份有限公司 | 多孔硅组合物和装置以及其方法 |
GB2545172B (en) | 2015-12-03 | 2021-05-12 | Fgv Cambridge Nanosystems Ltd | Carbon nanotube/graphene composites |
TWI593484B (zh) | 2015-12-04 | 2017-08-01 | Metal Ind Res & Dev Ct | Alloy powder manufacturing equipment and methods |
CN105347400B (zh) | 2015-12-04 | 2016-11-09 | 湖北中澳纳米材料技术有限公司 | 一种生产高纯纳米三氧化钼的装置及方法 |
RU2633203C2 (ru) | 2015-12-09 | 2017-10-11 | Общество С Ограниченной Ответственностью Научно-Производственное Объединение "Металлы Урала" | Способ получения изделий из металлического иридия |
KR102077757B1 (ko) | 2015-12-10 | 2020-02-17 | 주식회사 엘지화학 | 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지 |
KR102101006B1 (ko) | 2015-12-10 | 2020-04-14 | 주식회사 엘지화학 | 이차전지용 양극 및 이를 포함하는 이차전지 |
GB2545643B (en) | 2015-12-15 | 2022-06-15 | Levidian Nanosystems Ltd | Apparatus and method for plasma synthesis of carbon nanotubes |
CA3200272A1 (en) | 2015-12-16 | 2017-06-22 | 6K Inc. | Spheroidal dehydrogenated metals and metal alloy particles |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
TWI616314B (zh) * | 2015-12-22 | 2018-03-01 | 財團法人工業技術研究院 | 立體物件的積層製造方法 |
JP6235764B1 (ja) | 2015-12-28 | 2017-11-22 | トヨタ自動車株式会社 | クラスター担持触媒及びその製造方法 |
CN108886181B (zh) | 2016-01-07 | 2022-04-19 | 胡利科有限责任公司 | 氧化条件下的再锂化 |
TWI726033B (zh) | 2016-01-08 | 2021-05-01 | 印度商艾特羅回收股份有限公司 | 從具有高錳含量的廢棄鋰離子電池回收有價金屬的方法 |
CN105514373A (zh) | 2016-01-18 | 2016-04-20 | 四川富骅新能源科技有限公司 | 一种高容量锂离子电池正极材料及其制备方法 |
EP3408047B8 (en) | 2016-01-27 | 2022-08-17 | H.C. Starck Inc. | Fabrication of high-entropy alloy wire and multi-principal element alloy wire for additive manufacturing |
CN108602687B (zh) | 2016-01-29 | 2020-10-30 | 宇部兴产株式会社 | 被覆碱土金属化合物微粒、有机溶剂分散液、树脂组合物和图像显示装置 |
EP3216545B2 (de) | 2016-03-07 | 2022-09-28 | Heraeus Deutschland GmbH & Co. KG | Edelmetallpulver und dessen verwendung zur herstellung von bauteilen |
TWI648423B (zh) | 2016-03-08 | 2019-01-21 | 財團法人工業技術研究院 | 金屬摻雜石墨烯及其成長方法 |
US10050303B2 (en) | 2016-03-10 | 2018-08-14 | Ford Global Technologies, Llc | Batteries including solid and liquid electrolyte |
GB2548394A (en) | 2016-03-17 | 2017-09-20 | Fgv Cambridge Nanosystems Ltd | Multifunctional wood coatings |
PL3333946T3 (pl) | 2016-03-24 | 2021-07-19 | Lg Chem, Ltd. | Dyspersja przewodnika i akumulator wytworzony z jej użyciem |
KR102124946B1 (ko) | 2016-03-29 | 2020-06-19 | 주식회사 엘지화학 | 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지 |
KR101684219B1 (ko) | 2016-04-05 | 2016-12-08 | 한양대학교 산학협력단 | 양극활물질, 및 이를 포함하는 이차 전지 |
US11235385B2 (en) | 2016-04-11 | 2022-02-01 | Ap&C Advanced Powders & Coating Inc. | Reactive metal powders in-flight heat treatment processes |
GB2551250B (en) | 2016-04-15 | 2022-02-09 | Levidian Nanosystems Ltd | Heater elements, heat exchangers and heater element arrays |
JP2017204437A (ja) | 2016-05-13 | 2017-11-16 | セイコーエプソン株式会社 | リチウムイオン二次電池 |
US20170373344A1 (en) | 2016-06-23 | 2017-12-28 | Amastan Technologies Llc | Lithium ion battery materials |
KR20180001799A (ko) | 2016-06-28 | 2018-01-05 | (주) 엔피홀딩스 | 복합 플라즈마 소스를 갖는 플라즈마 챔버 |
CN106086759B (zh) | 2016-07-01 | 2018-09-07 | 广州特种承压设备检测研究院 | 一种垃圾焚烧发电锅炉烟气侧的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法 |
CN106001597B (zh) | 2016-07-08 | 2018-03-20 | 武汉工程大学 | 一种元素分析仪中铜柱的回收方法 |
US10280312B2 (en) | 2016-07-20 | 2019-05-07 | Guardian Glass, LLC | Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same |
RU2644483C2 (ru) | 2016-07-21 | 2018-02-12 | Руслан Алексеевич Шевченко | Способ получения сферического порошка монокарбида вольфрама wc |
US10748745B2 (en) | 2016-08-16 | 2020-08-18 | Applied Materials, Inc. | Modular microwave plasma source |
CN106159316A (zh) | 2016-09-08 | 2016-11-23 | 海悦高科电池技术(大连)有限公司 | 一种锂离子电池正极用集流体及包含该集流体的电池 |
CN206040854U (zh) | 2016-09-08 | 2017-03-22 | 海悦高科电池技术(大连)有限公司 | 一种锂离子电池正极用集流体、包含该集流体的电池及用于制备集流体的装置 |
US9979912B2 (en) | 2016-09-12 | 2018-05-22 | Semiconductor Components Industries, Llc | Image sensors with power supply noise rejection capabilities |
US20180104745A1 (en) | 2016-10-17 | 2018-04-19 | Ecole Polytechnique | Treatment of melt for atomization technology |
JP6796450B2 (ja) | 2016-10-25 | 2020-12-09 | 東京エレクトロン株式会社 | プラズマ処理装置 |
CN106493350A (zh) | 2016-10-25 | 2017-03-15 | 黑龙江省科学院高技术研究院 | 一种3d打印用球形钛合金粉末的制备方法 |
WO2018079304A1 (ja) | 2016-10-25 | 2018-05-03 | 株式会社ダイヘン | 銅合金粉末、積層造形物の製造方法および積層造形物 |
US10988680B2 (en) | 2016-10-26 | 2021-04-27 | Dynamic Material Systems Llc | Carbon ceramic composites and methods |
US10710313B2 (en) | 2016-11-07 | 2020-07-14 | Iftikhar Ahmad | Near-field microwave heating system and method |
CN110088969A (zh) | 2016-11-08 | 2019-08-02 | 菲斯科公司 | 包含机械柔性陶瓷电解质的全固态Li离子电池及其制造方法 |
US10543534B2 (en) | 2016-11-09 | 2020-01-28 | Amastan Technologies Inc. | Apparatus and method for the production of quantum particles |
TWI738920B (zh) | 2016-11-14 | 2021-09-11 | 日商東京威力科創股份有限公司 | 半導體製造方法及相關裝置與電漿處理系統 |
US20180159178A1 (en) | 2016-12-06 | 2018-06-07 | ZAF Energy Systems, Incorporated | Battery with coated active material |
JP6402163B2 (ja) | 2016-12-07 | 2018-10-10 | 三菱重工航空エンジン株式会社 | TiAl合金体の水素化脱水素化方法及びTiAl合金粉末の製造方法 |
GB201621508D0 (en) | 2016-12-16 | 2017-02-01 | Reliance Rg Ltd | Improvements relating to additive manufacture using charged particle beams |
US9966591B1 (en) | 2016-12-19 | 2018-05-08 | StoreDot Ltd. | Electrode stack production methods |
US10033023B2 (en) | 2016-12-19 | 2018-07-24 | StoreDot Ltd. | Surface activation in electrode stack production and electrode-preparation systems and methods |
CN106684387A (zh) | 2016-12-20 | 2017-05-17 | 深圳先进技术研究院 | 一种含类金刚石薄膜层的锂离子电池负极及其制备方法和锂离子电池 |
CA3045961A1 (en) | 2016-12-21 | 2018-06-28 | Albemarle Germany Gmbh | Method for producing lithium oxide |
CN106784692B (zh) | 2016-12-23 | 2019-05-28 | 浙江大学 | 石墨烯阵列负载钛酸锂/碳纳米管复合阵列电极材料及其制备方法和应用 |
CN108346802B (zh) | 2017-01-23 | 2021-03-02 | 华为技术有限公司 | 一种对集流体进行修饰的方法、集流体及储能装置 |
JP6698560B2 (ja) | 2017-02-01 | 2020-05-27 | 東京エレクトロン株式会社 | マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法 |
WO2018141082A1 (en) | 2017-02-02 | 2018-08-09 | General Electric Company | Fused and crushed thermal coating powder, system for providing thermal spray coating, and associated method |
US9767992B1 (en) | 2017-02-09 | 2017-09-19 | Lyten, Inc. | Microwave chemical processing reactor |
US11923176B2 (en) | 2017-02-09 | 2024-03-05 | Lyten, Inc. | Temperature-controlled chemical processing reactor |
JP6822218B2 (ja) | 2017-02-28 | 2021-01-27 | 住友金属鉱山株式会社 | モフォロジー予測方法、結晶の製造方法 |
WO2018160498A1 (en) | 2017-02-28 | 2018-09-07 | Lyten, Inc. | Mixed allotrope particulate carbon films and carbon fiber mats |
US10522840B2 (en) | 2017-03-26 | 2019-12-31 | Intecells, Inc. | Method of making anode component by atmospheric plasma deposition, anode component, and lithium-ion cell and battery containing the component |
US10707058B2 (en) | 2017-04-11 | 2020-07-07 | Applied Materials, Inc. | Symmetric and irregular shaped plasmas using modular microwave sources |
JP6645470B2 (ja) | 2017-04-17 | 2020-02-14 | 株式会社村田製作所 | 外部電極用導電性ペーストおよびその外部電極用導電性ペーストを用いて製造する電子部品の製造方法 |
KR20170045181A (ko) | 2017-04-18 | 2017-04-26 | 삼성전기주식회사 | 연자성 금속분말과 그 연자성 금속분말을 포함하는 인덕터 |
JP6798411B2 (ja) | 2017-04-28 | 2020-12-09 | 日産自動車株式会社 | 電気デバイス用負極活物質、およびこれを用いた電気デバイス |
CN107093732B (zh) | 2017-05-10 | 2019-11-08 | 江西迪比科股份有限公司 | 一种用于锂电池正极材料的磷酸铁锂/碳纳米管纳米复合材料及其制备方法 |
EP3403994A1 (en) | 2017-05-18 | 2018-11-21 | Centre National De La Recherche Scientifique | Graphene-supported metal and/or metal oxide nanoparticle composites, method for making same and uses thereof |
CN107170973A (zh) | 2017-05-23 | 2017-09-15 | 苏州思创源博电子科技有限公司 | 一种钨包覆锂锰铝钴正极材料的制备方法 |
US11077497B2 (en) | 2017-06-07 | 2021-08-03 | Global Titanium Inc. | Deoxidation of metal powders |
IT201700062592A1 (it) | 2017-06-08 | 2018-12-08 | K Laser D O O | Apparato per laserterapia a scansione. |
US10347937B2 (en) | 2017-06-23 | 2019-07-09 | Quantumscape Corporation | Lithium-stuffed garnet electrolytes with secondary phase inclusions |
US10923324B2 (en) | 2017-07-10 | 2021-02-16 | Verity Instruments, Inc. | Microwave plasma source |
IT201700089373A1 (it) | 2017-08-03 | 2019-02-03 | Petroceramics S P A | Materiale composito fibro-rinforzato pre-impregnato e materiale composito ceramico fibro-rinforzato, ottenuto per formatura e successiva pirolisi di detto materiale pre-impregnato |
US20190061005A1 (en) | 2017-08-30 | 2019-02-28 | General Electric Company | High Quality Spherical Powders for Additive Manufacturing Processes Along With Methods of Their Formation |
US20190088996A1 (en) | 2017-09-15 | 2019-03-21 | Dyson Technology Limited | Multiple active and inter layers in a solid-state device |
US10707477B2 (en) | 2017-09-15 | 2020-07-07 | Dyson Technology Limited | High energy density multilayer battery cell with thermally processed components and method for making same |
WO2019052670A1 (en) | 2017-09-18 | 2019-03-21 | Cambridge Enterprise Limited | MANUFACTURE OF COMPOSITE NANOSTRUCTURES |
TWI638481B (zh) | 2017-09-19 | 2018-10-11 | 國立成功大學 | 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池 |
JP6962094B2 (ja) | 2017-09-21 | 2021-11-05 | トヨタ自動車株式会社 | ガーネット型イオン伝導性酸化物、及び、酸化物電解質焼結体の製造方法 |
CN111108642B (zh) | 2017-09-22 | 2024-04-02 | 三菱化学株式会社 | 非水系电解液、非水系电解液二次电池及能源装置 |
CN107579241B (zh) | 2017-09-22 | 2021-04-09 | 上海工程技术大学 | 一种三维帐篷型石墨烯-金属氧化物纳米复合材料的制备方法 |
EP3687681A4 (en) | 2017-09-29 | 2021-07-07 | President and Fellows of Harvard College | ENHANCED CATALYTIC MATERIALS CONTAINING PARTLY INCORPORATED CATALYTIC NANOPARTICLES |
CN110892563B (zh) | 2017-09-29 | 2022-05-03 | 株式会社Lg化学 | 蛋黄-壳结构的粒子、其制备方法和包含其的锂二次电池 |
FI127664B (en) | 2017-10-20 | 2018-11-30 | Crisolteq Ltd | Process for recovering components from pickling acid residue |
US11967709B2 (en) | 2017-10-31 | 2024-04-23 | Sumitomo Metal Mining Co., Ltd. | Nonaqueous electrolyte secondary battery positive electrode active material and method for producing same, and nonaqueous electrolyte secondary battery which uses positive electrode active material |
WO2019087492A1 (ja) | 2017-10-31 | 2019-05-09 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、及び正極活物質を用いた非水系電解質二次電池 |
CN111295787B (zh) | 2017-10-31 | 2023-09-26 | 住友金属矿山株式会社 | 正极活性物质及其制造方法和非水系电解质二次电池 |
US20200067128A1 (en) | 2017-11-08 | 2020-02-27 | Fisker Inc. | Hybrid and solid-state battery architectures with high loading and methods of manufacture thereof |
DK3710586T3 (da) | 2017-11-13 | 2023-01-23 | Silence Therapeutics Gmbh | Nukleinsyrer til inhibering af ekspression af LPA i en celle |
EA202091131A1 (ru) | 2017-11-14 | 2020-08-12 | Пайродженизис Кэнада Инк. | Способ и устройство для получения тонкодисперсных сферических порошков из грубого и угловатого порошкового исходного материала |
KR101886755B1 (ko) | 2017-11-17 | 2018-08-09 | 한국원자력연구원 | 다중 펄스 플라즈마를 이용한 음이온 공급의 연속화 시스템 및 방법 |
WO2019104186A1 (en) * | 2017-11-22 | 2019-05-31 | Forge Nano, Inc. | Manufacturing of workpieces having nanostructured phases from functionalized powder feedstocks |
US20190160528A1 (en) * | 2017-11-27 | 2019-05-30 | Hamilton Sundstrand Corporation | Method and apparatus for improving powder flowability |
DE102017128719A1 (de) | 2017-12-04 | 2019-06-06 | Schott Ag | Lithiumionenleitendes Verbundmaterial, umfassend wenigstens ein Polymer und lithiumionenleitende Partikel, und Verfahren zur Herstellung eines Lithiumionenleiters aus dem Verbundmaterial |
US20190341650A9 (en) | 2017-12-05 | 2019-11-07 | Lyten, Inc. | Lithium ion battery and battery materials |
US10584923B2 (en) | 2017-12-07 | 2020-03-10 | General Electric Company | Systems and methods for heat exchanger tubes having internal flow features |
CN108145170A (zh) | 2017-12-11 | 2018-06-12 | 中南大学 | 一种难熔高熵合金球形粉末的制备方法 |
US10756334B2 (en) | 2017-12-22 | 2020-08-25 | Lyten, Inc. | Structured composite materials |
US11522186B2 (en) | 2017-12-22 | 2022-12-06 | Umicore | Positive electrode material for rechargeable lithium ion batteries |
CN108134104B (zh) | 2017-12-26 | 2020-05-12 | 成都新柯力化工科技有限公司 | 一种燃料电池用复合催化剂载体及其制备方法和应用 |
US20190218650A1 (en) | 2018-01-12 | 2019-07-18 | General Electric Company | Methods of forming spherical metallic particles |
US11130175B2 (en) | 2018-01-18 | 2021-09-28 | The Boeing Company | Spherical metallic powder blends and methods for manufacturing the same |
CN108217612A (zh) | 2018-01-30 | 2018-06-29 | 攀枝花学院 | 制备球形氮化钛粉末的方法及设备 |
US11196045B2 (en) | 2018-02-01 | 2021-12-07 | GM Global Technology Operations LLC | Plasma pretreatment on current collectors for thin film lithium metallization |
IL277123B1 (en) | 2018-03-05 | 2025-03-01 | Global Advanced Metals Usa Inc | Anodes containing spherical powder and capacitors |
EP3746239A2 (en) | 2018-03-05 | 2020-12-09 | Global Advanced Metals USA, Inc. | Powder metallurgy sputtering targets and methods of producing same |
JP7092076B2 (ja) | 2018-03-12 | 2022-06-28 | 三菱マテリアル株式会社 | チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置 |
US11245065B1 (en) | 2018-03-22 | 2022-02-08 | Facebook Technologies, Llc | Electroactive polymer devices, systems, and methods |
KR101966584B1 (ko) | 2018-03-22 | 2019-04-05 | 한국과학기술원 | 인시츄 강화 고엔트로피 합금 분말, 합금 및 이의 제조방법 |
KR102085420B1 (ko) | 2018-03-28 | 2020-03-05 | (주)세원하드페이싱 | 유동성 향상을 위한 마이크로파 플라즈마를 이용한 세라믹 분말의 표면 처리 방법 |
CN108649190B (zh) | 2018-03-28 | 2020-12-08 | 浙江大学 | 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用 |
JP7109230B2 (ja) | 2018-03-30 | 2022-07-29 | 東京エレクトロン株式会社 | グラフェン構造体を形成する方法および装置 |
SE543241C2 (en) * | 2018-04-27 | 2020-10-27 | Episurf Ip Man Ab | An implant for cartilage and / or bone repair |
KR20210018245A (ko) | 2018-04-30 | 2021-02-17 | 라이텐, 인코포레이티드 | 리튬 이온 배터리 및 배터리 물질 |
EP3791663A4 (en) | 2018-05-08 | 2022-03-02 | CommScope Technologies LLC | PROACTIVE PUSCH AUTHORIZATIONS TO PREVENT SLOW-DOWN THROUGHPUT |
US11031161B2 (en) * | 2018-05-11 | 2021-06-08 | GM Global Technology Operations LLC | Method of manufacturing a bulk nitride, carbide, or boride-containing material |
CN108666563A (zh) | 2018-05-24 | 2018-10-16 | 北方奥钛纳米技术有限公司 | 一种镍钴锰酸锂正极材料的制备方法 |
CN108878862A (zh) | 2018-05-24 | 2018-11-23 | 江苏大学 | 一种锂离子电池富锂锰基正极材料及其喷雾干燥制备方法 |
WO2019238206A1 (en) | 2018-06-11 | 2019-12-19 | Jozef Stefan Institute | Carbon nanostructured materials and methods for forming carbon nanostructured materials |
CN112771196A (zh) | 2018-06-19 | 2021-05-07 | 6K有限公司 | 具有定制微观结构的球状钛金属粉末 |
AU2018428384A1 (en) | 2018-06-19 | 2021-01-21 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
EP3810358A1 (en) | 2018-06-19 | 2021-04-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
CN108933239B (zh) | 2018-06-26 | 2020-11-13 | 方嘉城 | 一种锰酸锂包覆镍钴锰酸锂正极材料的制备方法 |
WO2020009955A1 (en) | 2018-07-06 | 2020-01-09 | Arconic Inc. | Method and system for processing metal powders, and articles produced therefrom |
KR102373313B1 (ko) | 2018-07-12 | 2022-03-10 | 주식회사 엘지에너지솔루션 | 무기 전해액을 포함하는 리튬 이차전지 |
CN108672709A (zh) | 2018-07-24 | 2018-10-19 | 江苏威拉里新材料科技有限公司 | 一种气雾化生产3d打印用金属粉的装置 |
US11511994B2 (en) | 2018-07-27 | 2022-11-29 | Lg Chem, Ltd. | Carbon nanotubes, method of manufacturing same, and positive electrode for primary battery comprising same |
CN108907210B (zh) | 2018-07-27 | 2020-04-07 | 中南大学 | 一种制备增材制造用实心球形金属粉末的方法 |
US20200263285A1 (en) | 2018-08-02 | 2020-08-20 | Lyten, Inc. | Covetic materials |
CN108963239B (zh) | 2018-08-14 | 2020-06-30 | 上海力信能源科技有限责任公司 | 二氧化钛包覆的镍钴锰酸锂正极材料的制备方法 |
US11350680B2 (en) | 2018-08-20 | 2022-06-07 | Celia Rutkoski | Leotard including built-in supportive bra |
CN109167070A (zh) | 2018-08-23 | 2019-01-08 | 成都新柯力化工科技有限公司 | 一种梯度结构的燃料电池气体扩散层及制备方法 |
WO2020041775A1 (en) | 2018-08-24 | 2020-02-27 | Fisker Inc. | Microscopically ordered solid electrolyte architecture manufacturing methods and processes thereof for use in solid-state and hybrid lithium ion batteries |
WO2020041767A1 (en) | 2018-08-24 | 2020-02-27 | Fisker Inc. | Hybrid and solid-state battery architectures with high loading and methods of manufacture thereof |
US11183682B2 (en) | 2018-08-31 | 2021-11-23 | Advanced Energy Materials, Llc | Spinel lithium titanium oxide (LTO) nanowire anode material for lithium ion batteries |
CN109301212A (zh) | 2018-09-29 | 2019-02-01 | 成都新柯力化工科技有限公司 | 一种抑制锂硫电池正极溶解的方法 |
JP7241499B2 (ja) | 2018-10-10 | 2023-03-17 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 情報処理方法、情報処理装置及び情報処理プログラム |
CN111099577B (zh) | 2018-10-27 | 2022-08-12 | 中国石油化工股份有限公司 | 一种掺氮碳纳米管材料 |
US11682789B2 (en) | 2018-10-29 | 2023-06-20 | Shenzhen Xworld Technology Limited | Environmentally preferable method of making solid electrolyte and integration of metal anodes thereof |
CN109616622B (zh) | 2018-10-31 | 2020-12-08 | 青岛大学 | 一种碳/锡/碳空心微球锂离子电池负极材料的制备方法 |
WO2020091854A1 (en) | 2018-10-31 | 2020-05-07 | Arconic Inc. | Method and system for processing metal powders, and articles produced therefrom |
EP3648496A1 (en) | 2018-11-01 | 2020-05-06 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Beam management methods and apparatuses for positioning measurements in a communications network |
DE102018132896A1 (de) | 2018-12-19 | 2020-06-25 | Universität Duisburg-Essen | Verfahren zur Herstellung eines Graphen-Komposits |
CA3122582A1 (en) | 2018-12-20 | 2020-06-25 | 6K Inc. | Plasma processing of lithium transition metal oxides for lithium ion batteries |
CN111370751B (zh) | 2018-12-25 | 2021-12-07 | 深圳市比亚迪锂电池有限公司 | 固态电池及其制备方法和电动汽车 |
CN109742320A (zh) | 2018-12-29 | 2019-05-10 | 北京工业大学 | 一种三维多孔铝负极及其铝电池应用 |
US11459242B2 (en) | 2019-01-15 | 2022-10-04 | Alliance For Sustainable Energy, Llc | Stabilized electrodes for ion batteries and methods of making the same |
US20200227728A1 (en) | 2019-01-16 | 2020-07-16 | GM Global Technology Operations LLC | Methods of making high performance electrodes |
JP7218864B2 (ja) | 2019-01-29 | 2023-02-07 | 住友金属鉱山株式会社 | 液相中での化合物の挙動の予測方法 |
CA3130338C (en) | 2019-02-20 | 2023-12-12 | Ppg Industries Ohio, Inc. | Dispersions containing graphenic carbon nanoparticles and dispersant resins |
CN109888233A (zh) | 2019-03-06 | 2019-06-14 | 广东轻工职业技术学院 | 一种可充放的全柔性钾离子电池、其制备方法及应用 |
KR102488680B1 (ko) | 2019-03-08 | 2023-01-17 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 |
US12167528B2 (en) | 2019-03-26 | 2024-12-10 | 6K Inc. | Segmented liner and methods of use within a microwave plasma apparatus |
CN109808049A (zh) | 2019-04-01 | 2019-05-28 | 四川大学 | 一种高温气体气雾化制备球形粉末的方法 |
CN109903722B (zh) | 2019-04-10 | 2020-11-17 | 京东方科技集团股份有限公司 | 像素驱动电路、显示装置及像素驱动方法 |
CA3134579A1 (en) | 2019-04-30 | 2020-11-05 | Gregory Wrobel | Lithium lanthanum zirconium oxide (llzo) powder |
SG11202111576QA (en) | 2019-04-30 | 2021-11-29 | 6K Inc | Mechanically alloyed powder feedstock |
KR102522025B1 (ko) | 2019-05-14 | 2023-04-14 | 주식회사 엘지에너지솔루션 | 리튬 이차전지 |
CN110218897B (zh) | 2019-05-24 | 2021-01-22 | 陕西斯瑞新材料股份有限公司 | 一种航空发动机燃烧室内衬用耐高温Cu-Cr-Nb-Ce合金的制备方法 |
CN110299516B (zh) | 2019-06-10 | 2022-05-10 | 天津大学 | 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法 |
US20200388857A1 (en) | 2019-06-10 | 2020-12-10 | University Of Louisville Research Foundation, Inc. | Redox flow batteries employing diamond |
WO2020251634A1 (en) | 2019-06-12 | 2020-12-17 | National Cheng Kung University | Composite electrode material, method for manufacturing the same, composite electrode comprising the same and lithium-based battery comprising the said composite electrode |
CN110153434A (zh) | 2019-06-26 | 2019-08-23 | 苏州猛犸新材料科技有限公司 | 一种超细Ni-Ti-Y多元复合金属纳米粉的快速制备方法 |
US20210002759A1 (en) | 2019-07-01 | 2021-01-07 | Samu Technology, Llc | Diamond-like carbon synthesized by atmospheric plasma |
CN113994514B (zh) | 2019-07-11 | 2024-05-28 | 株式会社Lg新能源 | 锂二次电池用电解质以及包含其的锂二次电池 |
US11198611B2 (en) | 2019-07-30 | 2021-12-14 | Lyten, Inc. | 3D self-assembled multi-modal carbon-based particle |
NL2023642B1 (en) | 2019-08-14 | 2021-02-24 | Leydenjar Tech B V | Silicon composition material for use as battery anode |
CN112397706A (zh) | 2019-08-16 | 2021-02-23 | 中国科学院上海高等研究院 | 锂离子电池负极材料结构及其制备方法、锂离子电池 |
US11107662B2 (en) | 2019-08-19 | 2021-08-31 | Lyten, Inc. | Reactor system coupled to an energy emitter control circuit |
US11335911B2 (en) | 2019-08-23 | 2022-05-17 | Lyten, Inc. | Expansion-tolerant three-dimensional (3D) carbon-based structures incorporated into lithium sulfur (Li S) battery electrodes |
WO2021040386A1 (ko) | 2019-08-26 | 2021-03-04 | 주식회사 엘지화학 | 리튬 이차전지 및 이의 제조 방법 |
CA3146172A1 (en) | 2019-09-06 | 2021-03-11 | 6K Inc. | Strain tolerant particle structures for high energy anode materials and sythesis methods thereof |
JP7414233B2 (ja) | 2019-10-02 | 2024-01-16 | 株式会社クラレ | 蓄電デバイス用炭素質材料の製造方法および蓄電デバイス用炭素質材料 |
JP7411952B2 (ja) | 2019-10-02 | 2024-01-12 | 株式会社クラレ | 蓄電デバイス用炭素質材料の製造方法および蓄電デバイス用炭素質材料 |
GB2595745B (en) | 2019-10-18 | 2022-06-08 | Echion Tech Limited | Active electrode material |
GB202013576D0 (en) | 2020-08-28 | 2020-10-14 | Echion Tech Limited | Active electrode material |
US11133495B2 (en) | 2019-10-25 | 2021-09-28 | Lyten, Inc. | Advanced lithium (LI) ion and lithium sulfur (LI S) batteries |
KR102282907B1 (ko) | 2019-10-29 | 2021-07-30 | 한국전기연구원 | 2차 전지용 3차원 전극 구조체 및 이의 제조 방법 |
KR20210057253A (ko) | 2019-11-11 | 2021-05-21 | 한국전기연구원 | 그래핀 쉘을 포함하는 코어-쉘 구조체, 및 그 제조방법 |
CA3153254A1 (en) | 2019-11-18 | 2021-06-17 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
CN112864453A (zh) | 2019-11-27 | 2021-05-28 | 贝特瑞新材料集团股份有限公司 | 一种去除固态电解质表面杂质的方法 |
CN110993908A (zh) | 2019-11-27 | 2020-04-10 | 浙江大学 | 一种垂直石墨烯/二氧化锰复合材料及其制备方法和应用 |
US20230033329A1 (en) | 2019-12-11 | 2023-02-02 | Jozef Stefan Institute | Method and apparatus for deposition of carbon nanostructures |
US11130994B2 (en) | 2019-12-13 | 2021-09-28 | Autonomous Medical Devices Inc. | Automated, cloud-based, point-of-care (POC) pathogen and antibody array detection system and method |
US11442000B2 (en) | 2019-12-16 | 2022-09-13 | Applied Materials, Inc. | In-situ, real-time detection of particulate defects in a fluid |
US11439206B2 (en) | 2019-12-17 | 2022-09-13 | Under Armour, Inc. | Method of making an article of footwear with braided upper |
US11333183B2 (en) | 2019-12-18 | 2022-05-17 | The Boeing Company | Sealant pod self-securing insert |
FI129345B (en) | 2019-12-19 | 2021-12-15 | Crisolteq Ltd | Process for treating a regeneration residue from pickling acid |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
RU2744449C1 (ru) | 2019-12-27 | 2021-03-09 | Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) | Кремнийсодержащий активный материал для отрицательного электрода и способ его получения |
US11901580B2 (en) | 2020-01-10 | 2024-02-13 | Lyten, Inc. | Selectively activated metal-air battery |
JP2021116191A (ja) | 2020-01-22 | 2021-08-10 | 昭和電工株式会社 | 複合炭素材料及びリチウムイオン二次電池 |
CA3167076A1 (en) | 2020-02-08 | 2021-08-12 | Randell L. Mills | Magnetohydrodynamic hydrogen electrical power generator |
CN111403701B (zh) | 2020-03-09 | 2022-07-26 | 南京邮电大学 | 一种铁基化合物复合氮掺杂石墨烯钠离子负极电池材料的制备方法 |
FR3108794B1 (fr) | 2020-03-26 | 2025-02-28 | Accumulateurs Fixes | Collecteur de courant amélioré pour batterie |
US11654483B2 (en) | 2020-04-07 | 2023-05-23 | General Electric Company | Method for forming high quality powder for an additive manufacturing process |
CN111342163A (zh) | 2020-04-08 | 2020-06-26 | 江西省科学院应用物理研究所 | 一种废旧锂电池正极活性材料的回收方法 |
CN111515391B (zh) | 2020-04-16 | 2022-12-20 | 陕西斯瑞新材料股份有限公司 | 一种用GRCop-42球形粉打印燃烧室内衬的方法 |
FI129638B (en) | 2020-04-30 | 2022-06-15 | Fortum Oyj | Procedure for recycling components from alkaline batteries |
GB2595761B (en) | 2020-06-03 | 2022-07-13 | Echion Tech Limited | Active electrode material |
JP7289018B1 (ja) | 2020-06-03 | 2023-06-08 | エチオン テクノロジーズ リミテッド | 活電極材料 |
AU2021297476A1 (en) | 2020-06-25 | 2022-12-15 | 6K Inc. | Microcomposite alloy structure |
CA3183874A1 (en) | 2020-06-29 | 2022-01-06 | John C. Brewer | Anodes for lithium-based energy storage devices |
WO2022020528A1 (en) | 2020-07-23 | 2022-01-27 | Lam Research Corporation | Conformal thermal cvd with controlled film properties and high deposition rate |
US20220041457A1 (en) | 2020-08-07 | 2022-02-10 | 6K Inc. | Synthesis of silicon products |
CN111970807A (zh) | 2020-09-17 | 2020-11-20 | 清华苏州环境创新研究院 | 一种基于滑动弧放电激发微波等离子体的装置 |
CN116547068A (zh) | 2020-09-24 | 2023-08-04 | 6K有限公司 | 用于启动等离子体的系统、装置及方法 |
NL2026635B1 (en) | 2020-10-07 | 2022-06-07 | Univ Delft Tech | Integrated manufacturing of core-shell particles for Li-ion batteries |
CN112331947B (zh) | 2020-10-10 | 2021-08-27 | 武汉工程大学 | 一种锂电池回收拆解过程中的锂电池放电方法 |
CN112259740B (zh) | 2020-10-28 | 2021-08-17 | 惠州市竤泰科技有限公司 | 一种锂电池树枝状硅碳复合负极材料及制备方法 |
KR20230095080A (ko) | 2020-10-30 | 2023-06-28 | 6케이 인크. | 구상화 금속 분말을 합성하는 시스템 및 방법 |
KR102396863B1 (ko) | 2020-11-17 | 2022-05-10 | 한국전기연구원 | 황 담지 탄소나노튜브 전극의 제조 방법,이로부터 제조되는 황 담지 탄소나노튜브 전극 및 이를 포함하는 리튬황 전지 |
CN112421006A (zh) | 2020-11-19 | 2021-02-26 | 江苏大学京江学院 | 一种锂离子电池正极材料的制备方法 |
CN112447977A (zh) | 2020-11-23 | 2021-03-05 | 北京工业大学 | Si/C纳米线制造方法、Si/C纳米线锂离子电池电极制造方法 |
CN112421048A (zh) | 2020-11-30 | 2021-02-26 | 成都新柯力化工科技有限公司 | 一种低成本制备石墨包覆纳米硅锂电池负极材料的方法 |
JP2023553115A (ja) | 2020-12-09 | 2023-12-20 | エノビクス・コーポレイション | 電極、電極スタックおよび電池の製造のための装置、システムおよび方法 |
EP4263886A4 (en) | 2020-12-21 | 2025-01-15 | Univ Kingston | RECOVERY OF METALS FROM LITHIUM AND IRON-CONTAINING MATERIALS |
EP4020612A1 (en) | 2020-12-24 | 2022-06-29 | Vito NV | Method for applying a protective layer to an alkali metal or alkali metal alloy surface, and article comprising such protective layer |
CN112768710B (zh) | 2021-01-09 | 2022-04-29 | 广州德百顺蓝钻科技有限公司 | 燃料电池的纳米蓝钻催化剂及制备方法和燃料电池 |
CN112768709A (zh) | 2021-01-09 | 2021-05-07 | 广州市德百顺电气科技有限公司 | 燃料电池的纳米蓝钻颗粒催化剂及制备方法和燃料电池 |
CN112768711B (zh) | 2021-01-09 | 2022-04-29 | 广州德百顺蓝钻科技有限公司 | 燃料电池的表面改性蓝钻催化剂及制备方法和燃料电池 |
JP2024504091A (ja) | 2021-01-11 | 2024-01-30 | シックスケー インコーポレイテッド | マイクロ波プラズマ処理を用いたLiイオンカソード物質の再生利用のための方法及びシステム |
CA3197618A1 (en) | 2021-01-19 | 2022-07-28 | Richard K. Holman | Single crystal cathode materials using microwave plasma processing |
WO2022178265A1 (en) | 2021-02-22 | 2022-08-25 | 6K Inc. | Systems and methods for silicon oxycarbide ceramic materials comprising silicon metal |
US20220324022A1 (en) | 2021-03-31 | 2022-10-13 | 6K Inc. | Microwave plasma processing of spheroidized copper or other metallic powders |
CN113097487B (zh) | 2021-04-01 | 2022-11-22 | 广东凯金新能源科技股份有限公司 | 一种高度致密结构硅碳复合材料、其制备方法及其应用 |
CN113104838A (zh) | 2021-04-30 | 2021-07-13 | 天津工业大学 | 一种等离子体氟掺杂改性γ型石墨单炔碳材料的制备方法 |
US20230001375A1 (en) | 2021-06-30 | 2023-01-05 | 6K Inc. | Systems, methods, and devices for producing a material with desired characteristics using microwave plasma |
US20230032362A1 (en) | 2021-07-30 | 2023-02-02 | 6K Inc. | Lithium lanthanum zirconium oxide (llzo) materials |
CN113871581B (zh) | 2021-08-16 | 2023-03-03 | 广东轻工职业技术学院 | 一种电子密度调控锰酸锌石墨烯正极材料、化学自充电水系锌离子电池及制备方法与应用 |
KR20230026568A (ko) | 2021-08-17 | 2023-02-27 | 한양대학교 산학협력단 | 전고체전지용 양극 및 이를 포함하는 전고체전지 |
US11461298B1 (en) | 2021-08-20 | 2022-10-04 | ActionIQ, Inc. | Scoring parameter generation for identity resolution |
CN113764688B (zh) | 2021-08-27 | 2024-02-06 | 北京工业大学 | 一种三维碳结构负载GaN催化剂及其制备方法 |
WO2023137262A1 (en) | 2022-01-11 | 2023-07-20 | 6K Inc. | Systems and methods for rejuvenation of copper alloy |
CN114388822B (zh) | 2022-01-11 | 2024-02-09 | 华东师范大学重庆研究院 | 一种铝空气电池阴极C@Ni@MnO2催化材料及其制备方法 |
US20230247751A1 (en) | 2022-02-02 | 2023-08-03 | 6K Inc. | Microwave plasma apparatus and methods for processing feed material utiziling multiple microwave plasma applicators |
CN114744315B (zh) | 2022-03-09 | 2024-11-01 | 昆明理工大学 | 一种废旧磷酸铁锂正极材料直接再生方法 |
JP2023138441A (ja) | 2022-03-18 | 2023-10-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | ギャップフィル流体を成膜させる方法ならびに関連するシステムおよび装置 |
CN114824297A (zh) | 2022-03-25 | 2022-07-29 | 北京纳斯特克纳米科技有限责任公司 | 应用于液流储能电池中高性能泡沫碳电极材料制备方法 |
US12261023B2 (en) | 2022-05-23 | 2025-03-25 | 6K Inc. | Microwave plasma apparatus and methods for processing materials using an interior liner |
CN115394976A (zh) | 2022-08-04 | 2022-11-25 | 广东邦普循环科技有限公司 | 一种正极材料的制备方法及其应用 |
-
2022
- 2022-03-28 EP EP22781979.4A patent/EP4313449A1/en active Pending
- 2022-03-28 US US17/656,836 patent/US12042861B2/en active Active
- 2022-03-28 CN CN202280027464.4A patent/CN117120182A/zh active Pending
- 2022-03-28 KR KR1020237036951A patent/KR20230164699A/ko active Pending
- 2022-03-28 WO PCT/US2022/022214 patent/WO2022212291A1/en active Application Filing
- 2022-03-28 CA CA3214233A patent/CA3214233A1/en active Pending
- 2022-03-28 AU AU2022246797A patent/AU2022246797A1/en active Pending
- 2022-03-28 JP JP2023560701A patent/JP2024515034A/ja active Pending
- 2022-03-30 TW TW111112201A patent/TW202302251A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN117120182A (zh) | 2023-11-24 |
JP2024515034A (ja) | 2024-04-04 |
US12042861B2 (en) | 2024-07-23 |
CA3214233A1 (en) | 2022-10-06 |
KR20230164699A (ko) | 2023-12-04 |
US20220314325A1 (en) | 2022-10-06 |
WO2022212291A1 (en) | 2022-10-06 |
AU2022246797A1 (en) | 2023-10-05 |
EP4313449A1 (en) | 2024-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202302251A (zh) | 用於金屬氮化物陶瓷之積層製造之系統及方法 | |
TW202218774A (zh) | 用於合成球狀金屬粉末之系統及方法 | |
TWI845665B (zh) | 由機械合金進料製造球狀粉末之方法 | |
TW202302249A (zh) | 球狀化銅或其他金屬粉末之微波電漿處理 | |
KR102432787B1 (ko) | Ods 합금 분말, 플라즈마 처리에 의한 이의 제조 방법, 및 그 용도 | |
Zhevtun et al. | Micro-and nanoporous structure formed on the titanium surface by laser treatment | |
Amado | Characterization of TiNb Alloys Obtained in situ by Laser Metal Deposition |