[go: up one dir, main page]

ES2720160T3 - Anticuerpos monoclonales humanos contra muerte programada 1(PD-1) y métodos para tratar el cáncer usando anticuerpos dirigidos contra PD-1 solos o junto con otras sustancias inmunoterapéuticas - Google Patents

Anticuerpos monoclonales humanos contra muerte programada 1(PD-1) y métodos para tratar el cáncer usando anticuerpos dirigidos contra PD-1 solos o junto con otras sustancias inmunoterapéuticas Download PDF

Info

Publication number
ES2720160T3
ES2720160T3 ES11178191T ES11178191T ES2720160T3 ES 2720160 T3 ES2720160 T3 ES 2720160T3 ES 11178191 T ES11178191 T ES 11178191T ES 11178191 T ES11178191 T ES 11178191T ES 2720160 T3 ES2720160 T3 ES 2720160T3
Authority
ES
Spain
Prior art keywords
directed against
antibody
cancer
antibody directed
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES11178191T
Other languages
English (en)
Inventor
Mohan Srinivasan
Changyu Wang
Mark Selby
Bing Chen
Josephine Cardarelli
Alan Korman
Haichun Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Pharmaceutical Co Ltd
ER Squibb and Sons LLC
Original Assignee
Ono Pharmaceutical Co Ltd
ER Squibb and Sons LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37396674&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2720160(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ono Pharmaceutical Co Ltd, ER Squibb and Sons LLC filed Critical Ono Pharmaceutical Co Ltd
Application granted granted Critical
Publication of ES2720160T3 publication Critical patent/ES2720160T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/74Inducing cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Un anticuerpo monoclonal, o una porcion de union a antigeno del mismo, que se une especificamente a la proteina Muerte programada 1 (PD-1) humana y comprende una region variable de cadena pesada que comprende aminoacidos que tienen la secuencia definida en la SEQ ID NO:4 y una region variable de cadena ligera que comprende aminoacidos que tienen la secuencia definida en la SEQ ID NO: 11; para su uso en un metodo para tratar un cancer en un sujeto junto con un anticuerpo monoclonal, o una porcion de union a antigeno del mismo, que se une especificamente a CTLA-4 humano.

Description

DESCRIPCIÓN
Anticuerpos monoclonales humanos contra muerte programada 1(PD-1) y métodos para tratar el cáncer usando anticuerpos dirigidos contra PD-1 solos o junto con otras sustancias inmunoterapéuticas
Campo técnico
La presente invención se refiere de forma general a la inmunoterapia en el tratamiento de enfermedades humanas y a la reducción de eventos adversos relacionados con las mismas. Más concretamente, la presente invención se refiere al uso de inmunoterapia de combinación, en particular la combinación de anticuerpos dirigidos contra -CTLA-4 y contra PD-1, para tratar el cáncer y/o para disminuir la incidencia o la magnitud de efectos adversos relacionados con el tratamiento con dichos anticuerpos individualmente.
Antecedentes de la invención
La proteína Muerte programada 1 (PD-1) es un miembro inhibidor de la familia de receptores CD28, que también incluye CD28, CTLA-4, ICOS y BTLA. PD-1 se expresa en linfocitos B activados, linfocitos T, y células mieloides (Agata et al., citado anteriormente, Okazaki et al. (2002) Curr. Opin. Immunol 14: 391779-82; Bennett et al. (2003) J Immunol 170:711- 8). Los miembros iniciales de la familia, CD28 e ICOS, se descubrieron por sus efectos funcionales sobre el aumento de la proliferación de células T después de la adición de anticuerpos monoclonales (Hutloff et al. (1999) Nature 397:263-266: Hansen et al. (1980) Immunogenics 10:247- 260). PD-1 se descubrió a través de cribado selectivo de la expresión diferencial en las células apoptóticas (Ishida et al. (1992) EMBO J 11:3887-95). Los otros miembros de la familia, CTLA-4 y BTLA, se descubrieron mediante cribado selectivo de la expresión diferencial en linfocitos T citotóxicos y células TH1, respectivamente. CD28, ICOS y CTLA-4 tienen, todos ellos, un resto de cisteína no emparejado que permite la homodimerización. Por el contrario, se sugiere que PD-1 existe como monómero, careciendo del resto de cisteína no emparejado característico de otros miembros de la familia de CD28.
El gen de PD-1 es una proteína transmembrana de tipo I de 55 kDa que forma parte de la superfamilia del gen de Ig (Agata et al. (1996) Int Immunol 8:765-72). PD-1 contiene un motivo inhibidor del inmunorreceptor de tirosina proximal de la membrana (ITIM) y un motivo de conmutación basado en tirosina distal de la membrana (ITSM) (Thomas, M.L. (1995) J Exp Med 181:1953-6: Vivier, E y Daeron, M (1997) Immunol Today 18:286-91). Aunque estructuralmente similar a CTLA-4, PD-1 carece del motivo MYPPPY que es fundamental para la unión a B7-1 y B7-2. Se han identificado dos ligandos para PD-1, PD-L1 y PD-L2, que han mostrado regular de forma defectiva la activación de linfocitos T después de su unión a PD-1 (Freeman et al. (2000) J Exp Med 192:1027-34: Latchman et al. (2001) Nat Immunol 2:261-8; Carter et al. (2002) Eur J Immunol 32:634-43). Tanto PD-L1 como PD-L2 son homólogos de B7 que se unen a PD-1, pero no se unen a otros miembros de la familia de CD28. Un ligando de PD-1, PD-L1, es abundante en diversos cánceres humanos (Dong et al. (2002) Nat. Med.Nat. Med 8:787-9). La interacción entre PD-1 y PD-L1 da como resultado una disminución de linfocitos infiltrantes de tumores, una disminución de la proliferación mediada por receptores de células T y una evasión inmunitaria de las células cancerosas (Dong et al. (2003) J Mol. Med. 81:281-7; Blank el al. (2005) Cancer Immunol. Immunother. 54:307-314: Konishi et al. (2004) Clin. Cancer Res. 10:5094-100). La supresión inmunitaria se puede revertir por inhibición de la interacción local de PD-1 con PD-L1, y el efecto es aditivo cuando la interacción de PD-1 con PD-L2 también se bloquea (Iwai et al. (2002) Proc. Nat'l. Acad. Sci USA 99:12293-7; Brown et al. (2003) J. Immunol. 170:1257-66).
PD-1 es un miembro inhibidor de la familia de CD28 que se expresa en linfocitos B activados, linfocitos T, y células mieloides (Agata et al., más arriba, Okazaki et al. (2002) Curr Opin Immunol 14: 391779-82; Bennett et al. (2003) J Immunol 170:711-8). Los animales con deficiencia de PD-1 desarrollan varios fenotipos autoinmunitarios, incluyendo miocardiopatía autoinmunitaria y un síndrome de tipo lupus con artritis y nefritis (Nishimura et al. (1999) Immunity 11:141-51; Nishimura et al. (2001) Science 291:319-22), De manera adicional, se ha descubierto que PD-1 desempeña un papel en la encefalomielitis autoinmunitaria, lupus eritematoso sistémico, enfermedad del injerto contra el hospedador (EICH), diabetes tipo I y artritis reumatoide (Salama et al. (2003) J Exp Med 198:71-78: Prokunina y Alarcon-Riquelme (2004) Hum Mol Genet 13:R143; Nielsen et al. (2004) Lupus 13:510). En una línea tumoral de línea de linfocitos B murinos, se demostró que el ITSM de PD-1 era esencial para bloquear el flujo de Ca2+ mediado por BCR y la fosforilación con tirosina de las moléculas efectoras posteriores (Okazaki et al. (2001) PNAS 98:13866-71).
En consecuencia, se desean agentes que reconocen PD-1, y métodos para utilizar dichos agentes.
Divulgación de la invención
La presente divulgación proporciona anticuerpos monoclonales aislados, en particular anticuerpos monoclonales humanos, que se unen a PD-1 y que presentan numerosas propiedades deseables. Estas propiedades incluyen, por ejemplo, unión de alta afinidad con PD-1 humana, pero que carecen de reactividad cruzada con cualquiera de CD28, CTLA-4 o ICOS humanas. Adicionalmente, se ha demostrado que los anticuerpos de la divulgación modulan las respuestas inmunitarias. En consecuencia, otro aspecto de la divulgación se refiere a métodos para modular respuestas inmunitarias utilizando anticuerpos dirigidos contra PD-1. En particular, la divulgación proporciona un método para inhibir el crecimiento de células tumorales in vivo usando anticuerpos dirigidos contra PD-1.
De acuerdo con la presente invención, se proporciona un anticuerpo monoclonal, o un fragmento de unión a antígeno del mismo, que se une específicamente a la proteína Muerte programada 1 (PD-1) humana y comprende una región variable de cadena pesada que comprende aminoácidos que tienen la secuencia definida en la SEQ ID NO:4 y una región variable de cadena ligera que comprende aminoácidos que tienen la secuencia definida en la SEQ ID NO: 11; para su uso en un método para tratar el cáncer en un sujeto junto con un anticuerpo monoclonal, o una porción de unión a antígeno del mismo, que se une específicamente a CTLA-4 humano.
En un aspecto, La divulgación se refiere a un anticuerpo monoclonal aislado, o una porción de unión a antígeno del mismo, en el que el anticuerpo presenta al menos una de las siguientes propiedades:
(a) se une a PD-1 humana con una Kd de 1 x 10-7 M o menos;
(b) no se une prácticamente a CD28, CTLA-4 o ICOS humanos;
(c) aumenta la proliferación de linfocitos T en un ensayo de reacción mixta de linfocitos (MLR);
(d) aumenta la producción de interferón gamma en un ensayo MLR;
(e) aumenta la secreción de IL-2 en un ensayo MLR;
(f) se une PD-1 humana y a PD-1 de macaco;
(g) inhibe la unión de PD-L1 y/o PD-L2 a PD-1;
(h) estimula las respuestas de memoria específicas de antígeno;
(i) estimula las respuestas de anticuerpos;
(j) inhibe el crecimiento de células tumorales in vivo.
Preferentemente, el anticuerpo es un anticuerpo humano, aunque en una divulgación alternativa, el anticuerpo puede ser, por ejemplo, un anticuerpo murino, un anticuerpo quimérico o un anticuerpo humanizado.
En ejemplos más preferidos, el anticuerpo se une a la PD-1 humana con una Kd de 5 x 10-8 M o menos, se une a PD-1 humana con una Kd de 1 x 10-8 M o menos, se une a la PD-1 humana con una Kd de 5 x 10-9 M o menos, o se une a la PD-1 humana con una Kd de entre 1 x10-8 M y 1 x 10-10M.
Los anticuerpos para su uso en la invención pueden ser, por ejemplo, anticuerpos de longitud completa, por ejemplo, de un isotipo IgG1 o IgG4. Como alternativa, los anticuerpos pueden ser fragmentos de anticuerpos, tales como fragmentos Fab, o Fab'2, o anticuerpos monocatenarios.
La divulgación también proporciona un inmunoconjugado que comprende un anticuerpo de la divulgación, o una porción de unión a antígeno del mismo, unido a un agente terapéutico, tal como una citotoxina o un isótopo radioactivo. La divulgación también proporciona una molécula biespecífica que comprende un anticuerpo, o porción de unión a antígeno del mismo, de la divulgación, unido a un segundo resto funcional que tiene una especificidad de unión diferente a la de dicho anticuerpo, o porción de unión a antígeno del mismo.
También se proporcionan composiciones que comprenden un anticuerpo, o porciones de unión a antígeno del mismo, o inmunoconjugado o molécula biespecífica de la divulgación, y un vehículo farmacéuticamente aceptable.
Breve descripción de los dibujos
La Figura 1A muestra la secuencia de nucleótidos (SEQ ID NO:57) y la secuencia de aminoácidos (SEQ ID NO:1) de la región variable de la cadena pesada del anticuerpo monoclonal humano 17D8. Las regiones CDR1 (SEQ ID NO:15), CDR2 (SEQ ID NO:22) y CDR3 (SEQ ID NO:29) están resaltadas, y se indican las derivaciones V, D, y J de la línea germinal.
La Figura 1B muestra la secuencia de nucleótidos (SEQ ID NO:64) y la secuencia de aminoácidos (SEQ ID NO:8) de la región variable de la cadena ligera del anticuerpo monoclonal humano 17D8. Las regiones CDR1 (SEQ ID NO:36), CDR2 (SEQ ID NO:43) y CDR3 (SEQ ID nO:50) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 2A muestra la secuencia de nucleótidos (SEQ ID NO:58) y la secuencia de aminoácidos (SEQ ID NO:2) de la región variable de la cadena pesada del anticuerpo monoclonal humano 2D3. Las regiones CDR1 (SEQ ID NO:16), CDR2 (SEQ ID NO:23) y CDR3 (SEQ ID NO:30) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 2B muestra la secuencia de nucleótidos (SEQ ID NO:65) y la secuencia de aminoácidos (SEQ ID NO:9) de la región variable de la cadena ligera del anticuerpo monoclonal humano 2D3. Las regiones CDR1 (SEQ ID NO: 37), CDR2 (SEQ ID NO:44) y CDR3 (SEQ ID NO:51) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 3A muestra la secuencia de nucleótidos (SEQ ID NO:59) y la secuencia de aminoácidos (SEQ ID NO:3) de la región variable de la cadena pesada del anticuerpo monoclonal humano 4H1. Las regiones CDR1 (SEQ ID NO:17), CDR2 (SEQ ID NO:24) y CDR3 (SEQ ID NO:31) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 3B muestra la secuencia de nucleótidos (SEQ ID NO:66) y la secuencia de aminoácidos (SEQ ID NO:10) de la región variable de la cadena ligera del anticuerpo monoclonal humano 4H1. Las regiones CDR1 (SEQ ID NO:38), CDR2 (SEQ ID NO:45) y CDR3 (SEQ ID NO: 52) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 4A muestra la secuencia de nucleótidos (SEQ ID NO:60) y la secuencia de aminoácidos (SEQ ID NO:4) de la región variable de la cadena pesada del anticuerpo monoclonal humano 5C4. Las regiones CDR1 (SEQ ID NO:18), CDR2 (SEQ ID NO:25) y CDR3 (SEQ ID NO:32) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 4B muestra la secuencia de nucleótidos (SEQ ID NO:67) y la secuencia de aminoácidos (SEQ ID NO:11) de la región variable de la cadena ligera del anticuerpo monoclonal humano 5C4. Las regiones CDR1 (SEQ ID NO:39), CDR2 (SEQ ID NO:46) y CDR3 (SEQ ID NO:53) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 5A muestra la secuencia de nucleótidos (SEQ ID NO:61) y la secuencia de aminoácidos (SEQ ID NO:5) de la región variable de la cadena pesada del anticuerpo monoclonal humano 4A11. Las regiones CDR1 (SEQ ID NO:19), CDR2 (SEQ-3D NO: 26) y CDR3 (SEQ ID NO: 33) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 5B muestra la secuencia de nucleótidos (SEQ ID NO:68) y la secuencia de aminoácidos (SEQ ID NO:12) de la región variable de la cadena ligera del anticuerpo monoclonal humano 4All. Las regiones CDR1 (SEQ ID NO:40), CDR2 (SEQ ID NO:47) y CDR3 (SEQ ID NO:54) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 6A muestra la secuencia de nucleótidos (SEQ ID NO:62) y la secuencia de aminoácidos (SEQ ID NO:6) de la región variable de la cadena pesada del anticuerpo monoclonal humano 7D3. Las regiones CDR1 (SEQ ID NO:20), CDR2 (SEQ ID NO:27) y CDR3 (SEQ ID NO:34) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 6B muestra la secuencia de nucleótidos (SEQ ID NO:69) y la secuencia de aminoácidos (SEQ ID NO:13) de la región variable de la cadena ligera del anticuerpo monoclonal humano 7D3. Las regiones CDR1 (SEQ ID NO:41), CDR2 (SEQ ID NO:48) y CDR3 (SEQ ID NO:55) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 7A muestra la secuencia de nucleótidos (SEQ ID NO:63) y la secuencia de aminoácidos (SEQ 3D NO: 7) de la región variable de la cadena pesada del anticuerpo monoclonal humano 5F4. Las regiones CDR1 (SEQ iD NO:21), CDR2 (SEQ ID NO:28) y Cd R3 (SEQ ID NO:35) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 7B muestra la secuencia de nucleótidos (SEQ ID NO:70) y la secuencia de aminoácidos (SEQ ID NO:14) de la región variable de la cadena ligera del anticuerpo monoclonal humano 5F4. Las regiones CDR1 (SEQ ID NO:42), CDR2 (SEQ 3D NO: 49) y CDR3 (SEQ ID NO: 56) están resaltadas, y se indican las derivaciones V y J de la línea germinal.
La Figura 8 muestra el alineamiento de la secuencia de aminoácidos de las regiones variables de cadena pesada de 17D8, 2D3, 4H1, 5C4 y 7D3 con la secuencia de aminoácidos de Vh 3-33 de la línea germinal humana (SEQ ID NO:71).
La Figura 9 muestra el alineamiento de la secuencia de aminoácidos de las regiones variables de cadena ligera de 17D8, 2D3 y 7D3 con la secuencia de aminoácidos de Vk L6 de la línea germinal humana (SEQ ID NO:73). La Figura 10 muestra el alineamiento de la secuencia de aminoácidos de la región variable de la cadena ligera de 4H1 y 5C4 con la secuencia de aminoácidos de Vk L6 de la línea germinal humana (SEQ ID NO: 73).
La Figura 11 muestra el alineamiento de la secuencia de aminoácidos de la región variable de la cadena pesada de 4A11 y 5F4 con la secuencia de aminoácidos de Vh 4-39 de la línea germinal humana (SEQ ID NO:72). La Figura 12 muestra el alineamiento de la secuencia de aminoácidos de las regiones variables de cadena ligera de 4A11 y 5F4 con la secuencia de aminoácidos de Vk L15 de la línea germinal humana (SEQ ID NO:74).
Las Figuras 13A-13B muestran los resultados de los experimentos de citometría de flujo que demuestran que los anticuerpos monoclonales humanos 5C4 y 4H1, dirigidos contra PD-1 humana, se unen a la superficie celular de células CHO transfectadas con la PD-1 humana de longitud completa. La Figura 13A muestra la representación gráfica de citometría de flujo para 5C4. La Figura 13B muestra la representación gráfica de citometría de flujo para 4H1. La línea fina representa la unión a células CHO y la línea gruesa representa la unión a células CHO bPD-1.
La Figura 14 muestra un gráfico que demuestra que los anticuerpos monoclonales humanos 17D8, 2D3, 4H1, 5C4, y 4A11, dirigidos contra PD-1 humana, se unen específicamente a PD-1, y no a otros miembros de la familia CD28.
Las Figuras 15A-15C muestran los resultados de los experimentos de citometría de flujo que demuestran que los anticuerpos monoclonales humanos 4H1 y 5C4, dirigidos contra PD-1 humana, se unen a PD-1 sobre la superficie celular. La Figura 15A muestra la unión a linfocitos T humanos activados. La Figura 15B muestra la unión a linfocitos T de macaco. La Figura 15C muestra la unión a células CHO transfectadas que expresan PD-1. Las Figuras 16A-16C muestran los resultados de experimentos que demuestran que los anticuerpos monoclonales humanos dirigidos contra PD-1 estimulan la proliferación de linfocitos T, la secreción de IFN-gamma, y la secreción de IL-2 en una ensayo de reacción de linfocitos mixtos. La Figura 16A es un gráfico de barras que muestra la proliferación de linfocitos T dependiente de la concentración; La Figura 16B es un gráfico de barras que muestra la secreción de IFN-gamma dependiente de la concentración; La Figura 16C es un gráfico de barras que muestra la secreción de IL-2 dependiente de la concentración.
Las Figuras 17A-17B muestran los resultados de experimentos de citometría de flujo que demuestran que los anticuerpos monoclonales humanos contra PD-1 humana bloquean la unión de PD-L1 y PD-L2 a células CHO transfectadas que expresan PD-1. La Figura 17A es un gráfico que muestra la inhibición de la unión de PD-L1;
La Figura 17B es un gráfico que muestra la inhibición de la unión de PD-L2.
La Figura 18 muestra los resultados de experimentos de citometría de flujo que demuestran que los anticuerpos monoclonales humanos contra PD-1 no estimulan la apoptosis de linfocitos T.
La Figura 19 muestra los resultados de experimentos que demuestran que los HuMab dirigidos contra PD-1 tienen un efecto dependiente de la concentración sobre la secreción de IFN gamma por las PBMC de donantes positivos para el CMV cuando los PBMC se estimularon con un lisado de CMV y anticuerpo dirigido contra PD-1.
La Figura 20 muestra los resultados de experimentos de crecimiento tumoral; en un sistema modelo en ratón que demuestran que el tratamiento de tumores de ratón in vivo con anticuerpos dirigidos contra PD-1 inhibe el crecimiento de los tumores.
Las Figuras 21A a 21D muestran el volumen del tumor con el tiempo en ratones individuales que recibieron implantes con células tumorales de colon MC38 (PD-L1-) y que el mismo día se trataron con una de las siguientes terapias: (A) IgG de ratón (control), (B) anticuerpo dirigido contra CTLA-4, (C) anticuerpo dirigido contra PD-1, y (D) anticuerpo dirigido contra Ct LA-4 y anticuerpo dirigido contra PD-1. Los ratones recibieron posteriormente tratamientos con anticuerpos los días 3, 6 y 10 como se describe en el Ejemplo 13, y el volumen tumoral se controló durante 60 días.
La Figura 22 muestra el volumen tumoral medio de los ratones mostrado en la Figura 21.
La Figura 23 muestra la mediana del volumen tumoral de los ratones mostrado en la Figura 21.
Las Figuras 24A a 24D muestran el volumen del tumor con el tiempo en ratones individuales que recibieron implantes con células tumorales de colon MC38 (PD-L1-) y que una semana después se trataron con una de las siguientes terapias: (A) IgG de ratón (control), (B) anticuerpo dirigido contra CTLA-4, (C) anticuerpo dirigido contra PD-1, y (D) anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1. El volumen tumoral el primer día de tratamiento fue de aproximadamente 315 mm3. Los ratones recibieron posteriormente tratamientos con anticuerpos los días 3, 6 y 10 como se describe en el Ejemplo 14.
La Figura 25 muestra el volumen tumoral medio de los ratones mostrado en la Figura 24.
La Figura 26 muestra la mediana del volumen tumoral de los ratones mostrado en la Figura 24.
La Figura 27 muestra el volumen tumoral medio con el tiempo en ratones individuales que recibieron implantes de células tumorales de colon MC38 (PD-L1-) (día -7) y posteriormente se trataron los días 0, 3, 6 y 10 después del implante (como se describe en el Ejemplo 15) con una de las siguientes terapias: (A) IgG de ratón como control (20 mg/kg, X20) (B) anticuerpo dirigido contra PD-1 (10 mg/kg) e IgG de ratón IgG (10 mg/kg) (P10X10), (C) anticuerpo dirigido contra CTLA-4 (10 mg/kg) e IgG de ratón (10 mg/kg) (C10X10), (D) anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 (10 mg/kg cada uno) (C10P10), (E) anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 (3 mg/kg cada uno) (C3P3), and (F) anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 (1 mg/kg cada uno) (C1P1). Dos grupos de ratones se trataron con cada anticuerpo secuencialmente de la siguiente forma: (G) anticuerpo dirigido contra CTLA-4 (10 mg/kg, día 0), anticuerpo dirigido contra CTLA-4 (10 mg/kg, día 3), anticuerpo dirigido contra PD-1 (10 mg/kg, día 6), y anticuerpo dirigido contra PD-1 (10 mg/kg, día 10) (C10C10P10P10); y (H) anticuerpo dirigido contra PD-1 (10 mg/kg, día 0), anticuerpo dirigido contra PD-1 (10 mg/kg, día 3), anticuerpo dirigido contra CTLA-4 (10 mg/kg, día 6), y anticuerpo dirigido contra CTLA-4 (10 mg/kg, día 10) (10 mg/kg, día 10) (P10P10C10C10).
La Figura 28 muestra el volumen tumoral medio de los ratones mostrado en la Figura 27.
La Figura 29 muestra la mediana del volumen tumoral de los ratones mostrado en la Figura 27.
Las Figuras 30A a 30F muestran el volumen del tumor con el tiempo en ratones individuales que recibieron implantes con células de fibrosarcoma SA1/N (PD-L1-) y que un día después se trataron con una de las siguientes terapias: (A) PBS (control con vehículo), (B) IgG de ratón (control con anticuerpo, 10 mg/kg), (C) anticuerpo dirigido contra PD-1 (10 mg/kg), (D) anticuerpo dirigido contra CTLA-4 (10 mg/kg), (E) anticuerpo dirigido contra CTLA-4 (0,2 mg/kg), y (F) anticuerpo dirigido contra PD-1 (10 mg/kg) y anticuerpo dirigido contra CTLA-4 (0,2 mg/kg). Los ratones recibieron posteriormente tratamientos con anticuerpos los días 4, 7 y 11 como se describe en el Ejemplo 16, y el volumen tumoral se controló durante 41 días.
La Figura 31 muestra el volumen tumoral medio de los ratones mostrado en la Figura 29.
La Figura 32 muestra la mediana del volumen tumoral de los ratones mostrado en la Figura 29.
Las Figuras 33A a 33J muestran muestra el volumen tumoral con el tiempo en ratones individuales que recibieron implantes de células de fibrosarcoma SA1/N (PD-1L) y posteriormente se trataron los días 7, 10, 13 y 17 después del implante (como se describe en el Ejemplo 17) con una de las siguientes terapias: (A) PBS (control con vehículo), (B) IgG de ratón (control con anticuerpo, 10 mg/kg), (C) anticuerpo dirigido contra CTLA-4 (0,25 mg/kg), (D) anticuerpo dirigido contra CTLA-4 (0,5 mg/kg), (E) anticuerpo dirigido contra CTLA-4 (5 mg/kg), (F) anticuerpo dirigido contra PD-1 (3 mg/kg), (G) anticuerpo dirigido contra PD-1 (10 mg/kg), (H) anticuerpo dirigido contra PD-1 (10 mg/kg) y anticuerpo dirigido contra CTLA-4 (0,25 mg/kg), (I) anticuerpo dirigido contra PD-1 (10 mg/kg) y anticuerpo dirigido contra CTLA-4 (0,5 mg/kg), y (F) anticuerpo dirigido contra PD-1 (3 mg/kg) y anticuerpo dirigido contra CTLA-4 (0,5 mg/kg). El volumen tumoral el primer día de tratamiento fue de aproximadamente 110 mm3.
La Figura 34 muestra el volumen tumoral medio de los ratones mostrado en la Figura 33.
La Figura 35 muestra la mediana del volumen tumoral de los ratones mostrado en la Figura 33.
Las Figuras 36A y 36B muestran muestra el volumen tumoral con el tiempo en ratones individuales que recibieron implantes de células de fibrosarcoma SA1/N (PD-L1-) y posteriormente se trataron los días 10, 13, 16 y 19 después del implante (como se describe en el Ejemplo 17) con una de las siguientes terapias: (A) IgG de ratón (control con anticuerpo, 10 mg/kg) o (B) anticuerpo dirigido contra PD-1 (10 mg/kg) y anticuerpo dirigido contra CTLA-4 (1 mg/kg). El volumen tumoral el primer día de tratamiento fue de aproximadamente 250 mm3. La Figura 37 muestra el volumen tumoral medio de los ratones mostrado en la Figura 36.
La Figura 38 muestra la mediana del volumen tumoral de los ratones mostrado en la Figura 36.
La Figura 39 la media y la mediana del porcentaje de inhibición del tumor calculado a partir de los volúmenes tumorales mostrados en las Figuras 33 y 36.
Las Figuras 40A a 40D muestran el volumen tumoral en ratones BALB/c que recibieron un implante subcutáneo de células de adenocarcinoma renal RENCA (PD-L1+) (Murphy y Hrushesky (1973) J Nat’l. Cáncer Res. 50:1013-1025) (día -12) y posteriormente se trataron por vía intraperitoneal los días 0, 3, 6 y 9 después del implante con una de las siguientes terapias: (A) IgG de ratón (control con anticuerpo, 20 mg/kg), (B) anticuerpo dirigido contra PD-1 (10 mg/kg), (C) anticuerpo dirigido contra CTLA-4 (10 mg/kg), y (D) anticuerpo dirigido contra PD-1 (10 mg/kg) junto con anticuerpo dirigido contra CTLA-4 (10 mg/kg). El volumen tumoral el primer día de tratamiento fue de aproximadamente 115 mm3.
La Figura 41 muestra que la unión de la proteína de fusión PD-L2-Fc de ratón a PD-1 de ratón (mPD-1) se bloquea con el anticuerpo dirigido contra mPD-1,4H2, de una forma dependiente de la dosis. La unión se detecta por medición de la fluorescencia de un anticuerpo de burro dirigido contra IgG de rata marcado con FITC mediante ELISA. Cuanto mayor sea la IMF (intensidad de fluorescencia promedio) mayor es la unión.
La Figura 42 muestra las curvas de unión de anticuerpos dirigidos contra mPD-1 a la proteína de fusión mPD-1-Fc inmovilizada mediante ELISA.
La Figura 43 muestra la curva de unión del anticuerpo dirigido contra mPD-1 de rata, 4H2.B3, a células CHO que expresaban mPD-1-. La unión se detectó mediante un anticuerpo de burro dirigido contra IgG de rata, conjugado con FITC, y medición con FACS (MFI).
La Figura 44 muestra la curva de unión de la proteína de fusión mPD-L1-hFc a células CHO que expresaban mPD-1- en presencia de concentraciones crecientes del anticuerpo dirigido contra mPD-1, 4H2.B3. La unión se detectó mediante un anticuerpo de cabra dirigido contra IgG humana, conjugado con FITC, y medición con FACS (MFI).
La Figura 45 muestra las curvas de unión de anticuerpo de rata dirigido contra mPD-1, 4H2.B3, a células CHO que expresaban mPD-1- en comparación con el anticuerpo quimérico de rata:ratón dirigido contra mPD-1,4H2. La Figura 46 muestra las curvas de unión de la proteína de fusión mPD-L1-hFc a células CHO que expresaban mPD-1- en presencia de concentraciones crecientes del bien anticuerpo de rata dirigido contra mPD-1,4H2.B3, o del anticuerpo quimérico de rata:ratón dirigido contra mPD-1,4H2.
La Figura 47 muestra el volumen tumoral promedio de ratones sin tumor previamente tratados con anticuerpo dirigido contra PD1, y vueltos a estimular con células de fibrosarcoma SAl/N (PD-L1-). También se muestra el volumen tumoral medio de ratones no expuestos al tratamiento (control, anteriormente no estimulados ni tratados) con implante de células de fibrosarcoma SAl/N.
La Figura 48 muestra el volumen tumoral con el tiempo para los ratones individuales, que sobrevivieron sin tumor después del implante de células tumorales de colon MC38 (PD-L1-) y tratamiento con un anticuerpo dirigido contra PD1, o una combinación de anticuerpo dirigido contra PD1 y un anticuerpo dirigido contra CTLA-4), vueltos a estimular con 10x células tumorales de colon MC38 más que en el tratamiento inicial. También se muestra el volumen tumoral medio de ratones no expuestos al tratamiento (control, anteriormente no estimulados ni tratados) con implante de células tumorales de colon MC38.
La Figura 49 muestra el volumen tumoral medio de los ratones mostrado en la Figura 48.
La Figura 50 muestra el volumen tumoral medio con el tiempo en ratones individuales que recibieron un implante con células tumorales de colon CT26.
Las Figuras 51A-B muestran los resultados de experimentos que demuestran que los anticuerpos monoclonales humanos dirigidos contra PD-1 estimulan la proliferación de linfocitos T, y la secreción de IFN-gamma en células que contienen linfocitos T reguladores. La Figura 50A es un gráfico de barras que muestra la proliferación de linfocitos T dependiente de la concentración usando el HuMab 5C4; La Figura 50b es un gráfico de barras que muestra la secreción de IFN-gamma dependiente de la concentración usando el HuMab 5C4.
Las Figuras 52A-B muestran los resultados de experimentos que demuestran que los anticuerpos monoclonales humanos dirigidos contra PD-1 estimulan la proliferación de linfocitos T, y la secreción de IFN-gamma en cultivos que contienen linfocitos T activados. La Figura 51A es un gráfico de barras que muestra la proliferación de linfocitos T dependiente de la concentración usando el HuMab 5C4; La Figura 51B es un gráfico de barras que muestra la secreción de IFN-gamma dependiente de la concentración usando el HuMab 5C4.
La Figura 53 muestra los resultados de un ensayos de citotoxicidad celular dependiente de anticuerpo (ADCC) que demuestra que los anticuerpos monoclonales humanos dirigidos contra PD-1 destruyen los linfocitos T humanos activados de una forma dependiente de la concentración de ADCC respecto a la región Fc del anticuerpo dirigido contra PD-1.
La Figura 54 muestra los resultados de un ensayos de citotoxicidad dependiente del complemento (CDC) que demuestra que los anticuerpos monoclonales dirigidos contra PD-1 no destruyen los linfocitos T humanos activados de una forma dependiente de la concentración de CDC.
Mejor modo para llevar a cabo la invención
En un aspecto, la presente divulgación se refiere a anticuerpos monoclonales aislados, especialmente anticuerpos monoclonales humanos, que se unen específicamente a PD-1. En determinados aspectos, los anticuerpos de la divulgación presentan una o más propiedades funcionales deseables, tales como elevada afinidad de unión a PD-1, falta de reactividad cruzada con otros miembros de la familia de CD28, la capacidad de estimular la proliferación de linfocitos T, secreción de IFN-y y/o de IL-2 en reacciones de linfocitos mixtos, la capacidad de inhibir la unión de uno 0 más ligandos de PD-1 (por ejemplo, PD-L1 y/o PD-L2), la capacidad de reaccionar de forma cruzada con PD-1 de macaco, la capacidad de estimular las respuestas de memoria específicas de antígeno y/o la capacidad de inhibir el crecimiento de células tumorales in vivo. De manera adicional o alternativa, los anticuerpos de la divulgación se derivan de secuencias específicas de las cadenas ligeras y pesadas de la línea germinal y/o comprenden rasgos estructurales específicos tales como regiones CDR que comprenden secuencias de aminoácidos específicas. La invención se refiere al uso combinado de anticuerpos monoclonales que se unen específicamente a PD-1 y anticuerpos que se unen específicamente a CTLA-4.
Los inventores describen métodos para inhibir el crecimiento de células tumorales en un sujeto utilizando anticuerpos dirigidos contra PD-1. Tal como se demuestra en el presente documento, los anticuerpos dirigidos contra PD-1 son capaces de inhibir el crecimiento de células tumorales in vivo. La divulgación se refiere también a métodos para usar los anticuerpos para modificar una respuesta inmunitaria, así como para tratar enfermedades tales como cáncer o enfermedades infecciosas, o para estimular una respuesta autoinmunitaria protectora o para estimular respuestas inmunitarias específicas de antígeno (por ejemplo, mediante la administración simultánea de un anti-PD-1 con un antígeno de interés).
Para que la presente invención pueda entenderse más fácilmente, se definen previamente determinados términos. Se proporcionan definiciones adicionales a lo largo de la descripción detallada.
Las expresiones "Muerte programada 1", "Muerte celular programada 1", "Proteína PD-1", “PD-1", “PD1”, “PDCD1”, "hPD-1" y "hPD-I" se usan de forma indistinta, e incluyen variantes, isoformas, homólogos de especies de PD-1 humana y análogos que tienen al menos un epítopo común con PD-1. La secuencia completa de PD-1 puede encontrarse con el número de registro de GenBank U64863.
Las expresiones “antígeno 4 asociado a linfocitos T citotóxicos”, “CTLA-4”, “CTLA4”, “antígeno de CTLA-4” y “CD152” (véase, por ejemplo, Murata, Am. J. Pathol. (1999) 155:453-460) se usan de forma indistinta, e incluyen variantes, isoformas, homólogos de especies de CTLA-4 humana y análogos que tienen al menos un epítopo común con CTLA-4 (véase, por ejemplo, Balzano (1992) Int. J. Cancer Suppl. 7:28-32). La secuencia completa de ácido nucleico de CTLA-4 puede encontrarse con el número de registro de GenBank L15006.
La expresión "respuesta inmunitaria" se refiere a la acción de, por ejemplo, linfocitos, células presentadoras de antígenos, células fagocíticas, granulocitos y macromoléculas solubles producidas por las células anteriores o el hígado (incluyendo anticuerpos, citoquinas, y complemento) que da como resultado un daño selectivo en, la destrucción de o la eliminación en el cuerpo humano de patógenos invasores, células o tejidos infectados con patógenos, células cancerosas, o, en los casos de autoinmunidad o inflamación patológica, células o tejidos humanos normales.
Una "ruta de transducción de la señal" se refiere a la relación bioquímica entre varias moléculas de transducción de la señal que tienen un papel en la transmisión de una señal desde una parte de una célula a otra parte de una célula. Como se usa en el presente documento, la expresión "receptor de la superficie celular" incluye, por ejemplo, moléculas y complejos de moléculas capaces de recibir una señal y la transmisión de dicha señal a través de la membrana plasmática de una célula. Un ejemplo de un "receptor de la superficie celular" de la presente invención es el receptor PD-1.
El término "anticuerpo" tal como se cita en el presente documento incluye anticuerpos completos y cualquier fragmento de unión a antígeno (es decir, "porción de unión a antígeno) o sus cadenas individuales. Un anticuerpo se refiere a una glicoproteína que comprende al menos dos cadenas pesadas (H) y dos cadenas ligeras (L) conectadas entre sí mediante enlaces disulfuro, o una porción de unión a antígeno del mismo. Cada cadena pesada comprende una región variable de la cadena pesada (abreviada en el presente documento como Vh) y una región constante de la cadena pesada. La región constante de la cadena pesada comprende tres dominios, Ch i, Ch2 y Ch3, Cada cadena ligera comprende una región variable de la cadena ligera (abreviada en el presente documento como Vl) y una región constante de la cadena ligera. La región constante de la cadena ligera comprende un dominio, Cl. Las regiones Vh y Vl se pueden subdividir adicionalmente en regiones de hipervariabilidad, denominadas regiones determinantes de complementariedad (CDR, del inglés complementarity determining regions), intercaladas con regiones que están más conservadas, denominadas regiones marco (FR). Cada una de las Vh y Vl está compuesta por tres CDR y cuatro FR, dispuestas desde el extremo amino hasta el extremo carboxilo en el siguiente orden: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Las regiones variables de las cadenas pesada y ligera contienen un dominio de unión que interactúa con el antígeno. Las regiones constantes de los anticuerpos pueden mediar la unión de la inmunoglobulina a los tejidos o factores del hospedador, incluidas diferentes células del sistema inmunitario (por ejemplo, células efectoras) y el primer componente (C1q) del sistema del complemento clásico.
La expresión "porción de unión a antígeno" de un anticuerpo (o simplemente la "porción del anticuerpo"), como se usa en el presente documento, se refiere a uno o más fragmentos de un anticuerpo que retienen la capacidad de unirse específicamente a un antígeno (por ejemplo, PD-1). Se ha demostrado que la función de unión a antígeno de un anticuerpo se puede realizar mediante fragmentos de un anticuerpo de longitud completa. Los ejemplos de fragmentos de unión abarcados en la expresión "porción de unión a antígeno" de un anticuerpo incluyen (i) un fragmento Fab, un fragmento monovalente que consiste en los dominios Vh, Cl y Ch i; (ii) un fragmento F(ab')2, un fragmento bivalente que comprende dos fragmentos Fab unidos mediante un puente disulfuro en la región de bisagra; (iii) un fragmento Fd que consiste en los dominios Vh y Ch i; (iv) un fragmento Fv que consiste en los dominios Vl y Vh de un solo brazo de un anticuerpo, (v) un fragmento de dAb (Ward et al., (1989) Nature 341:544-546), que consiste en un dominio Vh; y (vi) una región determinante de la complementariedad aislada (CDR). Asimismo, aunque los dos dominios del fragmento Fv, Vl y Vh, están codificados por genes independientes, estos se pueden unir, usando métodos recombinantes, mediante un enlazador sintético que les permite conformar una sola cadena de proteína en la que las regiones Vl y Vh se emparejan para formar moléculas monovalentes (conocidas como Fv monocatenarias (scFv); véanse, por ejemplo, Bird et al. (1988) Science 242.423-426, y Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). También se pretende que dichos anticuerpos monocatenarios estén comprendidos en la expresión "porción de unión a antígeno" de un anticuerpo. Estos fragmentos de anticuerpo se obtienen usando técnicas convencionales conocidas de los expertos en la materia y se seleccionan según su utilidad del mismo modo que los anticuerpos intactos.
Un "anticuerpo aislado", como se usa en el presente documento, pretende referirse a un anticuerpo que estar prácticamente exento de otros anticuerpos que tienen diferentes especificidades antigénicas (por ejemplo, un anticuerpo aislado que se une de manera específica a PD-1 está prácticamente exento de anticuerpos que se unen de manera específica a antígenos que no sean PD-1). Un anticuerpo aislado que se une específicamente a PD-1 puede, sin embargo, tener reactividad cruzada con otros antígenos, tales como moléculas PD-1 procedentes de otras especies. Sin embargo, un anticuerpo aislado puede estar prácticamente exento de otros materiales celulares y/o químicos.
Las expresiones "anticuerpo monoclonal" o "composición de anticuerpo monoclonal" como se usan en el presente documento se refieren a una preparación de moléculas de anticuerpos de composición molecular única. Una composición de anticuerpo monoclonal muestra una especifidad y afinidad de unión únicas para un epítopo concreto.
La expresión "anticuerpo humano", como se usa en el presente documento, pretende incluir anticuerpos que tienen regiones variables en las que tanto las regiones marco como las regiones CDR provienen de secuencias de inmunoglobulinas de la línea germinal humana. Asimismo, si el anticuerpo contiene una región constante, la región constante también se deriva de secuencias de inmunoglobulinas de la línea germinal humana. Los anticuerpos humanos de la invención pueden incluir restos de aminoácidos no codificados por las secuencias de inmunoglobulinas de la línea germinal humana (por ejemplo, mutaciones introducidas por mutagénesis aleatoria y de sitio in vitro o mediante mutación somática in vivo). Sin embargo, la expresión "anticuerpo humano", como se usa en el presente documento, no pretende incluir anticuerpos en que los que secuencias CDR derivadas de la línea germinal de otra especie de mamífero, tal como un ratón, se hayan injertado en secuencias marco humanas.
La expresión "anticuerpo monoclonal humano" se refiere a anticuerpos que expresan una única especificidad de unión que tiene regiones variables a la vez en las regiones marco y CDR que se han derivado de secuencias de inmunoglobulinas de la línea germinal humana. En una realización, los anticuerpos monoclonales humanos se producen por un hibridoma que incluye un linfocito B obtenido de un animal transgénico no humano, por ejemplo, un ratón transgénico, que tiene un genoma que comprende un transgén de la cadena pesada humana y un transgén de la cadena ligera fusionados a una célula inmortalizada.
La expresión "anticuerpo humano recombinante", como se usa en el presente documento, incluye todos los anticuerpos humanos que se han preparado, expresado, creado o aislado por medios recombinantes, tales como (a) anticuerpos aislados de un animal (por ejemplo, un ratón) que es transgénico o transcromosómico para los genes de las inmunoglobulinas humanas o un hibridoma preparado a partir de las mismas (descrito con mayor detalle más adelante), (b) anticuerpos aislados a partir de una célula hospedadora transformada para expresar el anticuerpo humano, por ejemplo, a partir de un transfectoma, (c) anticuerpos aislados de una biblioteca de anticuerpos humanos combinatoria recombinante, y (d) anticuerpos preparados, expresados, creados o aislados por cualquier otro medio que implica el corte y empalme de secuencias de genes de inmunoglobulinas humanas en otras secuencias de ADN. Dichos anticuerpos humanos recombinantes tienen regiones variables en las que las regiones del marco y las CDR se derivan de secuencias de inmunoglobulinas de la línea germinal humana. En ciertas realizaciones, sin embargo, dichos anticuerpos humanos recombinantes se pueden someter a mutagénesis in vitro (o, cuando se usa un animal transgénico para secuencias de Ig humanas, mutagénesis somática in vivo) y de esta manera, las secuencias de aminoácidos de las regiones de Vh y Vl de los anticuerpos recombinantes son secuencias que, aunque se derivan y están relacionadas con las secuencias de VH y VL de una línea germinal humana, pueden no existir de manera natural in vivo en el repertorio de la línea germinal del anticuerpo humano.
Como se usa en el presente documento, "isotipo" se refiere a la clase de anticuerpo (por ejemplo, IgM o IgG1) que está codificada por los genes de la región constante de la cadena pesada.
Las expresiones "un anticuerpo que reconoce un antígeno" y "un anticuerpo específico de un antígeno" se utilizan de manera indistinta en el presente documento con el término "un anticuerpo que se une específicamente a un antígeno".
La expresión "derivados de anticuerpos humanos" se refiere a cualquier forma modificada del anticuerpo humano, por ejemplo, un conjugado del anticuerpo y otro agente o anticuerpo.
Se pretende que el término "anticuerpo humanizado" se refiera a anticuerpos en los que las secuencias de las CDR derivadas de la línea germinal de otra especie de mamífero, tal como un ratón, se hayan injertado en secuencias marco humanas. Se pueden realizar modificaciones adicionales en la región marco dentro de las secuencias del marco humanas.
Se pretende que el término "anticuerpo quimérico" se refiera a anticuerpos en los que las secuencias de la región variable se derivan de una especie y las secuencias de la región constante se derivan de otra especie, tal como un anticuerpo, en el que las secuencias de la región variable se derivan de un anticuerpo de ratón y las secuencias de la región constante se derivan de un anticuerpo humano.
Como se usa en el presente documento, un anticuerpo que “se une específicamente a PD-1 humana" pretende referirse a un anticuerpo que se une a la PD-1 humana con una Kd de 1 x 10-7 M o menos, más preferentemente 5 x 10-8 M o menos, más preferentemente 1 x 10-8 M o menos, más preferentemente 5 x 10-9 M o menos.
Se pretende que el término "Kasoc" o "Ka", tal como se usa en el presente documento, se refiera a la velocidad de asociación de una interacción anticuerpo-antígeno concreta, mientras que el término "Kdis" o “Kd”, como se usa en el presente documento, pretende referirse a la constante de disociación de una interacción anticuerpo-antígeno concreta. Se pretende que el término “Kd”, tal como se usa en el presente documento, se refiera a la constante de disociación, que se obtiene a partir de la relación de Kd a Ka (es decir, Kd/Ka) y se expresa como una concentración molar (M). Los valores de Kd se pueden determinar para anticuerpos utilizando métodos bien establecidos en la materia. Un método preferido para determinar la Kd de un anticuerpo es utilizar la resonancia de plasmón superficial, preferentemente mediante el uso de un sistema de biodetección tal como el sistema Biacore®.
Como se usa en el presente documento, La expresión "elevada afinidad" para un anticuerpo IgG se refiere a un anticuerpo que tiene una Kd de 10-8 M o menos, más preferentemente 10-9 M o menos e incluso más preferentemente 10-10 M o menos para un antígeno diana. Sin embargo, la unión con "alta afinidad" puede variar para otros isotipos de anticuerpos. Por ejemplo, la unión con "elevada afinidad" para un isotipo de IgM se refiere a un anticuerpo que tiene una Kd de 10-7 M o menos, más preferentemente 10-8 M o menos, incluso más preferentemente 10-9 M o menos.
El término "tratamiento" o "terapia" se refiere a la administración de un principio activo con el objetivo de curar, sanar, aliviar, mitigar, alterar, remediar, mejorar, avanzar la curación o alterar una dolencia (por ejemplo, una enfermedad), los síntomas de la dolencia, o evitar o retrasar el inicio de los síntomas, complicaciones, indicios bioquímicos de una enfermedad, o detener o inhibir de otro modo el desarrollo adicional de la enfermedad, dolencia o trastorno de una forma estadísticamente significativa.
Un “acontecimiento adverso” (AE) como se utiliza en el presente documento, es cualquier signo (incluido un hallazgo de laboratorio anómalo), síntoma o enfermedad desfavorables, generalmente inesperados, asociados con el uso de un tratamiento médico. Por ejemplo, un acontecimiento adverso puede estar asociado con la activación del sistema inmunitario o la expansión de células del sistema inmunitario (por ejemplo, linfocitos T) en respuesta un tratamiento. Un tratamiento médico puede tener uno o más AE asociados, y cada AE puede tener el mismo nivel de gravedad, o uno diferente. Una referencia a métodos capaces de “alterar acontecimientos adversos” significa un régimen de tratamiento que disminuye la incidencia y/o la gravedad de uno o más AE asociados con el uso de un régimen de tratamiento diferente.
Como se usa en el presente documento, “enfermedad hiperproliferativa” se refiere a dolencias en las que el crecimiento celular está aumentado sobre los niveles normales. Por ejemplo, enfermedades o trastornos hiperproliferativos incluyen las enfermedades neoplásicas malignas (por ejemplo, cáncer de esófago, cáncer de colon, cáncer biliar) y de enfermedades neoplásicas no malignas (por ejemplo, ateroesclerosis, hiperplasia benigna, hipertrofia prostática benigna).
Como se usa en el presente documento, “dosis subterapéutica" significa una dosis de un compuesto terapéutico (por ejemplo, un anticuerpo) que es menor que la dosis normal o típica del compuesto terapéutico cuando se administra en solitario para el tratamiento de una enfermedad hiperproliferativa (por ejemplo, cáncer). Por ejemplo, una dosis subterapéutica de un anticuerpo de CTLA-4 es una sola dosis del anticuerpo en menos de aproximadamente 3 mg/kg, es decir, la dosis conocida del anticuerpo dirigido contra CTLA-4.
El uso de la alternativa (por ejemplo, “o") deberá entenderse que significa uno cualquiera, ambos, o cualquier combinación de las alternativas citadas. Tal como se usa en el presente documento, los artículos indefinidos uno o “una" deberán considerarse referidos a “uno o más" de cualquier componente citado o enumerado.
Como se usa en el presente documento, "aproximadamente" o "que comprende esencialmente de" significa dentro de un intervalo de error aceptable para el valor particular determinado por un experto en la materia, que dependerá en parte de cómo se mide o determina el valor, es decir, de las limitaciones del sistema de medida. Por ejemplo, "aproximadamente" o "que comprende esencialmente de" puede significar comprendido dentro de 1 desviación estándar, o más de 1 desviación estándar,, según lo habitual en la técnica. Como alternativa, "aproximadamente" o "que comprende esencialmente de" puede significar un intervalo de hasta el 20 %. Asimismo, particularmente con respecto a los sistemas o procesos biológicos, los términos pueden significar un orden de magnitud de hasta 5 veces un valor. Cuando se proporcionan valores particulares en la solicitud y en las reivindicaciones, salvo que se indique otra cosa, el significado de "aproximadamente" o "que comprende esencialmente de" deberá asumirse comprendido en un intervalo de error aceptable para dicho valor concreto.
Tal como se describe en el presente documento, cualquier intervalo de concentración, intervalo de porcentaje, intervalo de relaciones o intervalo de números enteros debe entenderse que incluye el valor de cualquier número entero dentro del intervalo citado y, cuando es apropiado, fracciones del mismo (tal como una décima y una centésima de un número entero), salvo que se indique otra cosa.
Como se usa en el presente documento, el término "sujeto" incluye cualquier animal humano o no humano. El término "animal no humano" incluye todos los vertebrados, por ejemplo, mamíferos y no mamíferos, tales como primates no humanos, ovejas, perros, gatos, caballos, vacas, aves de corral, anfibios, reptiles, etc. Salvo donde se indica, los términos "paciente" y "sujeto" se utilizan de forma indistinta.
Diversos aspectos de la invención se describen con más detalle en los siguientes subapartados.
Anticuerpos dirigidos contra PD-1
Los anticuerpos descritos en el presente documento se caracterizan por rasgos funcionales particulares o propiedades de los anticuerpos. Por ejemplo, los anticuerpos que se unen específicamente a PD-1 (por ejemplo, se unen a la PD-1 humana y pueden reaccionar de forma cruzada con PD-1 de otras especies, tal como macaco). Preferiblemente, un anticuerpo descrito en el presente documento se une a PD-1, con alta afinidad, por ejemplo, con una Kd de 1 x 10-7 M o menos. Los anticuerpos dirigidos contra PD-1 de la divulgación presentan preferentemente una o más de las siguientes características:
(a) se une a PD-1 humana con una Kd de 1 x 10-7 M o menos;
(b) no se une prácticamente a CD28, CTLA-4 o ICOS humanos;
(c) aumenta la proliferación de linfocitos T en un ensayo de reacción mixta de linfocitos (MLR);
(d) aumenta la producción de interferón gamma en un ensayo MLR;
(e) aumenta la secreción de IL-2 en un ensayo MLR;
(f) se une PD-1 humana y a PD-1 de macaco;
(g) inhibe la unión de PD-L1 y/o PD-L2 a PD-1;
(h) estimula las respuestas de memoria específicas de antígeno;
(i) estimula las respuestas de anticuerpos;
(j) inhibe el crecimiento de células tumorales in vivo.
Preferentemente, el anticuerpo se une a la PD-1 humana con una Kd de 5 x 10-8 M o menos, se une a PD-1 humana con una Kd de 1 x 10-8 M o menos, se une a la PD-1 humana con una Kd de 5 x 10-9 M o menos, o se une a la PD-1 humana con una Kd de entre 1 x 10 -8 M y 1 x 10-10 M o menos.
Un anticuerpo de la divulgación puede presentar cualquier combinación de las características anteriormente relacionadas, tales como dos, tres, cuatro, cinco o más de las características anteriormente relacionadas.
Se conocen en la técnica ensayos para evaluar la capacidad de unión de los anticuerpos frente a PD-1 humana, que incluyen, por ejemplo, ELISA, la transferencia Western y la RIA. La cinética de unión (por ejemplo, afinidad de unión) de los anticuerpos también puede evaluarse por ensayos convencionales conocidos en la técnica, tal como análisis Biacore. Los ensayos adecuados para evaluar cualquiera de las características anteriormente descritas se describen con detalle en los Ejemplos.
Los anticuerpos monoclonales 17D8, 2D3, 4H1,5C4, 4A11,7D3 y 5F4
Un anticuerpo preferido para su uso en la presente invención es el anticuerpo 5C4. Los inventores también describen los anticuerpos monoclonales humanos 17D8, 2D3, 4H1, 4A11, 7D3 y 5F4 aislados y caracterizado estructuralmente como se describe en los Ejemplos 1 y 2. Las secuencias de aminoácidos de la Vh de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NO: 1,2, 3, 4, 5, 6 y 7, respectivamente. Las secuencias de aminoácidos de la V l de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NO: 8, 9, 10, 11, 12, 13 y 14, respectivamente.
La divulgación proporciona anticuerpos que comprenden las CDR1, CDR2 y CDR3 de las cadenas pesada y ligera de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5 F4 , o combinaciones de los mismos. Las secuencias de aminoácidos de las CDR1 de la Vh de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NOs: 15, 16, 17, 18, 19, 20 y 21, respectivamente. Las secuencias de aminoácidos de las CDR2 de la Vh de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NOs: 22, 23, 24, 25, 26, 27 y 28, respectivamente. Las secuencias de aminoácidos de las CDR3 de la Vh de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NOs: 29, 30, 31, 32, 33, 34 y 35, respectivamente. Las secuencias de aminoácidos de las CDR1 de la Vk de 17D8, 2D3, 4HI, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NOs: 36, 37, 38, 39, 40, 41 y 42, respectivamente. Las secuencias de aminoácidos de las CDR2 de la Vk de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NOs: 43, 44, 45, 46, 47, 48 y 49, respectivamente. Las secuencias de aminoácidos de las CDR3 de la Vk de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NOs: 50, 51, 52, 53, 54, 55 y 56, respectivamente. Las regiones CDR están delineadas mediante el sistema Kabat (Kabat, E. A, et al. (1991) Sequences of Proteins of Immunological Interest, Quinta edición, U.S. Department of Health and Human Services, Publicación NIH N.° 91-3242).
La Tabla 1 siguiente muestra numerosos cambios de aminoácidos en las regiones marco de los anticuerpos dirigidos contra PD-1 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 que difieren de la secuencia de la cadena pesada de la línea germinal precursora. Para devolver uno o más de los restos de aminoácidos de las secuencias de la región marco a su configuración de la línea germinal, las mutaciones somáticas se pueden "retromutar" a la secuencia de la línea germinal mediante, por ejemplo, mutagénesis dirigida al sitio y mutagénesis mediada por PCR.
Se pueden producir cambios de aminoácidos en las regiones marco de los anticuerpos dirigidos contra PD-1 que difieren de la secuencia de la cadena ligera de la línea germinal precursora. Por ejemplo, para 17D8, el resto de aminoácido n.° 47 (dentro de FR2) de Vk es una isoleucina mientras que ese resto en la correspondiente Vk de la secuencia de la línea germinal L6 es una leucina. Para restablecer las secuencias de la región marco a su configuración de la línea germinal, las mutaciones somáticas se pueden "retromutar" a la secuencia de la línea germinal mediante, por ejemplo, mutagénesis de sitio dirigido o mutagénesis mediada por PCR (por ejemplo, el resto de aminoácido n.° 47 (resto n.° 13 de FR2) de la Vk de 17D8 se puede “retromutar" de isoleucina a leucina).
Como ejemplo adicional, para 4A11, el resto de aminoácido n.° 20 (dentro de FR1) de Vk es una serina mientras que ese resto en la correspondiente Vk de la secuencia de la línea germinal L15 es una treonina. Para restablecer las secuencias de la región marco a su configuración de la línea germinal, por ejemplo, el resto n.° 20 de la Vk de 4A11 se puede "retromutar" de serina a treonina. También se pretende que dichos anticuerpos "retromutados" estén abarcados por la invención.
El alineamiento de las regiones de Vh para 17D8, 2D3, 4H1, 5C4 y 7D3, contra la secuencia de la Vh 3-33 de la línea germinal precursora se muestra en la Figura 8. El alineamiento de las regiones de Vh para 4A11 y 5F4 contra la secuencia de Vh 4-39 de la línea germinal precursora se muestra en la Figura 11.
Tabla 1. Modificaciones de los anticuerpos 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 desde la configuración de la cadena pesada de la línea germinal.
Figure imgf000011_0001
(continuación)
Figure imgf000012_0001
Otro tipo de modificación en la región marco implica mutar uno o más restos en la región marco o incluso en una o más regiones CDR, para eliminar epítopos de linfocitos T y reducir de este modo la posible inmunogenicidad del anticuerpo. Esta estrategia también se denomina "desinmunización" y se describe con más detalle en la publicación de patente de Estados Unidos N.° 20030153043 de Carr et al.
De forma adicional o alternativa a las modificaciones realizadas en la región marco o en las regiones CDR, los anticuerpos de la divulgación se pueden genomanipular para incluir modificaciones en la región Fc, normalmente para alterar una o más propiedades funcionales del anticuerpo, tales como la semivida en suero,
la fijación del complemento, la unión al receptor Fc y/o la citotoxicidad celular dependiente de antígeno. Asimismo, un anticuerpo de la presente divulgación se puede modificar químicamente (por ejemplo, se pueden unir uno o más restos químicos al anticuerpo) o modificarse para alterar su glicosilación, de nuevo para alterar una o más propiedades funcionales del anticuerpo. Cada una de estas realizaciones se describe con más detalle a continuación. La numeración de los restos de la región Fc es la del índice de la UE de Kabat.
En un ejemplo, la región bisagra de CH1 se modifica de manera que se altera el número de restos cisteína en la región bisagra, por ejemplo, se aumenta o se disminuye. Esta estrategia se describe con más detalle en la patente de Estados Unidos N.° 5.677.425 de Bodmer et al. El número de restos cisteína en la región bisagra de CH1 se altera para, por ejemplo, facilitar el ensamblaje de las cadenas ligeras y pesadas o para aumentar o disminuir la estabilidad del anticuerpo.
En otro ejemplo, la región bisagra de Fc de un anticuerpo se muta para disminuir la semivida biológica del anticuerpo. Más concretamente, se introducen una o más mutaciones de aminoácidos en la región de la interfase del dominio CH2-CH3 del fragmento bisagra-Fc de manera que el anticuerpo tiene una unión a la proteína A estafilocócica (SpA) deteriorada comparada con la unión a SpA de Fc-bisagra natural. Esta aproximación se describe en mayor detalle en la patente de Estados Unidos N.° 6.165.745 de Ward et al.
En otro ejemplo, el anticuerpo se modifica para aumentar su semivida biológica. Son posibles diversas estrategias. Por ejemplo, se pueden introducir una o más de las siguientes mutaciones: T252L, T254S, T256F, como se describe en la patente de los Estados Unidos n.° 6.277.375 de Ward. Como alternativa, para aumentar la semivida biológica, el anticuerpo se puede alterar en la región CH1 o CL para que contenga un epítopo de unión al receptor de rescate tomado de dos bucles de un dominio CH2 de una región Fc de una IgG, tal como se describe en las patentes de Estados Unidos 5.869.046 y 6.121.022 de Presta et al.
En otro ejemplo adicional, la región Fc se altera sustituyendo al menos un resto de aminoácido por un resto de aminoácido diferente para alterar las funciones efectoras del anticuerpo. Por ejemplo, uno o más aminoácidos seleccionados de entre los restos de aminoácidos 234, 235, 236, 237, 297, 318, 320 y 322 se pueden sustituir por un resto de aminoácido diferente de manera que el anticuerpo tenga una afinidad alterada por un ligando efector pero mantenga la capacidad de unión a antígeno del anticuerpo precursor. El ligando efector para el que se altera la afinidad puede ser, por ejemplo, un receptor Fc o el componente CI del complemento. Esta estrategia se describe en detalle en las patentes de Estados Unidos con números 5.624.821 y 5.648.260, ambas de Winter et al.
En otro ejemplo, uno o más aminoácidos seleccionados de los restos de aminoácidos 329, 331 y 322 se pueden sustituir por un resto de aminoácido diferente de manera que el anticuerpo tenga una unión a C1q alterada y/o una citotoxicidad dependiente del complemento (CDC) reducida o eliminada. Esta estrategia se describe en detalle en la patente de Estados Unidos n.° 6.194.551 de Idusogie et al. En otro ejemplo, uno o más restos de aminoácidos en las posiciones de aminoácidos 231 y 239 se alteran para modificar de esta forma la capacidad del anticuerpo de fijarse al complemento. Esta estrategia se describe en detalle en la publicación PCT WO 94/29351 de Bodmer et al.
En otro ejemplo más, la región Fc está modificada para aumentar la capacidad del anticuerpo de mediar en la citotoxicidad celular dependiente de anticuerpo (ADCC) y/o aumentar la afinidad del anticuerpo por un receptor Fcy modificando uno o más aminoácidos en las siguientes posiciones: 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 o 439. Esta estrategia se describe adicionalmente en la publicación PCT WO 00/42072 de Presta. Además, los sitios de unión sobre la IgG 1 humana para Fc/R1, FcyRII, FcyRIII y FcRn se ha cartografiado, y se han descrito variantes con unión mejorada (véase Shields, R.L. et al. (2001) J. Biol. Chem.
276:6591-6604). Se ha demostrado que mutaciones específicas en posiciones 256, 290, 298, 333, 334 y 339 mejoran la unión a FcyRIII. De manera adicional, se ha mostrado que los siguientes mutantes combinados mejoran la unión a Fc/RIII: T256A/S298A, S298A/E333A, S298A/K224A y S298A/E333A/K334A.
En otro ejemplo más, se modifica la glicosilación de un anticuerpo. Por ejemplo, se puede preparar un anticuerpo aglicosilado (es decir, el anticuerpo carece de glicosilación). La glicosilación puede alterarse para, por ejemplo, aumentar la afinidad del anticuerpo por el antígeno. Dichas modificaciones en los carbohidratos se pueden llevar a cabo, por ejemplo, mediante la alteración de uno o más sitios de glicosilación en la secuencia del anticuerpo. Por ejemplo, se pueden hacer una o más sustituciones de aminoácidos que dan como resultado la eliminación de uno o más sitios de glicosilación en la región marco variable para eliminar de este modo la glicosilación en ese sitio. Dicha aglicosilación puede aumentar la afinidad del anticuerpo por el antígeno. Dicho enfoque se describe con más detalle en las patentes de Estados Unidos números 5.714.350 y 6.350.861 de Co et al.
De manera adicional o alternativa, se puede preparar un anticuerpo que tiene un tipo de glicosilación alterado, tal como un anticuerpo hipofucosilado que tiene cantidades reducidas de restos fucosilo o un anticuerpo que tiene que tiene estructuras GlcNAc bisectadas en más cantidad. Se ha demostrado que tales patrones de glicosilación alterada aumentan la capacidad ADCC de los anticuerpos. Tales modificaciones de hidratos de carbono se pueden lograr mediante, por ejemplo, la expresión del anticuerpo en una célula hospedadora con maquinaria de glicosilación alterada. Las células con la maquinaria de glicosilación alterada se han descrito en la materia y se pueden usar como células hospedadoras en las que expresar anticuerpos recombinantes de la invención para producir de este modo un anticuerpo con glicosilación alterada. Por ejemplo, las líneas de células Ms704, Ms705, y Ms709 carecen del gen de la fucosiltransferasa, FUT8 (alfa (1,6) fucosiltransferasa), de tal manera que los anticuerpos expresados en las líneas de células theMs704, Ms705 y Ms709 carecen de fucosa en sus hidratos de carbono. Las líneas de células Ms704, Ms705, y Ms709 FUT8-/- se crearon mediante perturbación dirigida del gen FUT8 en células CHO/DG44 usando dos vectores de sustitución (véanse la publicación de patente de Estados Unidos n.° 20040110704) de Yamane et al y Yamane-Ohnuki et al. (2004) Biotechnol Bioeng 87:614-22). Como ejemplo adicional, el documento EP 1.176.195 de Hanai et al. describe una línea de células con un gen FUT8 funcionalmente alterado, que codifica una fucosiltransferasa, de tal manera que los anticuerpos expresados en dicha línea de células presentan hipofucosilación al reducir o eliminar la enzima relacionada con el enlace alfa-1,6. Hanai et al. describen también líneas de células que tienen una baja actividad enzimática para añadir fucosa a la N-acetilglucosamina que se une a la región Fc del anticuerpo o que no tiene actividad enzimática, por ejemplo, la línea de células YB2/0 de mieloma de rata (ATCC CRL 1662). La publicación PCT WO 03/035835 de Presta describe una variante de la línea de células CHO, células Lec13, con capacidad reducida para unir fucosa a los hidratos de carbono unidos a Asn(297), que también da como resultado una hipofucosilación de anticuerpos expresados en esa célula hospedadora (véase también Shields, R.L. et al. (2002) J Biol. Chem. 277:26733-26740). La publicación de la PCT WO 99/54342 de Umana et al. describe líneas de células diseñadas mediante ingeniería genética para expresar glicosil transferasas que modifican glicoproteínas (por ejemplo, beta(1,4)-N-acetilglucosaminiltransferasa III (GnTIII)) de tal forma que los anticuerpos expresados en las líneas de células genomanipuladas presentan un aumento de estructuras GlcNac bisecantes que da como resultado un aumento en la actividad ADCC de los anticuerpos (véase también Umana et al (1999) Nat. Biotech. 17:176-180). Como alternativa, los restos de fucosa del anticuerpo se pueden escindir usando una enzima fucosidasa. Por ejemplo, la fucosidasa alfa-L-fucosidasa elimina restos fucosilo de los anticuerpos (Tarentino, A.L. et al. (1975) Biochem. 14:5516-23).
Otra modificación de los anticuerpos que se contempla en el presente documento es la pegilación. Se puede pegilar un anticuerpo para, por ejemplo, aumentar la semivida biológica (por ejemplo, en suero) del anticuerpo. Para pegilar un anticuerpo, el anticuerpo, o fragmento del mismo, se hace reaccionar normalmente con polietilenglicol (PEG), tal como un éster reactivo o un derivado de aldehído de PEG, en condiciones en las que uno o más grupos PEG quedan unidos al anticuerpo o fragmento de anticuerpo. Preferentemente, la pegilación se lleva a cabo mediante una reacción de acilación o una reacción de alquilación con una molécula de PEG reactiva (o un polímero soluble en agua reactivo análogo). Como se usa en el presente documento, el término "polietilenglicol" pretende abarcar cualquiera de las formas de PEG que se han usado para derivatizar otras proteínas, tales como monoalcoxi (C1-C10) o ariloxipolietilenglicol o polietilenglicol-maleimida. En ciertas realizaciones, el anticuerpo a pegilar es un anticuerpo aglucosilado. Los métodos para pegilar proteínas son conocidos en la materia y se pueden aplicar a los anticuerpos de la invención. Véanse, por ejemplo, el documento EP 0154316 de Nishimura et al., y el documento EP 0401 84 de Ishikawa et al.,
Moléculas de ácidos nucleicos que codifican anticuerpos
Los inventores también describen moléculas de ácidos nucleicos que codifican los anticuerpos de la divulgación. Los ácidos nucleicos pueden estar presentes en células completas, en un lisado de células, o en una forma parcialmente purificada o prácticamente pura. Un ácido nucleico está "aislado" o "convertido en prácticamente puro" cuando se purifica de otros componentes celulares u otros contaminantes, por ejemplo, otros ácidos nucleicos o proteínas celulares, mediante técnicas convencionales, incluyendo tratamiento alcalino/SDS, formación de bandas de CsCl, cromatografía en columna, electroforesis en gel de agarosa y otras bien conocidas en la materia. Véanse, F. Ausubel, et al. (1987) Current Protocols in Molecular Biology, Greene Publishing y Wiley Interscience, Nueva York. Un ácido nucleico de la divulgación puede ser, por ejemplo, ADN o ARN y puede contener o no secuencias intrónicas. En un ejemplo preferido, el ácido nucleico es una molécula de ADNc.
Los ácidos nucleicos de la divulgación pueden obtenerse usando técnicas de biología molecular convencionales. Para los anticuerpos expresados por hibridomas (por ejemplo, hibridomas preparados a partir de ratones transgénicos que contienen génico de la inmunoglobulina humana como se describe más detalladamente a continuación), los ADNc que codifican las cadenas pesada y ligera del anticuerpo fabricados por el hibridoma se pueden obtener mediante amplificación PCR convencional o técnicas de clonación del ADNc. Para los anticuerpos obtenidos a partir de una genoteca de inmunoglobulina (por ejemplo, usando técnicas de expresión en fago), se puede recuperar ácido nucleico que codifica el anticuerpo de la biblioteca.
Las moléculas de ácidos nucleicos preferidas de la divulgación son las que codifican las secuencias Vh y Vl de los anticuerpos monoclonales 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 o 5F4. Las secuencias de ADN que codifican las secuencias de la Vh de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NOs: 57, 58, 59, 60, 61, 62 y 63, respectivamente. Las secuencias de ADN que codifican las secuencias de la Vl de 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se muestran en las SEQ ID NOs: 64, 65, 66, 67, 68, 69 y 70, respectivamente.
Una vez que se obtienen los fragmentos de ADN que codifican los segmentos Vh y Vl, estos fragmentos de ADN pueden manipularse adicionalmente mediante técnicas de ADN recombinante convencionales, por ejemplo, para convertir los genes de la región variable en genes de la cadena del anticuerpo de longitud completa, en los genes del fragmento Fab o en un gen de scFv. En estas manipulaciones, un fragmento de ADN que codifica Vl o Vh se une operativamente a otro fragmento de ADN que codifica otra proteína, tal como una región constante de anticuerpo o un enlazador flexible. La expresión "unido operativamente", tal como se usa en este contexto, pretende significar que los dos fragmentos de ADN se unen de tal manera que las secuencias de aminoácidos codificadas por los dos fragmentos de ADN permanecen en marco.
El ADN aislado que codifica la región Vh puede convertirse en un gen de la cadena pesada de longitud completa uniendo operativamente el ADN que codifica la Vh a otra molécula de ADN que codifica las regiones constantes de la cadena pesada (CH1, CH2 y CH3). Las secuencias de los genes de la región constante de la cadena pesada humana se conocen en la materia (véase por ejemplo, Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Quinta edición, U.S. Department of Health and Human Services, publicación de NIH N.° 91­ 3242) y los fragmentos de ADN que abarcan estas regiones se pueden obtener mediante amplificación PCR convencional. La región constante de la cadena pesada puede ser una región constante de IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM o IgD, pero lo más preferible es una región constante de IgG1 o IgG4. Para un gen de la cadena pesada de un fragmento Fab, el ADN que codifica VH puede estar unido operativamente a otra molécula de ADN que codifica solo la región constante CH1 de la cadena pesada.
El ADN aislado que codifica la región VL puede convertirse en un gen de la cadena ligera de longitud completa (así como un gen de la cadena ligera de Fab) uniendo operativamente el ADN que codifica Vl a otra molécula de ADN que codifica la región constante de la cadena ligera, CL. Las secuencias de los genes de la región constante de la cadena ligera humana se conocen en la materia (véase por ejemplo, Kabat, E. A, et al. (1991) Sequences of Proteins of Immunological Interest, Quinta edición, U.S. Department of Health and Human Services, publicación de NIH N.° 91-3242) y los fragmentos de ADN que abarcan estas regiones se pueden obtener mediante amplificación PCR convencional. La región constante de la cadena ligera puede ser una región constante kappa o lambda, pero lo más preferible es una región constante kappa.
Para crear un gen scFv, los fragmentos de ADN que codifican VH y VL están unidos operativamente a otro fragmento que codifica un enlazador flexible, por ejemplo, que codifica la secuencia de aminoácidos (Gly4-Ser)3, de tal manera que las secuencias VH y VL pueden expresarse como una proteína monocatenaria contigua, donde las regiones VL y VH están unidas mediante el enlazador flexible (véanse, por ejemplo, Bird et al. (1988) Science 242:423-426: Huston et al (1988)Proc. Natl. Acad. Set USA 85:5879-5883; McCafferty et al., (1990) Nature 348:552-554).
Producción de anticuerpos monoclonales
Los anticuerpos monoclonales (mAbs) de la presente divulgación se pueden producir mediante diferentes técnicas, incluida metodología convencional de anticuerpos monoclonales (por ejemplo, la técnica de hibridación de células somáticas convencional de Kohler y Milstein (1975) Nature 256: 495. Aunque se prefieren los procedimientos de hibridación de células somáticas, en principio, se pueden emplear otras técnicas para producir anticuerpos monoclonales (por ejemplo, la transformación vírica o mediante oncogenes de linfocitos B.
El sistema animal preferido para preparar hibridomas es el sistema murino. La producción de hibridomas en el ratón es un procedimiento muy bien establecido. Los protocolos de inmunización y las técnicas de aislamiento de los esplenocitos inmunizados para su fusión son conocidos en la técnica. Los ligandos de fusión (por ejemplo, células de mieloma de murino) y los procedimientos de fusión son también conocidos.
Se pueden preparar anticuerpos quiméricos o humanizados de la presente divulgación basándose en la secuencia de un anticuerpo monoclonal murino preparado como se ha descrito anteriormente. El ADN que codifica las cadenas ligera y pesada de la inmunoglobulina se pueden obtener a partir del hibridoma murino de interés, y genomanipularse para contener secuencias de inmunoglobulina no murinas (por ejemplo humanas) usando técnicas convencionales de biología molecular. Por ejemplo, para crear un anticuerpo quimérico, las regiones variables de murino se pueden unir a regiones constantes humanas usando métodos conocidos en la técnica (véase, por ejemplo, la patente de Estados Unidos n.° 4.816.567 de Cabilly et al.). Para crear un anticuerpo humanizado,, las regiones c Dr de murino se pueden introducir en un marco humano usando métodos conocidos en la técnica (véanse, por ejemplo, la patente de Estados Unidos n.° 5.225.539 de Winter, y las patentes de Estados Unidos con números 5.530.101; 5.585.089; 5.693.762 y 6.180.370 de Queen et al.).
En un ejemplo preferido, los anticuerpos de la divulgación son anticuerpos monoclonales humanos. Dichos anticuerpos monoclonales humanos dirigidos contra PD-1 humana se pueden generar utilizando ratones transgénicos o transcromosómicos que contienen partes del sistema inmunitario humano en lugar del sistema de ratón. Estos ratones transgénicos y transcromosómicos incluyen ratones denominados en el presente documento como ratones HuMAb y ratones k M™, respectivamente, y se denominan conjuntamente en el presente documento "ratones Ig humanos".
El HuMAb Mouse® (Medarex, Inc.) contiene miniloci del gen de la inmunoglobulina humana que codifican las secuencias de la inmunoglobulina de la cadena pesada (|j y y) y la cadena ligera k humana no reordenadas junto con mutaciones dirigidas que inactivan los loci endógenos de las cadenas j y k (véase por ejemplo, Lonberg, et al. (1994) Nature 368(6474): 856- 859). En consecuencia, los ratones presentan una expresión reducida de IgM o k de ratón y, en respuesta a la inmunización, los transgenes de la cadena pesada y ligera introducidos experimentan cambio de clase y mutación somática para generar monoclonales humanos IgGK de alta afinidad (Lonberg, N. et al .(1994), más arriba, revisado en Lonberg, N. (1994) Handbook of Experimental Pharmacology 113:49-101: Lonberg, N. y Huszar, D. (1995) Intern. Rev. Immunol. 13: 65-93, y Harding, F. y Lonberg, N. (1995) Ann. MY. Acad Sci.
764:536- 546). La preparación y uso del ratón HuMAb, y las modificaciones genómicas que lleva dicho ratón, se describen adicionalmente en Taylor, L. et al. (1992) Nucleic Acids Research 20:6287- 6295: Chen, i. et al. (1993) International Immunology 5: 647-656; Tuaillon et al. (1993) Proc. Natl. Acad. Sci. USA 90:3720-3724; Choi et al. (1993) Nature Genetics 4:111-123; Chen, J. et al. (1993) EMBO J. 12: 821-830; Tuaillon et al. (1994) Immunol.
152:2912- 2920: Taylor, L. et al. (1994) International Immunology 6: 579-591; y Fishwild, D. et al. (1996) Nature Biotechnology 14: 845-851. Véanse además, las patentes de Estados Unidos números 5.545.806; 5.569.825; 5.625.126; 5.633.425; 5.789.650; 5.877.397; 5.661.016; 5.814.318; 5.874.299; y 5.770.429; todas de Lonberg y Kay; la patente de Estados Unidos n.° 5.545.807 de Turner et al.;
las publicaciones PCT con números WO 92/03918, WO 93/12227, WO 94/25585, WO 97/13852, WO 98/24884 y WO 99/45962, todas de Lonberg y Kay; y la Publicación PCT n.° WO 01/14424 de Korman et al.
En otro ejemplo, los anticuerpos humanos pueden sensibilizarse utilizando un ratón que contiene secuencias de la inmunoglobulina humana en transgenes y transcromosomas, Dicho ratón transporta un transgén de la cadena pesada humana y un transcromosoma de la cadena ligera humana. Dichos ratones, citados en el presente documento como “KM mice™”, se describen detalladamente en la publicación PCT WO 02/43478 de Ishida et al.
Adicionalmente, sistemas de animales transgénicos alternativos que expresan genes de inmunoglobulina humana están disponibles en la técnica y se pueden utilizar para sensibilizar los anticuerpos dirigidos contra PD-1. Por ejemplo, se puede utilizar un sistema transgénico alternativo denominado Xenomouse (Abgenix, Inc.); dichos ratones se describen en, por ejemplo, las patentes de Estados Unidos números 5.939.598; 6.075.181; 6.114.598; 6.150.584 y 6.162.963 de Kucherlapati et al.
Además, sistemas de animales transcromosómicos alternativos que expresan genes de inmunoglobulina humana están disponibles en la técnica y se pueden utilizar para sensibilizar los anticuerpos dirigidos contra PD-1 de la divulgación. Por ejemplo, ratones que tienen tanto un transcromosoma de la cadena pesada humana como un transcromosoma de la cadena ligera humana, denominados como "ratones TC" son de utilidad; dichos ratones se describe en Tomizuka et al. (2000) Proc. Natl. Acad. Sci. USA 97:722-727. Asimismo, se han descrito en la técnica vacas que tienen transcromosomas de la cadena pesada y ligera humana (Kuroiwa et al. (2002) Nature Biotechnology 20:889-894) y se puede utilizar para sensibilizar los anticuerpos dirigidos contra PD-1 de la divulgación.
Los anticuerpos monoclonales humanos de la divulgación también se pueden preparar usando métodos de expresión en fago para cribar genotecas de inmunoglobulina humana. Dichos métodos de expresión en fago para aislar anticuerpos humanos están establecidos en la técnica. Véanse, por ejemplo: las patentes de Estados Unidos números 5.223.409; 5.403.484; y 5.571.698 de Ladner et al., las patentes de Estados Unidos con números 5.427.908 y 5.580.717.de Dower et al.; las patentes de Estados Unidos con números 5.969.108 y 6.172.197 de McCafferty et al.; y las patentes de EE.UU. n.° 5.885.793; 6.521.404; 6.544.731; 6.555.313; 6.582.915 y 6.593.081 de Griffiths et al.
Los anticuerpos monoclonales humanos de la divulgación también se pueden preparar usando ratones SCID en los que se han reconstituido células inmunitarias humanas de tal manera que se puede generar una respuesta de anticuerpos humanos tras la inmunización. Dichos ratones se describen en, por ejemplo, las patentes de Estados Unidos con números 5.476.996 y 5.698.767 de Wilson et al.
Inmunización de ratones con Ig humana
Cuando se usan ratones con Ig humana para sensibilizar los anticuerpos humanos de la divulgación, dichos ratones se pueden inmunizar con una preparación purificada o enriquecida del antígeno PD-1 y/o PD-1 recombinante, o una proteína de fusión PD-1, como se describe en Lonberg, N. et al. (1994) Nature 368(6474): 856-859; Fishwild, D. et al. (1996) Nature Biotechnology 14: 845-851; y en las publicaciones PCT Wo 98/24884 y WO 01/14424. Preferentemente, el ratón tendrá 6-16 semanas de edad durante la primera infusión. Por ejemplo, se puede usar una preparación purificada o recombinante (5-50 |jg) del antígeno PD-1 para inmunizar por vía intraperitoneal los ratones con Ig humana.
Los procedimientos detalladas para generar anticuerpo monoclonales completamente humanos contra PD-1 se describen en el Ejemplo 1, más adelante. La experiencia acumulada con varios antígenos ha demostrado que el ratón transgénico responde cuando se inmuniza inicialmente por vía intraperitoneal (IP) con antígeno en adyuvante completo de Freund, seguido por inmunizaciones IP en semanas alternas (hasta un total de 6) con antígeno en adyuvante incompleto de Freund. Sin embargo, se ha descubierto que también son eficaces otros adyuvantes diferentes a los de Freund. Además, se ha descubierto que las células completas, en ausencia de adyuvante, son fuertemente inmunógenas. La respuesta inmunitaria se puede vigilar durante el protocolo de inmunización con muestras de plasma, que se obtiene mediante extracción de sangre retroorbital. El plasma se puede cribar por ELISA (como se describe más adelante), y los ratones con títulos de inmunoglobulina humana contra PD-1 suficientes se pueden usar en las fusiones. Se puede proporcionar un refuerzo por vía intravenosa a los ratones con el antígeno 3 días antes del sacrificio y extirpación de los bazos. Se espera que sean necesarias 2-3 fusiones para cada inmunización. Para cada antígeno se suelen inmunizar entre 6 y 24 ratones. Normalmente, se utilizan ambas cepas HCo7 y HCo12. Además, ambos transgenes HCo7 y HCo12 se pueden reproducir conjuntamente en un mismo ratón que tenga dos transgenes de cadena pesada humana diferentes (HCo7/HCo12). De manera alternativa 0 adicional, se puede usar la cepa KM mouse™, como se describe en el Ejemplo 1.
Generación de hibridomas productores de anticuerpos monoclonales humanos
Para generar hibridomas productores de anticuerpos monoclonales humanos, se pueden aislar esplenocitos y/o células de ganglios linfáticos de ratones inmunizados y fusionarse en una línea de células inmortalizadas adecuadas, tal como una línea de células de mieloma de ratón. Los hibridomas resultantes se pueden cribar según la producción de anticuerpos específicos de antígenos. Por ejemplo, suspensiones monocelulares de linfocitos esplénicos procedentes de ratones inmunizados se pueden fusionar con un sexto de la cantidad de células P3X63-Ag8.653 de mieloma de ratón no secretor (ATCC, CRL 1580) con 50 % PEG. Como alternativa, las suspensiones monocelulares de linfocitos esplénicos procedentes de ratones inmunizados se puede fusionar usando un método de electrofusión basado en un campo eléctrico, usando un electroporador de fusión celular CytoPulse de cámara grande (Cyto Pulse Sciences, Inc., Glen Burnie, MD). Las células se sembraron en placas a aproximadamente 2 x 105 en placa de microtitulación de fondo plano, seguido por una incubación de dos semanas en medio selectivo que contiene suero de feto Clone al 20 %, medio condicionado "653" al 18 %, 5 % de origen (IGEN), L-glutamina 4 mM, piruvato sódico 1 mM, HEPES 5 mM, 2-mercaptoetanol 0,055 mM, 50 unidades/ml de penicilina, 50 mg/ml de estreptomicina, 50 mg/ml de gentamicina y 1X HAT (Sigma; el HAT se añade 24 horas después de la fusión). Después de aproximadamente dos semanas, las células se pueden cultivar en medio, donde el HAT se ha sustituido por HT. A continuación, los pocilios individuales se cribaron mediante ELISA para buscar anticuerpos monoclonales humanos IgM e IgG. Una vez que ha producido un amplio crecimiento del hibridoma, el medio se puede observar por lo general después de 10-14 días. Los hibridomas que secretan anticuerpos se pueden volver a sembrar en placas, cribarse de nuevo, y si siguen siendo positivos para la IgG humana, los anticuerpos monoclonales pueden subclonarse al menos dos veces mediante dilución limitante.
Los subclones estables se pueden cultivar después in vitro para generar pequeñas cantidades de anticuerpos en medio de cultivo de tejido para su caracterización.
Para purificar los anticuerpos monoclonales humanos, hibridomas seleccionados se pueden hacer crecer en matraces de centrífuga a de dos litros para la purificación del anticuerpo monoclonal. Los sobrenadantes se pueden filtrar y concentrar antes de la cromatografía de afinidad con proteína A-sefarosa (Pharmacia, Piscataway, N.J.). La IgG eluida se puede comprobar mediante electroforesis en gel y cromatografía líquida de alto rendimiento para garantizar pureza. La solución tampón se puede intercambiar por PBS, y la concentración se puede determinar por DO280 usando un coeficiente de extinción de 1,43. Los anticuerpos monoclonales se pueden distribuir en alícuotas y almacenarse a -80 °C.
Generación de transfectomas productores de anticuerpos monoclonales
Los anticuerpos de la divulgación también se puede producir en un trasfectoma de célula hospedadora usando, por ejemplo, una combinación de técnicas de ADN recombinante y métodos de transfección génica como es bien conocido en la técnica (por ejemplo, Morrison, S. (1985) Science 229:1202). Por ejemplo, para expresar los anticuerpos, o fragmentos de anticuerpo del mismo, los ADN que codifican las cadenas ligera y pesada de longitud parcial o completa, se pueden obtener por técnicas de biología molecular convencionales (por ejemplo, amplificación mediante la PCR o clonación de ADNc usando un hibridoma que expresa el anticuerpo de interés) y los ADN se pueden introducir en vectores de expresión de forma que los genes estén unidos operativamente a secuencias de control de la transcripción y la traducción. En este contexto, la expresión "operativamente unido" pretende denotar que un gen de anticuerpo está ligado en un vector de tal forma que las secuencias de control de la transcripción y la traducción dentro del vector realizan su función prevista de regular la transcripción y la traducción del gen del anticuerpo. El vector de expresión y las secuencias de control de la expresión se seleccionan para que sean compatibles con la célula hospedadora de expresión utilizada. El gen de la cadena ligera del anticuerpo y el gen de la cadena pesada del anticuerpo se pueden introducir en vectores independientes o, de forma más típica, ambos genes se introducen en el mismo vector de expresión. Los genes del anticuerpo se introducen dentro del vectores de expresión por métodos convencionales (por ejemplo, ligadura de sitios de restricción complementarios del fragmento génico del anticuerpo y el vector, o una ligadura en el extremo enromado si no hay sitios de restricción presentes). Las regiones variables de la cadena pesada y de la cadena ligera de los anticuerpos descritos en el presente documento se pueden utilizar para crear genes de anticuerpos de longitud completa de cualquier isotipo de anticuerpo introduciendo en los mismos los vectores de expresión que ya codifican las regiones constantes de la cadena pesada y la cadena ligera del isotipo deseado de tal forma que el segmento Vh está operativamente unido a uno o varios segmentos Ch del vector y el segmento Vl está operativamente unido al segmento Cl dentro del vector. De manera adicional o alternativa, el vector de expresión recombinante puede codificar un péptido señal que facilita la secreción de la cadena del anticuerpo de la célula hospedadora. El gen de la cadena del anticuerpo puede clonarse en el vector de tal manera que el péptido señal se une en marco al extremo amino del gen de la cadena del anticuerpo. El péptido señal puede ser un péptido señal de inmunoglobulina o un péptido señal heterólogo (es decir, un péptido señal de una proteína no inmunoglobulina).
Además de los genes de la cadena del anticuerpo, los vectores de expresión recombinante llevan secuencias reguladoras que controlan la expresión de los genes de la cadena del anticuerpo en una célula hospedadora. Se pretende que el término "secuencia reguladora" incluya promotores, potenciadores y otros elementos de control de la expresión (por ejemplo, señales de poliadenilación) que controlan la transcripción o la traducción de los genes de la cadena del anticuerpo. Dichas secuencias reguladoras se describen, por ejemplo, en Goeddel (Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, CA (1990)). Los expertos en la materia apreciarán que el diseño del vector de expresión, incluida la selección de las secuencias reguladoras, puede depender de factores tales como la elección de la célula hospedadora a transformar, el nivel de expresión de proteína deseado, etc. Las secuencias reguladoras preferidas para expresión en células hospedadoras de mamífero incluyen elementos víricos que dirigen altos niveles de expresión de proteína en células de mamífero, tales como los promotores y/o potenciadores derivados de citomegalovirus (CMV), virus simio 40 (SV40), adenovirus, (por ejemplo, el promotor tardío principal de adenovirus (AdMLP)) y polioma. Como alternativa, se pueden utilizar secuencias reguladoras no víricas, tales como el promotor de la ubiquitina o el promotor de la globina p. Aún mejor, elementos reguladores compuestos de secuencias de diferentes procedencias, tales como el sistema promotor SRa, que contiene secuencias procedentes del promotor temprano de SV40 y la repetición terminal larga del virus de la leucemia de linfocitos Tipo 1 (Takebe, Y. et al. (1988) Mol. Cell. Biol. 8:466-472).
Además de los genes de la cadena del anticuerpo y las secuencias reguladoras, los vectores de expresión recombinante de la divulgación pueden llevar secuencias adicionales, tales como secuencias que regulan la replicación del vector en células hospedadoras (por ejemplo, orígenes de replicación) y genes marcadores seleccionables. El gen marcador seleccionable facilita la selección de las células hospedadoras en las que se ha introducido el vector (véanse, por ejemplo, las patentes de Estados Unidos números 4.399.216, 4.634.665 y 5.179.017, todas de Axel et al.). Por ejemplo, el gen marcador seleccionable transmite normalmente resistencia a fármacos, tales como G418, higromicina o metotrexato, a una célula hospedadora en la que se ha introducido el vector. Los genes marcadores seleccionables preferidos incluyen el gen de dihidrofolato reductasa (DHFR) (para su uso en células hospedadoras dhfr- con selección/amplificación en metotrexato) y el gen neo (para selección en G418).
Para la expresión de las cadenas ligeras y pesadas, el uno o varios vectores de expresión que codifican las cadenas pesada y ligera se transfectan a una célula hospedadora mediante técnicas convencionales. Se pretende que las diversas formas del término "transfección" abarquen una gran variedad de técnicas comúnmente usadas para la introducción de ADN exógeno en una célula hospedadora procariota o eucariota, por ejemplo, electroporación, precipitación con fosfato de calcio, transfección con DEAE-dextrano y similares. Aunque es teóricamente posible expresar los anticuerpos de la divulgación en células hospedadoras tanto procariotas como eucariotas, la expresión de anticuerpos en células eucariotas y, con máxima preferencia, en células hospedadoras de mamífero, es lo más preferido porque dichas células eucariotas y en particular las células de mamífero, es más probable que las células procariotas se ensamblen y secreten un anticuerpo plegado e inmunológicamente activo. Se ha notificado la expresión procariota de genes de anticuerpo es ineficaz para la producción de elevados rendimientos de anticuerpos activos (Boss, M. A. y Wood, C. R. (1985) Immunology Today 6:12-13).
Las células hospedadoras de mamífero preferidas para expresar los anticuerpos recombinantes de la divulgación incluyen células de ovario de hámster chino (células CHO) (incluyendo células CHO dhfr-, descritas en Urlaub y Chasin, (1980) Proc. Natl Acad. Sci. USA 77:4216-4220, usadas con un marcador seleccionable de DHFR, por ejemplo, como se describe en R. J. Kaufman y P. A. Sharp (1982) J. Mol. Biol. 759:601-621), células NSO de mieloma, células COS y células SP2. En particular, para su uso en células NSO de mieloma, otro sistema de expresión preferido es el sistema de expresión génica GS divulgado en los documentos WO 87/04462, WO 89/01036, y EP 338.841. Cuando los vectores de expresión recombinantes que codifican genes de anticuerpos se introducen en células hospedadoras de mamíferos, los anticuerpos se producen cultivando las células hospedadoras durante un periodo de tiempo suficiente para permitir la expresión del anticuerpo en las células hospedadoras o, más preferentemente, la secreción del anticuerpo en el medio de cultivo en el que se hacen crecer las células hospedadoras. Los anticuerpos se pueden recuperar del medio de cultivo utilizando métodos de purificación de proteínas convencionales.
Caracterización de la unión del anticuerpo al antígeno
Los anticuerpos de la divulgación se pueden analizar para determinar su unión a PD-1 mediante, por ejemplo, ELISA convencional. En resumen, las placas de microtitulación se revisten con PD-1 purificada a 0,25 |jg/ml en PBS, y a continuación se bloquean con albúmina de suero bovino al 5 % en PBS. Las diluciones del anticuerpo (por ejemplo, diluciones de plasma procedente de ratones inmunizados con PD-1) se añadieron a cada pocillo y se incubaron durante 1-2 horas a 37 °C. Las placas se lavaron con PBS/Tween y a continuación se incubaron con reactivo secundario (por ejemplo, para anticuerpos humanos, un reactivo policlonal específico de cabra dirigido contra IgG Fc humana) conjugado con fosfatasa alcalina durante 1 hora a 37 °C. Tras el lavado, las placas se revelaron con sustrato pNPP (1 mg/ml), y se analizaron a una DO de 405-650. Preferentemente, los ratones que desarrollaron los títulos más altos títulos se utilizarán en las fusiones.
Un ensayo ELISA, como se ha descrito anteriormente, también se puede utilizar para cribar hibridomas que muestran reactividad positiva con el inmunógena PD-1. Los hibridomas que se unen con elevada avidez a PD-1 se subclonaron y se caracterizaron adicionalmente. Un clon de cada hibridoma, que retiene la reactividad de las células precursoras (según ELISA), se puede seleccionar para fabricar un banco de células en 5-10 viales almacenados a -140 °C, y para la purificación del anticuerpo.
Para purificar los anticuerpos dirigidos contra PD-1, hibridomas seleccionados se pueden hacer crecer en matraces de centrífuga a de dos litros para la purificación del anticuerpo monoclonal. Los sobrenadantes se pueden filtrar y concentrar antes de la cromatografía de afinidad con proteína A-sefarosa (Pharmacia, Piscataway, NJ). La IgG eluida se puede comprobar mediante electroforesis en gel y cromatografía líquida de alto rendimiento para garantizar pureza. La solución tampón se puede intercambiar por PBS, y la concentración se puede determinar por DO280 usando un coeficiente de extinción de 1.43. Los anticuerpos monoclonales se pueden distribuir en alícuotas y almacenarse a -80 °C.
Para determinar si los anticuerpos monoclonales dirigidos contra PD-1 se unen a epítopos únicos, cada anticuerpo se puede biotinilar usando reactivos comercialmente disponibles (Pierce, Rockford, DL). Los estudios de competición con anticuerpos monoclonales no marcados y anticuerpos monoclonales biotinilados se puede llevar a cabo con placas ELISA revestidas de PD-1 como se ha descrito anteriormente. La unión de los mAb biotinilados se puede detectar con una sonda estreptavidina-fosfatasa alcalina.
Para determinar el isotipo de los anticuerpos purificados, se pueden llevar a cabo ELISA de isotipo usando reactivos específicos para los anticuerpos de un isotipo en particular. Por ejemplo, para determinar el isotipo de un anticuerpo monoclonal humano, los pocilios de las placas de microtitulación se pueden revestir con 1 |jg/ml de anticuerpo dirigido contra inmunoglobulina humana durante la noche a 4 °C. Tras bloquear con BSA al 1 %, las placas se hicieron reaccionar con 1 jg /ml o menos de anticuerpos monoclonales de ensayo o controles de isotipo purificados, a temperatura ambiente durante una o dos horas. A continuación, los pocillos se pueden hacer reaccionar con IgG 1 humana o bien sondas específicas de IgM humana conjugadas con fosfatasa alcalina. Las placas se revelaron y se analizaron como se ha descrito anteriormente.
Las IgG contra PD-1 humana se pueden analizar adicionalmente para determinar su reactividad con el antígeno PD-1 mediante transferencia Western. En resumen, PD-1 se puede preparar y someterse a electrofo resis en gel de poliacrilamida con dodecil sulfato de sodio. Tras la electroforesis, los antígenos separados se transfieren a membranas de nitrocelulosa, se bloquearon con suero de feto de ternera al 10 %, y se sondearon con el anticuerpo monoclonal a analizar. La IgG humana unida se puede detectar usando anticuerpo dirigido contra IgG humana conjugado con fosfatasa alcalina y revelarse con comprimidos de sustrato BCIP/NBT (Sigma Chem. Co., St. Louis, Mo.).
Composiciones Farmacéuticas
Los inventores describen una composición, por ejemplo, una composición farmacéutica, que contiene uno o una combinación de anticuerpos monoclonales, o una o varias porciones de unión a antígeno de los mismos, formulados junto con un vehículo farmacéuticamente aceptable. Dichas composiciones pueden incluir uno o una combinación de (por ejemplo, dos o más diferentes) anticuerpos, o inmunoconjugados o moléculas biespecíficas. Por ejemplo, una composición farmacéutica puede comprender una combinación de anticuerpos (o inmunoconjugados o moléculas biespecíficas) que se unen a diferentes epítopos del antígeno diana o que tienen actividades complementarias. Las composiciones farmacéuticas de la divulgación también pueden administrarse en terapia de combinación, es decir, combinadas con otros agentes. Por ejemplo, la terapia de combinación puede incluir un anticuerpo dirigido contra PD-1 combinado con al menos otro agente antiinflamatorio o inmunosupresor. Los ejemplos de agentes terapéuticos que se pueden usar en una terapia de combinación se describen con mayor detalle en el apartado dedicado a los usos de los anticuerpos de la divulgación.
Como se usa en el presente documento, "vehículo farmacéuticamente aceptable" incluye todos y cada uno de los disolventes, medios de dispersión, recubrimientos, agentes antibacterianos y antifúngicos, agentes isotónicos y agentes retardantes de la absorción, y similares, que sean fisiológicamente compatibles. Preferentemente, el vehículo es adecuado para la administración intravenosa, intramuscular, subcutánea, parenteral, espinal o epidérmica (por ejemplo, mediante inyección o infusión). Dependiendo de la ruta de administración, es decir, anticuerpo, inmunoconjugado o molécula biespecífica, se puede recubrir con un material para proteger el compuesto de la acción de los ácidos y de otras condiciones naturales que pueden inactivar el compuesto.
Los compuestos farmacéuticos de la divulgación pueden incluir una o más sales farmacéuticamente aceptables. Una "sal farmacéuticamente aceptable" se refiere a una sal que retiene la actividad biológica deseada del compuesto precursor y no trasmite ningún efecto toxicológico indeseado (véase, por ejemplo, Berge, S.M., et al (1977) J. Pharm. Sci. 66:1-19). Ejemplos de dichas sales incluyen sales de adición de ácido y sales de adición de bases. Las sales de adición de ácido incluyen las derivadas de ácidos inorgánicos no tóxicos, tales como ácido clorhídrico, nítrico, fosfórico, sulfúrico, bromhídrico, yodhídrico, fosforoso y similares, así como de ácidos orgánicos no tóxicos tales como ácidos alifáticos monocarboxílicos y dicarboxílicos, ácidos alcanoicos sustituidos con fenilo, ácidos hidroxialcanoicos, ácidos aromáticos, ácidos sulfónicos alifáticos y aromáticos, y similares. Las sales de adición de base incluyen las derivadas de metales alcalinotérreos, tales como sodio, potasio, magnesio, calcio y similares, así como de aminas orgánicas no tóxicas, tales como N, N'-dibenciletilendiamina, N-metilglucamina, cloroprocaína, colina, dietanolamina, etilendiamina, procaína y similares.
Una composición farmacéutica de la divulgación también pueden incluir un antioxidante farmacéuticamente aceptable. Los ejemplos de antioxidantes farmacéuticamente aceptables incluyen: (1) antioxidantes solubles en agua, tales como ácido ascórbico, hidrocloruro de cisteína, bisulfato sódico, metabisulfito de sodio, sulfito sódico y similares; (2) antioxidantes solubles en aceite, tales como palmitato de ascorbilo, hidroxianisol butilado (BHA), hidroxitolueno butilado (BHT), lecitina, galato de propilo, alfa-tocoferol, y similares; y (3) agentes quelantes de metales, tales como ácido cítrico, ácido etilendiaminotetraacético (EDTA), sorbitol, ácido tartárico, ácido fosfórico, y similares.
Los ejemplos de vehículos acuosos y no acuosos adecuados que pueden emplearse en las composiciones farmacéuticas de la invención incluyen agua, etanol, polioles (tales como glicerol, propilenglicol, polietilenglicol y similares) y mezclas adecuadas de los mismos, aceites vegetales, tales como aceite de oliva y ésteres orgánicos inyectables, tales como oleato de etilo. La fluidez adecuada se puede mantener, por ejemplo, mediante el uso de materiales de recubrimiento, tal como lecitina, mediante el mantenimiento del tamaño de partícula necesario en caso de dispersiones, y mediante el uso de tensioactivos.
Estas composiciones también pueden contener adyuvantes tales como agentes conservantes, agentes humectantes, agentes emulsionantes y agentes dispersantes. La prevención de la presencia de microorganismos se puede garantizar tanto mediante procedimientos de esterilización, más arriba, como mediante la inclusión de diversos agentes antibacterianos y antifúngicos, por ejemplo, parabeno, clorobutanol, fenol-ácido sórbico y similares. También puede ser deseable incluir agentes isotónicos, tales como azúcares, cloruro sódico y similares en las composiciones. Además, la absorción prolongada de la forma inyectable del fármaco se puede conseguir mediante la inclusión de agentes que retrasen la absorción, tales como monoestearato de aluminio y gelatina.
Los vehículos farmacéuticamente aceptables incluyen soluciones acuosas estériles o dispersiones y polvos estériles para la preparación extemporánea de soluciones estériles inyectables o dispersiones. El uso de dichos medios y agentes para sustancias farmacéuticamente activas es conocido en la materia. Excepto en el caso de que cualquier agente o medio convencional sea incompatible con el compuesto activo, se contempla el uso de los mismos en las composiciones farmacéuticas de la invención. También pueden incorporarse compuestos activos complementarios en las composiciones.
Normalmente, las composiciones terapéuticas deben ser estériles y estables en las condiciones de fabricación y almacenamiento. La composición puede formularse como una solución, microemulsión, liposoma u otra estructura ordenada adecuada para la alta concentración de fármaco. El vehículo puede ser un disolvente o medio de dispersión que contiene, por ejemplo, agua, etanol, poliol (por ejemplo, glicerol, propilenglicol y polietilenglicol líquido, y similares) y mezclas adecuadas de los mismos. La fluidez apropiada puede mantenerse, por ejemplo, mediante el uso de un recubrimiento tal como lecitina, mediante el mantenimiento del tamaño de partículas requerido en el caso de una dispersión y mediante el uso de tensioactivos. En muchos casos, será preferente incluir agentes isotónicos, por ejemplo, azúcares, polialcoholes tales como manitol, sorbitol o cloruro sódico en la composición. Puede lograrse la absorción prolongada de las composiciones inyectables incluyendo en la composición un agente que retrase la absorción, por ejemplo, sales de monoestearato y gelatina.
Las soluciones inyectables estériles pueden prepararse incorporando el compuesto activo en la cantidad necesaria en un disolvente adecuado con uno o una combinación de los ingredientes enumerados anteriormente, según sea necesario, seguido de esterilización por microfiltración. Generalmente, las dispersiones se preparan mediante la incorporación del principio activo a un vehículo estéril que contiene un medio de dispersión básico y los otros ingredientes requeridos de los enumerados anteriormente. En el caso de polvos estériles para la preparación de soluciones inyectables estériles, los métodos de preparación preferidos son el secado al vacío y el secado en frío (liofilización) que producen un polvo del principio activo más cualquier ingrediente adicional deseado a partir una solución del mismo previamente esterilizada por filtración.
La cantidad de principio activo que se puede combinar con un material de vehículo para producir una única forma de dosificación variará dependiendo del sujeto que se esté tratando y del modo particular de administración. La cantidad de principio activo que se puede combinar con un material transportador para producir una única forma farmacéutica será aquella cantidad de la composición que produzca un efecto terapéutico. Generalmente, de un cien por ciento, esta cantidad estará comprendida en un intervalo de aproximadamente 0,01 por ciento a aproximadamente noventa y nueve por ciento de principio activo, preferentemente desde aproximadamente el 0,1 por ciento a aproximadamente el 70 por ciento, lo más preferentemente de aproximadamente 1 por ciento a aproximadamente 30 por ciento de principio activo, junto con un vehículo farmacéuticamente aceptable.
Los regímenes de tratamientos se ajustan para proporcionar la respuesta óptima deseada (por ejemplo, una respuesta terapéutica). Por ejemplo, se puede administrar un único bolo, se pueden administrar varias dosis divididas en el tiempo, o la dosis se puede reducir o aumentar proporcionalmente según dicten las exigencias de la situación terapéutica. Es especialmente ventajoso formular las composiciones parenterales en una forma farmacéutica unitaria para facilitar la administración y la uniformidad de la dosificación. Una forma farmacéutica unitaria, tal como se usa en el presente documento, se refiere a unidades físicamente discretas adecuadas como dosificaciones unitarias para los sujetos a tratar; cada unidad contiene una cantidad predeterminada de principio activo calculada para producir el efecto terapéutico deseado junto con el vehículo farmacéutico necesario. La especificación de las formas farmacéuticas unitarias de la invención están determinadas por, y son directamente dependientes de (a) las características únicas del principio activo y el efecto terapéutico particular a conseguir, y (b) las limitaciones inherentes en la técnica de la composición de tal principio activo para el tratamiento de la sensibilidad en individuos.
Para la administración del anticuerpo, la dosis está comprendida de aproximadamente 0,0001 a 100 mg/kg, y más habitualmente, de 0,01 a 5 mg/kg, del peso corporal del hospedador. Por ejemplo, las dosificaciones pueden ser 0,3 mg/kg de peso corporal, 1 mg/kg de peso corporal, 3 mg/kg de peso corporal, 5 mg/kg de peso corporal o 10 mg/kg de peso corporal, o comprendidas en el intervalo de 1-10 mg/kg. Un régimen de tratamiento ilustrativo conlleva la administración una vez a la semana, una vez cada dos semanas, una vez cada tres semanas, una vez cada cuatro semanas, una vez al mes, una vez cada 3 meses o una vez cada tres a 6 meses. Los regímenes de dosificación preferidos para un anticuerpo dirigido contra PD-1 de la invención incluyen 1 mg/kg de peso corporal o 3 mg/kg de peso corporal mediante administración intravenosa, utilizando el anticuerpo uno de los siguientes calendarios de dosificación: (i) cada cuatro semanas para seis dosificaciones, a continuación cada tres meses; (ii) cada tres semanas; (iii) 3 mg/kg de peso corporal una vez seguido por 1 mg/kg de peso corporal cada tres semanas. En algunos métodos, se administran simultáneamente dos o más anticuerpos monoclonales con diferentes especificidades de unión, en cuyo caso, la dosis de cada anticuerpo administrado está comprendida en los intervalos indicados. El anticuerpo se administra normalmente en múltiples ocasiones. Los intervalos entre dosis individuales pueden ser, por ejemplo, semanalmente, mensualmente, cada tres meses, o anualmente. Los intervalos también pueden ser irregulares, según indiquen las mediciones de los niveles en sangre del anticuerpo al antígeno diana del paciente. En algunos métodos, la dosificación se ajusta para conseguir una concentración de anticuerpo en plasma de aproximadamente 1-1000 |jg /ml y en algunos métodos aproximadamente 25-300 |jg /ml.
Como alternativa, se puede administrar el anticuerpo como una formulación de liberación sostenida, en cuyo caso se requiere una administración menos frecuente. La dosificación y la frecuencia variarán dependiendo de la semivida del anticuerpo en el paciente. En general, los anticuerpos humanos muestran la vida más larga, seguido por los anticuerpos humanizados, anticuerpos quiméricos, y anticuerpos no humanos. La dosificación y la frecuencia de administración pueden variar dependiendo de si el tratamiento es profiláctico o terapéutico. En aplicaciones profilácticas, se administra una dosificación relativamente baja a intervalos relativamente infrecuentes durante un periodo de tiempo prolongado. Algunos pacientes siguen recibiendo tratamiento durante el resto de sus vidas. En aplicaciones terapéuticas, a veces se necesita una dosis relativamente alta en intervalos relativamente cortos hasta que se reduce el progreso de la enfermedad o esta termina, y preferentemente hasta que el paciente muestra una mejora parcial o completa de los síntomas de la enfermedad. Posteriormente, el paciente puede recibir un régimen profiláctico.
Los niveles de dosificación reales de los principios activos en las composiciones farmacéuticas de la presente invención se pueden variar para obtener una cantidad del principio activo que es eficaz para lograr la respuesta terapéutica deseada para un paciente particular, la composición y el modo de administración, sin que sean tóxicos para el paciente. El nivel de dosificación seleccionado dependerá de diversos factores farmacocinéticos que incluyen la actividad de las composiciones concretas de la presente invención utilizadas, o del éster, la sal o la amida del mismo, la vía de administración, el tiempo de administración, la tasa de excreción del compuesto particular que se está empleando, la duración del tratamiento, otros fármacos, compuestos y/o materiales usados junto con las composiciones concretas utilizadas, la edad, del sexo, el peso, la afección, estado de salud general e historial médico previo del paciente que se está tratando, y factores similares bien conocidos en las técnicas médicas.
Una "dosificación terapéuticamente eficaz" de un anticuerpo dirigido contra PD-1 de la divulgación da como resultado preferentemente una disminución en la gravedad de los síntomas de la enfermedad, un aumento en la frecuencia y duración de los periodos exentos de síntomas, o una prevención de un deterioro o incapacidad debido a la afección por la enfermedad. Por ejemplo, para el tratamiento de tumores, una "dosificación terapéuticamente eficaz" inhibe preferentemente el crecimiento celular o el crecimiento tumoral en al menos aproximadamente un 20 %, más preferentemente en al menos aproximadamente el 40 %, incluso más preferentemente en al menos aproximadamente un 60 %, y aún más preferiblemente en al menos aproximadamente un 80 % con respecto a los sujetos no tratados. La capacidad de un compuesto para inhibir el crecimiento tumoral se puede evaluar en un sistema modelo en un animal predictivo de la eficacia en tumores humanos. Como alternativa, esta propiedad de una composición se puede evaluar examinando la capacidad del compuesto para inhibir, dicha inhibición in vitro con ensayos conocidos del técnico experto. Una cantidad terapéuticamente eficaz de un compuesto puede disminuir el tamaño de un tumor, o bien mejorar los síntomas en un sujeto. Un experto en la materia sería capaz de determinar dichas cantidades dependiendo de factores tales como el tamaño del sujeto, la gravedad de los síntomas del sujeto, y la composición o vía de administración seleccionada en particular.
En otro aspecto, la presente divulgación proporciona un kit farmacéutico de partes que comprende un anticuerpo dirigido contra PD-1 y un anticuerpo dirigido contra CTLA-4, como se describe en el presente documento. El kit puede comprender además instrucciones para el uso en el tratamiento de una enfermedad hiperproliferativa (tal como el cáncer como se describe en el presente documento). En otra realización, los anticuerpos dirigidos contra PD-1 y contra CTLA-4 se pueden envasar simultáneamente en formas farmacéuticas unitarias.
En ciertas realizaciones, dos o más anticuerpos monoclonales con diferentes especificidades de unión (por ejemplo anti-PD-1 y anti-CTLA-4) se administran simultáneamente, en cuyo caso, la dosis de cada anticuerpo administrado está comprendida en los intervalos indicados. El anticuerpo se puede administrar en una única dosis o más habitualmente, se puede administrar en múltiples ocasiones. Los intervalos entre dosis individuales pueden ser, por ejemplo, semanales, mensuales, cada tres meses, o anualmente. Los intervalos también pueden ser irregulares, según indiquen las mediciones de los niveles en sangre del anticuerpo al antígeno diana del paciente. En algunos métodos, la dosificación se ajusta para conseguir una concentración de anticuerpo en plasma de aproximadamente 1-1000 jg/ml y, en algunos métodos, de aproximadamente 25-300 jg/ml.
Una composición de la presente invención se puede administrar mediante una o más vías de administración usando uno o más de varios métodos conocidos en la materia. Como apreciarán los expertos en la materia, la vía y/o el modo de administración variará dependiendo de los resultados deseados. Las vías de administración preferidas para los anticuerpos de la invención incluyen la intravenosa, intramuscular, intradérmica, intraperitoneal, subcutánea, espinal, u otras vías de administración parenteral, por ejemplo, mediante inyección o infusión. La expresión "administración parenteral" como se usa en el presente documento significa modos de administración diferentes de la administración entérica y tópica, habitualmente mediante inyección e incluyen, sin limitación, inyección e infusión intravenosa, intramuscular, intraarterial, intratecal, intracapsular, intraorbital, intracardíaca, intradérmica, intraperitoneal, transtraqueal, subcutánea, subcuticular, intraarticular, subcapsular, subaracnoidea, intraespinal, epidural e intraesternal.
Como alternativa, un anticuerpo de la invención puede administrarse mediante una vía no parenteral, tal como una vía de administración tópica, epidérmica o mucosal, por ejemplo, intranasal, oral, vaginal, rectal, sublingual o tópica. Los principios activos se pueden preparar con vehículos que protejan el principio contra su rápida liberación, tal como una formulación de liberación controlada, incluyendo implantes, parches transdérmicos y sistemas de suministro microencapsulados. Biodegradable, biocompatibles, tales como acetato de etilenvinilo, polianhídridos, ácido poliglicólico, colágeno, poliortoésteres y ácido poliláctico. Muchos métodos para la preparación de dichas formulaciones están patentados o se conocen generalmente por los expertos en la materia. Véanse, por ejemplo, Sustained and Controlled Release Drug Delivery Systems, J.R. Robinson, ed., Marcel Dekker, Inc., Nueva York, 1978.
Las composiciones terapéuticas se pueden administrar con dispositivos médicos conocidos en la técnica. Por ejemplo, en una realización preferida, una composición terapéutica de la invención se puede administrar mediante un dispositivo de inyección hipodérmica sin aguja, tales como los dispositivos divulgados en las patentes de Estados Unidos con números 5.399.163; 5.383.851; 5.312.335; 5.064.413; 4.941.880; 4.790.824; o 4.596.556. Los ejemplos de implantes y módulos bien conocidos útiles en la presente invención incluyen: la patente de EE.UU. n.° 4.487.603, que divulga una bomba de microinfusión implantable para dispensar medicamento a una tasa controlada; la patente de EE.UU. n.° 4.486.194, que divulga un dispositivo terapéutico para administrar medicamentos a través de la piel; la patente de EE.UU. n.° 4.447.233, que divulga una bomba de infusión de medicamento para suministrar medicamento a una tasa de infusión precisa; la patente de EE.UU. n.° 4.447.224, que divulga un aparato de infusión implantable de flujo variable para la administración continua de fármaco; la patente de EE.UU. n.° 4.439.196, que divulga un sistema de administración osmótica de fármaco que tiene compartimentos multicámara; y la patente de Estados Unidos n.° 4.475.196, que divulga un sistema de administración osmótica de fármaco. Estas patentes se incorporan al presente documento por referencia. Muchos otros de estos implantes, sistemas de administración y módulos son conocidos por los expertos en la materia.
En ciertas realizaciones, los anticuerpos monoclonales humanos de la invención pueden formularse para asegurar una distribución adecuada in vivo. Por ejemplo, la barrera hematoencefálica (b Hm) excluye muchos compuestos altamente hidrofílicos. Para asegurar que los compuestos terapéuticos de la invención cruzan la BHM (sí se desea), se pueden formular, por ejemplo, en liposomas. Para los métodos de fabricación de liposomas, véanse, por ejemplo, las patentes de Estados Unidos 4.522.811; 5.374.548; y 5.399.331. Los liposomas pueden comprender uno o más grupos que se transportan de manera selectiva a células u órganos específicos, mejorando de este modo la administración dirigida de fármaco (véase, por ejemplo, V.V. Ranade (1989) J. Clin. Pharmacol. 29:685). Los grupos de direccionamiento ilustrativos incluyen folato o biotina (véase, por ejemplo, la patente de Estados Unidos 5.416.016 de Low et al.); manósidos (Umezawa et al., (1988) Biochem Biophys. Res. Commun. 153:1038); anticuerpos (P.G. Bloeman et al. (1995) FEBS Lett. 357:140: M. Owais et al. (1995) Antimicrob. Agents Chemother.
39:180); receptor de proteína A del tensioactivo (Briscoe et al. (1995) Am. J. Physiol. 1233: 134); p120 (Schreier et al., (1994) J. Biol. Chem. 269:9090); véanse también K. Keinanen; M.L. Laukkanen (1994) FEbS Lett. 346:123; J.J. Killion; I.J. Fidler (1994) Immunomethods 4:273.
Usos y métodos de la divulgación
Los anticuerpos y composiciones de anticuerpos para su uso en la presente invención tienen numerosas utilidades in vitro e in vivo que implican, por ejemplo, potenciación de la respuesta inmunitaria mediante el bloqueo de PD-1. En una realización preferida, los anticuerpos usados en la presente invención son anticuerpos humanos. Por ejemplo, estas moléculas se pueden administrar a células en cultivo, in vitro o ex vivo, o a sujetos humanos, por ejemplo, in vivo, para potenciar la inmunidad en varias situaciones. En consecuencia, los investigadores describen un métodos para modificar una respuesta inmunitaria en un sujeto que comprende administrar al sujeto el anticuerpo, o porción de unión a antígeno del mismo, de la divulgación de tal forma que se modifica la respuesta inmunitaria del sujeto. Preferentemente, la respuesta se potencia, estimula o regula en exceso.
Como se usa en el presente documento, el término "sujeto" pretende incluir seres humanos y animales no humanos. Los animales no humanos incluyen todos los vertebrados, por ejemplo, mamíferos y no mamíferos, tales como primates no humanos, ovejas, perros, gatos, vacas, caballos, pollos, anfibios, y reptiles, aunque se prefieren mamíferos, tales como primates no humanos, ovejas, perros, gatos, vacas y caballos. Los sujetos preferidos incluyen pacientes humanos que necesitan potenciar una respuesta inmunitaria. Los métodos son especialmente adecuados para tratar pacientes humanos que tienen un trastorno que se puede tratar aumentando la respuesta inmunitaria mediada por linfocitos T. En una realización particular, los métodos son especialmente adecuados para el tratamiento de células cancerosas in vivo. Para conseguir la potenciación de la inmunidad específica de antígeno, los anticuerpos dirigidos contra PD-1 se pueden administrar junto con un antígeno de interés. Cuando los anticuerpos de PD-1 se administran junto con otro agente, los dos se pueden administrar en cualquier orden o simultáneamente.
Cáncer
El bloqueo de PD-1 por anticuerpos puede potenciar la respuesta inmunitaria a células cancerosas en el paciente. El ligando de PD-1, PD-L1, no se expresa en células normales humanas, pero es abundante en diversos cánceres humanos (Dong et al. (2002) Nat Med 8:787-9). La interacción entre PD-1 y PD-L1 da como resultado una disminución de linfocitos infiltrantes de tumores, una disminución de la proliferación mediada por receptores de células T y una evasión inmunitaria de las células cancerosas (Dong et al. (2003) J Mol Med 81:281-7; Blank et al. (2005) Cancer Immunol. Immunother. 54:307-314; Konishi et al. (2004) Clin. Cancer Res. 10:5094-100). La supresión inmunitaria se puede revertir por inhibición de la interacción local de PD-1 con PD-L1 y el efecto es aditivo cuando la interacción de PD-1 con PD-L2 también se bloquea (Iwai et al. (2002) PNAS 99:12293-7; Brown et al. (2003) J. Immunol. 170:1257-66). Aunque estudios anteriores habían mostrado que la proliferación de linfocitos T se puede restaurar mediante la inhibición de la interacción de PD-1 con PD-L1, no hay informes de un efecto directo sobre el crecimiento de tumor canceroso in vivo mediante el bloqueo de la interacción PD-1/PD-L1. En un aspecto, la presente invención se refiere al tratamiento de un sujeto in vivo usando un anticuerpo dirigido contra PD-1 de forma que se inhibe el crecimiento de tumores cancerosos. El anticuerpo dirigido contra PD-1 se usa junto con anticuerpos dirigidos contra CTLA-4, como se describe más adelante.
Los cánceres preferidos cuyo crecimiento puede inhibirse utilizando los anticuerpos de la invención incluyen cánceres normalmente sensibles a la inmunoterapia. Los ejemplos no limitantes de cánceres preferidos para tratamiento incluyen melanoma (por ejemplo, metastásico melanoma maligno), cáncer renal (por ejemplo, carcinoma de células transparentes), cáncer de próstata (por ejemplo, adenocarcinoma de próstata resistente al tratamiento hormonal), cáncer de mama, cáncer de colon y cáncer de pulmón (por ejemplo, cáncer de pulmón no microcítico). De manera adicional, la invención incluye neoplasias resistentes al tratamiento o recurrentes cuyo crecimiento puede inhibirse utilizando los anticuerpos de la invención.
Los ejemplos de otros cánceres que se pueden tratar de acuerdo con la invención incluyen cáncer de huesos, cáncer pancreático, cáncer de piel, cáncer de cabeza o cuello, melanoma maligno cutáneo o intraocular, cáncer de útero, cáncer de ovario, cáncer rectal, cáncer de la región anal, cáncer de estómago, cáncer de testículo, cáncer de útero, carcinoma de las trompas de Falopio, carcinoma del endometrio, carcinoma del cuello uterino, carcinoma de la vagina, carcinoma de la vulva, enfermedad de Hodgkin, linfoma no de Hodgkin, cáncer de esófago, cáncer del intestino delgado, cáncer del sistema endocrino, cáncer de la glándula tiroides, cáncer de la glándula paratiroidea, cáncer de la glándula suprarrenal, sarcoma de tejidos blandos, cáncer de la uretra, cáncer del pene, leucemias crónicas o agudas, incluyendo leucemia mieloide aguda, leucemia mieloide crónica, leucemia linfoblástica aguda, leucemia linfocítica crónica, tumores sólidos de la infancia, linfoma linfocítico, cáncer de la vejiga, cáncer del riñón o del uréter, carcinoma de la pelvis renal, neoplasias del sistema nervioso central (SNC), linfoma primario del SNC, angiogénesis tumoral, tumor del eje espinal, glioma del tronco encefálico, adenoma hipofisario, sarcoma de Kaposi, cáncer epidermoide, cáncer de células escamosas, linfoma de linfocitos T, cánceres inducidos ambientalmente incluyendo aquellos inducidos por amianto, y combinaciones de dichos cánceres. La presente combinación también es útil para el tratamiento de cánceres metastásicos, especialmente cánceres metastásicos que expresan PD-L1 (Iwai y otros (2005) Int. Immunol. 17:133-144).
Opcionalmente, los anticuerpos contra PD-1 se pueden combinar con un agente inmunógeno, tales como células cancerosas, antígenos tumorales purificados (incluyendo proteínas recombinantes, péptidos y moléculas de carbohidratos), células y células transfectadas con genes que codifican citocinas inmunoestimulantes (He et al (2004) J. Immunol 173:4919-28). Los ejemplos no limitativos de vacunas tumorales que se pueden usar incluyen péptidos de antígenos de melanoma, tales como péptidos de gp100, antígenos MAGE, Trp-2, MARTI y/o tirosinasa, o células tumorales transfectadas para expresar la citoquina GM-CSF (analizada más detalladamente a continuación).
En los seres humanos, se ha demostrado que algunos tumores son inmunogénicos tales como melanomas. Se anticipa que al elevar el umbral de la activación de los linfocitos T por el bloqueo de PD-1, los inventores pueden esperar activar respuestas tumorales en el hospedador.
Es probable que el bloqueo de PD-1 sea más eficaz cuando se combina con un protocolo de vacunación. Se han ideado muchas estrategias experimentales para la vacunación contra tumores (véase Rosenberg, S., 2000, Development of Cancer Vaccines, ASCO Educational Book Spring: 60-62; Logothetis, C., 2000, ASCO Educational Book Spring: 300-302; Khayat, D. 2000, ASCO Educational Book Spring: 414-428; Foon, K.2000, ASCO Educational Book Spring: 730-738; véase también Restifo, N. y Sznol, M., Cancer Vaccines, cap. 61, págs. 3023-3043 en DeVita, V. et al. (eds.), 1997, Cancer: Principles and Practice of Oncology. Quinta Edición). En una de estas estrategias, se prepara una vacuna utilizando células tumorales autólogas o alogénicas. Se ha mostrado que estas vacunas celulares son más eficaces cuando las células tumorales se transducen para expresar GM-CSF. Se ha mostrado que el GM-CSF es un potente activador de la presentación de antígenos para la vacunación de tumores (Dranoff et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90: 3539-43).
El estudio de la expresión génica y los patrones de expresión génica a gran escala en diversos tumores ha conducido a la definición de los denominados antígenos específicos de tumores (Rosenberg, SA (1999) Immunity 10: 281-7). En muchos casos, estos antígenos específicos de tumor son antígenos de diferenciación expresados en los tumores y en la célula de la que se originó el tumor, por ejemplo, antígenos de melanocitos gp100, antígenos MAGE y Trp-2. De forma más importante, se puede demostrar que muchos de estos antígenos son las dianas de linfocitos T específicos de tumor encontrados en el hospedador. El bloqueo de PD-1 se puede usar junto con una colección de proteínas recombinantes y/o péptidos expresados en un tumor para generar una respuesta inmunitaria a estas proteínas. El sistema inmunitario suele ver estas proteínas como autoantígenos y, por tanto, son tolerantes a los mismos. El antígeno tumoral también puede incluir la proteína telomerasa, que se requiere para la síntesis de telómeros de cromosomas y que se expresa en más del 85 % de los cánceres humanos y solo en un número limitado de tejidos somáticos (Kim, N et al. 1994) Science 266: 2011-2013). (Estos tejidos somáticos pueden protegerse del ataque inmunitario por diversos medios). El antígeno tumoral también puede ser "neoantígenos" expresados en células cancerosas debido a mutaciones somáticas que alteran la secuencia proteica o crean proteínas de fusión entre dos secuencias no relacionadas (es decir, bcr-abl en el cromosoma Filadelfia), o idiotipo de tumores de linfocitos B.
Otras vacunas de tumores pueden incluir las proteínas de virus implicados en cánceres humanos tales como virus del papiloma humano (VPH), virus de la hepatitis (VHB y VHC) y virus del herpes sarcoma de Kaposi (VHSK). Otra forma de antígeno específico del tumor que se puede usar junto con el bloqueo de PD-1 son las proteínas de choque térmico purificadas (HSP) aisladas del propio tejido tumoral. Estas proteínas de choque térmico contienen fragmentos de proteínas de las células tumorales y estas HSP son muy eficaces en su administración a las células presentadoras de antígenos para estimular la inmunidad tumoral (Suot, R y Srivastava, P (1995) Science 269:1585-1588, Tamura, Y. et al. (1997) Science 278:117-120).
Las células dendríticas (DC) son potentes células presentadoras de antígenos que se pueden usar para cebar respuestas específicas de antígeno. Las DC pueden producirse ex vivo y cargarse con diversos antígenos de proteínas y péptidos, así como con extractos de células tumorales (Nestle, F. et al. (1998) Nature Medicine 4: 328­ 332). Las DC también se pueden transducir por medios genéticos para expresar también estos antígenos tumorales. Las DC también se han fusionado directamente con células tumorales con fines de inmunización (Kugler, A. et al. (2000) Nature Medicine 6:332-336). Como método de vacunación, la inmunización con DC se puede combinar eficazmente con el bloqueo de PD-1 para activar respuestas antitumorales más potentes.
El bloqueo de PD-1 también puede combinarse con tratamientos estándar contra el cáncer. El bloqueo de PD-1 puede combinarse eficazmente con regímenes quimioterapéuticos. En estos casos, puede ser posible reducir la dosis de reactivo quimioterapéutico administrado (Mokyr, M. et al. (1998) Cancer Research 58: 5301 -5304). Un ejemplo de dicha combinación es un anticuerpo dirigido contra PD-1 junto con dacarbazina para el tratamiento del melanoma. Otro ejemplo de dicha combinación es un anticuerpo dirigido contra PD-1 junto con interleuquina-2 (IL-2) para el tratamiento del melanoma. La razón científica que respalda el uso combinado del bloqueo de PD-1 y la quimioterapia es que la muerte celular, que es una consecuencia de la acción citotóxica de la mayoría de los compuestos quimioterapéuticos, debería dar lugar a niveles aumentados de antígeno tumoral en la ruta de presentación del antígeno. Otras terapias combinadas que pueden dar como resultado la sinergia con el bloqueo de PD-1 a través de la muerte celular son radiación, cirugía y privación de hormonas. Cada uno de estos protocolos crea una fuente de antígeno tumoral en el hospedador. Los inhibidores de la angiogénesis también se pueden combinar con el bloqueo de PD-1. La inhibición de la angiogénesis conduce a la muerte de células tumorales que pueden alimentar el antígeno tumoral a las rutas de presentación del antígeno del hospedador.
Los anticuerpos que bloquean PD-1 también se pueden usar junto con anticuerpos biespecíficos que se dirigen a células efectoras que expresan el receptor Fc alfa o Fc gamma hacia las células tumorales (véanse, por ejemplo, las patentes de Estados Unidos números 5.922.845 y 5.837.243). Se pueden usar anticuerpos biespecíficos para dirigirse a dos antígenos independientes. Por ejemplo, los anticuerpos biespecíficos del antígeno anti-receptor Fc/antígeno antitumoral (por ejemplo, Her-2/neu) se han utilizado para dirigir macrófagos a sitios de tumor. Este direccionamiento puede activar más eficazmente las respuestas específicas de tumores. El brazo de linfocitos T de estas respuestas estaría aumentado por el uso del bloqueo de PD-1. Como alternativa, el antígeno se puede administrar directamente a las DC mediante el uso de anticuerpos biespecíficos que se unan al antígeno tumoral y a una célula dendrítica específica de un marcador de la superficie de una célula.
Los tumores evitan la vigilancia inmunitaria del hospedador mediante una gran diversidad de mecanismos. Muchos de estos mecanismos se pueden superar por la inactivación de proteínas que se expresan en los tumores y que son inmunosupresoras. Estas incluyen entre otras TGF-beta (Kehrl, J. et al. (1986) J. Exp. Med. 163: 1037-1050), IL-10 (Howard, M. & O'Garra, A. (1992) Immunology Today 13: 198-200), y ligando Fas (Hahne, M. et al. (1996) Science 274: 1363-1365). Los anticuerpos contra cada una de estas entidades se pueden usar junto con un anticuerpo dirigido contra PD-1 para contrarrestar los efectos del agente inmunosupresor y favorecer las respuestas inmunitarias tumorales del hospedador.
Otros anticuerpos que se pueden usar para activar la capacidad de respuesta inmunitaria del hospedador pueden usarse junto con anti-PD-1. Estos incluyen moléculas en la superficie de las células dendríticas que activan la función DC y la presentación del antígeno. Los anticuerpos dirigidos contra CD40 pueden sustituir eficazmente la actividad de los linfocitos T auxiliares (Ridge, J. et al. (1998) Nature 393: 474-478) y se pueden utilizar junto con el bloqueo de PD-1. (Ito, N. et al. (2000) Immunobiology 201 (5) 527-40). La activación de anticuerpos contra las moléculas coestimuladoras de linfocitos T tales como cTLa -4 (por ejemplo, patente de Estados Unidos n.° 5,811.097), OX-40 (Weinberg, A. et al. (2000) Immunol 164: 2160-2l69), 4-1BB (Melero, I. et al. (1997) Nature Medicine 3: 682-685 (1997), e ICOS (Hutloff, A. et al. (1999) Nature 397: 262-266) también se pueden usar para proporcionar niveles aumentados de activación de linfocitos T.
El trasplante de médula ósea se utiliza actualmente para tratar diversos tumores de origen hematopoyético. Aunque la enfermedad del injerto contra hospedador es una consecuencia de este tratamiento, el beneficio terapéutico puede obtenerse a partir de respuestas del injerto frente a tumor. El bloqueo de PD-1 se puede usar para aumentar la eficacia de los linfocitos T específicos en tumores injertados de donantes.
También existen varios protocolos de tratamiento experimentales que implican la activación y expansión ex vivo de linfocitos T específicos de antígeno y la transferencia adoptiva de estas células a receptores para estimular los linfocitos T específicos de antígenos frente al tumor (Greenberg y Riddell, S. (1999) Science 285: 546-51). Estos métodos se pueden usar también para activar respuestas de los linfocitos T a agentes infecciosos tales como CMV. Puede esperarse que la activación ex vivo en presencia de anticuerpos dirigidos contra PD-1 pueda aumentar la frecuencia y la actividad de los linfocitos T transferidos adoptivamente.
Terapia de combinación
La presente invención está basada, en parte, en los siguientes datos experimentales. Se usaron modelos de tumor en ratones (cáncer de colon MC38 y fibrosarcoma SA1/N) para examinar el efecto del tratamiento in vivo de un tumor mediante la combinación de anticuerpos terapéuticos estimuladores -anti-CTLA-4 y anti-PD-1. La combinación inmunoterapéutica se proporcionó bien simultáneamente con el implante de las células tumorales (Ejemplos 14 y 17) o una vez que las células tumorales se implantaron durante un tiempo suficiente para ser un tumor establecido (Ejemplos 15, 16 y 18). Independientemente del calendario del tratamiento con anticuerpos, se descubrió que el tratamiento con el anticuerpo dirigido contra CTLA-4, en solitario y el tratamiento con el anticuerpo dirigido contra PD-1 (el anticuerpo quimérico dirigido contra PD-1 de rata se modificó con una región Fc de inmunoglobulina de ratón, véase el Ejemplo 1) en solitario tuvo un efecto modesto sobre la reducción del crecimiento tumoral en el modelo de tumor MC38 (véanse, por ejemplo, las Figuras 21, 24 y 27). El anticuerpo dirigido contra CTLA-4 solo fue bastante eficaz en el modelo del tumor SA1/N (véase la Figura 30D), que necesitaba una dosis menor del anticuerpo dirigido contra CTLA-4 para los estudios de combinación en este modelo. Sin embargo, el tratamiento combinado del anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 mostró un efecto inesperado significativamente mayor sobre la reducción del crecimiento del tumor en comparación con el tratamiento con cualquiera de los anticuerpos en solitario (véanse, por ejemplo, las Figuras 21D, 24D, 30F y 33H-J). Además, los resultados de los Ejemplos 14, 16 y 18 muestran que el tratamiento combinado del anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 tuvo un efecto significativo (sinérgico) sobre el crecimiento tumoral incluso en dosis terapéuticas subóptimas, en comparación con el tratamiento con cualquiera de los anticuerpos en solitario (es decir, el tratamiento combinado fue sorprendentemente más eficaz a dosis subterapéuticas que cualquiera de las monoterapias). Sin pretender imponer ninguna teoría, es posible que al aumentar el umbral de activación de linfocitos T mediante el bloqueo de PD-1 y CTLA-4, se puedan activar las respuestas antitumorales en el hospedador.
Los inventores describen un anticuerpo de PD-1 y un anticuerpo de CTLA-4 para su uso en el tratamiento del cáncer de un sujeto. En aspectos adicionales, el anticuerpo dirigido contra PD-1 se administra a una dosis subterapéutica, el anticuerpo dirigido contra CTLA-4 se administra a una dosis subterapéutica, o ambos se administran a una dosis subterapéutica. Los inventores también describen un método para alterar un evento adverso asociado con el tratamiento de una enfermedad hiperproliferativa con un agente inmunoestimulador, que comprende administrar un anticuerpo dirigido contra PD-1 y una dosis subterapéutica de anticuerpo dirigido contra CTLA-4 a un sujeto. En ciertas realizaciones, el sujeto es un ser humano. En ciertas realizaciones, el anticuerpo dirigido contra cTlA-4 la secuencia humana del anticuerpo monoclonal 10D1. El anticuerpo dirigido contra PD-1 es la secuencia humana del anticuerpo monoclonal, 5C4 o un fragmento del mismo.
El anticuerpo dirigido contra CTLA-4 y los anticuerpos monoclonales dirigidos contra PD-1 (mAbs) se pueden producir mediante diferentes técnicas, incluida metodología convencional de anticuerpos monoclonales, por ejemplo, la técnica de hibridación de células somáticas convencional de Kohler y Milstein (1975) Nature 256:495. Se pueden emplea cualquier técnica para producir anticuerpos monoclonales, por ejemplo, la transformación vírica o mediante oncogenes de linfocitos B. Un sistema animal para preparar hibridomas es el sistema murino. La producción de hibridomas en el ratón es un procedimiento muy bien establecido. Los protocolos de inmunización y las técnicas de aislamiento de los esplenocitos inmunizados para su fusión son conocidos en la técnica. Los ligandos de fusión (por ejemplo, células de mieloma de murino) y los procedimientos de fusión son también conocidos (véanse, por ejemplo, Harlow y Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor Nueva York).
Los anticuerpos anti-CTLA-4 de la presente invención se pueden unir a un epítopo del CTLA-4 humano de forma que inhiba la interacción de CTLA-4 con el contrarreceptor B7 humano. Puesto que la interacción entre CTLA-4 humano con B7 humano transduce una señal que lleva a la inactivación de los linfocitos T que tienen el receptor de CTLA-4 humano, el antagonismo de la interacción eficazmente induce, aumenta o prolonga la activación de los linfocitos T que tienen el receptor de CTLA-4 humano, prolongando o aumentando de esta forma una respuesta inmunitaria. Los anticuerpos dirigidos contra CTLA-4 se describen en las patentes de EE.UU. números 5.811.097; 5.855.887; 6.051.227; en las publicaciones de solicitud PCT números WO 01/14424 y WO 00/37504; y en la publicación de patente de Estados Unidos n.° 2002/0039581. Cada una de estas referencias se ha incorporado específicamente al presente documento por referencia con el fin de describir los anticuerpos anti-CTLA-4. Un anticuerpo dirigido contra CTLA-4 clínico ilustrativo es el anticuerpo monoclonal humano 10D1 que se divulga en el documento WO 01/14424 y en la solicitud estadounidense con n.° 09/644.668. El anticuerpo 10D1 se ha administrado en dosis simples y múltiples, en solitario o combinado con una vacuna, quimioterapia, o con interleuquina-2 a más de 500 pacientes con diagnóstico de melanoma metastásico, cáncer de próstata, linfoma, cáncer de células renales, cáncer de mama, cáncer de ovario, y VIH. Otros anticuerpos dirigidos contra CTLA-4 abarcados por los métodos de la presente invención incuyen, por ejemplo, los divulgados en: documento WO 98/42752; documento WO 00/37504; patente de Estados Unidos n.° 6.207.156; Hurwitz et al. (1998) Proc. Natl Acad Sci. USA 95(17): 10067-10071; Camacho et al. (2004) J. Clin. Oncology 22(145): Resumen n.° 2505 (anticuerpo CP-675206); y Mokyr et al. (1998) Cancer Res.
58:5301-5304. En ciertas realizaciones, los métodos de la presente invención comprenden el uso de un anticuerpo dirigido contra CTLA-4 que es un anticuerpo de secuencia humana, preferentemente un anticuerpo monoclonal y, en otra realización, es el anticuerpo monoclonal 10D1.
En ciertas realizaciones, el anticuerpo dirigido contra CTLA-4 se une a CTLA-4 humano con una Kd de 5 x 10-8 M o menos, se une a CTLA-4 humana con una Kd de 1 x 10-8 M o menos, se une a la CTLA-4 humana con una Kd de 5 x 10-9 M o menos, o se une a la CTLA-4 humana con una Kd de entre 1 x 10 -8 M y 1 x 10-10 M o menos.
La combinación de anticuerpos es útil para potenciar una respuesta inmunitaria contra una enfermedad hiperproliferativa mediante el bloqueo de PD-1 y CTLA-4. En una realización preferida, los anticuerpos de la presente invención son anticuerpos humanos. Por ejemplo, estas moléculas se pueden administrar a células en cultivo, in vitro o ex vivo, o a sujetos humanos, por ejemplo, in vivo, para potenciar la inmunidad en varias situaciones. En consecuencia, los investigadores describen un método para modificar una respuesta inmunitaria en un sujeto que comprende administrar al sujeto una combinación de anticuerpos, o una combinación de porciones de unión al antígeno de los mismos; de la invención de tal forma que se modifica la respuesta inmunitaria del sujeto. Preferentemente, la respuesta se potencia, estimula o regula en exceso. En otro aspecto, los inventores describen un método para alterar eventos adversos asociados con el tratamiento de una enfermedad hiperproliferativa con un agente terapéutico inmunoestimulador, que comprende administrar un anticuerpo dirigido contra PD-1 y una dosis subterapéutica de anticuerpo dirigido contra CTLA-4 a un sujeto.
El bloqueo de PD-1 y CTLA-4 con anticuerpos puede potenciar la respuesta inmunitaria a células cancerosas del paciente. Los cánceres cuyo crecimiento puede inhibirse utilizando los anticuerpos de la presente divulgación incluyen cánceres normalmente sensibles a la inmunoterapia. Los ejemplos representativos de cánceres para su tratamiento con el tratamiento combinado de la presente divulgación incluyen melanoma (por ejemplo, melanoma metastásico maligno), cáncer renal, cáncer de próstata, cáncer de mama, cáncer de colon y cáncer de pulmón. Los ejemplos de otros cánceres que se pueden tratar usando los métodos de la presente divulgación incluyen cáncer de huesos, cáncer pancreático, cáncer cutáneo, cáncer de cabeza y cuello, melanoma maligno cutáneo o intraocular, cáncer de útero, cáncer de ovario, cáncer rectal, cáncer de la región anal, cáncer de estómago, cáncer testicular, cáncer de útero, carcinoma de las trompas de Falopio, carcinoma del endometrio, carcinoma de cuello de útero, carcinoma de la vagina, carcinoma de la vulva, enfermedad de Hodgking, linfoma no de Hodgkin, cáncer de esófago, cáncer del intestino delgado, cáncer del sistema endocrino, cáncer de la glándula tiroidea, cáncer de la glándula paratiroidea, cáncer de la glándula adrenal, sarcoma de tejidos blandos, cáncer de la uretra, cáncer del pene, leucemias agudas o crónicas incluidas la leucemia mieloide aguda, leucemia mieloide crónica, leucemia linfoblástica aguda, leucemia linfocítica crónica, tumores sólidos de la infancia, linfoma linfocítico, cáncer de la vejiga, cáncer de riñón o uréter, carcinoma de la pelvis renal, neoplasia del sistema nervioso central (SNC), linfoma primario del SNC, angiogénesis tumoral, tumor de la espina dorsal, glioma del tronco encefálico, adenoma de la pituitaria, sarcoma de Kaposi, cáncer epidermoide, cáncer de células escamosa, linfoma de linfocitos T, cánceres inducidos por el medio ambiente que incluyen los inducidos por asbestos, y combinaciones de dichos cánceres. La presente invención también es de utilidad para el tratamiento de cánceres metastásicos.
En ciertas realizaciones, la combinación de anticuerpos terapéuticos analizada en el presente documento se puede administrar simultáneamente como composición independiente en un vehículo farmacéuticamente aceptable, o simultáneamente como composiciones independientes donde cada anticuerpo está en un vehículo farmacéuticamente aceptable. En otra realización, la combinación de anticuerpos terapéuticos puede administrarse secuencialmente. Por ejemplo, se puede administrar secuencialmente un anticuerpo dirigido contra CTLA-4 y/o un anticuerpo dirigido contra PD-1, tales como un anti-CTLA-4 que se administra primer y un anti-PD-1 después, o se administra primero un anti-PD-1 y un anti-CTLA-4 después. Asimismo, si se administra secuencialmente más de una dosis del tratamiento combinado, puede invertirse el orden de la administración secuencial o mantenerse en el mismo orden en cada punto temporal de administración, las administraciones secuenciales se pueden combinar con administraciones simultáneas, o cualquier combinación de las mismas. Por ejemplo, la primera administración de una combinación de un anticuerpo dirigido contra CTLA-4 y un anticuerpo dirigido contra PD-1 puede ser simultánea, la segunda administración puede ser secuencial con anti-CTLA-4 primero y anti-PD-1 después, y la tercera administración puede ser secuencial con anti-PD-1 primero y anti-CTLA-4 después, etc. Otro esquema de dosificación representativo puede implicar una primera administración que es secuencial con un anti-PD-1 primero y anti-CTLA-4 después, y las posteriores administraciones pueden ser simultáneas.
Opcionalmente, la combinación de anticuerpos anti-PD-1 y anti-CTLA-4 se puede combinar además con un agente inmunógeno, tales como células cancerosas, antígenos tumorales purificados (incluyendo proteínas recombinantes, péptidos y moléculas de carbohidratos), células y células transfectadas con genes que codifican citoquinas inmunoestimuladoras (He et al (2004) J. Immunol. 173:4919-28). Los ejemplos no limitativos de vacunas tumorales que se pueden usar incluyen péptidos de antígenos de melanoma, tales como péptidos de gp100, antígenos MAGE, Trp-2, MARTI y/o tirosinasa, o células tumorales transfectadas para expresar la citoquina GM-CSF (analizada más detalladamente a continuación).
Una combinación del bloqueo de PD-1 y CTLA-4 se puede combinar además con un protocolo de vacunación. Se han ideado muchas estrategias experimentales para la vacunación contra tumores (véase Rosenberg, S. (2000) Development of Cancer Vaccines, ASCO Educational Book Spring: 60-62; Logothetis, C., 2000, ASCO Educational Book Spring: 300-302; Khayat, D. (2000) ASCO Educational Book Spring: 414-428; Foon, K. (2000) ASCO Educational Book Spring: 730-738; véase también Restifo y Sznol, Cancer Vaccines, cap. 61, págs. 3023-3043 en DeVita et al. (eds.), 1997, Cancer: Principles and Practice of Oncology. Quinta Edición). En una de estas estrategias, se prepara una vacuna utilizando células tumorales autólogas o alogénicas. Se ha mostrado que estas vacunas celulares son más eficaces cuando las células tumorales se transducen para expresar GM-CSF. Se ha mostrado que el GM-CSF es un potente activador de la presentación de antígenos para la vacunación de tumores (Dranoff et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90: 3539-43).
El estudio de la expresión génica y los patrones de expresión génica a gran escala en diversos tumores ha conducido a la definición de los denominados antígenos específicos de tumores (Rosenberg (1999) Immunity 10: 281-7). En muchos casos, estos antígenos específicos de tumor son antígenos de diferenciación expresados en los tumores y en la célula de la que se originó el tumor, por ejemplo, antígenos de melanocitos gp100, antígenos MAGE y Trp-2. De forma más importante, se puede demostrar que muchos de estos antígenos son las dianas de linfocitos T específicos de tumor encontrados en el hospedador. En ciertas realizaciones, una combinación del bloqueo de PD-1 y CTLA-4 usando las composiciones de anticuerpos descritas en el presente documento se puede usar junto con una colección de proteínas y/o péptidos recombinantes expresados en un tumor para generar una respuesta inmunitaria a dichas proteínas. El sistema inmunitario suele ver estas proteínas como autoantígenos y, por tanto, son tolerantes a los mismos. El antígeno tumoral también puede incluir la proteína telomerasa, que se requiere para la síntesis de telómeros de cromosomas y que se expresa en más del 85 % de los cánceres humanos y solo en un número limitado de tejidos somáticos (Kim et al. 1994) Science 266: 2011-2013). (Estos tejidos somáticos pueden protegerse del ataque inmunitario por diversos medios). El antígeno tumoral también puede ser "neoantígenos" expresados en células cancerosas debido a mutaciones somáticas que alteran la secuencia proteica o crean proteínas de fusión entre dos secuencias no relacionadas (es decir, bcr-abl en el cromosoma Filadelfia), o idiotipo de tumores de linfocitos B.
Otras vacunas de tumores pueden incluir las proteínas de virus implicados en cánceres humanos tales como virus del papiloma humano (VPH), virus de la hepatitis (VHB y VHC) y virus del herpes sarcoma de Kaposi (KHSV). Otra forma de antígeno específico del tumor que se puede usar junto con el bloqueo de PD-1 son las proteínas de choque térmico purificadas (HSP) aisladas del propio tejido tumoral. Estas proteínas de choque térmico contienen fragmentos de proteínas de las células tumorales y estas HSP son muy eficaces en su administración a las células presentadoras de antígenos para estimular la inmunidad tumoral (Suot & Srivastava (1995) Science 269:1585-1588; Tamura et al (1997) Science 278:117-120).
Las células dendríticas (DC) son potentes células presentadoras de antígenos que se pueden usar para cebar respuestas específicas de antígeno. Las DC pueden producirse ex vivo y cargarse con diversos antígenos de proteínas y péptidos, así como con extractos de células tumorales (Nestle et al. (1998) Nature Medicine 4: 328-332). Las DC también se pueden transducir por medios genéticos para expresar también estos antígenos tumorales. Las DC también se han fusionado directamente con células tumorales con fines de inmunización (Kugler et al. (2000) Nature Medicine 6:332-336). Como método de vacunación, La inmunización con DC se puede además combinar de forma eficaz con una combinación del bloqueo de PD-1 y CTLA-4 para activar respuestas antitumorales más potentes.
Una combinación del bloqueo de PD-1 y CTLA-4 puede además combinarse también con los tratamientos del cáncer convencionales. Por ejemplo, una combinación del bloqueo de PD-1 y CTLA-4 se puede combinar eficazmente con regímenes quimioterapéuticos. En estos casos, como se observa con la combinación de anticuerpos dirigidos contra PD-1 y contra CTLA-4, puede ser posible reducir la dosis de otros reactivos quimioterapéuticos administrados con la combinación de la presente divulgación (Mokyr et al (1998) Cancer Research 58: 5301-5304). Un ejemplo de dicha combinación es una combinación de anticuerpos anti-PD-1 y anti-CTLA-4 adicionalmente en combinación con dacarbazina para el tratamiento del melanoma. Otro ejemplo es una combinación de anticuerpos anti-PD-1 y antiCTLA-4 adicionalmente en combinación con interleuquina-2 (IL-2) para el tratamiento del melanoma. La razón científica que respalda el uso combinado del bloqueo de PD-1 y CTLA-4 con la quimioterapia es que la muerte celular, que es una consecuencia de la acción citotóxica de la mayoría de los compuestos quimioterapéuticos, debería dar lugar a niveles aumentados de antígeno tumoral en la ruta de presentación del antígeno. Otras terapias combinadas que pueden dar como resultado una sinergia con el bloqueo combinado de PD-1 y CTLA-4 a través de la muerte celular incluyen radiación, cirugía, o privación de hormonas. Cada uno de estos protocolos crea una fuente de antígeno tumoral en el hospedador. Los inhibidores de la angiogénesis también se pueden combinar con una combinación del bloqueo de PD-1 y CTLA-4. La inhibición de la angiogénesis conduce a la muerte de las células tumorales, que también puede ser una fuente de antígenos tumorales a alimentar a las rutas de presentación de antígenos del hospedador.
Una combinación de anticuerpos para bloqueo de PD-1 y CTLA-4 también se puede usar junto con anticuerpos biespecíficos que se dirigen a células efectoras que expresan receptores Fca o Fcy contra células tumorales (véanse, por ejemplo, las patentes de Estados Unidos con números, 5.922.845 y 5.837.243). Se pueden usar anticuerpos biespecíficos para dirigirse a dos antígenos independientes. Por ejemplo, los anticuerpos biespecíficos del antígeno anti-receptor Fc/antígeno antitumoral (por ejemplo, Her-2/neu) se han utilizado para dirigir macrófagos a sitios de tumor. Este direccionamiento puede activar más eficazmente las respuestas específicas de tumores. El brazo de linfocitos T de estas respuestas estaría aumentado por el uso de la combinación del bloqueo de PD-1 y CTLA-4. Como alternativa, el antígeno se puede administrar directamente a las DC mediante el uso de anticuerpos biespecíficos que se unan al antígeno tumoral y a una célula dendrítica específica de un marcador de la superficie de una célula.
En otro ejemplo, se pueden usar una combinación de anticuerpos anti-PD-1 y anti-CTLA-4 junto con anticuerpos antineoplásicos, tales como Rituxan® (rituximab), Herceptin® (trastuzumab), Bexxar® (tositumomab), Zevalin® (ibritumomab), Campath® (alemtuzumab), Lymphocide® (eprtuzumab), Avastin® (bevacizumab), y Tarceva® (erlotinib), y similares. A modo de ejemplo y sin desear quedar ligados a teoría alguna, el tratamiento con un anticuerpo contra el cáncer o un anticuerpo contra el cáncer conjugado con una toxina puede producir la muerte de células cancerosas (por ejemplo, de células tumorales) que potenciarían una respuesta inmunitaria mediada por CTLA-4 o PD-1. En una realización ilustrativa, un tratamiento de una enfermedad hiperproliferativa (por ejemplo, un tumor canceroso) puede incluir un anticuerpo contra el cáncer junto con anticuerpos anti-PD-1 y anti-CTLA-4, simultánea o simultáneamente o en cualquier combinación de los mismos, lo que puede potenciar una respuesta inmunitaria antitumoral en el hospedador.
Los tumores evitan la vigilancia inmunitaria del hospedador mediante una gran diversidad de mecanismos. Muchos de estos mecanismos pueden superarse por la inactivación de las proteínas, que expresan los tumores y que son inmunosupresoras. Estas incluyen, entre otras, TGF-p (Kehrl, J. et al. (1986) J. Exp. Med. 163: 1037-1050), IL-10 (Howard, M. & O'Garra, A. (1992) Immunology Today 13: 198-200), y ligando Fas ligand (Hahne, M. et al. (1996) Science 274: 1363-1365). En otro ejemplo, los anticuerpos contra cada una de estas entidades se pueden combinar adicionalmente con una combinación contra PD-1 y contra CTLA-4 para contrarrestar los efectos de los agentes inmunosupresores y favorecer las respuestas inmunitarias antitumorales del hospedador.
Otros anticuerpos que se pueden usar para activar la capacidad de respuesta inmunitaria del hospedador se pueden usar además con una combinación de anti-PD-1 y anti-CTLA-4. Estos incluyen moléculas en la superficie de las células dendríticas que activan la función DC y la presentación del antígeno. Los anticuerpos dirigidos contra CD40 pueden sustituir eficazmente la actividad de los linfocitos T auxiliares (Ridge, J. et al. (1998) Nature 393: 474-478) y se pueden utilizar junto con combinación de anti-PD-1 y anti-CTLA-4 (Ito, N. et al. (2000) Immunobiology 201 (5) 527-40). La activación de anticuerpos contra las moléculas coestimuladoras de linfocitos T., tales como OX-40 (Weinberg, A. et al. (2000) Immunol 164: 2160-2169), 4-1BB (Melero, I. et al. (1997) Nature Medicine 3: 682-685 (1997) e ICOS (Hutloff, A. et al. (1999) Nature 397: 262-266) también pueden proporcionar niveles aumentados de activación de linfocitos T.
El trasplante de médula ósea se utiliza actualmente para tratar diversos tumores de origen hematopoyético. Aunque la enfermedad del injerto contra hospedador es una consecuencia de este tratamiento, el beneficio terapéutico puede obtenerse a partir de respuestas del injerto frente a tumor. Se puede usar una combinación del bloqueo de PD-1 y CTLA-4 para aumentar la eficacia de los linfocitos T específicos en tumores injertados de donantes.
También existen varios protocolos de tratamiento experimentales que implican la activación y expansión ex vivo de linfocitos T específicos de antígeno y la transferencia adoptiva de estas células a receptores para estimular los linfocitos T específicos de antígenos frente al tumor (Greenberg y Riddell, S. (1999) Science 285: 546-51). Estos métodos se pueden usar también para activar respuestas de los linfocitos T a agentes infecciosos tales como CMV. Puede esperarse que la activación ex vivo en presencia de anticuerpos dirigidos contra PD-1 y contra CTLA-4 pueda aumentar la frecuencia y la actividad de los linfocitos T transferidos adoptivamente.
Como se define en el presente documento, los órganos pueden experimentar eventos adversos relacionados con el sistema inmunitario después de un tratamiento con anticuerpos terapéuticos inmunoestimuladores, tales como el tracto GI (diarrea y colitis) y la piel (erupciones y prurito) después del tratamiento con anticuerpo dirigido contra CTLA-4. Por ejemplo, también se han observado efectos adversos relacionados con el sistema inmunitario gastrointestinales no colónicos en el esófago (esofagitis), duodeno (duodenitis), e íleon (ileitis) después del tratamiento con anticuerpo dirigido contra CTLA-4.
Los inventores también describen un método para alterar un evento adverso asociado con el tratamiento de una enfermedad hiperproliferativa con un agente inmunoestimulador, que comprende administrar un anticuerpo dirigido contra PD-1 y una dosis subterapéutica de anticuerpo dirigido contra CTLA-4 a un sujeto. Por ejemplo, los métodos de la presente divulgación proporcionan un método para reducir la incidencia de colitis o diarrea inducida por anticuerpos terapéuticos inmunoestimuladores mediante la administración al paciente de un esteroide no absorbible. Debido a que cualquier paciente que reciba un anticuerpo terapéutico inmunoestimulador está en riesgo de desarrollar colitis o diarrea inducida por dicho anticuerpo, esta población completa de pacientes es adecuada para el tratamiento de acuerdo con los métodos de la presente invención. Aunque se han administrado esteroides para tratar la enfermedad inflamatoria del intestino (IBD) y evitar exacerbaciones de la IBD, no se han utilizado para prevenir (disminuir la incidencia) de la IBD en pacientes a los que no se les ha diagnosticado IBD. Los efectos secundarios significativos asociados con los esteroides, incluso con los esteroides no absorbibles, han desanconsejado el uso profiláctico.
En ejemplos adicionales, un bloqueo combinado de PD-1 y CTLA-4 (es decir, anticuerpos terapéuticos inmunoestimuladores anti-PD-1 y anti-CTLA-4) se puede combinar adicionalmente con el uso de cualquier esteroide no absorbible. Como se utiliza en el presente documento, un “esteroide no absorbible" es un glucocorticoide que presenta un amplio metabolismo de primer paso de tal forma que, después del metabolismo hepático, la biodisponibilidad del esteroide es baja, es decir, menos de aproximadamente un 20 %. En una realización de la invención, el esteroide no absorbible es budesonida. La budesonida es un glucocorticoesteroide que actúa localmente, que se metaboliza extensamente, principalmente por el hígado, tras la administración oral. ENTOCORT EC® (Astra-Zeneca) es una formulación oral dependiente del pH y del tiempo de budesonida desarrollada para optimizar la administración del fármaco en el íleon y a lo largo del colon. ENTOCORT EC® está autorizado en Estados Unidos para el tratamiento de la enfermedad de Crohn de leve a moderada que implica el íleon y/o el colon ascendente. La dosificación oral usual de ENTOCORT EC® para el tratamiento de la enfermedad de Crohn es de 6 a 9 mg/día. ENTOCORT EC® se libera en los intestinos antes de absorberse y retenerse en la mucosa del intestino. Una vez que pasa a través del tejido diana de la mucosa del intestino, ENTOCORT EC® se metaboliza extensamente por el sistema del citocromo P450 en el hígado a metabolitos con actividad glucocorticoide despreciable. Por tanto, la biodisponibilidad es baja (aproximadamente un 10 %). La baja disponibilidad de budesonida da como resultado una relación terapéutica mejorada en comparación con otros glucocorticoides con menor extensión del metabolismo de primer paso. La budesonida da como resultado pocos efectos secundarios, incluyendo menos supresión hipotalámica-pituitaria, que los corticoesteroides que actúan sistémicamente. Sin embargo, la administración crónica de ENTOCORT EC® puede dar como resultado efectos glucocorticoides sistémicos tales como hipercorticismo y supresión adrenal. Véase PDR 58° ed. 2004; 608-610.
En otras realizaciones adicionales, una combinación del bloqueo de PD-1 y CTLA-4 (anticuerpos terapéuticos inmunoestimuladores contra PD-1 y CTLA-4) junto con un esteroide no absorbible se puede combinar además con un salicilato. Los salicilatos incluyen agentes 5-ASA tales como, por ejemplo: sulfasalazina (AZULFIDINE®, Pharmacia & Upjohn); olsalazina (DIPENTUM®, Pharmacia & Upjohn); balsalazida (Co LaZAL®, Salix Pharmaceuticals, Inc.); y mesalamina (ASACOL®, Procter & Gamble Pharmaceuticals; PENTASA®, Shire US; CANASA®, Axcan Scandipharm, Inc.; ROWASA®, Solvay).
De acuerdo con la presente invención, un salicilato administrado junto con anticuerpos anti-PD-1 y anti-CTLA-4 y un esteroide no absorbible puede incluir cualquier administración solapante o secuencial del salicilato y del esteroide no absorbible para disminuir la incidencia de la colitis inducida por los anticuerpos inmunoestimuladores. Por tanto, por ejemplo, los métodos para reducir la incidencia de colitis inducida por los anticuerpos inmunoestimuladores abarcan administrar un salicilato y un no absorbible simultánea o secuencialmente (por ejemplo, un salicilato se administra 6 horas después de un esteroide no absorbible), o cualquier combinación de los mismos. Además, un salicilato y un esteroide no absorbible se pueden administrar por la misma vía (por ejemplo, ambos se administran por vía oral) o por diferentes vías (por ejemplo, un salicilato se administra por vía oral y un esteroide no absorbible se administró por vía rectal), que pueden ser diferentes de la una o más vías usadas para administrar los anticuerpos anti-PD-1 y anti-CTLA-4.
Ejemplos
Ejemplo 1: Generación de anticuerpos monoclonales humanos contra PD-1
Antígeno
Los protocolos de inmunización utilizaron como antígeno tanto (i) una proteínas de fusión recombinante que comprende la porción extracelular de PD-1 y (ii) una PD-1 de longitud completa unida a membrana. Ambos antígenos se generaron por métodos de transfección recombinante en una línea de células CHO.
Ratones HuMab y KM mice™ transgénicos
Se prepararon anticuerpos monoclonales humanos contra PD-1 usando la cepa HCo7 del ratón transgénico HuMab y la cepa KM del ratón transcromosómico transgénico, expresando cada uno de ellos genes de anticuerpos humanos. En cada una de estas cepas de ratón, el gen de la cadena ligera kappa endógeno de ratón se perturbó homocigóticamente como se describe en Chen et al. (1993) EMBO J. 12; 811-820 y el gen de la cadena pesada endógeno de ratón se perturbó homocigóticamente como se describe en el Ejemplo 1 de la publicación pCt WO 01/09187. Cada una de estas cepas de ratón lleva un transgén de la cadena ligera kappa humana, KCo5, como se describe en Fishwild et al. (1996) Nature Biotechnology 14:845-851. La cepa HCo7 contiene el transgén HCo7 de la cadena pesada humana como se describe en las patentes de Estados Unidos con números 5.545.806; 5.625.825; y 5.545.807. La cepa KM contiene el transcromosoma SC20 como se describe en la publicación PCT WO 02/43478.
Inmunizaciones de HuMab y KM:
Para generar anticuerpos monoclonales completamente humanos contra PD-1, los ratones HuMab y KM mice™ se inmunizaron con proteína de fusión PD-1 recombinante purificada y células CHO transfectadas con PD-1 como antígeno. Los esquemas de inmunización general para los ratones HuMab se describen en Lonberg, N. et al (199A) Nature 368(6474): 856-859; Fishwild, D. et al. (1996) Nature Biotechnology 14: 845-851 y en la publicación PCT w O 98/24884. Los ratones tenían 6-16 semanas de edad en el momento de la primera infusión de antígeno. Se usaron una preparación recombinante purificada (5-50 |jg) del antígeno de la proteína de fusión PD-1 y 5-10x106 células se utilizaron para inmunizar los ratones HuMab y KM mice™ por vía intraperitoneal, por vía subcutánea (Sc) o mediante inyección en la almohadilla plantar.
Los ratones transgénicos se inmunizaron dos veces con antígeno en adyuvante completo de Freund o adyuvante Ribi IP, seguido por 3-21 días IP (hasta un total de 11 inmunizaciones) con el antígeno en adyuvante completo de Freund o adyuvante Ribi. La respuesta inmunitaria se controló por extracción de sangre retroorbital. El plasma se cribó por ELISA (como se describe más adelante), y los ratones con títulos de inmunoglobulina humana contra PD-1 suficientes se usaron en las fusiones. Los ratones recibieron un refuerzo por vía intravenosa con el antígeno 3 días antes del sacrificio y extirpación de los bazos. Normalmente, se realizaron 10-35 fusiones para cada antígeno. Varias docenas de ratones se inmunizaron con cada antígeno.
Selección de ratones HuMab o KM Mice™ que producen anticuerpos dirigidos contra PD-1:
Para seleccionar ratones HuMab o KM mice™ que producen anticuerpos que se unen a PD-1, el suero de ratones inmunizados se analizó mediante ELISA como se describe en Fishwild, D. et al. (1996). En resumen, placas de microtitulación se revistieron con proteína de fusión PD-1 recombinante purificada de células CHO transfectadas a 1­ 2 jg/ml en PBS, 100 jl/pocillo incubadas a 4 °C durante la noche después bloqueadas con 200 jl/pocillo de suero de feto bovino al 5 % en PBS/Tween (0,05 %). Las diluciones de los sueros de los ratones inmunizados con PD-1 se añadieron a cada pocillo y se incubaron durante 1-2 horas a temperatura ambiente. Las placas se lavaron con PBS/Tween y después se incubaron con un anticuerpo policlonal de cabra dirigido contra IgG humana conjugado con peroxidasa de rábano picante (HRP) a temperatura ambiente durante 1 hora. Tras el lavado, las placas se revelaron con sustrato ABTS (Sigma, A-1888, 0,22 mg/ml) y se analizaron mediante espectrofotometría a una DO 415-495. Los ratones que desarrollaron los títulos más altos de anticuerpos dirigidos contra PD-1 se utilizaron en las fusiones. Las fusiones se realizaron como se describe a continuación, y los sobrenadantes de hibridoma se analizaron mediante ELISA para determinar actividad anti-PD-1.
Generación de hibridomas productores de anticuerpos monoclonales humanos contra PD-1:
Los esplenocitos de ratón, aislados de ratones HuMab o KM, se fusionaron con una línea de células de mieloma de ratón bien usando protocolos normalizados basados en PEG o electrofusión basada en campo eléctrico usando un electroporador de fusión celular CytoPulse de cámara grande (CytoPulse Sciences, Inc., Glen Burnie, MD). Los hibridomas resultantes se cribaron después según la producción de anticuerpos específicos de antígenos. Suspensiones monocelulares de esplenocitos procedentes de ratones inmunizados se fusionaron a un cuarto del número de células de mielo de ratón SP2/0 no secretor (ATCC, CRL 1581) con PEG al 50 % (Sigma). Las células se sembraron en placas a aproximadamente 1x105/pocillo en una placa de microtitulación de fondo plano, seguido por una incubación de aproximadamente dos semanas en medio selectivo que contiene suero de feto bovino al 10 %, medio condicionado P388D1 al 10 % (ATCC, CRL TIB-63), 3-5 % de origen (IGEN) en DMEM (Mediatech, CRL 10013, rico en glucosa, L-glutamina y piruvato de sodio) junto con HEPES 5 mM, 2-mercaptoetanol 0,055 mM, 50 mg/ml de gentamicina e lx HAT (Sigma, CRL P-7185). Después de 1-2 semanas, las células se cultivaron en un medio donde el HAT se ha sustituido por HT. A continuación, los pocillos individuales se cribaron por ELISA (descrito anteriormente) para determinar anticuerpos monoclonales de IgG contra PD-1. Una vez que ha producido un amplio crecimiento del hibridoma, el medio se controló normalmente después de 10-14 días. Los hibridomas que secretan anticuerpos se volvieron a sembrar en placas, se volvieron a cribar y, si seguían siendo positivos para la IgG humana, los anticuerpos monoclonales contra PD-1 se subclonaron al menos dos veces mediante dilución limitante. Los subclones estables se cultivaron después in vitro para generar pequeñas cantidades de anticuerpos en medio de cultivo de tejido para su caracterización adicional.
Los clones de hibridoma 17D8, 2D3, 4H1, 5C4, 4A11,7D3 y 5F4 se seleccionaron para su análisis adicional.
Ejemplo 2: Caracterización estructural de los anticuerpos monoclonales humanos 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4
Las secuencias de ADNc que codifican las regiones variables de las cadenas ligera y pesada de los anticuerpos monoclonales 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se obtuvieron de los hibridomas 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4, respectivamente, usando técnicas convencionales de PCR y se secuenciaron usando técnicas convencionales de secuenciación del ADN.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena pesada de 17D8 se muestran en la Figura 1A y en las SEQ ID NO: 57 y 1, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena ligera de 17D8 se muestran en la Figura 1B y en la SEQ ID NO:64 y 8, respectivamente.
La comparación entre la secuencia de la cadena pesada de inmunoglobulina de 17D8 y las secuencias de la cadena pesada de la inmunoglobulina de línea germinal humana conocida demostraron que la cadena pesada de 17D8 utiliza un segmento VH procedente de 3-33 de VH de la línea germinal humana, un segmento D no determinado, y un segmento JH de JH 4b de la línea germinal humana. El alineamiento de la secuencia 17D8 VH con la secuencia VH 3-33 de la línea germinal se muestra en la Figura 8. El análisis adicional de la secuencia de VH de 17D8 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena pesada como se muestran en las Figuras 1A y 8, y en las SEQ ID NO: 15, 22 y 29, respectivamente. La comparación entre la secuencia de la cadena ligera de inmunoglobulina de 17D8 y las secuencias de la cadena ligera de la inmunoglobulina de la línea germinal humana conocida demostró que la cadena ligera de 17D8 utiliza un segmento VL procedente de VK L6 de la línea germinal humana y un segmento JR procedente de la línea germinal humana 4 de JL. El alineamiento de la secuencia 17D8 VL con la secuencia VR L6 de la línea germinal se muestra en la Figura 9. El análisis adicional de la secuencia de VL de 17D8 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena ligera como se muestran en las Figuras 1B y 9, y en las SEQ ID NOs: 36, 43 y 50, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena pesada de 2D3 se muestran en la Figura 2A y en la SEQ ID NO: 58 y 2, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena ligera de 2D3 se muestran en la Figura 2B y en la SEQ ID NO:65 y 9, respectivamente.
La comparación entre la secuencia de la cadena pesada de inmunoglobulina de 2D3 y las secuencias de la cadena pesada de la inmunoglobulina de línea germinal humana conocida demostraron que la cadena pesada de 2D3 utiliza un segmento Vh procedente de 3-33 de VH de la línea germinal humana, un segmento D procedente de 7-27 de la línea germinal humana, y un segmento JH procedente de 4b de JH de la línea germinal humana. El alineamiento de la secuencia 2D3 VH con la secuencia VH 3-33 de la línea germinal se muestra en la Figura 8. El análisis adicional de la secuencia de VH de 2D3 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena pesada como se muestran en las Figuras 2A y 8, y en las SEQ ID NO: 16, 23 y 30, respectivamente.
La comparación entre la secuencia de la cadena ligera de inmunoglobulina de 2D3 y las secuencias de la cadena ligera de la inmunoglobulina de la línea germinal humana conocida demostró que la cadena ligera de 2D3 utiliza un segmento Vl procedente de VK L6 de la línea germinal humana y un segmento JR procedente de JR 4 de la línea germinal humana.
El alineamiento de la secuencia 2D3 VL con la secuencia VR L6 de la línea germinal se muestra en la Figura 9. El análisis adicional de la secuencia de Vl de 2D3 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena ligera como se muestran en las Figuras 2B y 9, y en las SEQ ID NOs: 37, 44 y 51, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena pesada de 4H1 se muestran en la Figura 3 A y en la SEQ ID NO: 59 y 3, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena ligera de 4H1 se muestran en la Figura 3B y en la SEQ ID NO:66 y 10, respectivamente.
La comparación entre la secuencia de la cadena pesada de inmunoglobulina de 4H1 y las secuencias de la cadena pesada de la inmunoglobulina de línea germinal humana conocida demostraron que la cadena pesada de 4H1 utiliza un segmento VH procedente de 3-33 de VH de la línea germinal humana, un segmento D no determinado, y un segmento JH de JH 4b de la línea germinal humana. El alineamiento de la secuencia 4H1 VH con la secuencia VH 3-33 de la línea germinal se muestra en la Figura 8. El análisis adicional de la secuencia de VH de 4H1 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena pesada como se muestran en las Figuras 3A y 8, y en las SEQ ID NO: 17, 24 y 31, respectivamente. La comparación entre la secuencia de la cadena ligera de inmunoglobulina de 4H1 y las secuencias de la cadena ligera de la inmunoglobulina de la línea germinal humana conocida demostró que la cadena ligera de 4H1 utiliza un segmento VL procedente de VK L6 de la línea germinal humana y un segmento JR procedente de JL1 de la línea germinal humana.
El alineamiento de la secuencia 4H1 VL con la secuencia VK L6 de la línea germinal se muestra en la Figura 10. El análisis adicional de la secuencia de VL de 4H1 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena ligera como se muestran en las Figuras 3B y 10, y en las SEQ ID NOs: 38, 45 y 52, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena pesada de 5C4 se muestran en la Figura 4A y en la SEQ ID NO: 60 y 4, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena ligera de 5C4 se muestran en la Figura 4B y en la SEQ ID NO:67 y 11, respectivamente.
La comparación entre la secuencia de la cadena pesada de inmunoglobulina de 5C4 y las secuencias de la cadena pesada de la inmunoglobulina de línea germinal humana conocida demostraron que la cadena pesada de 5C4 utiliza un segmento VH procedente de 3-33 de VH de la línea germinal humana, un segmento D no determinado, y un segmento JH de JH 4b de la línea germinal humana. El alineamiento de la secuencia 5C4 VH con la secuencia VH 3-33 de la línea germinal se muestra en la Figura 8. El análisis adicional de la secuencia de VH de 5C4 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena pesada como se muestran en las Figuras 4A y 8, y en las SEQ ID NO: 18, 25 y 32, respectivamente. La comparación entre la secuencia de la cadena ligera de inmunoglobulina de 5C4 y las secuencias de la cadena ligera de la inmunoglobulina de la línea germinal humana conocida demostró que la cadena ligera de 5C4 utiliza un segmento VL procedente de VK L6 de la línea germinal humana y un segmento JR procedente de JL1 de la línea germinal humana.
El alineamiento de la secuencia 5C4 VL con la secuencia VK L6 de la línea germinal se muestra en la Figura 10. El análisis adicional de la secuencia de VL de 5C4 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena ligera como se muestran en las Figuras 4B y 10, y en las SEQ ID NOs: 39, 46 y 53, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena pesada de 4A11 se muestran en la Figura 5A y en la SEQ ID NO: 61 y 5, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena ligera de 4A11 se muestran en la Figura 5B y en la SEQ ID NO:68 y 12, respectivamente.
La comparación entre la secuencia de la cadena pesada de inmunoglobulina de 4A11 y las secuencias de la cadena pesada de la inmunoglobulina de línea germinal humana conocida demostraron que la cadena pesada de 4A11 utiliza un segmento Vh procedente de 4-39 de VH de la línea germinal humana, un segmento D procedente de 3-9 de la línea germinal humana, y un segmento JH procedente de 4b de JH de la línea germinal humana. El alineamiento de la secuencia 4A11 VH con la secuencia VH 4-39 de la línea germinal se muestra en la Figura 11. El análisis adicional de la secuencia de VH de 4A11 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena pesada como se muestran en las Figuras 5A y 11, y en las SEQ ID NO: 19, 26 y 33, respectivamente.
La comparación entre la secuencia de la cadena ligera de inmunoglobulina de 4A11 y las secuencias de la cadena ligera de la inmunoglobulina de la línea germinal humana conocida demostró que la cadena ligera de 4A11 utiliza un segmento VL procedente de VK L15 de la línea germinal humana y un segmento JR procedente de JL1 de la línea germinal humana. El alineamiento de la secuencia 4A11 VL con la secuencia VK L6 de la línea germinal se muestra en la Figura 12. El análisis adicional de la secuencia de VL de 4A11 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, GDR2 y CD3 de la cadena ligera como se muestran en las Figuras 5B y 12, y en las SEQ ID NOs: 40, 47 y 54, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena pesada de 7D3 se muestran en la Figura 7A y en las SEQ ID NO: 62 y 6, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena ligera de 7D3 se muestran en la Figura 7B y en las SEQ ID NO: 69 y 13, respectivamente.
La comparación entre la secuencia de la cadena pesada de inmunoglobulina de 7D3 y las secuencias de la cadena pesada de la inmunoglobulina de línea germinal humana conocida demostraron que la cadena pesada de 7D3 utiliza un segmento Vh procedente de 3-33 de VH de la línea germinal humana, un segmento 7-27 D de la línea germinal humana, y un segmento JH de JH 4b de la línea germinal humana. El alineamiento de la secuencia 7D3 VH con la secuencia VH 3-33 de la línea germinal se muestra en la Figura 8. El análisis adicional de la secuencia de VH de 7D3 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena pesada como se muestran en las Figuras 6A y 8, y en las SEQ ID NO: 20, 27 y 34, respectivamente.
La comparación entre la secuencia de la cadena ligera de inmunoglobulina de 7D3 y las secuencias de la cadena ligera de la inmunoglobulina de la línea germinal humana conocida demostró que la cadena ligera de 7D3 utiliza un segmento VL procedente de VK L6 de la línea germinal humana y un segmento JR procedente de la línea germinal humana 4 de Jk .
El alineamiento de la secuencia 7D3 Vl con la secuencia VK L6 de la línea germinal se muestra en la Figura 9. El análisis adicional de la secuencia de VL de 7D3 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena ligera como se muestran en las Figuras 6B y 9, y en las SEQ ID NOs: 41,48 y 55, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena pesada de 5F4 se muestran en la Figura 7A y en la SEQ ID NO: 63 y 7, respectivamente.
Las secuencias de nucleótidos y de aminoácidos de la región variable de la cadena ligera de 5F4 se muestran en la Figura 7B y en la SEQ ID NO:70 y 14, respectivamente.
La comparación entre la secuencia de la cadena pesada de inmunoglobulina de 5F4 y las secuencias de la cadena pesada de la inmunoglobulina de línea germinal humana conocida demostraron que la cadena pesada de 5F4 utiliza un segmento VH procedente de 4-39 de VH de la línea germinal humana, un segmento D procedente de 3-9 de la línea germinal humana, y un segmento JH procedente de 4b de JH de la línea germinal humana. El alineamiento de la secuencia 5F4 VH con la secuencia VH 4-39 de la línea germinal se muestra en la Figura 11. El análisis adicional de la secuencia de VH de 5F4 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena pesada como se muestran en las Figuras 7A y 11, y en las SEQ ID NO: 21,28 y 35, respectivamente.
La comparación entre la secuencia de la cadena ligera de inmunoglobulina de 5F4 y las secuencias de la cadena ligera de la inmunoglobulina de la línea germinal humana conocida demostró que la cadena ligera de 5F4 utiliza un segmento VL procedente de VK L15 de la línea germinal humana y un segmento JR procedente de la línea germinal humana 1 de Jk . El alineamiento de la secuencia 5F4 VL con la secuencia VK L6 de la línea germinal se muestra en la Figura 12. El análisis adicional de la secuencia de VL de 5F4 según el sistema Kabat de la región de determinación CDR condujo a la delineación de las regiones CDR1, CDR2 y CD3 de la cadena ligera como se muestran en las Figuras 7B y 12, y en las SEQ ID NOs: 42, 49 y 56, respectivamente.
Ejemplo 3: Caracterización de la especificidad de unión y cinética de unión de los anticuerpos monoclonales humanos dirigidos contra PD-1
En este ejemplo, se ha estudiado la afinidad de unión y cinética de unión de los anticuerpos monoclonales humanos dirigidos contra PD-1 mediante análisis BIAcore. La especificidad de unión y la competición cruzada se han estudiado mediante citometría de flujo.
Afinidad y cinética de unión
Los anticuerpos anti-PD-1 se caracterizaron según afinidades y cinéticas de unión mediante análisis BIAcore (Biacore AB, Upsala, Suecia). La proteína de fusión PD-1 recombinante humana se unió covalentemente a una oblea CM5 (oblea revestida con carboximetildextrano) mediante aminas primarias, usando química convencional de acoplamiento de aminas y un kit proporcionado por Biacore. La unión se midió haciendo fluir los anticuerpos en tampón HBS EP (proporcionado por Biacore AB) a una concentración 267 nM a un caudal de 50 |jl/min. La cinética de asociación del antígeno-anticuerpo se siguió durante 3 minutos y la cinética de disociación se siguió durante 7 minutos. Las curvas de asociación y disociación se ajustaron a un modelo de unión de Langmuir 1:1 usando el programa informático BIAevaluation (Biacore AB). Para minimizar los efectos de la avidez en la estimación de las constantes de unión, solo se usó en el ajuste el segmento inicial de los datos correspondientes a las fases de asociación y disociación. Los valores determinados para Kd, kon y koff se muestran en la Tabla 2.
Tabla 2. Datos de unión Biacore para los anticuerpos monoclonales humanos de PD-1.
Figure imgf000034_0001
Especificidad de unión mediante citometría de flujo
Líneas de células de ovario de hámster chino (CHO) que expresan PD-1 recombinante humana en la superficial celular se desarrollaron y se usaron para determinar la especificidad de los anticuerpos monoclonales humanos de PD-1 mediante citometría de flujo. Las células CHO se transfectaron con plásmidos de expresión que contenían ADNc de longitud completa que codifican formas transmembrana de PD-1. La unión de los anticuerpos monoclonales humanos contra PD-1 5C4 y 4H1 se evaluó incubando las células transfectadas) con los anticuerpos monoclonales humanos contra PD-1 a una concentración de 20 |jg/ml. Las células se lavaron y la unión se detectó con un Ab dirigido contra IgG humana marcado con FITC. Los análisis de citometría de flujo se realizaron con un citómetro de flujo FACS (Becton Dickinson, San Jose, CA). Los resultados se representa gráficamente en las Figuras 13 A (5C4) y 13B (4H1). Los anticuerpos monoclonales humanos contra PD-1 se unieron a las células CHO transfectadas con PD-1 pero no a las células CHO que no se transfectaron con PD-1 humana. Estos datos demuestran la especificidad de los anticuerpos monoclonales humanos contra PD-1 para la PD-1.
Especificidad de unión mediante ELISA contra otros miembros de la familia de CD28
Se realizó una comparación de la unión de los anticuerpos anti-PD-1 a otros miembros de la familia de CD2B mediante ELISA convencional usando cuatro miembros de la familia de CD28 diferentes para estudiar la especificidad de unión a la PD-1 humana.
Las proteínas de fusión de los miembros de la familia de CD28, ICOS, CTLA-4 y CD28 (R&D Biosystems) se estudiaron para determinar su unión a los anticuerpos monoclonales humanos contra PD-1 17D8, 2D3, 4H1, 5C4, y 4A11. Se realizaron procedimientos ELISA convencionales. Los anticuerpos monoclonales humanos contra PD-1 se añadieron a una concentración de 20 jg/ml. Como anticuerpo secundario, se usó un anticuerpo policlonal de cabra dirigido contra IgG humana (específico de la cadena kappa) conjugado con peroxidasa de rábano picante (HRP). En la Figura 14 se muestran los resultados. Cada uno de los anticuerpos monoclonales humanos contra PD-1 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 y 5F4 se unieron con elevada especificidad a la PD-1, pero no a otros miembros de la familia de CD28.
Ejemplo 4: Caracterización de la unión del anticuerpo dirigido contra PD-1 a la PD-1 expresada sobre la superficie de células humanas y de mono
Los anticuerpos dirigidos contra PD-1 se estudiaron por su unión a células que expresan PD-1 sobre su superficie celular mediante citometría de flujo.
Los linfocitos T humanos, células mononucleares de sangre periférica (PBMC) de mono, y células CHO transfectadas con PD-1 se analizaron individualmente para determinar su unión al anticuerpo, los linfocitos T humanos y las PBMC de macaco se activaron con un anticuerpo dirigido contra CD3 para inducir la expresión de PD-1 en los linfocitos T antes de la unión con un anticuerpo monoclonal dirigido contra PD-1 humano. La unión de los anticuerpos monoclonales humanos contra PD-1 5C4 y 4H1 se evaluó incubando las células transfectadas con cualquiera de las formas IgG 1 o IgG4 de los anticuerpos monoclonales humanos contra PD-1 a diferentes concentraciones. Las células se lavaron y la unión se detectó con un Ab dirigido contra IgG humana marcado con FITC. Los análisis de citometría de flujo se realizaron con un citómetro de flujo FACScan (Becton Dickinson, San Jose, CA). Los resultados se muestran en las Figuras 15A (linfocitos T humanos activados), 15B (PBMC de macaco) y 15C (células CHO transfectadas con PD-1). Los anticuerpos monoclonales anti-PD-1 5C4 y 4 H1 se unieron a los linfocitos T humanos activados, las PBMC activadas de mono, y las células CHO transfectadas con PD-1 humana, medido según la intensidad de fluorescencia media (MFI) de la tinción. Estos datos demuestran que los HuMAb contra PD-1 se unen a PD-1 en la superficie de células tanto de ser humano como de macaco.
Ejemplo 5: Efecto de los anticuerpos humanos contra PD-1 sobre la proliferación celular y la producción de citoquinas en una reacción de linfocitos mixtos
Se usó una reacción de linfocitos mixtos para demostrar el efecto de bloqueo de la ruta de la PD-1 hacia los células linfocíticas efectoras. Los linfocitos T del ensayo se analizaron para determinar la proliferación, secreción de IFN-gamma y secreción de IL-2 en presencia o ausencia del anticuerpo HuMAb dirigido contra PD-1.
Los linfocitos T humanos se purificaron a partir de PBMC usando una columna de enriquecimiento de linfocitos T CD4+ humanos (R&D systems). Cada cultivo contenía 105 linfocitos T purificados y 104 células dendríticas alogénicas en un volumen total de 200 |jl. El anticuerpo monoclonal dirigido contra PD-1 5C4, 4H1, 17D8, 2D3 o una porción del fragmentos Fab de 5C4 se añadió a cada cultivo en diferentes concentraciones del anticuerpo. Como control negativo, se usó bien nada de anticuerpo, o un anticuerpos control de Isotipo. Las células se cultivaron durante 5 días a 37 °C. Después del día 5, 100 j l de medio se tomaron de cada cultivo para la medición de citoquinas. Los niveles de IFN-gamma, y de otras citoquinas se midieron usando kits OptEIA ELISA (BD Bio sciences). Las células se marcaron con 3H-timidina, se cultivaron durante 18 horas más, y se analizaron para determinar la proliferación celular. Los resultados se muestran en las Figuras 16A (proliferación de linfocitos T), 16B (secreción de IFN-y) y 16C (secreción de IL-2). Los anticuerpos monoclonales humanos contra PD-1 estimularon la proliferación de linfocitos T, la secreción de IFN-gamma y la secreción de IL-2 de una manera dependiente de la concentración. El fragmento 5C4-Fab también estimuló la proliferación de linfocitos T, la secreción de IFN-gamma y la secreción de IL-2 de una manera dependiente de la concentración. Por el contrario, los cultivos que contenían el anticuerpo control de isotipo no mostraron un aumento en la proliferación de linfocitos T, secreción de IFN-gamma o secreción de IL-2.
Ejemplo 6: Bloqueo del ligando de unión a PD-1 mediante los anticuerpos dirigidos contra PD-1 humana
Los HuMAb anti-PD-1 se sometieron a ensayo para determinar su capacidad para bloquear la unión de los ligandos PD-L1 y PD-L2 a PD-1 expresada sobre células CHO transfectadas mediante el uso de un ensayo de citometría de flujo.
Las células CHO que expresaban PD-1 se suspendieron en tampón FACS (PBS con suero fetal de bovino al 4 %). Se añadieron diferentes concentraciones de los HuMAb anti-PD-1 5C4 y 4H1 a la suspensión celular y se incubaron a 4 °C durante 30 minutos. El anticuerpo no unido se eliminó por lavado y se añadieron bien la proteína de fusión PD-L1 marcada con FITC o bien la proteína de fusión PD-L2 marcada con FITC a los tubos, que se incubaron a 4 °C durante 30 minutos. Los análisis de citometría de flujo se realizaron con un citómetro de flujo FACScan (Becton Dickinson, San Jose, CA). Los resultados se representan gráficamente en las Figuras 17A (bloqueo de PD-L1) y 17B (bloqueo de PD-L2). Los anticuerpos monoclonales dirigidos contra PD-1 5C4 y 4H1 bloquearon la unión de PD-1-L1 y PD-L2 a las células CHO transfectadas con la PD-1 humana, medido según la intensidad de fluorescencia media (MFI) de la tinción, Estos datos demuestran que los HuMAb contra PD-1 bloquean la unión del ligando (tanto PD-L1 como PD-L2) a PD-1 de la superficie celular.
Ejemplo 7: Efecto de los anticuerpos humanos contra PD-1 sobre la liberación de citoquinas en la sangre humana
Los HuMAb anti-PD-1 se mezclaron con sangre completa humana reciente para determinar si los HuMAb anti-PD-1 en solitario estimulaban la liberación de determinadas citoquinas desde células sanguíneas humanas.
500 j l de sangre completa humana reciente heparinizada, se añadió a cada pocillo. Se añadieron a cada pocillo bien 10 jg o 100 jg de un HuMAb anti-PD-1 (4H1 o 5C4, este último cualquiera de un isotipo IgG1 o IgG4). Algunos pocillos se cultivaron con anticuerpo dirigido contra CD3 como control positivo, o con un anticuerpo de IgG1 humana o de IgG4 humana como controles negativos emparejados por isotipo. Las células se incubaron a 37 °C durante cualquiera de 6 o 24 horas. Las células se centrifugaron y el plasma se recogió para medir las citoquinas IFN-gamma, TNF-alfa, IL-2, IL-4, IL-6, IL-10 e IL-12 usando un ensayo citométrico de arrastre de perlas para citoquinas (BD Biosciences). La concentración de cada citoquina (pg/ml) se muestra en las Tablas 3a, con una incubación de 6 horas, y 3b, con una incubación de 24 horas, a continuación. Los resultados muestran que el tratamiento con los anticuerpos humanos dirigidos contra PD-1, 5C4 y 4H1, en solitario no estimularon las células sanguíneas humanas para liberar ninguna de las citoquinas IFN-gamma, TNF-alfa, IL-2, IL-4, IL-6, IL-10 e IL-12.
Tabla 3a. Producción de citoquinas después de 6 horas de incubación
Figure imgf000036_0001
Tabla 3b. Producción de citoquinas después de 24 horas de incubación
Figure imgf000036_0002
(continuación)
Figure imgf000037_0001
Ejemplo 8: Efecto de los anticuerpos dirigidos contra PD-1 sobre la apoptosis de linfocitos T
El efecto de los anticuerpos dirigidos contra PD-1 sobre la inducción de la apoptosis de linfocitos T se midió usando un ensayo de tinción con anexina V.
Los linfocitos T se cultivaron en una reacción de linfocitos mixtos, como se ha descrito anteriormente en el Ejemplo 5. El anticuerpo dirigido contra PD-1 5C4 se añadió al tubo a una concentración de 25 |jg/ml. Como control se usó un anticuerpo no específico. Se añadieron anexina V y yoduro de propidio de acuerdo con un protocolo normalizado (BD Biosciences). La mezcla se incubó durante 15 minutos en la oscuridad a temperatura ambiente y posteriormente se analizó usando un citómetro de flujo FACScan (Becton Dickinson, San Jose, CA). En la Figura 18 se muestran los resultados. El anticuerpo dirigido contra PD-1 5C4 no tuvo efectos sobre la apoptosis de linfocitos T.
Ejemplo 9: Efecto de los anticuerpos dirigidos contra PD-1 sobre la secreción de citoquinas por células PBMC estimuladas de forma vírica con un donante positivo para virus
En este ejemplo, células mononucleares de sangre periférica (PBMC) procedentes de un donante positivo para el CMV se aislaron y se expusieron a un lisado de CMV en presencia o ausencia de anticuerpos dirigidos contra PD-1 para estudiar el efecto de los anticuerpos sobre la secreción de citoquinas estimulada por antígeno.
2x105 PMBC humanas procedentes de un donante positivo para CMV se cultivaron en un volumen total de 200 j l y se añadieron a cada pocillo junto con un lisado de células infectadas por CMV. El HuMAb anti-PD-1 5C4 se añadió a cada pocillo en diferentes concentraciones durante 4 días. Después del día 4, 100 j l de medio se tomaron de cada cultivo para la medición de citoquinas. El nivel de IFN-gamma se midió con kits OptElA ELISA (BD Biosciences). Las células se marcaron con 3H-timidina, se cultivaron durante 18 horas más, y se analizaron para determinar la proliferación celular. La proliferación celular se analizó usando el reactivo Cell Titer-Glo (Promega). En la Figura 19 se muestran los resultados. El HuMAb anti-PD-1 5C4 aumentó la secreción de IFN-gamma de una manera dependiente de la concentración. Estos resultados muestran que los HuMAb anti-PD-1 pueden estimular la liberación de IFN-gamma, en una respuesta de los linfocitos T de memoria desde células PBMC previamente estimuladas contra un antígeno.
Ejemplo 10: Efecto del anticuerpo dirigido contra PD-1 sobre la respuesta secundaria de anticuerpos al antígeno
Los ratones se inmunizaron y se volvieron a estimular con un TI-antígeno (DNP-Ficoll) y también se trataron con un anticuerpo de rata dirigido contra PD-1 de ratón, o un anticuerpos de control, para estudiar el efecto del anticuerpo dirigido contra PD-1 sobre los títulos de anticuerpos.
Ratones C57BL6 hembra se dividieron en dos grupos, con 6 ratones/grupo. Un grupo se trató con una IgG de rata del control y el otro con un anticuerpo de rata dirigido contra PD-1 de ratón. Los ratones se inmunizaron con 5 jg de DNP-Ficoll (un Tl-antígeno) en 50 j l de CFA por i.p el día 0. Uno del anticuerpo IgG de rata del control o el anticuerpo de rata dirigido contra PD-1 (200 |jg/ratón) se administraron i.p. los días -1, 0 y 2. Cuatro semanas después, los ratones se volvieron a estimular con 5 jg de DNP-Ficoll en 50 j l IFA por i.p el día 0. El anticuerpo de rata dirigido contra mPD-1 o el anticuerpo de control (200 jg/ratón) se administraron i.p. los días 0 y 1. Los títulos de anticuerpos se midieron mediante un ensayo ELISA convencional el día 7 después del refuerzo. Los resultados se muestran en la Tabla 4 siguiente. En los ratones tratados con el anticuerpo dirigido contra mPD-1, ambos isotipos IgM e IgG3 mostraron el mayor aumento en los títulos tras el estímulo con el Tl-antígeno, en comparación con los ratones tratados con un anticuerpo de control. Estos resultados demuestran que el tratamiento con anti-PD-1 puede aumentar los títulos de anticuerpos en respuesta al Tl-antígeno.
Tabla 4. Respuesta secundaria en murino después del tratamiento con el anticuerpo dirigido contra PD-1
Figure imgf000038_0001
Ejemplo 11: Tratamiento de un modelo de tumor in v iv o usando anticuerpos dirigidos contra PD-1
Los ratones con implante de tumor canceroso se trataron in vivo con anticuerpos dirigidos contra PD-1 para estudiar el efecto in vivo de los anticuerpos sobre el crecimiento tumoral. Como control positivo, se usó un anticuerpo anti-CTLA-4, ya que estos anticuerpos han mostrado inhiben el crecimiento tumoral in vivo.
En este experimento, el anticuerpo dirigido contra PD-1 usado fue un anticuerpo quimérico de rata dirigido contra PD-1 de ratón generado utilizando técnicas bien conocidas de laboratorio. Para generar el anticuerpo de rata dirigido contra PD-1 de ratón, las ratas se inmunizaron con células de ratón transfectadas para expresar una proteína de fusión PD-1 de ratón recombinante (R&D Systems N.° de catálogo 1021-PD) y los anticuerpos monoclonales se cribaron para determinar la unión al antígeno PD-1 de ratón mediante un ensayo ELISA. A continuación, las regiones V del anticuerpo de rata dirigido contra PD-1 se unieron de forma recombinante a la región constante de IgG 1 de murino usando técnicas convencionales en biología molecular, y se volvieron a cribar según la unión a la PD-1 de ratón mediante ELISA y FACS. El anticuerpo quimérico de rata dirigido contra PD-1 de ratón utilizado en el presente documento se denomina como 4H2.
Para los estudios con tumores, ratones AJ hembra entre 6-8 semanas de edad (Harlan Laboratories) se aleatorizaron en 6 grupos según el peso. Los ratones recibieron un implante subcutáneo en el flanco derecho de 2 x 106 células de fibrosarcoma SA1/N disueltas en 200 j l de medio DMEM el día 0. Los ratones se trataron con vehículo de PBS, o con anticuerpos a 10 mg/kg. Los animales recibieron una dosis mediante inyección intraperitoneal de aproximadamente 200 j l de PBS que contenía anticuerpo o vehículo los días 1, 4, 8 y 11. Cada grupo contenía 10 animales, y los grupos estaban compuestos por: (i) un grupo de vehículo, (ii) IgG de ratón del control, (iii) IgG de hámster del control, (iv) anticuerpo de hámster dirigido contra CTLA-4 de ratón (v) el anticuerpo quimérico dirigido contra PD-1 4H2. Los ratones se controlaron dos veces a la semana para determinar el crecimiento tumoral durante aproximadamente 6 semanas. Usando un calibre electrónico, los tumores se midieron tridimensionalmente (alto x ancho x largo) y se calculó el volumen tumoral. Los ratones se sometieron a eutanasia cuando los tumores alcanzaron el criterio de valoración tumoral (1500 mm3) o mostraron más del 15 % de pérdida de peso. En la Figura 20 se muestran los resultados. El anticuerpo dirigido contra PD-1 extendió el tiempo medio para alcanzar el volumen del criterio de valoración tumoral (1500 mm3) de ~25 días en los grupos del control hasta ~40 días. Por tanto, el tratamiento con un anticuerpo dirigido contra PD-1 tiene un efecto inhibidor in vivo directo sobre el crecimiento tumoral.
Ejemplo 12: Generación del anticuerpo quimérico (rata-ratón) dirigido contra PD-1,4H2
Se generaron anticuerpos monoclonales de rata contra anticuerpos de PD-1 de ratón (anti-mPD-1 de rata) a partir de ratas inmunizadas con la proteína de fusión mPD-1-hFc usando métodos de producción de hibridomas convencionales (véanse Kohler y Milstein (1975) Nature 256:495; y Harlow y Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor Nueva York). Se subclonaron ocho hibridomas, y los anticuerpos se aislaron y se cribaron para determinar su capacidad para bloquear la unión de PD-L2 de ratón (mPD-L2) a mPD-1. Se identificaron varios anticuerpos dirigidos contra mPD-1 capaces de bloquear la unión de mPD-L2 a mPD-1 (véase, por ejemplo, actividad de 4H2, Figura 41) y la afinidad de unión de varios de estos anticuerpos a la proteína de fusión mPD-1-Fc se determinó mediante ELISA (Figura 42).
El anticuerpo 4H2.B3 se caracterizó adicionalmente, que se cita en el presente documento de forma indistinta como “4H2”. Células CHO que expresan PD-1 de ratón se construyeron y se incubaron con el anticuerpo dirigido contra mPD-1,4H2, a una concentración comprendida de 200 |jg/ml a 0,012 |jg/ml para determinar la afinidad de unión de 4H2 a PD-1. La unión del anticuerpo dirigido contra mPD-1 a las células CHO que expresan PD-1 se detectó mediante incubación con un anticuerpo de burro dirigido contra IgG de rata, conjugado con FITC, y medición con FACS. El anticuerpo anti-mPD-1 tuvo una CE50 (50 % de la concentración eficaz) de aproximadamente 0,38 jg (Figura 43) y una Kd de 4,7 x 10-9 M. Para estudiar la inhibición de la unión de PD-L1 a PD-1, se llevó a cabo el mismo ensayo salvo que las células también se incubaron con 0.16 jg de proteína de fusión mPD-L1-hFc, después se detectó la unión de PD-L1 a las células CHO que expresaban PD-1 mediante incubación con un anticuerpo de cabra dirigido contra IgG humana (específico de Fc), conjugado con FITC, y medición de la señal de unión mediante FACS (MFI, intensidad de fluorescencia promedio). El anticuerpo anti-mPD-1 tuvo una CE50 de aproximadamente 0,72 jg (Figura 44).
Para su uso en los modelos de tumor de ratón, el anti-mPD-1 de rata, 4H2, tuvo que modificarse para que el sistema inmunitario del ratón no neutralizara el anticuerpo inmunoterapéutico (es decir, para que el anticuerpo tuviera mejor farmacocinética) y para evitar la citotoxicidad celular dependiente de anticuerpo (ADCC) mediante la reducción de las interacciones con el receptor de Fc (es decir, para que el bloqueo del anti-PD-1 pudiera evaluarse sin estar comprometido por los efectos ADCC). Se determinó que el anticuerpo anti-mPD-1 de rata original, 4H2, era un isotipo IgG2a de rata. Así, la porción Fc del anticuerpo 4H2 se sustituyó por una porción Fc de un isotipo IgG 1 de ratón. Usando el ensayo anteriormente descrito, se encontró que la afinidad de unión del anticuerpo quimérico de rata-ratón, 4H2, a mPD-1 era comparable a la del anti-mPD-1 de rata, 4H2.B3 (Figura 45). Análogamente, la inhibición de la unión de PD-L1 a PD-1 era comparable para ambos anticuerpos (Figura 46). Por lo tanto, el anticuerpo quimérico de rata-ratón contra mPD-1, 4H2, se usó para examinar la eficacia terapéutica del anticuerpo dirigido contra PD-1 junto con el anticuerpo dirigido contra CTLA-4.
Ejemplo 13: Eficacia de un tratamiento combinado in V ivo (anticuerpos anti-CTLA-4 y anti-PD-1) sobre el establecimiento y el crecimiento del tumor
Células de cáncer colorrectal MC38 (PD-L1-) (disponibles del Dr. N. Restifo, National Cancer Institute, Bethesda, MD; o Jeffrey Schlom, National Institutes of Health, Bethesda, MD) se implantaron en ratones C57BL/6 (2 x 106 células/ratón). El día 0 (es decir, el día en que las células MC38 se implantaron en los ratones), cada uno de los cuatro grupos de 10 ratones cada uno recibieron una inyección intraperitoneal(IP) de uno de los siguientes: (1) IgG de ratón (control), (2) el anticuerpo monoclonal anti-CTLA-4 9D9 (anticuerpo de ratón dirigido contra CTLA-4 de ratón obtenido de J. Allison, Memorial Sloan-Kettering Cancer Center, Nueva York, NY), (3) anticuerpo monoclonal anti-PD-1 4H2 (anticuerpo quimérico en el que un anticuerpo de rata dirigido contra PD-1 de ratón se modificó con una región Fc de ratón, como se describe en el Ejemplo 6), o (4) anticuerpo dirigido contra CTLA-49D9 y anticuerpo dirigido contra PD-1 4H2. Las inyecciones de anticuerpos se administraron posteriormente los días 3, 6 y 10. Los tratamientos con los anticuerpos individuales se dosificaron a 10 mg/kg, y la combinación de anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 se dosificó a 5 mg/kg de cada anticuerpo (es decir, 10 mg/kg de anticuerpo total). Usando un calibre electrónico, los tumores se midieron tridimensionalmente (alto x ancho x largo) y se calculó el volumen tumoral. Los ratones se sometieron a eutanasia cuando los tumores alcanzaron un criterio de valoración determinado. Los resultados se muestran en la Tabla 5 y en la Figura 21.
Tabla 5. Porcentaje de ratones sin tumor después del tratamiento con anti-PD-1 y/o anti-CTLA-4
Figure imgf000039_0001
Ocho ratones en el grupo de la IgG alcanzaron el criterio de valoración del tumor aproximadamente en el día 30 y dos ratones (86066 y 87260) del grupo de la IgG tuvieron tumores ulcerados (Figura 21 A). En el grupo del anticuerpo dirigido contra CTLA-4 en solitario, siete ratones alcanzaron el criterio de valoración del tumor aproximadamente en el día 60, un ratón tuvo un tumor ulcerado (84952), un ratón tuvo un tumor con un volumen menor de 1500 mm3 (85246), y un ratón quedó sin tumor (86057) (Figura 21B). En el grupo del anticuerpo dirigido contra PD-1 en solitario, seis ratones alcanzaron el criterio de valoración del tumor aproximadamente en el día 60, un ratón tuvo un tumor ulcerado (86055), y tres ratones quedaron sin tumor (84955, 85239 y 86750) (Figura 21C). En el grupo de combinación con anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1, cuatro ratones alcanzaron el criterio de valoración del tumor aproximadamente en el día 40, y seis ratones quedaron sin tumor (84596, 85240, 86056, 86071,86082 y 86761) (Figura 21D).
La Figura 22 muestra que el volumen tumoral medio medido el día 21 fue de aproximadamente 2955 mm3para el grupo de control de IgG; aproximadamente 655 mm3 para el grupo con el anticuerpo de CTLA-4 en solitario, aproximadamente 510 mm3 para el grupo con el anticuerpo de PD-1 en solitario, y aproximadamente 280 mm3 para el grupo de combinación con anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1. La Figura 23 muestra que la mediana del volumen tumoral medido el día 21 fue de aproximadamente 2715 mm3para el grupo de IgG; aproximadamente 625 mm3 para el grupo con el anticuerpo de CTLA-4 en solitario; aproximadamente 525 mm3 para el grupo con el anticuerpo de PD-1 en solitario; y aproximadamente 10 mm3 para el grupo de combinación con anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 (y de hasta 0 mm3 en el día 32).
Este estudio indica que, en un modelo de tumor murino, el tratamiento con el anticuerpo de CTLA-4 en solitario y el tratamiento con el anticuerpo de PD-1 en solitario tuvieron un efecto modesto sobre el crecimiento tumoral, y que el tratamiento de combinación con anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 tuvo un efecto significativamente mayor sobre el crecimiento tumoral. Es interesante resaltar que el tratamiento de combinación con anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 tuvo un efecto más significativo sobre el crecimiento tumoral a una dosis de 5 mg/kg de cada anticuerpo, en comparación con el efecto de cualquiera de los anticuerpos en solitario, cuando cada uno se administró a una dosis mayor de 10 mg/kg.
Ejemplo 14: Eficacia de un tratamiento combinado in V ivo (anticuerpos anti-CTLA-4 y anti-PD-1) sobre el crecimiento del tumor establecido
Células de cáncer colorrectal MC38 (PD-L1-) se implantaron en ratones C57BL/6 (2 x 106 células/ratón) durante un tiempo suficiente (aproximadamente de 6 a 7 días) para permitir la formación de tumores. En el día 6 después del implante (día -1), se realizaron mediciones del tumor, y los ratones se aleatorizados en función del volumen tumoral medio (aproximadamente 250 mm3) en 11 grupos para la posterior terapia con anticuerpos. El día 0 (es decir, una semana después de implantar las células MC38), los ratones recibieron por inyección iP (1) IgG de ratón (control), (2) anticuerpo monoclonal anti-CTLA-49D9, (3) anticuerpo monoclonal anti-PD-1 4H2, o (4) anticuerpo monoclonal anti-CTLA-4 9D9 y anticuerpo monoclonal anti-PD-1 4H2, a una concentración de 10 mg/kg por ratón. Las inyecciones de anticuerpos también se administraron los días 3, 6 y 10. Las composiciones de anticuerpos monoclonales usados tuvieron bajos niveles de endotoxina y no se agregaron significativamente. Usando un calibre electrónico, los tumores se midieron tridimensionalmente (alto x ancho x longitud) y se calculó el volumen tumoral. Las mediciones del tumos se tomaron el día 0 (los tumores al principio del tratamiento tuvieron un volumen de aproximadamente 125 mm3), y los días 3, 6, 10, 13, 17 y 20 después de la inyección del anticuerpo. Los ratones se sometieron a eutanasia cuando los ratones alcanzaron un criterio de valoración del tumor determinado (un volumen del tumor en particular de 1500 mm3 y/o cuando los ratones mostraron una pérdida de peso superior a aproximadamente un 15 %).
Los once ratones en el grupo de la IgG alcanzaron el criterio de valoración del tumor aproximadamente en el día 17 (Figura 24A). En el grupo del anticuerpo dirigido contra CTLA-4 en solitario, siete de los once ratones alcanzaron el criterio de valoración del tumor aproximadamente en el día 12 (Figura 24B). En el grupo del anticuerpo dirigido contra PD-1 en solitario, cuatro ratones alcanzaron el criterio de valoración del tumor aproximadamente en el día 13 y dos ratones quedaron sin tumor (Figura 24C). En el grupo de combinación con anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1, un ratón alcanzó el criterio de valoración del tumor aproximadamente en el día 17, un ratón alcanzó el criterio de valoración del tumor aproximadamente en el día 45 y nueve ratones quedaron sin tumor en el día 45 (Figura 24D).
La Figura 25 muestra que el volumen tumoral medio medido el día 10 fue de aproximadamente 1485 mm3para el grupo de control de IgG; aproximadamente 1010 mm3 para el grupo con el anticuerpo de CTLA-4 en solitario; aproximadamente 695 mm3 para el grupo con el anticuerpo de PD-1 en solitario; y aproximadamente 80 mm3 para el grupo de combinación con anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1. La Figura 26 muestra que la mediana del volumen tumoral medido el día 10 fue de aproximadamente 1365 mm3para el grupo de IgG; aproximadamente 1060 mm3 para el grupo con el anticuerpo dirigido contra CTLA-4 en solitario; aproximadamente 480 mm3 para el grupo con el anticuerpo dirigido contra PD-1 en solitario; y aproximadamente 15 mm3 para el grupo de combinación con anticuerpo dirigido contra CTLA-4 y anticuerpo dirigido contra PD-1 (y de hasta 0 mm3 en el día 17).
Este estudio indica que, en un modelo de tumor murino, el tratamiento con la combinación de anticuerpo de CTLA-4 y anticuerpo de PD-1 tuvo un efecto significativamente mayor sobre el crecimiento tumoral que cualquiera de los anticuerpos en solitario, incluso cuando el tumor ya estaba bien establecido.
Ejemplo 15: Escalado de la dosis de un tratamiento combinado in Vivo (anticuerpos anti-CTLA-4 y anti-PD-1) sobre el crecimiento del tumor establecido
Células de cáncer colorrectal MC38 (PD-L1-) se implantaron en ratones C57BL/6 (2 x 106 células/ratón) durante un tiempo suficiente (aproximadamente de 6 a 7 días) para permitir la formación de tumores, como se describe en el Ejemplo 3. Grupos de 10 ratones recibieron inyecciones iP los días 0, 3, 6 y 10 de la siguiente forma: Grupo (A) IgG de ratón (control, 20 mg/kg), Grupo (B) anticuerpo monoclonal anti-PD-1 4 H2 (10 mg/kg) e IgG de ratón (10 mg/kg), Grupo (C) anticuerpo monoclonal anti-CTLA-4 9D9 (10 mg/kg) e IgG de ratón (10 mg/kg), Grupo (D) anticuerpo monoclonal anti-CTLA-4 9D9 (10 mg/kg) y anticuerpo monoclonal anti-PD-1 4H2 (10 mg/kg), Grupo (E) anticuerpo monoclonal anti-CTLA-4 9D9 (3 mg/kg) y anticuerpo monoclonal anti-PD-1 4H2 (3 mg/kg), o Grupo (f) anticuerpo monoclonal anti-CTLA-4 9D9 (1 mg/kg) y anticuerpo monoclonal anti-PD-1 4 H2 (1 mg/kg). Usando un calibre electrónico, los tumores se midieron tridimensionalmente (alto x ancho x largo) y se calculó el volumen tumoral. Se tomaron mediciones del tumor al principio del tratamiento (es decir, en el día 0, los tumores tenían un volumen medio de aproximadamente 90 mm3), y los días 3, 6, 10, 13, 17 y 20 después del tratamiento con anticuerpo. Los ratones se sometieron a eutanasia cuando los ratones alcanzaron un criterio de valoración del tumor determinado (un volumen del tumor en particular de 1500 mm3 y/o cuando los ratones mostraron una pérdida de peso superior a aproximadamente un 15 %).
La Figura 27A muestra que los 10 ratones del control alcanzaron un criterio de valoración del tumor. La Figura 27B muestra que el grupo tratado con 10 mg/kg de anticuerpo dirigido contra PD-1 (Grupo B) tuvo 6 ratones que alcanzaron el criterio de valoración del tumor y 4 ratones con tumores que tenían un volumen de aproximadamente 750 mm3 o menos. La Figura 27C muestra que el grupo tratado con 10 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo C) tuvo 3 ratones que alcanzaron el criterio de valoración del tumor y 7 ratones con tumores que tenían un volumen de aproximadamente 1000 mm3 o menos. La Figura 27D muestra que el grupo tratado con una combinación de 10 mg/kg de anticuerpo dirigido contra PD-1 con 10 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo D) tuvo dos ratones con tumores que tenían un volumen de aproximadamente 1000 mm3 o menos, y 8 ratones que quedaron sin tumor. La Figura 27E muestra que el grupo tratado con una combinación de 3 mg/kg de anticuerpo dirigido contra PD-1 con 3 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo E) tuvo un ratón que alcanzó el criterio de valoración del tumor, 7 ratones que tenían un volumen de aproximadamente 500 mm3 o menos, y 2 ratones que quedaron sin tumor. La Figura 27F muestra que el grupo tratado con una combinación de 1 mg/kg de anticuerpo dirigido contra PD-1 con 1 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo F) tuvo 4 ratones que alcanzaron el criterio de valoración del tumor, 5 ratones que tenían un volumen de aproximadamente 1100 mm3 o menos, y un ratón que quedó sin tumor.
Las Figuras 27G y 27H muestra los volúmenes de tumor en ratones tratados secuencialmente con anticuerpo dirigido contra PD-1 primero y anticuerpo dirigido contra CTLA-4 después, y viceversa. Los ratones de la Figura 27G recibieron primero 10 mg/kg de anti-CTLA-4 cada uno de los días 0 y 3, y después recibieron 10 mg/kg de anticuerpo dirigido contra PD-1 en cada uno de los días 6 y 10. Los ratones de la Figura 27H recibieron primero 10 mg/kg de anticuerpo dirigido contra PD-1 cada uno de los días 0 y 3, y después recibieron 10 mg/kg de anticuerpo dirigido contra CTLA-4 en cada uno de los días 6 y 10. Para el grupo G en el día 27, 8 ratones alcanzaron el criterio de valoración del tumor, un ratón tuvo un tumor muy pequeño (que, después de un retraso significativo, eventualmente dejó de crecer) y un ratón quedó sin tumor. Para el grupo H en el día 27, 8 ratones alcanzaron el criterio de valoración del tumor y 2 quedaron sin tumor.
La Figura 28 muestra que el volumen tumoral medio medido el día 10 fue de aproximadamente 1250 mm3para el grupo de control de IgG; aproximadamente 470 mm3 para el grupo con el anticuerpo de PD-1 con la IgG del control; aproximadamente 290 mm3 para el grupo con el anticuerpo de CTLA-4 con la IgG del control (medido el día 6); aproximadamente 40 mm3 para el grupo de combinación del anticuerpo dirigido contra CTLA-4 (10 mg/kg) y anticuerpo dirigido contra PD-1 (10 mg/kg); aproximadamente 165 mm3 para el grupo de combinación del anticuerpo dirigido contra CTLA-4 (3 mg/kg) y anticuerpo dirigido contra PD-1 (3 mg/kg); y aproximadamente 400 mm3 para el grupo de combinación del anticuerpo dirigido contra CTLA-4 (1 mg/kg) y anticuerpo dirigido contra PD-1 (1 mg/kg). La Figura 29 muestra que la mediana del volumen tumoral medido el día 13 fue de aproximadamente 1680 mm3para el grupo de la IgG del control; aproximadamente 400 mm3 para el grupo con el anticuerpo de PD-1 con la IgG del control; aproximadamente 660 mm3 para el grupo con el anticuerpo de CTLA-4 con la IgG del control; 0 mm3 para el grupo de combinación del anticuerpo dirigido contra CTLA-4 (10 mg/kg) y anticuerpo dirigido contra PD-1 (10 mg/kg); aproximadamente 90 mm3 para el grupo de combinación del anticuerpo dirigido contra CTLA-4 (3 mg/kg) y anticuerpo dirigido contra PD-1 (3 mg/kg); y aproximadamente 650 mm3 para el grupo de combinación del anticuerpo dirigido contra CTLA-4 (1 mg/kg) y anticuerpo dirigido contra PD-1 (1 mg/kg). Para el grupo de combinación del anticuerpo dirigido contra PD-1 con el anticuerpo dirigido contra CTLA-4, el número de ratones por grupo que quedaron sin tumor en el día 27 del estudio fue 8/10 (10 mg/kg), 2/10 (3 mg/kg) y 1/10 (1 mg/kg) (no se muestran los datos).
Este estudio indica que, en un modelo de tumor murino, el tratamiento con la combinación del anticuerpo de CTLA-4 y el anticuerpo de PD-1 funciona de una forma dependiente de la dosis y tiene un efecto significativamente mayor sobre el crecimiento tumoral que cualquiera de los anticuerpos en solitario, incluso a una dosis menor e incluso cuando el tumor ya estaba bien establecido. Además, los anticuerpos se pueden administrar secuencialmente (anticuerpo dirigido contra CTLA-4 primero y anticuerpo dirigido contra PD-1 después, o viceversa) y la combinación sigue siendo superior a las monoterapias con anticuerpo.
Ejemplo 16: Eficacia de un tratamiento combinado in v iv o (anticuerpos anti-CTLA-4 y anti-PD-1) sobre el establecimiento y el crecimiento del fibrosarcoma
Células de fibrosarcoma SA1/N (PD-1F) (Leach et al. (1996) Science 271:1734-1736) se implantaron por vía subcutánea en ratones A/J (2 x 106 células/ratón) el día 0. Los días 1,4, 7 y 11 después del implante, los ratones se inyectaron EP de la siguiente forma: Grupo (A) PBS en solitario (denominado como el “vehículo"); Grupo (B) IgG de ratón (control, 10 mg/kg por ratón), Grupo (C) anticuerpo monoclonal anti-PD-1 4H2 (10 mg/kg por ratón), Grupo (D) anticuerpo monoclonal anti-CTLA-49D9 (10 mg/kg o 0,2 mg/kg por ratón), y Grupo (E) anticuerpo monoclonal anti-PD-1 4H2 (10 mg/kg por ratón) combinado con el anticuerpo monoclonal anti-CTLA-49D9 (0,2 mg/kg por ratón). El estudio duró 41 días, y las mediciones del tumor se tomaron en varios días durante el ciclo del estudio (véase la Figura 29). El volumen se calculó midiendo los tumores en tres dimensiones (alto x ancho x largo) usando un calibre electrónico. Los ratones se sometieron a eutanasia cuando los ratones alcanzaron un criterio de valoración del tumor determinado -un volumen de 1500 mm3 y/o un tumor ulcerado.
Las Figuras 30A y 30B muestran que 19 de 20 ratones del control (9/10 en el Grupo A y 10/10 en el Grupo B) bien habían alcanzado un criterio de valoración del tumor o habían desarrollado tumores ulcerados. La Figura 30C muestra que el grupo tratado con 10 mg/kg de anticuerpo dirigido contra PD-1 (Grupo C) tuvo 6 ratones que alcanzaron un criterio de valoración del tumor (2 con un volumen mayor de 1500 mm3 y 4 con un tumor ulcerado) and 4 ratones que quedaron sin tumor. La Figura 30D muestra que el grupo tratado con 10 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo D) tuvo 5 ratones que alcanzaron un criterio de valoración del tumor (2 con un volumen mayor de 1500 mm3 y 3 con un tumor ulcerado), un ratón con un tumor pequeño (volumen de aproximadamente 70 mm3) y 4 ratones que quedaron sin tumor. La Figura 30E muestra que el grupo tratado con 0,2 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo E) tuvo 10 ratones que alcanzaron un criterio de valoración del tumor (6 con un volumen mayor de 1500 mm3 y 4 con un tumor ulcerado). La Figura 30F muestra que el grupo tratado con una combinación de 10 mg/kg de anticuerpo dirigido contra PD-1 con 0,2 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo F) tuvo 2 ratones que alcanzaron un criterio de valoración del tumor (uno con un volumen mayor de 1500 mm3 y uno con un tumor ulcerado) y 8 ratones que quedaron sin tumor.
Las Figuras 31 y 32 muestran la media y la mediana del volumen tumoral, respectivamente, que se desarrollaron en ratones tratados y no tratados durante el curso de este estudio. La inhibición del crecimiento tumoral en los ratones tratados con estos anticuerpos, en comparación con los ratones tratados con el anticuerpo de IgG de ratón del control, se resume en la Tabla 6.
Tabla 6. Inhibición del crecimiento tumoral y ratones sin tumor después del tratamiento con anti-PD-1 y/o anti-CTLA-
4
Figure imgf000042_0001
Estos datos indican además que el tratamiento combinado que comprende anticuerpos contra PD-1 y contra CTLA-4 es sustancialmente más eficaz que el tratamiento con cualquiera de los anticuerpos en solitario. De hecho, la combinación sigue siendo más eficaz que los tratamientos con los anticuerpos individuales incluso cuando el tratamiento combinado contenga una dosis subterapéutica del anticuerpo dirigido contra CTLA-4. Estos datos también indican que, sorprendentemente, la presencia o ausencia de PD-L1 en el tumor puede no tener efectos sobre la eficacia del tratamiento con esta combinación de anticuerpos, aunque la presencia de PD-L1 puede alterar el efecto de las monoterapias con anticuerpo ya que la expresión de PD-L1 en el tumor puede también llevar a la inhibición de las respuestas de los linfocitos T antitumorales (véase la Figura 40).
Ejemplo 17: Eficacia y escalado de dosis de un tratamiento combinado in v iv o (anticuerpos anti-CTLA-4 y anti-PD-1) sobre el crecimiento de fibrosarcoma PD-L1-Células de fibrosarcoma SA1/N (PD-1) se implantaron por vía subcutánea en ratones A/J (2 x 106 células/ratón) el día 0 durante un tiempo suficiente (aproximadamente 7 días) días para permitir el establecimiento del tumor. Los días 7, 10, 13 y 16 después del implante, diez grupos de 8 ratones que tenían un volumen tumoral promedio de 110 mm3 recibieron una inyección IP de la siguiente forma: Grupo (A) PBS en solitario (denominado como el “vehículo"); Grupo (B) IgG de ratón (control, 10 mg/kg por ratón); Grupo (C) anticuerpo monoclonal anti-CTLA-49D9 (0,25 mg/kg); Grupo (D) anticuerpo monoclonal anti-CTLA-4 9D9 (0,5 mg/kg por ratón); Grupo (E) anticuerpo monoclonal anti-CTLA-49D9 (5 mg/kg); Grupo (F) anticuerpo monoclonal anti-PD-1 4H2 (3 mg/kg por ratón); Grupo (G) anticuerpo monoclonal anti-PD-1 4H2 (10 mg/kg por ratón); Grupo (H) anticuerpo monoclonal anti-PD-1 4 H2 (10 mg/kg por ratón) en combinación con anticuerpo monoclonal anti-CTLA-49D9 (0,25 mg/kg por ratón); Grupo (I) anticuerpo monoclonal anti-PD-1 4H2 (10 mg/kg por ratón) en combinación con anticuerpo monoclonal anti-CTLA-4 9D9 (0,5 mg/kg por ratón); y Grupo (J) anticuerpo monoclonal anti-PD-1 4H2 (3 mg/kg por ratón) en combinación con anticuerpos monoclonales anti-CTLA-49D9 (0,5 mg/kg por ratón).
Los días 10, 13, 16 y 19 después del implante, dos grupos de 6 ratones que tenían un volumen tumoral promedio de 255 mm3 recibieron una inyección IP de la siguiente forma: Grupo (K) IgG de ratón (control, 10 mg/kg por ratón); y Grupo (L) anticuerpo monoclonal anti-PD-1 4H2 (10 mg/kg por ratón) en combinación con anticuerpo monoclonal anti-CTLA-49D9 (1 mg/kg por ratón). El estudio duró 51 días, y las mediciones del tumor se tomaron en varios días durante el ciclo del estudio (véanse las Figuras 33-38). El volumen se calculó midiendo los tumores en tres dimensiones (alto x ancho x largo) usando un calibre electrónico. Los ratones se sometieron a eutanasia cuando los ratones alcanzaron un criterio de valoración del tumor determinado -un volumen de 1500 mm3 y/o un tumor ulcerado.
La Figura 33 muestra la respuesta al tratamiento con anticuerpo estimulador en ratones con tumores que tienen un volumen inicial de aproximadamente 110 mm3 (es decir, en el momento del tratamiento con el primer anticuerpo. Las Figuras 33 A y 33B muestran que los 16 ratones del control (Grupos A y B) alcanzaron un criterio de valoración del tumor (15 con un volumen del tumor mayor de 1500 mm3 y 1 con un tumor ulcerado). Las figuras 33C-33E muestran que los ratones que tienen tumores respondieron al tratamiento con el anticuerpo dirigido contra CTLA-4 de una manera dependiente de la dosis (por ejemplo, el Grupo C que recibe 0,25 mg/kg tuvieron 7/8 ratones que alcanzaron un criterio de valoración del tumor con un volumen tumoral menor de 200 mm3, mientras que el Grupo E que recibe 5 mg/kg tuvo 6/8 ratones que alcanzaron el criterio de valoración del tumor y dos ratones quedaron sin tumor). Las Figuras 33F y 33G muestran que los ratones respondieron aproximadamente igual independientemente de la dosis del anticuerpo dirigido contra PD-1 (el Grupo F recibió 3 mg/kg y el Grupo G recibió 10 mg/kg). Por el contrario, los ratones que recibieron un tratamiento combinado de 10 o 3 mg/kg de anticuerpo dirigido contra PD-1 con 0,25 o 0,5 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupos H, I y J) mostró una reducción significativa en el crecimiento tumoral. Por ejemplo, La Figura 33J muestra que el grupo tratado con una combinación de 3 mg/kg de anticuerpo dirigido contra PD-1 con 0,5 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo J) tuvo 2 ratones que tuvieron tumores ulcerados, 2 ratones con un volumen tumoral menor de 500 mm3, y 4 ratones que quedaron sin tumor. El inesperado efecto sinérgico de un anticuerpo dirigido contra PD-1 combinado con un anticuerpo dirigido contra CTLA-4, junto con la sorprendente eficacia de los niveles subterapéuticos del anticuerpo dirigido contra CTLA-4 en la combinación, se muestran en las Figuras 34 (volumen tumoral medio) y 35 (mediana del volumen tumoral).
La Figura 36 muestra la respuesta al tratamiento con anticuerpo inmunoestimulador en ratones con tumores más grandes, aquellos que tienen un volumen inicial de aproximadamente 250 mm3 (es decir, en el momento del tratamiento con el primer anticuerpo). La Figura 36A muestra que los 6 ratones del control (Grupo K) alcanzaron un criterio de valoración del tumor (4 con un volumen tumoral mayor de 1500 mm3 y 2 con un tumor ulcerado). La Figura 36B muestra que el grupo tratado con una combinación de 10 mg/kg de anticuerpo dirigido contra PD-1 con 1 mg/kg de anticuerpo dirigido contra CTLA-4 (Grupo L) tuvo un ratón con un tumor ulcerado, 4 ratones con un volumen tumoral mayor de 1500 mm3, y un ratón quedó sin tumor. La media y la mediana de los volúmenes tumorales se muestran en las Figuras 37 y 38.
La inhibición del crecimiento tumoral en los ratones tratados con estos anticuerpos, en comparación con los ratones tratados con el anticuerpo de IgG de ratón del control, se resume en la Tabla 7 y la Figura 39.
Tabla 7. Inhibición del crecimiento tumoral después del tratamiento con anti-PD-1 y/o anti-CTLA-4
Figure imgf000043_0001
(continuación)
Figure imgf000044_0001
En su conjunto, estos datos indican que el tratamiento combinado que comprende anticuerpos contra PD-1 y contra CTLA-4 es sustancialmente más eficaz que el tratamiento con cualquiera de los anticuerpos en solitario. Además, sorprendentemente, la dosis de cada anticuerpo se puede reducir sin afectar la eficacia sinérgica de esta combinación de anticuerpos terapéuticos inmunoestimuladores. La terapia de combinación parece seguir siendo eficaz incluso cuando la masa tumoral es más madura (es decir, más grande).
Ejemplo 18: Inmunidad tumoral en ratones después del tratamiento con anticuerpo dirigido contra PD-1 y reestimulación con células de fibrosarcoma PD-L1-
Los ratones que sobrevivieron sin tumores a un estímulo con células tumorales y al tratamiento con el anticuerpo dirigido contra PD-1 (es decir, un tratamiento similar a los estudios de eficacia descritos en los Ejemplos 5 y 6) se volvieron a estimular después con células tumorales para investigar la inmunidad a la formación de tumores después de un tratamiento de ese tipo. En resumen, en el estímulo inicial, células de fibrosarcoma SA1/N (PD-L1-) se implantaron por vía subcutánea en ratones A/J (1 x 106 células/ratón) el día 0. Los días 1, 4, 7, 10, 14, 17 y 20 después del implante, grupos de ratones recibieron una inyección IB con uno de IgG de ratón (control, 10 mg/kg por ratón) o con una de las varias dosis del anticuerpo monoclonal anti-PD-1 4H2 (30, 10, 3, 1 y 0,3 mg/kg por ratón). La formación y el volumen de los tumores se comprobó con un calibre electrónico de precisión dos veces a la semana hasta completar el estudio. Un grupo de 8 ratones quedaron sin tumor después del tratamiento con el anticuerpo dirigido contra PD1 (4 que se trataron con 30 mg/kg, 2 con 3 mg/kg, uno con 1 mg/kg, y uno con 0,3 mg/kg).
Los ocho ratones A/J tratados sin tumores se volvieron a estimular mediante implante subcutáneo de 1 x 106 células de fibrosarcoma SA1/N por ratón. Como control, nueve ratones no expuestos a tratamiento recibieron un implante subcutáneo de 1 x 106 células de fibrosarcoma SA1/N por ratón. La formación y el volumen de los tumores se comprobó con un calibre electrónico de precisión dos veces a la semana hasta el día 62 después del implante. Todos los ratones no expuestos al tratamiento (control) alcanzaron el criterio de valoración del tumor en el día 22 después del implante de las células de fibrosarcoma. Por el contrario, los ocho ratones sin tumor vueltos a estimular con células de fibrosarcoma no desarrollaron tumores hasta 62 días después del implante. La Figura 47 muestra el volumen tumoral medio de los ratones sin tratar y reestimulados. Estos resultados demuestran que el tratamiento con un anticuerpo inmunoestimulador, tal como el anti-PD-1, proporciona a los sujetos tratados inmunidad contra la formación de tumores adicionales, incluso en presencia de células capaces de formar un tumor.
Ejemplo 19: Inmunidad tumoral en ratones después de un tratamiento con un único anticuerpo (anti-PD-1) o el tratamiento combinado de anticuerpos (anti-CTLA-4 y anti-PD-1 reestimulados con células de cáncer colorrectal PD-L1-
Los ratones que sobrevivieron sin tumores a un estímulo con células tumorales y al tratamiento con uno cualquiera de anticuerpo dirigido contra PD-1 en solitario o anticuerpo dirigido contra PD-1 combinado con anticuerpo dirigido contra CTLA-4 (es decir, un tratamiento similar a los estudios de eficacia descritos en los Ejemplos 2-4) se volvieron a estimular después con células tumorales para investigar la inmunidad a la formación de tumores después de dichos tratamientos. En resumen, en el estímulo inicial, célula de cáncer colorrectal MC38 (PD-L1-) se implantaron en ratones C57BL/6 (2 x 106 células/ratón) el día 0. Los días 0, 3, 6 y 10 después del implante, los grupos de ratones recibieron una inyección IP con uno de los siguientes tratamientos: (1) IgG de ratón (control, 10 mg/kg por ratón), anticuerpo monoclonal anti-PD-1 4H2, o (3) anticuerpo monoclonal anti-PD-1 4H2 en combinación con anticuerpo monoclonal anti-CTLA-49D9. El crecimiento del tumor se controló con un calibre electrónico de precisión como se describe en el Ejemplo 15. Un grupo de 11 ratones quedaron sin tumor después del tratamiento con el anticuerpo dirigido contra PD1 (2 total) o la combinación de anticuerpo anti-PD1/anti-CTLA-4 (9 total).
Los 11 ratones C57BL/6 tratados sin tumores se volvieron a estimular por implante de 2 x 107 células de cáncer colorrectal MC38 por ratón (es decir, una dosis de células 10 x mayor que el estímulo inicial). Como control, siete ratones no expuestos a tratamiento recibieron un implante con 2 x 107 células de cáncer colorrectal MC38 por ratón. La formación y el volumen tumoral se controló con un calibre electrónico de precisión para la duración del experimento de reestímulo (al menos 20 días). La Figura 48 muestra que los siete ratones no expuestos a tratamiento (control) desarrollaron un tumor y alcanzaron el criterio de valoración del tumor en el día 18 posterior al implante de las células de cáncer colorrectal. Por el contrario, los 11 ratones sin tumor vueltos a estimular con células de cáncer colorrectal no desarrollaron tumores hasta 18 días después del implante.
La Figura 49 muestra el volumen tumoral medio de los ratones sin tratar y reestimulados. Estos datos indican que, análogamente a la monoterapia con anticuerpos, el tratamiento combinado con anticuerpos que produce el bloqueo de PD-1 y CTLA-4 produce una inmunidad persistente a la recidiva del tumor.
Ejemplo 20: Eficacia de un tratamiento combinado in V ivo (anticuerpos anti-CTLA-4 y anti-PD-1) sobre el crecimiento del tumor establecido
Células de cáncer colorrectal CT26 se implantaron en ratones BALB/C (2 x 106 células/ratón) durante un tiempo suficiente (aproximadamente 10 días) para permitir la formación de tumores. En el día 10 después del implante, se realizaron mediciones del tumor, y los ratones se aleatorizados en función del volumen tumoral medio (aproximadamente 250 mm3) en 5 grupos para la posterior terapia con anticuerpos. El día 0 (es decir, 10 días después de implantar las células CT26), los ratones recibieron por inyección iP (1) IgG de ratón (control), (2) anticuerpo monoclonal anti-CTLA-49D9, (3) anticuerpo monoclonal anti-PD-1 4H2, o (4) anticuerpo monoclonal anti-CTLA-49D9 y anticuerpo monoclonal anti-PD-14H2, a una concentración de 10 mg/kg por ratón. Las inyecciones de anticuerpos también se administraron los días 3, 6 y 10. Las composiciones de anticuerpos monoclonales usados tuvieron bajos niveles de endotoxina y no se agregaron significativamente. Usando un calibre electrónico, los tumores se midieron tridimensionalmente (alto x ancho x longitud) y se calculó el volumen tumoral. Las mediciones del tumos se tomaron el día 0 (los tumores al principio del tratamiento tuvieron un volumen de aproximadamente 125 mm3), y los días 3, 6, 10, 13, 17 y 20 después de la inyección del anticuerpo. Los ratones se sometieron a eutanasia cuando los ratones alcanzaron un criterio de valoración del tumor determinado (un volumen del tumor en particular de 1500 mm3 y/o cuando los ratones mostraron una pérdida de peso superior a aproximadamente un 15 %). En la Figura 50 se muestran los resultados. Este estudio indica que, en un modelo de tumor murino, el tratamiento con la combinación de anticuerpo de CTLA-4 y anticuerpo de PD-1 tuvo un efecto significativamente mayor sobre el crecimiento tumoral que cualquiera de los anticuerpos en solitario, incluso cuando el tumor ya estaba bien establecido.
Ejemplo 21: Efecto del anticuerpo dirigido contra PD-1 humana sobre la función de los linfocitos T reguladores
Los linfocitos T reguladores son linfocitos que suprimen la respuesta inmunitaria. En este ejemplo, Los linfocitos T reguladores se ensayaron para su función inhibidora sobre la proliferación y la secreción de IFN-gamma sobre los linfocitos T CD4+CD25 en presencia o ausencia de un anticuerpo monoclonal humano dirigido contra PD-1.
Los linfocitos T reguladores se purificaron a partir de PBMC utilizando el kit de aislamiento de linfocitos T reguladores CD4+CD25+ (Miltenyi Biotec). Se añadieron linfocitos T reguladores a una reacción de linfocitos mixtos (véase anteriormente) que contenía linfocitos T CD4+CD25- y células dendríticas alogénicas en una relación 2:1 de CD4+CD25- a linfocitos T reguladores. Se añadió el anticuerpo monoclonal dirigido contra PD-1 5C4 a una concentración de 10 |jg/ml. Como control negativo, se usó bien nada de anticuerpo, o un anticuerpos control de Isotipo. Se recogieron los sobrenadantes del cultivo en el día 5 para la medición de las citoquinas utilizando un sistema de detección de citoquinas Beadlyte (Upstate). Las células se marcaron con 3H-timidina, se cultivaron durante 18 horas más, y se analizaron para determinar la proliferación celular. Los resultados se muestran en las Figuras 51A (proliferación de linfocitos T) y 51B (secreción de IFN-gamma). La adición de anticuerpo monoclonal humano dirigido contra PD-1 5C4 liberó parcialmente la inhibición impuesta por los linfocitos Treg sobre la proliferación y secreción de IFN-gamma de linfocitos T CD4+CD25-, lo que indica que los anticuerpo dirigidos contra PD-1 tienen un efecto sobre los linfocitos T reguladores.
Ejemplo 22: Efecto de anticuerpo humano dirigido contra PD-1 sobre la activación de los linfocitos T
En este ejemplo, se examinó el efecto del bloqueo de la ruta PD-1 por el anticuerpo 5C4 dirigido contra PD-1 sobre la activación de los linfocitos T. Los linfocitos T CD4+ humanos purificados (kit de purificación de linfocitos T CD4 Dynal) se activaron con 1 jg/ml de anticuerpo soluble dirigido contra CD3 (BD) en presencia de monocitos autólogos o células dendríticas derivadas de monocitos (DC). Se purificaron los monocitos usando el kit de purificación de monocitos CD14 de Milteni, y se generaron DC in vitro después del cultivo de monocitos con GM-CSF e IL-4 (PeproTech) durante 7 días. Después de tres días de activación en presencia o ausencia de anticuerpo dirigido

Claims (16)

REIVINDICACIONES
1. Un anticuerpo monoclonal, o una porción de unión a antígeno del mismo, que se une específicamente a la proteína Muerte programada 1 (PD-1) humana y comprende una región variable de cadena pesada que comprende aminoácidos que tienen la secuencia definida en la SEQ ID NO:4 y una región variable de cadena ligera que comprende aminoácidos que tienen la secuencia definida en la SEQ ID NO: 11; para su uso en un método para tratar un cáncer en un sujeto junto con un anticuerpo monoclonal, o una porción de unión a antígeno del mismo, que se une específicamente a CTLA-4 humano.
2. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con la reivindicación 1, en donde el anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo es un anticuerpo humano o una porción de unión a antígeno del mismo.
3. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones anteriores, que es un isotipo IgG1 o IgG4.
4. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con las reivindicaciones 1 o 2, en donde la porción de unión a antígeno se selecciona de un fragmento Fab, un fragmento F(ab')2, un fragmento Fv o un fragmentos scFv.
5. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde el cáncer se selecciona de melanoma, cáncer renal, cáncer de próstata, cáncer de mama, cáncer de colon y cáncer de pulmón.
6. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones 1 a 5, en el que el cáncer se selecciona de cáncer óseo, cáncer pancreático, cáncer de piel, cáncer de cabeza o cuello, melanoma maligno cutáneo o intraocular, cáncer de útero, cáncer de ovario, cáncer rectal, cáncer de la región anal, cáncer de estómago, cáncer de testículo, carcinoma de las trompas de Falopio, carcinoma del endometrio, carcinoma del cuello uterino, carcinoma de la vagina, carcinoma de la vulva, enfermedad de Hodgkin, linfoma no de Hodgkin, cáncer de esófago, cáncer del intestino delgado, cáncer del sistema endocrino, cáncer de la glándula tiroides, cáncer de la glándula paratiroidea, cáncer de la glándula suprarrenal, sarcoma de tejidos blandos, cáncer de la uretra, cáncer del pene, leucemias crónicas o agudas, incluyendo leucemia mieloide aguda, leucemia mieloide crónica, leucemia linfoblástica aguda, leucemia linfocítica crónica, tumores sólidos de la infancia, linfoma linfocítico, cáncer de la vejiga, cáncer del riñón o del uréter, carcinoma de la pelvis renal, neoplasias del sistema nervioso central (SNC), linfoma primario del SNC, angiogénesis tumoral, tumor del eje espinal, glioma del tronco encefálico, adenoma hipofisario, sarcoma de Kaposi, cáncer epidermoide, cáncer de células escamosas, linfoma de linfocitos T, cánceres inducidos ambientalmente incluyendo aquellos inducidos por amianto, y combinaciones de dichos cánceres.
7. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde el anticuerpo dirigido contra PD-1 o la porción de unión a antígeno del mismo y/o el anticuerpo dirigido contra CTLA-4 o la porción de unión a antígeno del mismo, se administran a una dosis subterapéutica.
8. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde el anticuerpo dirigido contra PD-1 o la porción de unión a antígeno del mismo y el anticuerpo dirigido contra CTLA-4 o la porción de unión a antígeno del mismo, se administran secuencialmente.
9. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con la reivindicación 8, en donde:
(a) el anticuerpo dirigido contra PD-1 o la porción de unión a antígeno del mismo se administra antes del anticuerpo dirigido contra CTLA-4 o la porción de unión a antígeno del mismo; o
(b) el anticuerpo dirigido contra CTLA-4 o la porción de unión a antígeno del mismo se administra antes del anticuerpo dirigido contra PD-1 o la porción de unión a antígeno del mismo.
10. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones 1 a 7, en donde el anticuerpo dirigido contra PD-1 o la porción de unión a antígeno del mismo y el anticuerpo dirigido contra CTLA-4 o la porción de unión a antígeno del mismo se administran simultáneamente como composiciones independientes, con cada anticuerpo en un vehículo farmacéuticamente aceptable.
11. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones 1 a 7, en donde el anticuerpo dirigido contra PD-1 o la porción de unión a antígeno del mismo y el anticuerpo dirigido contra CTLA-4 o la porción de unión a antígeno del mismo se administran simultáneamente en una única composición en un vehículo farmacéuticamente aceptable.
12. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde el sujeto es un ser humano.
13. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde el anticuerpo monoclonal dirigido contra CTLA-4 o la porción de unión a antígeno del mismo es un anticuerpo humano o una porción de unión a antígeno del mismo.
14. El anticuerpo monoclonal dirigido contra PD-1 o la porción de unión a antígeno del mismo para el uso de acuerdo con la reivindicación 13, en donde el anticuerpo dirigido contra CTLA-4 o la porción de unión a antígeno del mismo es el anticuerpo monoclonal contra CTLA-4 humano 10D1.
15. Un anticuerpo monoclonal, o una porción de unión a antígeno del mismo, que se une específicamente a CTLA-4 humano para su uso en un método para tratar el cáncer en un sujeto en combinación con un anticuerpo monoclonal dirigido contra PD-1 humana o una porción de unión a antígeno del mismo como se define en una cualquiera de las reivindicaciones 1 a 4.
16. El anticuerpo monoclonal dirigido contra PD-1 para su uso de acuerdo con la reivindicación 1, que es un isotipo IgG4.
ES11178191T 2005-05-09 2006-05-02 Anticuerpos monoclonales humanos contra muerte programada 1(PD-1) y métodos para tratar el cáncer usando anticuerpos dirigidos contra PD-1 solos o junto con otras sustancias inmunoterapéuticas Active ES2720160T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67946605P 2005-05-09 2005-05-09
US73843405P 2005-11-21 2005-11-21
US74891905P 2005-12-08 2005-12-08

Publications (1)

Publication Number Publication Date
ES2720160T3 true ES2720160T3 (es) 2019-07-18

Family

ID=37396674

Family Applications (2)

Application Number Title Priority Date Filing Date
ES09013687.0T Active ES2427646T5 (es) 2005-05-09 2006-05-02 Anticuerpos monoclonales humanos contra muerte programada 1 (PD1) y métodos para el tratamiento del cáncer mediante el uso de anticuerpos anti-PD-1 solos o combinados con otros agentes inmunoterapéuticos
ES11178191T Active ES2720160T3 (es) 2005-05-09 2006-05-02 Anticuerpos monoclonales humanos contra muerte programada 1(PD-1) y métodos para tratar el cáncer usando anticuerpos dirigidos contra PD-1 solos o junto con otras sustancias inmunoterapéuticas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES09013687.0T Active ES2427646T5 (es) 2005-05-09 2006-05-02 Anticuerpos monoclonales humanos contra muerte programada 1 (PD1) y métodos para el tratamiento del cáncer mediante el uso de anticuerpos anti-PD-1 solos o combinados con otros agentes inmunoterapéuticos

Country Status (27)

Country Link
US (10) US8008449B2 (es)
EP (6) EP2439273B1 (es)
JP (9) JP4361545B2 (es)
KR (3) KR101498834B1 (es)
CN (5) CN109485727A (es)
AU (1) AU2006244885B2 (es)
BR (1) BRPI0610235B8 (es)
CA (3) CA3151350A1 (es)
CY (2) CY2015057I2 (es)
DK (2) DK2439273T3 (es)
ES (2) ES2427646T5 (es)
FR (1) FR15C0087I2 (es)
HK (1) HK1140793A1 (es)
HU (2) HUE044719T2 (es)
IL (2) IL187108A (es)
LT (2) LT2439273T (es)
LU (1) LU92904I2 (es)
MX (1) MX2007013978A (es)
NL (1) NL300782I2 (es)
NO (5) NO341219B1 (es)
NZ (1) NZ563193A (es)
PL (2) PL2161336T5 (es)
PT (2) PT2439273T (es)
RU (4) RU2494107C2 (es)
SI (2) SI2439273T1 (es)
TW (1) TWI379898B (es)
WO (1) WO2006121168A1 (es)

Families Citing this family (2032)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605238B2 (en) 1999-08-24 2009-10-20 Medarex, Inc. Human CTLA-4 antibodies and their uses
US7030219B2 (en) 2000-04-28 2006-04-18 Johns Hopkins University B7-DC, Dendritic cell co-stimulatory molecules
CA2481207C (en) * 2002-04-12 2015-06-30 Medarex, Inc. Methods of treatment using ctla-4 antibodies
DE60334303D1 (de) 2002-07-03 2010-11-04 Tasuku Honjo Immunpotenzierende zusammensetzungen
EP2085096A3 (en) 2002-09-11 2009-08-12 Genentech, Inc. Novel composition and methods for the treatment of immune related diseases
DE10347710B4 (de) 2003-10-14 2006-03-30 Johannes-Gutenberg-Universität Mainz Rekombinante Impfstoffe und deren Verwendung
AU2006244885B2 (en) 2005-05-09 2011-03-31 E. R. Squibb & Sons, L.L.C. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
HUE029214T2 (en) 2005-05-10 2017-02-28 Incyte Holdings Corp Indolamine-2,3-dioxygenase modulators and methods for their use
SG10201702670VA (en) 2005-06-08 2017-06-29 Dana Farber Cancer Inst Inc Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1) pathway
KR101888321B1 (ko) 2005-07-01 2018-08-13 이. 알. 스퀴부 앤드 선즈, 엘.엘.씨. 예정 사멸 리간드 1 (피디-엘1)에 대한 인간 모노클로날 항체
DE102005046490A1 (de) 2005-09-28 2007-03-29 Johannes-Gutenberg-Universität Mainz Modifikationen von RNA, die zu einer erhöhten Transkriptstabilität und Translationseffizienz führen
US7700567B2 (en) 2005-09-29 2010-04-20 Supergen, Inc. Oligonucleotide analogues incorporating 5-aza-cytosine therein
US8110194B2 (en) 2005-12-07 2012-02-07 Medarex, Inc. CTLA-4 antibody dosage escalation regimens
EP2468765B1 (en) 2006-03-03 2015-04-22 ONO Pharmaceutical Co., Ltd. Tetramer of extracellular domain of PD-L1
JP2010504356A (ja) * 2006-09-20 2010-02-12 ザ ジョンズ ホプキンス ユニバーシティー 抗b7−h1抗体を用いた癌及び感染性疾患の組合せ療法
BRPI0720724A2 (pt) 2006-12-27 2014-04-01 Univ Emory Composições e métodos para o tratamento de infecções e tumores
AU2013200388B2 (en) * 2006-12-27 2014-10-23 Dana-Farber Cancer Institute, Inc. Compositions and methods for the treatment of infections and tumors
WO2008100562A2 (en) * 2007-02-14 2008-08-21 Medical College Of Georgia Research Institute, Inc. Indoleamine 2,3-dioxygenase, pd-1/pd-l pathways, and ctla4 pathways in the activation of regulatory t cells
CN107011445B (zh) 2007-06-01 2021-06-29 马里兰大学巴尔的摩分校 免疫球蛋白恒定区Fc受体结合剂
AU2014201367B2 (en) * 2007-06-18 2016-01-28 Merck Sharp & Dohme B.V. Antibodies to human programmed death receptor pd-1
WO2008156712A1 (en) * 2007-06-18 2008-12-24 N. V. Organon Antibodies to human programmed death receptor pd-1
US20090028857A1 (en) * 2007-07-23 2009-01-29 Cell Genesys, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
US9243052B2 (en) 2007-08-17 2016-01-26 Daniel Olive Method for treating and diagnosing hematologic malignancies
AU2008329530A1 (en) 2007-11-28 2009-06-04 Universite De Montreal PD-1 modulation and uses thereof
HUE032025T2 (en) 2008-01-31 2017-08-28 Inserm - Inst Nat De La Sante Et De La Rech Medicale Antibodies to human CD39 and their use to inhibit regulatory T cell activity
EP2262837A4 (en) * 2008-03-12 2011-04-06 Merck Sharp & Dohme PD-1 BINDING PROTEINS
JP5770624B2 (ja) 2008-04-09 2015-08-26 ジェネンテック, インコーポレイテッド 免疫関連疾患の治療のための新規組成物と方法
US9017660B2 (en) 2009-11-11 2015-04-28 Advaxis, Inc. Compositions and methods for prevention of escape mutation in the treatment of Her2/neu over-expressing tumors
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
WO2009143167A2 (en) 2008-05-19 2009-11-26 Advaxis Dual delivery system for heterologous antigens
EP2307050A4 (en) * 2008-07-04 2012-07-25 Ono Pharmaceutical Co USE OF A EFFECTIVENESS MARKER TO OPTIMIZE THE THERAPEUTIC EFFECTIVENESS OF AN ANTI-HUMAN PD-1 ANTIBODY ON CANCERS
PE20110308A1 (es) * 2008-07-08 2011-06-10 Incyte Corp 1,2,5-oxadiazoles como inhibidores de indolamina 2,3-dioxigenasa
US8119129B2 (en) 2008-08-01 2012-02-21 Bristol-Myers Squibb Company Combination of anti-CTLA4 antibody with dasatinib for the treatment of proliferative diseases
AR072999A1 (es) * 2008-08-11 2010-10-06 Medarex Inc Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos
KR20110074850A (ko) * 2008-08-25 2011-07-04 앰플리뮨, 인크. Pd-1 길항제 및 그의 사용 방법
EA023148B1 (ru) 2008-08-25 2016-04-29 Эмплиммьюн, Инк. Композиции на основе антагонистов pd-1 и их применение
EP2342228B1 (en) 2008-09-12 2017-09-06 Oxford University Innovation Limited Pd-1 specific antibodies and uses thereof
AU2009290544B2 (en) 2008-09-12 2015-07-16 Oxford University Innovation Limited PD-1 specific antibodies and uses thereof
AU2009296392B2 (en) 2008-09-26 2016-06-02 Dana-Farber Cancer Institute, Inc. Human anti-PD-1, PD-L1, and PD-L2 antibodies and uses therefor
EP2356239A2 (en) * 2008-11-12 2011-08-17 Schering Corporation Gi-igg intron for enhanced anti-igf1 r expression
EP3734281A3 (en) * 2008-11-14 2021-01-27 The Brigham and Women's Hospital, Inc. Therapeutic and diagnostic methods relating to cancer stem cells
US11542328B2 (en) 2008-11-14 2023-01-03 The Brigham And Women's Hospital, Inc. Therapeutic and diagnostic methods relating to cancer stem cells
DK2370593T3 (en) 2008-11-28 2016-07-04 Univ Emory A method for determining the effect of PD-1 Antagonists
EP4331604B1 (en) 2008-12-09 2025-03-05 F. Hoffmann-La Roche AG Anti-pd-l1 antibodies and their use to enhance t-cell function
ES2629337T3 (es) * 2009-02-09 2017-08-08 Inserm - Institut National De La Santé Et De La Recherche Médicale Anticuerpos contra PD-1 y anticuerpos contra PD-L1 y usos de los mismos
SI2415470T1 (sl) 2009-03-30 2016-12-30 Eisai R&D Management Co., Ltd. Liposomski sestavek
US8394922B2 (en) 2009-08-03 2013-03-12 Medarex, Inc. Antiproliferative compounds, conjugates thereof, methods therefor, and uses thereof
EP3375791A1 (en) 2009-09-30 2018-09-19 Memorial Sloan Kettering Cancer Center Combination immunotherapy for the treatment of cancer
HUE029661T2 (en) 2009-10-16 2017-03-28 Oncomed Pharm Inc A therapeutic combination and use of DLL4 antagonist antibodies and antihypertensive agents
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
TW201134488A (en) * 2010-03-11 2011-10-16 Ucb Pharma Sa PD-1 antibodies
EP2545078A1 (en) 2010-03-11 2013-01-16 UCB Pharma, S.A. Pd-1 antibody
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US20110288545A1 (en) * 2010-04-22 2011-11-24 Old Dominion University Research Foundation Method and Device for Ablation of Cancer and Resistance to New Cancer Growth
JP5948319B2 (ja) 2010-05-14 2016-07-06 ザ ジェネラル ホスピタル コーポレイション 腫瘍特異的なネオ抗原を同定する組成物および方法
US20130064831A1 (en) * 2010-05-17 2013-03-14 Bristol-Myers Squibb Company Immunotherapeutic dosing regimens and combinations thereof
US10010439B2 (en) 2010-06-13 2018-07-03 Synerz Medical, Inc. Intragastric device for treating obesity
US8628554B2 (en) 2010-06-13 2014-01-14 Virender K. Sharma Intragastric device for treating obesity
US10420665B2 (en) 2010-06-13 2019-09-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US9526648B2 (en) 2010-06-13 2016-12-27 Synerz Medical, Inc. Intragastric device for treating obesity
JP2013532153A (ja) 2010-06-18 2013-08-15 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド 慢性免疫病に対する免疫治療のためのtim−3およびpd−1に対する二重特異性抗体
PT2598533T (pt) 2010-07-28 2019-05-08 Gliknik Inc Proteínas de fusão de fragmentos de proteínas humanas naturais para criar composições fc de imunoglobulina multimerizada de forma ordenada
CA2807552A1 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US9226958B2 (en) 2010-10-01 2016-01-05 University Of Georgia Research Foundation, Inc. Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
PT3590949T (pt) 2010-10-01 2022-08-02 Modernatx Inc Ácidos ribonucleicos contendo n1-metilpseudouracilos e suas utilizações
WO2012048113A2 (en) 2010-10-07 2012-04-12 The General Hospital Corporation Biomarkers of cancer
US9428567B2 (en) 2010-12-22 2016-08-30 The Board Of Trustees Of The Leland Stanford Junior University Antagonists of interleukin-2 receptor
CA2829960A1 (en) 2011-03-11 2012-09-20 John Rothman Listeria-based adjuvants
JP2014511687A (ja) 2011-03-31 2014-05-19 モデルナ セラピューティクス インコーポレイテッド 工学操作された核酸の送達および製剤
CN103429264A (zh) * 2011-03-31 2013-12-04 默沙东公司 针对人程序性死亡受体pd-1的抗体的稳定制剂和有关的治疗
LT2699264T (lt) * 2011-04-20 2018-07-10 Medimmune, Llc Antikūnai ir kitos molekulės, kurios jungiasi prie b7-h1 ir pd-1
FI3892295T3 (fi) 2011-05-24 2023-05-10 BioNTech SE Yksilöityjä rokotteita syöpää varten
US8852599B2 (en) 2011-05-26 2014-10-07 Bristol-Myers Squibb Company Immunoconjugates, compositions for making them, and methods of making and use
ES2705950T3 (es) 2011-06-03 2019-03-27 Eisai R&D Man Co Ltd Biomarcadores para predecir y valorar la capacidad de respuesta de sujetos con cáncer de tiroides y de riñón a compuestos de lenvatinib
CA2840170A1 (en) * 2011-06-21 2012-12-27 The Johns Hopkins University Focused radiation for augmenting immune-based therapies against neoplasms
EP3409278B8 (en) 2011-07-21 2020-11-04 Sumitomo Dainippon Pharma Oncology, Inc. Heterocyclic protein kinase inhibitors
TWI654994B (zh) * 2011-08-01 2019-04-01 建南德克公司 利用pd-1軸結合拮抗劑及mek抑制劑治療癌症之方法
US9701749B2 (en) * 2011-08-11 2017-07-11 Ono Pharmaceutical Co., Ltd. Therapeutic agent for autoimmune diseases comprising PD-1 agonist
HUE042327T2 (hu) 2011-08-30 2019-06-28 Astex Pharmaceuticals Inc Decitabin-származék készítmények
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
TWI583699B (zh) 2011-09-23 2017-05-21 安可美德藥物股份有限公司 Vegf/dll4結合劑類及彼等之用途
KR20190099538A (ko) 2011-10-03 2019-08-27 모더나 세라퓨틱스, 인코포레이티드 변형된 뉴클레오사이드, 뉴클레오타이드, 및 핵산, 및 이들의 용도
GB201117313D0 (en) 2011-10-07 2011-11-16 Gt Biolog Ltd Bacterium for use in medicine
ES2671728T3 (es) * 2011-10-11 2018-06-08 Universität Zürich Prorektorat Mnw Medicamento de combinación que comprende IL-12 y un agente para el bloqueo de moléculas inhibidoras de linfocitos T para terapia tumoral
US11951157B2 (en) 2011-10-11 2024-04-09 Universitat Zurich Methods of treating malignant tumour with IL-12 and anti-PD-1 antibody
BR112014012727B1 (pt) 2011-11-29 2022-10-25 Ono Pharmaceutical Co., Ltd Cloridrato de 6-amino-9-[(3r)-1-(2-butinoil)-3-pirrolidinil]-7-(4-fenoxifenil)-7,9-di-hidro-8h-puri- 8-ona e composição farmacêutica
SG11201402666WA (en) 2011-12-16 2014-10-30 Moderna Therapeutics Inc Modified nucleoside, nucleotide, and nucleic acid compositions
US8871925B2 (en) 2011-12-28 2014-10-28 Galectin Therapeutics Inc. Compositions of novel carbohydrate drug for treatment of human diseases
JP2015506372A (ja) * 2012-01-27 2015-03-02 グリックニック インコーポレイテッド IgG2ヒンジドメインを含む融合タンパク質
CA2863658C (en) * 2012-02-03 2023-03-14 Emory University Immunostimulatory compositions, particles, and uses related thereto
LT2814829T (lt) 2012-02-13 2017-02-27 Bristol-Myers Squibb Company En-diino junginiai, jų konjugatai ir jų panaudojimas bei jo būdai
WO2013120929A1 (en) 2012-02-15 2013-08-22 F. Hoffmann-La Roche Ag Fc-receptor based affinity chromatography
AU2013232291B8 (en) 2012-03-12 2016-07-21 Advaxis, Inc. Suppressor cell function inhibition following listeria vaccine treatment
WO2013143555A1 (en) 2012-03-26 2013-10-03 Biontech Ag Rna formulation for immunotherapy
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
EP2847329A4 (en) 2012-04-02 2016-08-10 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES FOR THE PREPARATION OF CYTOPLASMA AND CYTOSCELETTE PROTEINS
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
WO2013155487A1 (en) 2012-04-12 2013-10-17 Yale University Vehicles for controlled delivery of different pharmaceutical agents
WO2013169693A1 (en) 2012-05-09 2013-11-14 Bristol-Myers Squibb Company Methods of treating cancer using an il-21 polypeptide and an anti-pd-1 antibody
EP2850102A1 (en) * 2012-05-15 2015-03-25 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting pd-1/pd-l1 signaling
KR102129636B1 (ko) * 2012-05-31 2020-07-03 제넨테크, 인크. Pd-l1 축 결합 길항제 및 vegf 길항제를 사용하여 암을 치료하는 방법
ES2984771T3 (es) 2012-06-13 2024-10-31 Incyte Holdings Corp Compuestos tricíclicos sustituidos como inhibidores de FGFR
AR091649A1 (es) 2012-07-02 2015-02-18 Bristol Myers Squibb Co Optimizacion de anticuerpos que se fijan al gen de activacion de linfocitos 3 (lag-3) y sus usos
ES2648176T3 (es) * 2012-07-12 2017-12-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Métodos de predicción del tiempo de supervivencia y de la respuesta al tratamiento de un paciente que padece un cáncer sólido con un distintivo de al menos 7 genes
CN112587671A (zh) 2012-07-18 2021-04-02 博笛生物科技有限公司 癌症的靶向免疫治疗
ES2848052T3 (es) * 2012-08-03 2021-08-05 Dana Farber Cancer Inst Inc Anticuerpos de unión dual anti-PD-L1 y PD-L2 de agente individual y métodos de uso
AU2013302696B9 (en) * 2012-08-14 2018-08-09 Ibc Pharmaceuticals, Inc. T-cell redirecting bispecific antibodies for treatment of disease
US9682143B2 (en) 2012-08-14 2017-06-20 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease
US20150231241A1 (en) * 2012-08-14 2015-08-20 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease
US10131712B2 (en) * 2012-08-14 2018-11-20 Ibc Pharmaceuticals, Inc. Combination therapy with T-cell redirecting bispecific antibodies and checkpoint inhibitors
KR20150058236A (ko) 2012-08-20 2015-05-28 글리크닉 인코포레이티드 항원 결합 및 다가 fc 감마 수용체 결합 활성을 가진 분자
KR102204525B1 (ko) 2012-08-30 2021-01-19 암젠 인크 단순 헤르페스 바이러스 및 면역 체크포인트 억제제를 사용한 흑색종의 치료방법
CN104812244B (zh) * 2012-09-17 2018-10-30 卡莱克汀医疗有限公司 增强癌症治疗中特异性免疫疗法的方法
WO2014047085A2 (en) * 2012-09-20 2014-03-27 Rongfu Wang Prostate-specific tumor antigen and uses thereof
EP3263601B1 (en) * 2012-10-02 2021-11-24 Bristol-Myers Squibb Company Combination of anti-kir antibodies and anti-pd-1 antibodies to treat cancer
USRE50065E1 (en) 2012-10-17 2024-07-30 10X Genomics Sweden Ab Methods and product for optimising localised or spatial detection of gene expression in a tissue sample
US10047164B2 (en) * 2012-10-19 2018-08-14 Opsona Therapeutics Limited Methods and compositions for the treatment of pancreatic cancer
RU2656162C2 (ru) 2012-10-22 2018-05-31 Фоунтейн Биофарма Инк. Антитела к интерлейкину 6 и их применение
RS63237B1 (sr) 2012-11-26 2022-06-30 Modernatx Inc Terminalno modifikovana rnk
AU2013351542B2 (en) 2012-11-28 2018-08-09 BioNTech SE Individualized vaccines for cancer
LT2925350T (lt) 2012-12-03 2019-04-10 Bristol-Myers Squibb Company Imunomoduliuojančių fc sulietų baltymų priešvėžinio aktyvumo stiprinimas
WO2014113729A2 (en) 2013-01-18 2014-07-24 Foundation Mecicine, Inc. Methods of treating cholangiocarcinoma
CN103965363B (zh) * 2013-02-06 2021-01-15 上海白泽生物科技有限公司 与pd-1和vegf高效结合的融合蛋白、其编码序列及用途
WO2014122271A1 (en) 2013-02-07 2014-08-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from diffuse large b-cell lymphomas
LT2956173T (lt) 2013-02-14 2017-06-26 Bristol-Myers Squibb Company Tubulizino junginiai, gavimo ir panaudojimo būdai
CN111139256A (zh) 2013-02-20 2020-05-12 诺华股份有限公司 使用人源化抗EGFRvIII嵌合抗原受体治疗癌症
US9573988B2 (en) 2013-02-20 2017-02-21 Novartis Ag Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells
EP3578200A1 (en) 2013-02-22 2019-12-11 CureVac AG Combination of vaccination and inhibition of the pd-1 pathway
SG11201506052PA (en) 2013-02-22 2015-09-29 Curevac Gmbh Combination of vaccination and inhibition of the pd-1 pathway
EP2961831B1 (en) 2013-02-26 2020-06-10 Memorial Sloan Kettering Cancer Center Compositions and methods for immunotherapy
KR20150125963A (ko) 2013-03-01 2015-11-10 아스텍스 파마수티컬스, 인크. 약물 조합체
PE20152000A1 (es) 2013-03-06 2016-01-22 Astrazeneca Ab Inhibidores quinazolinicos de formas mutadas activantes del receptor del factor de crecimiento epidermico
PL2970473T3 (pl) 2013-03-14 2018-01-31 Bristol Myers Squibb Co Kombinacja agonisty dr5 i antagonisty anty-pd-1 oraz metody stosowania
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US9308236B2 (en) 2013-03-15 2016-04-12 Bristol-Myers Squibb Company Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions
SG11201507333XA (en) * 2013-03-15 2015-10-29 Genentech Inc Biomarkers and methods of treating pd-1 and pd-l1 related conditions
UY35468A (es) 2013-03-16 2014-10-31 Novartis Ag Tratamiento de cáncer utilizando un receptor quimérico de antígeno anti-cd19
EP2981821B2 (en) 2013-04-02 2021-11-03 Merck Sharp & Dohme Corp. Immunohistochemical assay for detecting expression of programmed death ligand 1 (pd-l1) in tumor tissue
WO2014163684A1 (en) * 2013-04-03 2014-10-09 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease
CA2908380A1 (en) 2013-04-09 2014-10-16 Boston Biomedical, Inc. Methods for treating cancer
BR112015025852A2 (pt) 2013-04-09 2017-07-25 Lixte Biotechnology Inc as formulações de oxabicicloheptanos e oxabicicloheptenos
GB201306536D0 (en) 2013-04-10 2013-05-22 Gt Biolog Ltd Polypeptide and immune modulation
DK2986610T5 (en) 2013-04-19 2018-12-10 Incyte Holdings Corp BICYCLIC HETEROCYCLES AS FGFR INHIBITORS
PT2992017T (pt) 2013-05-02 2021-01-29 Anaptysbio Inc Anticorpos dirigidos contra a morte programada 1 (pd-1)
WO2014180490A1 (en) 2013-05-10 2014-11-13 Biontech Ag Predicting immunogenicity of t cell epitopes
CN103242448B (zh) * 2013-05-27 2015-01-14 郑州大学 一种全人源化抗pd-1单克隆抗体及其制备方法和应用
WO2014194293A1 (en) 2013-05-30 2014-12-04 Amplimmune, Inc. Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof
CA2913977C (en) * 2013-05-31 2022-11-29 Sorrento Therapeutics, Inc. Antigen binding proteins that bind pd-1
WO2014193898A1 (en) * 2013-05-31 2014-12-04 Merck Sharp & Dohme Corp. Combination therapies for cancer
WO2014209804A1 (en) * 2013-06-24 2014-12-31 Biomed Valley Discoveries, Inc. Bispecific antibodies
CN104250302B (zh) * 2013-06-26 2017-11-14 上海君实生物医药科技股份有限公司 抗pd‑1抗体及其应用
WO2015009856A2 (en) 2013-07-16 2015-01-22 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and tigit inhibitors
WO2015085162A1 (en) 2013-12-05 2015-06-11 Rfemb Holdings, Llc Cancer immunotherapy by radiofrequency electrical membrane breakdown (rf-emb)
JP2016531907A (ja) 2013-08-02 2016-10-13 アデュロ・バイオテック・ホールディングス・ヨーロッパ・ベスローテン・フエンノートシャップAduro Biotech Holdings, Europe B.V. 免疫刺激のためのcd27アゴニストと免疫チェックポイント阻害との組み合わせ
DK3444271T3 (da) 2013-08-08 2022-01-10 Cytune Pharma Il-15- og il-15r-alfa-sushi-domænebaserede modulokiner
JP6794255B2 (ja) 2013-08-08 2020-12-02 サイチューン ファーマ 組合せ医薬組成物
KR20160068738A (ko) 2013-08-14 2016-06-15 윌리엄 마쉬 라이스 유니버시티 운시알라마이신의 유도체, 합성 방법 및 항종양 제제로서 이들의 용도
RU2705795C2 (ru) 2013-08-20 2019-11-12 Мерк Шарп И Доум Корп. Лечение рака комбинацией антагониста pd-1 и динациклиба
AR097306A1 (es) 2013-08-20 2016-03-02 Merck Sharp & Dohme Modulación de la inmunidad tumoral
CA2922982A1 (en) 2013-09-06 2015-03-12 Aurigene Discovery Technologies Limited Cyclic peptidomimetic compounds as immunomodulators
PL3041827T3 (pl) 2013-09-06 2018-09-28 Aurigene Discovery Tech Limited Pochodne 1,2,4-oksadiazolu jako immunomodulatory
MX2016002971A (es) 2013-09-06 2016-10-07 Aurigene Discovery Tech Ltd Derivados de 1,3,4-oxadiazol y 1,3,4-tiadiazol como inmunomoduladores.
WO2015036394A1 (en) * 2013-09-10 2015-03-19 Medimmune Limited Antibodies against pd-1 and uses thereof
AU2013400609B9 (en) * 2013-09-13 2020-03-05 Beigene Switzerland Gmbh Anti-PD1 antibodies and their use as therapeutics and diagnostics
SMT201900332T1 (it) 2013-09-20 2019-07-11 Bristol Myers Squibb Co Combinazione di anticorpi anti-lag-3 e anticorpi anti-pd-1 per il trattamento di tumori
US10781242B2 (en) 2013-09-24 2020-09-22 Medicenna Therapeutics Inc. Interleukin-2 fusion proteins and uses thereof
WO2015048312A1 (en) * 2013-09-26 2015-04-02 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
EP3052106A4 (en) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynucleotides encoding immune modulating polypeptides
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
CN104560884A (zh) * 2013-10-25 2015-04-29 苏州思坦维生物技术有限责任公司 拮抗抑制程序性死亡受体pd-1与其配体结合的单克隆抗体及分泌它的杂交瘤细胞系与用途
CN104558177B (zh) * 2013-10-25 2020-02-18 苏州思坦维生物技术股份有限公司 拮抗抑制程序性死亡受体pd-1与其配体结合的单克隆抗体及其编码序列与用途
WO2015066413A1 (en) 2013-11-01 2015-05-07 Novartis Ag Oxazolidinone hydroxamic acid compounds for the treatment of bacterial infections
WO2015066535A1 (en) 2013-11-01 2015-05-07 Yale University Modular particles for immunotherapy
PL3066126T3 (pl) 2013-11-07 2019-08-30 F. Hoffmann-La Roche Ag Leczenie skojarzone z zastosowaniem niefukozylowanego przeciwciała anty-CD20 i inhibitora BTK
US11413332B2 (en) * 2013-11-11 2022-08-16 Armo Biosciences, Inc. Methods of using interleukin-10 for treating diseases and disorders
US20150140036A1 (en) 2013-11-13 2015-05-21 Novartis Institutes For Biomedical Research, Inc. Low, immune enhancing, dose mtor inhibitors and uses thereof
DK3071697T3 (da) 2013-11-22 2020-01-27 Dnatrix Inc Adenovirus der udtrykker immuncelle-stimulatorisk(e) receptor agonist(er)
US10081679B2 (en) * 2013-11-25 2018-09-25 Ccam Biotherapeutics Ltd. Compositions comprising anti-CEACAM1 and anti-PD antibodies for cancer therapy
WO2015077717A1 (en) 2013-11-25 2015-05-28 The Broad Institute Inc. Compositions and methods for diagnosing, evaluating and treating cancer by means of the dna methylation status
US11725237B2 (en) 2013-12-05 2023-08-15 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
WO2015088930A1 (en) 2013-12-10 2015-06-18 Merck Sharp & Dohme Corp. Immunohistochemical proximity assay for pd-1 positive cells and pd-ligand positive cells in tumor tissue
UA119659C2 (uk) * 2013-12-12 2019-07-25 Шанхай Хенжуй Фармасьютикал Ко., Лтд. Антитіло до pd-1, його антигензв'язуючий фрагмент та їхнє медичне застосування
US20160304969A1 (en) 2013-12-17 2016-10-20 Merck Sharp & Dohme Corp. Ifn-gamma gene signature biomarkers of tumor response to pd-1 antagonists
RS59659B2 (sr) 2013-12-17 2023-08-31 Hoffmann La Roche Postupci lečenjа raka pomoću аntаgonistа koji vežu osovinu pd-1 i pomoću tаksаnа
US9067998B1 (en) * 2014-07-15 2015-06-30 Kymab Limited Targeting PD-1 variants for treatment of cancer
AU2014364593A1 (en) 2013-12-17 2016-07-07 Genentech, Inc. Methods of treating cancer using PD-1 axis binding antagonists and an anti-CD20 antibody
MX2016007965A (es) 2013-12-17 2016-10-28 Genentech Inc Terapia de combinacion que comprende agonistas de union a ox40 y antagonistas de union al eje pd-1.
SG11201604815RA (en) 2013-12-19 2016-07-28 Novartis Ag Human mesothelin chimeric antigen receptors and uses thereof
JP7060324B2 (ja) 2013-12-20 2022-04-26 ザ・ブロード・インスティテュート・インコーポレイテッド ネオ抗原ワクチンによる併用療法
EP4124624A3 (en) 2013-12-20 2023-05-03 Intervet International B.V. Antibodies against canine pd-1
KR102395498B1 (ko) * 2014-01-06 2022-05-09 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 Pd1 및 pdl1 항체 및 백신 조합 및 면역요법을 위한 이들의 사용
EP4056594A1 (en) 2014-01-10 2022-09-14 Birdie Biopharmaceuticals Inc. Compounds and compositions for immunotherapy
JO3517B1 (ar) 2014-01-17 2020-07-05 Novartis Ag ان-ازاسبيرو الكان حلقي كبديل مركبات اريل-ان مغايرة وتركيبات لتثبيط نشاط shp2
CA2936244A1 (en) * 2014-01-21 2015-07-30 Medimmune, Llc Compositions and methods for modulating and redirecting immune responses
TWI680138B (zh) 2014-01-23 2019-12-21 美商再生元醫藥公司 抗pd-l1之人類抗體
TWI681969B (zh) * 2014-01-23 2020-01-11 美商再生元醫藥公司 針對pd-1的人類抗體
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
JOP20200096A1 (ar) 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
SI3498734T1 (sl) 2014-02-04 2022-02-28 Pfizer Inc. Kombinacija antagonista PD-1 in zaviralca VEGFR za zdravljenje raka
EP3102604B1 (en) 2014-02-04 2020-01-15 Pfizer Inc Combination of a pd-1 antagonist and a 4-1bb agonist for treating cancer
AU2015214404B2 (en) 2014-02-04 2020-10-01 Incyte Corporation Combination of a PD-1 antagonist and an IDO1 inhibitor for treating cancer
LT3134123T (lt) * 2014-02-21 2021-04-12 Nektar Therapeutics (India) Pvt. Ltd. Il-2rbeta atžvilgiu selektyvūs agonistai derinyje su anti-ctla-4 antikūnu arba anti-pd-1 antikūnu
WO2015125652A1 (ja) * 2014-02-21 2015-08-27 Idacセラノスティクス株式会社 固形がんの治療剤
US9732154B2 (en) 2014-02-28 2017-08-15 Janssen Biotech, Inc. Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia
US9603927B2 (en) 2014-02-28 2017-03-28 Janssen Biotech, Inc. Combination therapies with anti-CD38 antibodies
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
WO2015134605A1 (en) * 2014-03-05 2015-09-11 Bristol-Myers Squibb Company Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
KR20200029627A (ko) 2014-03-12 2020-03-18 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 Cns의 질환 및 손상을 치료하기 위한 전신적 조절 t 세포 수준 또는 활성의 감소
US10618963B2 (en) 2014-03-12 2020-04-14 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
US10519237B2 (en) 2014-03-12 2019-12-31 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
EP3590529A1 (en) 2014-03-12 2020-01-08 CureVac AG Combination of vaccination and ox40 agonists
US9394365B1 (en) 2014-03-12 2016-07-19 Yeda Research And Development Co., Ltd Reducing systemic regulatory T cell levels or activity for treatment of alzheimer's disease
ME03558B (me) 2014-03-14 2020-07-20 Novartis Ag Molekuli anti-lag-3 antiтela i njihove upotrebe
US20170335281A1 (en) 2014-03-15 2017-11-23 Novartis Ag Treatment of cancer using chimeric antigen receptor
UA121383C2 (uk) 2014-03-24 2020-05-25 Новартіс Аг Органічні сполуки, що є монобактамами, для лікування бактеріальних інфекцій
BR112016022658A2 (pt) 2014-03-31 2017-10-17 Genentech Inc anticorpos anti-ox40 e métodos de uso
US20170020931A1 (en) * 2014-03-31 2017-01-26 The Johns Hopkins University Use of bacteria, bacterial products, and other immunoregulatory entities in combination with anti-ctla-4 and/or anti-pd-1 antibodies to treat solid tumor malignancies
WO2015153514A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
CN104974253A (zh) * 2014-04-01 2015-10-14 上海中信国健药业股份有限公司 抗ctla-4/pd-1双特异性抗体、其制备方法及应用
WO2015157162A1 (en) 2014-04-06 2015-10-15 H. Lee Moffitt Cancer Center And Research Institute, Inc. Histone deacetylase as a modulator of pdl1 expression and activity
PL3888674T3 (pl) 2014-04-07 2024-09-23 Novartis Ag Leczenie nowotworu złośliwego z zastosowaniem chimerycznego receptora antygenowego anty-CD19
ES2980788T3 (es) 2014-04-10 2024-10-03 H Lee Moffitt Cancer Ct & Res Expansión mejorada de linfocitos infiltrantes de tumores para terapia celular adoptiva
CA2946398A1 (en) 2014-04-24 2015-10-29 The Board Of Trustees Of The Leland Stanford Junior University Superagonists, partial agonists and antagonists of interleukin-2
CN105031630A (zh) * 2014-04-28 2015-11-11 四川大学 同时分泌pd-1中和抗体和gm-csf因子的肿瘤细胞疫苗及其制备方法
HUE052968T2 (hu) 2014-04-30 2021-05-28 Fujifilm Corp Liposzóma kompozíció és annak elõállítási eljárása
CA2946418C (en) * 2014-05-13 2023-07-04 Bavarian Nordic A/S Combination therapy for treating cancer with a recombinant poxvirus expressing a tumor antigen and an immune checkpoint molecule antagonist or agonist
AU2015259516B2 (en) * 2014-05-13 2020-05-28 Bavarian Nordic A/S Combination therapy for treating cancer with a poxvirus expressing a tumor antigen and a monoclonal antibody against TIM-3
US20170158776A1 (en) * 2014-05-15 2017-06-08 Bristol-Myers Squibb Company Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
RU2708374C2 (ru) 2014-05-23 2019-12-06 Эйсай Ар Энд Ди Менеджмент Ко., Лтд. Комбинированная терапия для лечения рака
EP3498295A1 (en) 2014-05-28 2019-06-19 Agenus Inc. Anti-gitr antibodies and methods of use thereof
AU2015265607A1 (en) 2014-05-28 2016-11-17 Idenix Pharmaceuticals Llc Nucleoside derivatives for the treatment of cancer
WO2015187835A2 (en) 2014-06-06 2015-12-10 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
LT3157956T (lt) * 2014-06-19 2020-05-11 Regeneron Pharmaceuticals, Inc. Nepriklausantys žmonėms gyvūnai, turintys humanizuotą užprogramuotos ląstelių žūties 1 geną
EP3760208B1 (en) 2014-06-25 2024-05-29 The General Hospital Corporation Targeting human satellite ii (hsatii)
TWI693232B (zh) * 2014-06-26 2020-05-11 美商宏觀基因股份有限公司 與pd-1和lag-3具有免疫反應性的共價結合的雙抗體和其使用方法
ES2903029T3 (es) * 2014-07-03 2022-03-30 Univ Yale La inhibición de DICKKOPF2 (DKK2) suprime la formación de tumores
TWI726608B (zh) 2014-07-03 2021-05-01 英屬開曼群島商百濟神州有限公司 抗pd-l1抗體及其作為治療及診斷之用途
EP3166976B1 (en) 2014-07-09 2022-02-23 Birdie Biopharmaceuticals Inc. Anti-pd-l1 combinations for treating tumors
JP6893594B2 (ja) * 2014-07-10 2021-06-23 ハイバーセル,インク. 腫瘍微小環境に影響する抗癌剤と組み合わせたβ−グルカン
MX2017000419A (es) 2014-07-11 2017-08-16 Genentech Inc Anticuerpos anti-pd-l1 y sus usos de diagnóstico.
CN114099686B (zh) 2014-07-15 2024-04-16 约翰·霍普金斯大学 源自骨髓的抑制细胞的抑制和免疫检查点阻断
CN106573060A (zh) 2014-07-15 2017-04-19 豪夫迈·罗氏有限公司 使用pd‑1轴结合拮抗剂和mek抑制剂治疗癌症的组合物
HUE045108T2 (hu) 2014-07-16 2019-12-30 Transgene Sa Onkolitikus vírus immunellenõrzõpont-modulátorok expresszálására
ES2833425T3 (es) 2014-07-16 2021-06-15 Roussy Inst Gustave Combinación de virus oncolítico con moduladores de punto de control inmunitario
EP3193921A4 (en) 2014-07-18 2018-04-25 Advaxis, Inc. Combination of a pd-1 antagonist and a listeria-based vaccine for treating prostate cancer
WO2016014553A1 (en) 2014-07-21 2016-01-28 Novartis Ag Sortase synthesized chimeric antigen receptors
EP3172234B1 (en) 2014-07-21 2020-04-08 Novartis AG Treatment of cancer using a cd33 chimeric antigen receptor
EP3193915A1 (en) 2014-07-21 2017-07-26 Novartis AG Combinations of low, immune enhancing. doses of mtor inhibitors and cars
AU2015292678B2 (en) 2014-07-22 2020-10-22 Cb Therapeutics, Inc. Anti-PD-1 antibodies
CN105330740B (zh) * 2014-07-30 2018-08-17 珠海市丽珠单抗生物技术有限公司 抗pd-1抗体及其应用
EP3660042B1 (en) 2014-07-31 2023-01-11 Novartis AG Subset-optimized chimeric antigen receptor-containing t-cells
CN105296433B (zh) 2014-08-01 2018-02-09 中山康方生物医药有限公司 一种ctla4抗体、其药物组合物及其用途
PL3177644T3 (pl) * 2014-08-05 2021-06-14 MabQuest SA Immunologiczne reagenty wiążące do PD-1
JP6909153B2 (ja) 2014-08-05 2021-07-28 アポロミクス インコーポレイテッド 抗pd−l1抗体
US9982052B2 (en) 2014-08-05 2018-05-29 MabQuest, SA Immunological reagents
JP2017523213A (ja) 2014-08-06 2017-08-17 ノバルティス アーゲー 抗菌薬としてのキノロン誘導体
PT3179992T (pt) 2014-08-11 2022-07-12 Acerta Pharma Bv Combinações terapêuticas de um inibidor de btk, um inibidor de pd-1 e/ou um inibidor de pd-l1
WO2016025645A1 (en) 2014-08-12 2016-02-18 Massachusetts Institute Of Technology Synergistic tumor treatment with il-2, a therapeutic antibody, and an immune checkpoint blocker
CA2957717C (en) 2014-08-12 2021-10-19 Massachusetts Institute Of Technology Synergistic tumor treatment with il-2 and integrin-binding-fc-fusion protein
CN114099671A (zh) 2014-08-12 2022-03-01 鳄鱼生物科学公司 利用抗cd40抗体的组合疗法
JP6919118B2 (ja) 2014-08-14 2021-08-18 ノバルティス アーゲー GFRα−4キメラ抗原受容体を用いる癌の治療
RU2020117196A (ru) 2014-08-19 2020-10-15 Новартис Аг Химерный антигенный рецептор (car) против cd123 для использования в лечении злокачественных опухолей
CA2958573A1 (en) 2014-08-19 2016-02-25 National University Corporation Okayama University Agent for treating and/or preventing diseases associated with immune abnormalities by combining biguanide antidiabetic drug with immunosuppressive factor blocking agent or costimulatory receptor agonist
JP2017530950A (ja) 2014-08-25 2017-10-19 ファイザー・インコーポレイテッド 癌を処置するためのpd−1アンタゴニストおよびalk阻害剤の併用
WO2016030455A1 (en) * 2014-08-28 2016-03-03 Medimmune Limited Anti-b7-h1 and anti-ctla-4 antibodies for treating non-small lung cancer
KR102329681B1 (ko) 2014-08-28 2021-11-23 에자이 알앤드디 매니지먼트 가부시키가이샤 고순도의 퀴놀린 유도체 및 이를 제조하는 방법
WO2016033555A1 (en) 2014-08-28 2016-03-03 Halozyme, Inc. Combination therapy with a hyaluronan-degrading enzyme and an immune checkpoint inhibitor
CN112587672A (zh) 2014-09-01 2021-04-02 博笛生物科技有限公司 用于治疗肿瘤的抗-pd-l1结合物
US9535074B2 (en) 2014-09-08 2017-01-03 Merck Sharp & Dohme Corp. Immunoassay for soluble PD-L1
CN107073079A (zh) * 2014-09-08 2017-08-18 达纳-法伯癌症研究所公司 包括给予PPAR‑γ激动剂的治疗癌症的方法
RU2718914C2 (ru) * 2014-09-13 2020-04-15 Новартис Аг Сочетанные способы лечения с использованием ингибиторов alk
HUE051193T2 (hu) 2014-09-16 2021-03-01 Innate Pharma Gátlási reakcióút semlegesítése limfocitákban
US10577417B2 (en) 2014-09-17 2020-03-03 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
DK3262071T3 (da) 2014-09-23 2020-06-15 Hoffmann La Roche Fremgangsmåde til anvendelse af anti-CD79b-immunkonjugater
WO2016045732A1 (en) 2014-09-25 2016-03-31 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
US10550194B2 (en) 2014-09-30 2020-02-04 Intervet Inc. PD-L1 antibodies binding canine PD-L1
CA2963281A1 (en) 2014-10-03 2016-04-07 Novartis Ag Combination therapies
CN114107424A (zh) 2014-10-08 2022-03-01 诺华股份有限公司 预测针对嵌合抗原受体疗法的治疗应答性的生物标志及其用途
MA41044A (fr) 2014-10-08 2017-08-15 Novartis Ag Compositions et procédés d'utilisation pour une réponse immunitaire accrue et traitement contre le cancer
EP4029508A1 (en) 2014-10-10 2022-07-20 Idera Pharmaceuticals, Inc. Treatment of cancer using tlr9 agonists and checkpoint inhibitors
DK3204417T3 (da) 2014-10-10 2020-10-12 Innate Pharma Cd73-blokering
US9732119B2 (en) 2014-10-10 2017-08-15 Bristol-Myers Squibb Company Immunomodulators
CN107001478B (zh) 2014-10-14 2022-01-11 诺华股份有限公司 针对pd-l1的抗体分子及其用途
NZ746680A (en) 2014-10-14 2020-07-31 Halozyme Inc Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
WO2016059602A2 (en) * 2014-10-16 2016-04-21 Glaxo Group Limited Methods of treating cancer and related compositions
JP2017532338A (ja) * 2014-10-16 2017-11-02 エピザイム,インコーポレイティド 癌を治療する方法
US9724395B2 (en) 2014-10-21 2017-08-08 Sciclone Pharmaceuticals, Inc. Treatment of cancer with immune stimulators
GB201419084D0 (en) 2014-10-27 2014-12-10 Agency Science Tech & Res Anti-PD-1 antibodies
US9765147B2 (en) 2014-10-29 2017-09-19 Five Prime Therapeutics, Inc. Anti-CSFR1 antibody and anti PD-1 antibody combination therapy for cancer
WO2016070051A2 (en) * 2014-10-31 2016-05-06 Oncomed Pharmaceuticals, Inc. Combination therapy for treatment of disease
AU2015343337A1 (en) 2014-11-03 2017-06-15 Genentech, Inc. Assays for detecting T cell immune subsets and methods of use thereof
CA2966507A1 (en) 2014-11-03 2016-05-12 Genentech, Inc. Methods and biomarkers for predicting efficacy and evaluation of an ox40 agonist treatment
EP3215182B1 (en) 2014-11-05 2023-01-04 The Regents of The University of California Combination immunotherapy
JP6887378B2 (ja) * 2014-11-06 2021-06-16 バイオセラ,インク. 腫瘍内微小環境に影響を与えるベータ−グルカン方法と組成物
EP3215528B1 (en) 2014-11-06 2019-08-07 F.Hoffmann-La Roche Ag Fc-region variants with modified fcrn-binding and methods of use
US10077287B2 (en) 2014-11-10 2018-09-18 Bristol-Myers Squibb Company Tubulysin analogs and methods of making and use
WO2016077397A2 (en) * 2014-11-11 2016-05-19 Sutro Biopharma, Inc. Anti-pd-1 antibodies, compositions comprising anti-pd-1 antibodies and methods of using anti-pd-1 antibodies
WO2016077553A1 (en) 2014-11-13 2016-05-19 The Johns Hopkins University Checkpoint blockade and microsatellite instability
CA2967188A1 (en) 2014-11-14 2016-05-19 Novartis Ag Antibody drug conjugates
US9856292B2 (en) 2014-11-14 2018-01-02 Bristol-Myers Squibb Company Immunomodulators
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
KR20240024318A (ko) * 2014-11-20 2024-02-23 에프. 호프만-라 로슈 아게 T 세포 활성화 이중특이적 항원 결합 분자 CD3 ABD 엽산 수용체 1(FolR1) 및 PD-1 축 결합 길항물질의 조합 요법
WO2016081854A1 (en) 2014-11-20 2016-05-26 Promega Corporation Systems and methods for assessing modulators of immune checkpoints
ME03806B (me) 2014-11-21 2021-04-20 Bristol Myers Squibb Co Antitela protiv cd73 i njihova upotreba
CN107250157B (zh) 2014-11-21 2021-06-29 百时美施贵宝公司 包含修饰的重链恒定区的抗体
US11229713B2 (en) 2014-11-25 2022-01-25 Bristol-Myers Squibb Company Methods and compositions for 18F-radiolabeling of biologics
MX2017006530A (es) 2014-11-25 2017-08-10 Bristol Myers Squibb Co Nuevos peptidos que se unen al ligando-1 de muerte programada (pd-l1) para formacion de imagen.
EP3632915A1 (en) 2014-11-27 2020-04-08 Genentech, Inc. 4,5,6,7-tetrahydro-1 h-pyrazolo[4,3-c]pyridin-3-amine compounds as cbp and/or ep300 inhibitors
WO2016090034A2 (en) 2014-12-03 2016-06-09 Novartis Ag Methods for b cell preconditioning in car therapy
KR20170088984A (ko) 2014-12-04 2017-08-02 브리스톨-마이어스 스큅 컴퍼니 암 (골수종)을 치료하기 위한 항-cs1 항체와 항-pd1 항체의 조합
EP3226688B1 (en) 2014-12-05 2020-07-01 Merck Sharp & Dohme Corp. Tricyclic compounds as inhibitors of mutant idh enzymes
WO2016089833A1 (en) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
JP2017537929A (ja) 2014-12-05 2017-12-21 ジェネンテック, インコーポレイテッド Pd−1軸アンタゴニスト及びhpk1アンタゴニストを用いたがん治療のための方法及び組成物
US10508108B2 (en) 2014-12-05 2019-12-17 Merck Sharp & Dohme Corp. Tricyclic compounds as inhibitors of mutant IDH enzymes
US20170058043A1 (en) 2014-12-06 2017-03-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bispecific antibody for cancer immunotherapy
CA2968352A1 (en) 2014-12-08 2016-06-16 Dana-Farber Cancer Institute, Inc. Methods for upregulating immune responses using combinations of anti-rgmb and anti-pd-1 agents
US11377693B2 (en) 2014-12-09 2022-07-05 Merck Sharp & Dohme Llc System and methods for deriving gene signature biomarkers of response to PD-1 antagonists
TWI595006B (zh) 2014-12-09 2017-08-11 禮納特神經系統科學公司 抗pd-1抗體類和使用彼等之方法
RS59507B1 (sr) 2014-12-16 2019-12-31 Novartis Ag Jedinjenja izoksazol hidroksamske kiseline kao inhibitori lpxc
US9861680B2 (en) 2014-12-18 2018-01-09 Bristol-Myers Squibb Company Immunomodulators
AU2015362687B2 (en) 2014-12-18 2021-12-09 Amgen Inc. Stable frozen herpes simplex virus formulation
EP3233918A1 (en) 2014-12-19 2017-10-25 Novartis AG Combination therapies
US9944678B2 (en) 2014-12-19 2018-04-17 Bristol-Myers Squibb Company Immunomodulators
EP3757211A1 (en) 2014-12-19 2020-12-30 The Broad Institute, Inc. Methods for profiling the t-cell-receptor repertoire
WO2016100975A1 (en) 2014-12-19 2016-06-23 Massachsetts Institute Ot Technology Molecular biomarkers for cancer immunotherapy
CA3175979A1 (en) 2014-12-22 2016-06-30 Pd-1 Acquisition Group, Llc Anti-pd-1 antibodies
US20170363614A1 (en) * 2014-12-22 2017-12-21 Enumeral Biomedical Holdings, Inc. Methods For Screening Therapeutic Compounds
US11639385B2 (en) 2014-12-22 2023-05-02 Pd-1 Acquisition Group, Llc Anti-PD-1 antibodies
EP3193901B1 (en) 2014-12-23 2018-04-04 4D Pharma Research Limited Pirin polypeptide and immune modulation
MX2017007744A (es) 2014-12-23 2017-09-05 Bristol Myers Squibb Co Anticuerpos contra el inmunorreceptor de celulas t con dominios de inmunoglobulina y de porcion inhibidora con base en tirosina del inmumorreceptor (tigit).
CN104479020B (zh) * 2014-12-26 2019-08-02 上海复宏汉霖生物技术股份有限公司 一种抗pd-1人源抗体
GB201500319D0 (en) * 2015-01-09 2015-02-25 Agency Science Tech & Res Anti-PD-L1 antibodies
CN107231804B (zh) 2015-01-14 2019-11-26 百时美施贵宝公司 亚杂芳基桥连苯并二氮杂*二聚体、其缀合物及制备和使用方法
CA2971757A1 (en) * 2015-01-20 2016-07-28 Immunexcite, Inc. Compositions and methods for cancer immunotherapy
MA41414A (fr) 2015-01-28 2017-12-05 Centre Nat Rech Scient Protéines de liaison agonistes d' icos
JP6723249B2 (ja) 2015-01-30 2020-07-15 アールエフイーエムビー ホールディングス リミテッド ライアビリティ カンパニー 軟部組織を切除するためのシステムおよび方法
CA3012602A1 (en) 2015-01-30 2016-08-04 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy
WO2016126608A1 (en) 2015-02-02 2016-08-11 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
US20160222060A1 (en) 2015-02-04 2016-08-04 Bristol-Myers Squibb Company Immunomodulators
US10983128B2 (en) 2015-02-05 2021-04-20 Bristol-Myers Squibb Company CXCL11 and SMICA as predictive biomarkers for efficacy of anti-CTLA4 immunotherapy
EA201791768A1 (ru) * 2015-02-06 2018-07-31 КАДМОН КОРПОРЕЙШН, ЭлЭлСи Иммуномодулирующие агенты
MY193968A (en) * 2015-02-12 2022-11-03 Beyondspring Pharmaceuticals Inc Use of plinabulin in combination with immune checkpoint inhibitors
WO2016128912A1 (en) 2015-02-12 2016-08-18 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor, and/or a pd-l1 inhibitor
WO2016128060A1 (en) 2015-02-12 2016-08-18 Biontech Ag Predicting t cell epitopes useful for vaccination
CN107949397A (zh) * 2015-02-13 2018-04-20 特兰斯吉恩股份有限公司 免疫治疗疫苗和抗体组合治疗
PE20171514A1 (es) 2015-02-20 2017-10-20 Incyte Corp Heterociclos biciclicos como inhibidores de fgfr
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
US20180028662A1 (en) 2015-02-25 2018-02-01 Eisai R&D Management Co., Ltd. Method for Suppressing Bitterness of Quinoline Derivative
SG10201810615VA (en) 2015-02-26 2019-01-30 Merck Patent Gmbh Pd-1 / pd-l1 inhibitors for the treatment of cancer
AR103726A1 (es) * 2015-02-27 2017-05-31 Merck Sharp & Dohme Cristales de anticuerpos monoclonales anti-pd-1 humanos
SG11201706872SA (en) 2015-03-04 2017-09-28 Merck Sharp & Dohme Combination of a pd-1 antagonist and eribulin for treating cancer
WO2016140717A1 (en) 2015-03-04 2016-09-09 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and a vegfr/fgfr/ret tyrosine kinase inhibitor for treating cancer
AU2016229295B2 (en) 2015-03-06 2021-11-04 Beyondspring Pharmaceuticals, Inc. Method of treating a brain tumor
BR112017018954A2 (pt) 2015-03-06 2018-05-15 Beyondspring Pharmaceuticals, Inc. uso de forma mutante de proteína ras e método para tratar câncer
RS62960B1 (sr) 2015-03-10 2022-03-31 Aurigene Discovery Tech Ltd Jedinjenja 1,2,4-oksadiazola i tiadiazola kao imunomodulatori
JP6692826B2 (ja) 2015-03-10 2020-05-13 アドゥロ バイオテック,インク. 「インターフェロン遺伝子刺激因子」依存性シグナル伝達の活性化のための組成物及び方法
EP3067062A1 (en) 2015-03-13 2016-09-14 Ipsen Pharma S.A.S. Combination of tasquinimod or a pharmaceutically acceptable salt thereof and a pd1 and/or pdl1 inhibitor, for use as a medicament
MA42971A (fr) 2015-03-13 2018-08-15 Cytomx Therapeutics Inc Anticorps anti-pdl1, anticorps anti-pld1 activables, et leurs procédés d'utilisation
US9809625B2 (en) 2015-03-18 2017-11-07 Bristol-Myers Squibb Company Immunomodulators
ES2768784T3 (es) 2015-03-23 2020-06-23 Bayer Pharma AG Anticuerpos anti-CEACAM6 y usos de los mismos
WO2016154473A1 (en) * 2015-03-26 2016-09-29 Oncosec Medical Incorporated Method for the treatment of malignancies
US11933786B2 (en) 2015-03-30 2024-03-19 Stcube, Inc. Antibodies specific to glycosylated PD-L1 and methods of use thereof
EP3277320A4 (en) 2015-03-30 2018-08-01 Stcube, Inc. Antibodies specific to glycosylated pd-l1 and methods of use thereof
MA41866A (fr) * 2015-03-31 2018-02-06 Massachusetts Gen Hospital Molécules à auto-assemblage pour l'administration ciblée de médicaments
CN107847589B (zh) 2015-04-01 2022-03-29 安奈普泰斯生物有限公司 针对t细胞免疫球蛋白和粘蛋白蛋白3(tim-3)的抗体
ES2820768T3 (es) 2015-04-03 2021-04-22 Xoma Technology Ltd Tratamiento del cáncer usando inhibidores de TGF-beta y PD-1
CA2985055C (en) 2015-04-03 2022-07-26 H. Lee Moffitt Cancer Center And Research Institute, Inc. Combination therapy to treat cancer comprising dendritic cells engineered to overexpress p53 and an immune checkpoint inhibitor
US10478494B2 (en) 2015-04-03 2019-11-19 Astex Therapeutics Ltd FGFR/PD-1 combination therapy for the treatment of cancer
TWI738646B (zh) 2015-04-07 2021-09-11 日商賽多利克公司 醫藥組成物
JP6955445B2 (ja) 2015-04-07 2021-10-27 ジェネンテック, インコーポレイテッド アゴニスト性の活性を有する抗原結合複合体及びその使用方法
EP3280795B1 (en) 2015-04-07 2021-03-24 Novartis AG Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives
PL3280729T3 (pl) 2015-04-08 2022-08-22 Novartis Ag Terapie cd20, terapie cd22 i terapie skojarzone komórką eksprymującą chimeryczny receptor antygenowy (car) cd19
HUE053903T2 (hu) 2015-04-13 2021-07-28 Five Prime Therapeutics Inc Kombinációs terápia rák ellen
US11326211B2 (en) 2015-04-17 2022-05-10 Merck Sharp & Dohme Corp. Blood-based biomarkers of tumor sensitivity to PD-1 antagonists
EP3283107B1 (en) 2015-04-17 2020-05-27 Bristol-Myers Squibb Company Compositions comprising a combination of ipilimumab and nivolumab
JP7114457B2 (ja) 2015-04-17 2022-08-08 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア キメラ抗原受容体発現細胞の有効性および増殖を改善するための方法
US12128069B2 (en) 2015-04-23 2024-10-29 The Trustees Of The University Of Pennsylvania Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
US10174113B2 (en) 2015-04-28 2019-01-08 Bristol-Myers Squibb Company Treatment of PD-L1-negative melanoma using an anti-PD-1 antibody and an anti-CTLA-4 antibody
ES2861352T3 (es) 2015-04-28 2021-10-06 Bristol Myers Squibb Co Tratamiento del melanoma positivo para PD-L1 utilizando un anticuerpo anti-PD-1
US10585100B2 (en) 2015-04-30 2020-03-10 Kyoto University Method of predicting effect of treatment by PD-1/PD-L1 blockade using abnormality of PD-L1 (CD274) as index
ES2905525T3 (es) 2015-05-06 2022-04-11 Snipr Tech Ltd Alteración de poblaciones microbianas y modificación de la microbiota
EP3294770B2 (en) 2015-05-12 2024-03-20 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for cancer
CN104987421A (zh) * 2015-05-13 2015-10-21 北京比洋生物技术有限公司 抗ctla-4和pd-1的双重可变结构域免疫球蛋白
IL255769B2 (en) 2015-05-20 2023-09-01 Broad Inst Inc shared neoantigens
KR102649222B1 (ko) 2015-05-20 2024-03-18 얀센 바이오테크 인코포레이티드 경쇄 아밀로이드증 및 다른 cd38-양성 혈액학적 악성종양을 치료하기 위한 항-cd38 항체
JP6688551B2 (ja) 2015-05-21 2020-04-28 ハープーン セラピューティクス,インク. 三重特異性結合タンパク質と使用方法
AU2016267059B2 (en) * 2015-05-22 2020-08-13 Translational Drug Development Llc Benzamide and active compound compositions and methods of use
CN104931690A (zh) * 2015-05-22 2015-09-23 华中科技大学同济医学院附属协和医院 一种pd-1抗体检测试剂盒及其应用
WO2016189055A1 (en) 2015-05-27 2016-12-01 Idenix Pharmaceuticals Llc Nucleotides for the treatment of cancer
WO2016191751A1 (en) 2015-05-28 2016-12-01 Bristol-Myers Squibb Company Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody
US20160347836A1 (en) * 2015-05-28 2016-12-01 Bristol-Myers Squibb Company Treatment of hodgkin's lymphoma using an anti-pd-1 antibody
WO2016196237A1 (en) 2015-05-29 2016-12-08 Agenus Inc. Anti-ctla-4 antibodies and methods of use thereof
EP3708681A1 (en) 2015-05-29 2020-09-16 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for cancer
SI3303396T1 (sl) 2015-05-29 2023-01-31 Bristol-Myers Squibb Company Protitelesa proti OX40 in njihova uporaba
US11078278B2 (en) 2015-05-29 2021-08-03 Bristol-Myers Squibb Company Treatment of renal cell carcinoma
KR20180014009A (ko) 2015-05-29 2018-02-07 머크 샤프 앤드 돔 코포레이션 암을 치료하기 위한 pd-1 길항제 및 cpg-c 유형 올리고뉴클레오티드의 조합
AU2016271101B2 (en) 2015-05-31 2021-04-01 Curegenix Corporation Combination compositions for immunotherapy
EP3303401B1 (en) * 2015-06-01 2024-10-16 The University of Chicago Treatment of cancer by manipulation of commensal microflora
CA2988126A1 (en) 2015-06-03 2016-12-08 Boston Biomedical, Inc. Compositions comprising a cancer stemness inhibitor and an immunotherapeutic agent for use in treating cancer
CN106714836A (zh) 2015-06-05 2017-05-24 H·李·莫菲特癌症中心研究有限公司 Gm‑csf/cd40l疫苗和检查点抑制剂联合治疗
TWI773646B (zh) 2015-06-08 2022-08-11 美商宏觀基因股份有限公司 結合lag-3的分子和其使用方法
MX2017014740A (es) 2015-06-08 2018-08-15 Genentech Inc Métodos de tratamiento del cáncer con anticuerpos anti-ox40.
CN105061597B (zh) * 2015-06-09 2016-04-27 北京东方百泰生物科技有限公司 一种抗pd-1的单克隆抗体及其获得方法
US11078279B2 (en) 2015-06-12 2021-08-03 Macrogenics, Inc. Combination therapy for the treatment of cancer
EP3307778A1 (en) 2015-06-12 2018-04-18 Bristol-Myers Squibb Company Treatment of cancer by combined blockade of the pd-1 and cxcr4 signaling pathways
WO2016197975A1 (en) 2015-06-12 2016-12-15 Yen-Ta Lu Methods and polypeptides for modulation of immunoresponse
MA41010B1 (fr) 2015-06-15 2020-01-31 4D Pharma Res Ltd Compositions comprenant des souches bactériennes
ES2910946T3 (es) 2015-06-15 2022-05-17 4D Pharma Res Ltd Composiciones que comprenden cepas bacterianas
MX2017016529A (es) 2015-06-15 2018-03-12 4D Pharma Res Ltd Composiciones que comprenden cepas bacterianas.
EP3240554B1 (en) 2015-06-15 2019-07-31 4D Pharma Research Limited Blautia stercosis and wexlerae for use in treating inflammatory and autoimmune diseases
US11369623B2 (en) 2015-06-16 2022-06-28 Prism Pharma Co., Ltd. Anticancer combination of a CBP/catenin inhibitor and an immune checkpoint inhibitor
MY193229A (en) 2015-06-16 2022-09-26 Merck Patent GmbH Pd-l1 antagonist combination treatments
AU2016280070B2 (en) 2015-06-17 2022-09-15 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using PD-1 axis binding antagonists and taxanes
WO2016203432A1 (en) 2015-06-17 2016-12-22 Novartis Ag Antibody drug conjugates
EP3313883B1 (en) 2015-06-23 2023-12-06 Memorial Sloan Kettering Cancer Center Novel pd-1 immune modulating agents
WO2016210223A1 (en) 2015-06-24 2016-12-29 Janssen Biotech, Inc. Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38
BR112017028353A2 (pt) 2015-06-29 2018-09-04 The Rockfeller University anticorpos para cd40 com atividade agonista melhorada
ES2886657T3 (es) 2015-06-29 2021-12-20 Bristol Myers Squibb Co Regímenes de dosificación inmunoterapéutica que comprenden pomalidomida y un anticuerpo anti-CS1 para el tratamiento de cáncer
JP2018519331A (ja) 2015-06-30 2018-07-19 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア 皮膚の状態、原発性および転移性新生物の治療のための、レシキモドを含む、局所および注射用組成物、ならびにその使用方法
JP6727237B2 (ja) * 2015-07-02 2020-07-22 セルジーン コーポレイション 血液がん及び固形腫瘍の治療のための併用療法
CA2991167A1 (en) 2015-07-02 2017-01-05 Otsuka Pharmaceutical Co., Ltd. Lyophilized pharmaceutical compositions
GB201511790D0 (en) 2015-07-06 2015-08-19 Iomet Pharma Ltd Pharmaceutical compound
BR112018000229A2 (pt) 2015-07-13 2018-09-04 Beyondspring Pharmaceuticals Inc composições de plinabulina
MA42447A (fr) 2015-07-13 2018-05-23 Cytomx Therapeutics Inc Anticorps anti-pd-1, anticorps anti-pd-1 activables, et leurs procédés d'utilisation
HUE053966T2 (hu) * 2015-07-14 2021-08-30 Bristol Myers Squibb Co Eljárás rák kezelésére immunellenõrzõpont inhibitorral, antitest, amely köt programozott halál-1 receptorhoz (PD-1) vagy programozott halál ligandum 1-hez (PD-L1)
IL274572B2 (en) 2015-07-16 2024-01-01 Biolinerx Ltd Compositions and methods for treating cancer
JP7032311B2 (ja) 2015-07-16 2022-03-08 バイオエクセル セラピューティクス,インコーポレイテッド 免疫調節を使用してがんを処置するための新規手法
CN109476722A (zh) 2015-07-21 2019-03-15 诺华股份有限公司 用于改善免疫细胞的功效和扩张的方法
RU2737637C2 (ru) * 2015-07-22 2020-12-01 Инатерис Антитела против tfr и их применение при лечении пролиферативных и воспалительных расстройств
JP6937737B2 (ja) 2015-07-24 2021-09-22 グリックニック インコーポレイテッド 改良された補体結合を有する高次多量体化免疫グロブリンfc組成物を作製するためのヒトタンパク質断片の融合タンパク質
CN106699888B (zh) * 2015-07-28 2020-11-06 上海昀怡健康科技发展有限公司 一种pd-1抗体及其制备方法和应用
MX2018001263A (es) 2015-07-29 2018-04-13 Novartis Ag Nueva combinacion para el uso en el tratamiento del cancer.
JP2018523652A (ja) 2015-07-29 2018-08-23 ノバルティス アーゲー Pd−1アンタゴニストとegfr阻害剤の組み合わせ物
CN108025051B (zh) 2015-07-29 2021-12-24 诺华股份有限公司 包含抗pd-1抗体分子的联合疗法
US20180207273A1 (en) 2015-07-29 2018-07-26 Novartis Ag Combination therapies comprising antibody molecules to tim-3
ES2878188T3 (es) 2015-07-29 2021-11-18 Novartis Ag Terapias de combinación que comprenden moléculas de anticuerpos contra LAG-3
TWI762879B (zh) 2015-07-30 2022-05-01 美商宏觀基因股份有限公司 Pd-1結合分子和其使用方法
BR112018002436A2 (pt) 2015-08-04 2018-09-18 Glaxosmithkline Ip Dev Ltd tratamento de combinação de usos de métodos destes
WO2017021911A1 (en) 2015-08-04 2017-02-09 Glaxosmithkline Intellectual Property Development Limited Combination treatments and uses and methods thereof
WO2017021913A1 (en) 2015-08-04 2017-02-09 Glaxosmithkline Intellectual Property Development Limited Combination treatments and uses and methods thereof
US20180230431A1 (en) 2015-08-07 2018-08-16 Glaxosmithkline Intellectual Property Development Limited Combination Therapy
CA2994631A1 (en) 2015-08-07 2017-02-16 Pieris Pharmaceuticals Gmbh Novel fusion polypeptide specific for lag-3 and pd-1
WO2017024465A1 (en) * 2015-08-10 2017-02-16 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
SG10201914109VA (en) * 2015-08-11 2020-02-27 Wuxi Biologics Cayman Inc Novel anti-pd-1 antibodies
WO2017024515A1 (en) * 2015-08-11 2017-02-16 Wuxi Biologics (Cayman) Inc. Novel anti-pd-1 antibodies
US11453697B1 (en) 2015-08-13 2022-09-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
UA123701C2 (uk) 2015-08-13 2021-05-19 Мерк Шарп І Доум Корп. Циклічні динуклеотидні сполуки як агоністи sting
KR102587702B1 (ko) 2015-08-20 2023-10-12 에자이 알앤드디 매니지먼트 가부시키가이샤 종양 치료제
US11385231B2 (en) 2015-08-27 2022-07-12 Inserm (Institut National De La Sante Et De La Recherche Scientifique) Methods for predicting the survival time of patients suffering from a lung cancer
PE20181322A1 (es) * 2015-09-01 2018-08-14 Agenus Inc Anticuerpo anti-pd1 y sus metodos de uso
CN116334205A (zh) 2015-09-03 2023-06-27 诺华股份有限公司 预测细胞因子释放综合征的生物标志物
KR102611244B1 (ko) * 2015-09-03 2023-12-06 오노 야꾸힝 고교 가부시키가이샤 Allergin-1 안타고니스트에 의한 암 면역 증강제
JP6971970B2 (ja) 2015-09-03 2021-11-24 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics, Inc. ペプチド模倣大環状分子およびその使用
MA44909A (fr) 2015-09-15 2018-07-25 Acerta Pharma Bv Association thérapeutique d'un inhibiteur du cd19 et d'un inhibiteur de la btk
US11124569B2 (en) * 2015-09-18 2021-09-21 Dana-Farber Cancer Institute, Inc. Methods of reducing liver PD-1-expressing CD8+ T cells using PD-1 Fc fusion proteins that bind Fc receptors
WO2017053705A1 (en) 2015-09-23 2017-03-30 Oncomed Pharmaceuticals, Inc. Methods and compositions for treatment of cancer
DK3353210T3 (da) 2015-09-25 2025-01-06 Hoffmann La Roche Anti-TIGIT-antistoffer og fremgangsmåder til anvendelse
BR112018005349A2 (pt) * 2015-09-28 2018-10-09 Suzhou Suncadia Biopharmaceuticals Co., Ltd. preparação farmacêutica de anticorpo anti-pd-1 estável e sua aplicação em medicamentos
US10954300B2 (en) * 2015-09-28 2021-03-23 The Trustees Of Columbia University In The City Of New York Use of pentoxifylline with immune checkpoint-blockade therapies for the treatment of melanoma
WO2017055319A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of b cells in a tissue sample
WO2017055322A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of neutrophils in a tissue sample
WO2017055324A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of cells of monocytic origin in a tissue sample
WO2017055325A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of nk cells in a tissue sample
US10947598B2 (en) 2015-09-29 2021-03-16 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods for determining the metabolic status of lymphomas
WO2017055327A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of endothelial cells in a tissue sample
WO2017055326A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of myeloid dendritic cells in a tissue sample
WO2017055321A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of fibroblasts in a tissue sample
US10981991B2 (en) 2015-09-29 2021-04-20 Shanghai Zhangjiang Biotechnology Co., Ltd. PD-1 antibodies and uses thereof
WO2017058859A1 (en) 2015-09-29 2017-04-06 Celgene Corporation Pd-1 binding proteins and methods of use thereof
WO2017055320A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of cytotoxic lymphocytes in a tissue sample
EP3355902B1 (en) 2015-09-30 2022-04-13 Merck Patent GmbH Combination of a pd-1 axis binding antagonist and an alk inhibitor for treating alk-negative cancer
MA43053A (fr) 2015-09-30 2018-08-08 Janssen Biotech Inc Anticorps antagonistes se liant spécifiquement au cd40 humain et procédés d'utilisation
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
ES2900482T3 (es) 2015-10-01 2022-03-17 Gilead Sciences Inc Combinación de un inhibidor de Btk y un inhibidor de punto de control para el tratamiento del cáncer
US12030942B2 (en) 2015-10-02 2024-07-09 Les Laboratoires Servier Anti-PD-1 antibodies and compositions
MA43018B1 (fr) 2015-10-02 2021-11-30 Hoffmann La Roche Anticorps anti-pd1 et procédés d'utilisation
LT3368572T (lt) * 2015-10-02 2022-07-25 Symphogen A/S Anti-pd-1 antikūnai ir kompozicijos
LT3356411T (lt) 2015-10-02 2021-09-10 F. Hoffmann-La Roche Ag Bispecifiniai antikūnai, specifiniai pd1 ir tim3
WO2017059902A1 (en) 2015-10-07 2017-04-13 Biontech Rna Pharmaceuticals Gmbh 3' utr sequences for stabilization of rna
GEP20217317B (en) 2015-10-08 2021-11-10 Macrogenics Inc Combination therapy for the treatment of cancer
WO2017060397A1 (en) 2015-10-09 2017-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from melanoma metastases
US20180280435A1 (en) * 2015-10-09 2018-10-04 Virginia Commonwealth University T cell delivery of mda-7/il-24 to improve therapeutic eradication of cancer and generate protective antitumor immunity
US11130817B2 (en) 2015-10-12 2021-09-28 Innate Pharma CD73 blocking agents
WO2017066414A1 (en) * 2015-10-14 2017-04-20 Endocyte, Inc. Drug delivery conjugates for use in combination therapy
US11207393B2 (en) * 2015-10-16 2021-12-28 President And Fellows Of Harvard College Regulatory T cell PD-1 modulation for regulating T cell effector immune responses
ES2994611T3 (en) 2015-10-19 2025-01-27 Cg Oncology Inc Methods of treating solid or lymphatic tumors by combination therapy
US10149887B2 (en) * 2015-10-23 2018-12-11 Canbas Co., Ltd. Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment
CN105238762A (zh) * 2015-10-26 2016-01-13 无锡傲锐东源生物科技有限公司 抗pd-1蛋白单克隆抗体杂交瘤细胞及其产生的抗pd-1单克隆抗体和应用
MA44334A (fr) 2015-10-29 2018-09-05 Novartis Ag Conjugués d'anticorps comprenant un agoniste du récepteur de type toll
CN106632674B (zh) * 2015-10-30 2018-11-16 泽达生物医药有限公司 一种抗pd-1单克隆抗体、其药物组合物及其用途
MA43163A (fr) 2015-11-02 2018-09-12 Five Prime Therapeutics Inc Polypeptides à domaine extracellulaire cd80 et leur utilisation dans le traitement du cancer
LT3370733T (lt) 2015-11-02 2021-10-25 Board Of Regents, The University Of Texas System Cd40 aktyvinimo ir imuninės kontrolės taškų blokados būdai
MY202415A (en) 2015-11-03 2024-04-27 Janssen Biotech Inc Subcutaneous formulations of anti-cd38 antibodies and their uses
LT3370768T (lt) * 2015-11-03 2022-05-25 Janssen Biotech, Inc. Antikūnai, specifiškai surišantys pd-1, ir jų panaudojimas
TWI705972B (zh) * 2015-11-04 2020-10-01 臺北榮民總醫院 惡性病變的組合治療
US11020430B2 (en) * 2015-11-04 2021-06-01 Emory University Immune cells with DNMT3A gene modifications and methods related thereto
CA3003969A1 (en) 2015-11-06 2017-05-11 Orionis Biosciences Nv Bi-functional chimeric proteins and uses thereof
US20190038713A1 (en) 2015-11-07 2019-02-07 Multivir Inc. Compositions comprising tumor suppressor gene therapy and immune checkpoint blockade for the treatment of cancer
AU2016352572B2 (en) 2015-11-12 2023-10-19 Hookipa Biotech Gmbh Arenavirus particles as cancer vaccines
CN106699889A (zh) 2015-11-18 2017-05-24 礼进生物医药科技(上海)有限公司 抗pd-1抗体及其治疗用途
TW202408573A (zh) 2015-11-18 2024-03-01 美商必治妥施貴寶公司 使用抗pd-1抗體與抗ctla-4抗體之組合以治療肺癌
KR20180082563A (ko) 2015-11-19 2018-07-18 브리스톨-마이어스 스큅 컴퍼니 글루코코르티코이드-유도된 종양 괴사 인자 수용체 (gitr)에 대한 항체 및 그의 용도
ES2824120T3 (es) 2015-11-19 2021-05-11 Hoffmann La Roche Procedimientos de tratamiento del cáncer usando inhibidores de b-raf e inhibidores de los puntos de control inmunitario
ME03003B (me) 2015-11-20 2018-10-20 4D Pharma Res Ltd Kompozicije koje sadrže bakterijske sojeve
JP7349787B2 (ja) 2015-11-23 2023-09-25 ファイヴ プライム セラピューティクス インク 癌治療におけるfgfr2阻害剤単独または免疫刺激剤との組み合わせ
JP2019505476A (ja) 2015-12-01 2019-02-28 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited 組合せ処置およびその方法
JP7003036B2 (ja) * 2015-12-02 2022-02-04 エスティーキューブ,インコーポレイテッド グリコシル化pd-1に対して特異的な抗体およびその使用方法
CA3007233A1 (en) 2015-12-02 2017-06-08 Agenus Inc. Antibodies and methods of use thereof
TWI704154B (zh) 2015-12-03 2020-09-11 英商葛蘭素史克智慧財產發展有限公司 新穎化合物
WO2017098421A1 (en) 2015-12-08 2017-06-15 Glaxosmithkline Intellectual Property Development Limited Benzothiadiazine compounds
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
CN108290954B (zh) 2015-12-09 2022-07-26 豪夫迈·罗氏有限公司 Ii型抗cd20抗体用于降低抗药物抗体形成
US10590169B2 (en) * 2015-12-09 2020-03-17 Virogin Biotech Canada Ltd Compositions and methods for inhibiting CD279 interactions
EA201891178A1 (ru) 2015-12-14 2019-01-31 Макродженикс, Инк. Биспецифичные молекулы, обладающие иммунореактивностью в отношении pd-1 и ctla-4, и способы их применения
EP3389699B1 (en) * 2015-12-15 2024-05-01 OncoC4, Inc. Chimeric and humanized anti-human ctla4 monoclonal antibodies and uses thereof
EP3389783B1 (en) 2015-12-15 2024-07-03 Merck Sharp & Dohme LLC Novel compounds as indoleamine 2,3-dioxygenase inhibitors
US20180371093A1 (en) 2015-12-17 2018-12-27 Novartis Ag Antibody molecules to pd-1 and uses thereof
US10392442B2 (en) 2015-12-17 2019-08-27 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
GB201522309D0 (en) 2015-12-17 2016-02-03 Photocure Asa Use
US11433136B2 (en) 2015-12-18 2022-09-06 The General Hospital Corporation Polyacetal polymers, conjugates, particles and uses thereof
EP3389711A1 (en) 2015-12-18 2018-10-24 Novartis AG Antibodies targeting cd32b and methods of use thereof
WO2017102920A1 (en) 2015-12-18 2017-06-22 Intervet International B.V. Caninized human antibodies to human and canine il-4r alpha
US11091556B2 (en) 2015-12-18 2021-08-17 Intervet Inc. Caninized human antibodies to human IL-4R alpha
MX2018007479A (es) 2015-12-21 2018-08-01 Squibb Bristol Myers Co Anticuerpos variantes para conjugacion especifica de sitio.
CN109069597A (zh) 2015-12-22 2018-12-21 诺华股份有限公司 间皮素嵌合抗原受体(car)和抗pd-l1抗体抑制剂联用于抗癌治疗
WO2017112775A1 (en) * 2015-12-22 2017-06-29 Regeneron Pharmaceuticals, Inc. Combination of anti-pd-1 antibodies and bispecific anti-cd20/anti-cd3 antibodies to treat cancer
BR112018012756A2 (pt) 2015-12-22 2018-12-04 Incyte Corp compostos heterocíclicos como imunomoduladores
CN105669864B (zh) * 2015-12-23 2018-10-16 杭州尚健生物技术有限公司 抗人程序性死亡受体1抗体及其制备方法和用途
DK3394093T3 (da) 2015-12-23 2022-04-19 Modernatx Inc Fremgangsmåder til anvendelse af ox40-ligand-kodende polynukleotider
EP3405587A4 (en) * 2015-12-23 2019-10-30 Moonshot Pharma LLC METHOD FOR TRIGGERING AN IMMUNE REACTION THROUGH READ THROUGH PROMOTION OF A PREVIOUS TERMINATION CODON
WO2017118634A1 (en) 2016-01-04 2017-07-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of pd-1 and tim-3 as a measure for cd8+ cells in predicting and treating renal cell carcinoma
CN106943596A (zh) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 用于治疗肿瘤的抗-cd20组合
CN106943597A (zh) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 用于治疗肿瘤的抗-egfr组合
CN106943598A (zh) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 用于治疗肿瘤的抗-her2组合
ES2959267T3 (es) 2016-01-08 2024-02-22 Celgene Corp Formas sólidas de 2-(4-clorofenil)-n-((2-2,6-dioxopiperidin-3-il)-1-oxoisoindolin-5-il)metil)-2,2-difluoroacetamida y sus composiciones farmacéuticas y usos
ES2832475T3 (es) 2016-01-08 2021-06-10 Celgene Corp Compuestos antiproliferativos y sus composiciones farmacéuticas y usos
CN108368179B (zh) 2016-01-08 2022-08-23 豪夫迈·罗氏有限公司 使用pd-1轴结合拮抗剂和抗cea/抗cd3双特异性抗体治疗cea阳性癌症的方法
SG11201805777QA (en) 2016-01-08 2018-08-30 Celgene Corp Formulations of 2-(4-chlorophenyl)-n-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide
IL260218B2 (en) 2016-01-11 2023-04-01 Novartis Ag Humanized monoclonal antibodies that elicit an immune response against interleukin-2, and their fusion proteins
HUE052893T2 (hu) 2016-01-13 2021-05-28 Acerta Pharma Bv Antifolát és BTK-gátló terápiás kombinációi
EP3402520A4 (en) * 2016-01-14 2019-01-02 BPS Bioscience, Inc. Anti-pd-1 antibodies and uses thereof
US11612426B2 (en) 2016-01-15 2023-03-28 Immunsys, Inc. Immunologic treatment of cancer
EP3868787A1 (en) 2016-01-21 2021-08-25 Innate Pharma Neutralization of inhibitory pathways in lymphocytes
AU2017208819B2 (en) * 2016-01-22 2023-10-19 MabQuest SA PD1 specific antibodies
MA43660A (fr) 2016-01-22 2018-11-28 Adimab Llc Anticorps anti-facteur xi de coagulation
US11214617B2 (en) 2016-01-22 2022-01-04 MabQuest SA Immunological reagents
KR20180101584A (ko) * 2016-01-27 2018-09-12 브리스톨-마이어스 스큅 컴퍼니 항-pd-1 항체 및 또 다른 항암제의 조합을 사용하는 폐암의 치료
EP3407911B1 (en) 2016-01-28 2022-05-18 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods and pharmaceutical composition for the treatment of cancer
ES2924741T3 (es) 2016-01-28 2022-10-10 Inst Nat Sante Rech Med Métodos para incrementar la potencia de los inhibidores del punto de control inmunitario
WO2017129763A1 (en) 2016-01-28 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of signet ring cell gastric cancer
JP6991979B2 (ja) 2016-02-05 2022-03-04 オリオニス バイオサイエンシズ ビーブイ Cd8結合物質
US10912748B2 (en) * 2016-02-08 2021-02-09 Beyondspring Pharmaceuticals, Inc. Compositions containing tucaresol or its analogs
US11180546B2 (en) 2016-02-17 2021-11-23 Novartis Ag TGFbeta 2 antibodies
BR112018016842A2 (pt) 2016-02-19 2018-12-26 Novartis Ag compostos de piridona tetracíclica como antivirais
EP3416690A4 (en) 2016-02-19 2020-02-19 City of Hope BISPECIFIC APTAMER
JP2019513008A (ja) 2016-02-26 2019-05-23 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Btlaに対して特異性を有する抗体及びその使用
EP3423596B1 (en) 2016-02-29 2022-09-28 Genentech, Inc. Therapeutic and diagnostic methods for cancer
US11725247B2 (en) 2016-02-29 2023-08-15 Foundation Medicine, Inc. Methods of treating cancer
SG10201601719RA (en) 2016-03-04 2017-10-30 Agency Science Tech & Res Anti-LAG-3 Antibodies
GB201612191D0 (en) 2016-07-13 2016-08-24 4D Pharma Plc Compositions comprising bacterial strains
SG11201807489PA (en) 2016-03-04 2018-09-27 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
BR112018067368A2 (pt) 2016-03-04 2019-01-15 Bristol-Myers Squibb Company terapia de combinação com anticorpos anti-cd73
TW201733601A (zh) 2016-03-04 2017-10-01 4D製藥有限公司 包含細菌菌株之組合物
US10143746B2 (en) 2016-03-04 2018-12-04 Bristol-Myers Squibb Company Immunomodulators
US20170252417A1 (en) 2016-03-07 2017-09-07 Massachusetts Institute Of Technology Protein-chaperoned t-cell vaccines
CN108699158B (zh) 2016-03-08 2022-06-03 依奈特制药公司 Siglec中和抗体
CN108778301A (zh) 2016-03-10 2018-11-09 永恒生物科技股份有限公司 通过联合疗法来治疗实体瘤或淋巴瘤的方法
WO2017153952A1 (en) 2016-03-10 2017-09-14 Glaxosmithkline Intellectual Property Development Limited 5-sulfamoyl-2-hydroxybenzamide derivatives
WO2017156483A1 (en) * 2016-03-11 2017-09-14 University Of Louisville Research Foundation, Inc. Methods and compositions for treating tumors
WO2017160599A1 (en) 2016-03-14 2017-09-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Use of cd300b antagonists to treat sepsis and septic shock
BR112018068461A2 (pt) 2016-03-15 2019-01-22 Mersana Therapeutics Inc conjugado, composição farmacêutica, métodos para preparação de um conjugado e para alívio de um sintoma de um câncer.
EP4112641A1 (en) 2016-03-15 2023-01-04 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
AU2017238054B2 (en) 2016-03-21 2023-10-19 Dana-Farber Cancer Institute, Inc. T-cell exhaustion state-specific gene expression regulators and uses thereof
WO2017163186A1 (en) 2016-03-24 2017-09-28 Novartis Ag Alkynyl nucleoside analogs as inhibitors of human rhinovirus
TW201735949A (zh) 2016-03-24 2017-10-16 千禧製藥公司 治療抗ctla4及抗pd-1組合治療中的胃腸道免疫相關不良事件之方法
US11760803B2 (en) 2016-03-24 2023-09-19 Takeda Pharmaceutical Company Limited Methods of treating gastrointestinal immune-related adverse events in immune oncology treatments
CN109069638B (zh) * 2016-03-24 2022-03-29 璟尚生物制药公司 用于癌症治疗的三特异性抑制剂
WO2017172517A1 (en) 2016-03-29 2017-10-05 Stcube & Co., Inc. Methods for selecting antibodies that specifically bind glycosylated immune checkpoint proteins
WO2017172981A2 (en) 2016-03-29 2017-10-05 University Of Southern California Chimeric antigen receptors targeting cancer
EP3436481B1 (en) 2016-03-29 2021-06-30 Stcube, Inc. Dual function antibodies specific to glycosylated pd-l1 and methods of use thereof
US11046782B2 (en) 2016-03-30 2021-06-29 Musc Foundation For Research Development Methods for treatment and diagnosis of cancer by targeting glycoprotein A repetitions predominant (GARP) and for providing effective immunotherapy alone or in combination
EP3436829A1 (en) 2016-03-30 2019-02-06 Centre Léon-Bérard Lymphocytes expressing cd73 in cancerous patient dictates therapy
US11324739B2 (en) * 2016-03-31 2022-05-10 Jiangsu Yahong Meditech Co., Ltd. Combinational uses of nitroxoline and its analogues with chemotherapies and immunotherapies in the treatment of cancers
CN107286242B (zh) * 2016-04-01 2019-03-22 中山康方生物医药有限公司 抗pd-1的单克隆抗体
EP3225253A1 (en) 2016-04-01 2017-10-04 Deutsches Krebsforschungszentrum Stiftung des Öffentlichen Rechts Cancer therapy with an oncolytic virus combined with a checkpoint inhibitor
US10358463B2 (en) 2016-04-05 2019-07-23 Bristol-Myers Squibb Company Immunomodulators
WO2017176925A1 (en) 2016-04-05 2017-10-12 Bristol-Myers Squibb Company Cytokine profiling analysis for predicting prognosis of a patient in need of an anti-cancer treatment
CA3019628A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
HRP20220936T1 (hr) 2016-04-07 2022-10-28 Glaxosmithkline Intellectual Property Development Limited Heterociklički amidi korisni kao modulatori proteina
EP3440113A1 (en) 2016-04-08 2019-02-13 Gilead Sciences, Inc. Compositions and methods for treating cancer, inflammatory diseases and autoimmune diseases
US11414497B2 (en) 2016-04-13 2022-08-16 Orimabs Ltd. Anti-PSMA antibodies and use thereof
EP3445391A1 (en) 2016-04-13 2019-02-27 Vivia Biotech S.L. Ex vivo bite-activated t cells
CN109154027A (zh) 2016-04-15 2019-01-04 豪夫迈·罗氏有限公司 用于监测和治疗癌症的方法
MX2018012492A (es) 2016-04-15 2019-06-06 Genentech Inc Métodos para monitorear y tratar el cáncer.
CN116059351A (zh) 2016-04-18 2023-05-05 塞德斯医疗公司 结合人cd40的激动性抗体及其用途
US10779980B2 (en) 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
EP3449921B1 (en) 2016-04-28 2023-05-31 Eisai R&D Management Co., Ltd. Eribulin for inhibiting tumor growth
BR112018072286A2 (pt) 2016-04-29 2019-02-12 Yale University medida direcionada de atividade transcricional relacionada a receptores de hormônios
WO2017192874A1 (en) 2016-05-04 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Albumin-binding immunomodulatory compositions and methods of use thereof
US10604531B2 (en) 2016-05-05 2020-03-31 Glaxosmithkline Intellectual Property (No.2) Limited Enhancer of zeste homolog 2 inhibitors
CN109789225A (zh) * 2016-05-05 2019-05-21 宾夕法尼亚大学理事会 靶向检查点分子的dna单克隆抗体
AR108377A1 (es) * 2016-05-06 2018-08-15 Medimmune Llc Proteínas de unión biespecíficas y sus usos
KR20190005924A (ko) 2016-05-10 2019-01-16 브리스톨-마이어스 스큅 컴퍼니 향상된 안정성을 갖는 튜부리신 유사체의 항체-약물 접합체
SG10201603721TA (en) 2016-05-10 2017-12-28 Agency Science Tech & Res Anti-CTLA-4 Antibodies
TWI808055B (zh) * 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Hdac 抑制劑與 pd-1 抑制劑之組合治療
TWI794171B (zh) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Hdac抑制劑與pd-l1抑制劑之組合治療
CN109563141A (zh) 2016-05-13 2019-04-02 奥里尼斯生物科学公司 对非细胞结构的治疗性靶向
TWI786044B (zh) 2016-05-13 2022-12-11 美商再生元醫藥公司 藉由投予pd-1抑制劑治療皮膚癌之方法
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
CA3023883A1 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Targeted mutant interferon-beta and uses thereof
JP2019519516A (ja) 2016-05-18 2019-07-11 モデルナティーエックス, インコーポレイテッド がんの治療のためのmRNA併用療法
HUE061077T2 (hu) 2016-05-18 2023-05-28 Modernatx Inc Interleukin-12 (IL12) kódoló polinukleotidok és felhasználásuk
DK3458474T3 (da) 2016-05-18 2022-09-26 Modernatx Inc Kombinationer af mrna'er, der koder for immunmodulerende polypeptider og anvendelser deraf
EP3458485B1 (en) 2016-05-19 2021-12-29 The General Hospital Corporation Tethered interleukin-2 to its receptor il-2rbeta, a platform to enhance natural killer and regulatory t cell activity
HRP20220237T1 (hr) 2016-05-20 2022-04-29 Biohaven Therapeutics Ltd. Primjena riluzola, prolijekova riluzola ili analoga riluzola sa imunoterapijama za liječenje raka
ES2904880T3 (es) 2016-05-20 2022-04-06 Lilly Co Eli Terapia combinada con inhibidores de Notch y de PD-1 o PD-L1
CN105968200B (zh) 2016-05-20 2019-03-15 瑞阳(苏州)生物科技有限公司 抗人pd-l1人源化单克隆抗体及其应用
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
JP7014736B2 (ja) 2016-05-24 2022-02-01 ジェネンテック, インコーポレイテッド がんの処置のためのピラゾロピリジン誘導体
CN106008714B (zh) 2016-05-24 2019-03-15 瑞阳(苏州)生物科技有限公司 抗人pd-1人源化单克隆抗体及其应用
JP7160688B2 (ja) 2016-05-24 2022-10-25 ジェネンテック, インコーポレイテッド Cbp/ep300の複素環式インヒビターおよびがんの処置におけるそれらの使用
EP3463452A1 (en) 2016-05-24 2019-04-10 Institut National de la Sante et de la Recherche Medicale (INSERM) Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd)
KR20240103039A (ko) 2016-05-25 2024-07-03 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 암 치료 방법 및 조성물
SG11201810023QA (en) 2016-05-27 2018-12-28 Agenus Inc Anti-tim-3 antibodies and methods of use thereof
EP3463486A1 (en) 2016-06-01 2019-04-10 Bristol-Myers Squibb Company Pet imaging with pd-l1 binding polypeptides
WO2017210335A1 (en) 2016-06-01 2017-12-07 Bristol-Myers Squibb Company Imaging methods using 18f-radiolabeled biologics
PT3463436T (pt) 2016-06-02 2023-12-28 Ultimovacs As Uma vacina em combinação com um inibidor de ponto de verificação imune para utilização no tratamento do cancro
CN109476752A (zh) 2016-06-02 2019-03-15 百时美施贵宝公司 抗-pd-1抗体与抗-cd30抗体的组合在淋巴瘤治疗中的用途
FI3463457T3 (fi) 2016-06-02 2023-09-12 Bristol Myers Squibb Co Pd-1-esto nivolumabilla refraktaarinen hodgkinin lymfoomassa
EP3988570A1 (en) 2016-06-03 2022-04-27 Bristol-Myers Squibb Company Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer
KR20190015408A (ko) 2016-06-03 2019-02-13 브리스톨-마이어스 스큅 컴퍼니 종양을 치료하는 방법에 사용하기 위한 항-pd-1 항체
KR20190015407A (ko) 2016-06-03 2019-02-13 브리스톨-마이어스 스큅 컴퍼니 재발성 소세포 폐암의 치료 방법에 사용하기 위한 항-pd-1 항체
GB201609811D0 (en) 2016-06-05 2016-07-20 Snipr Technologies Ltd Methods, cells, systems, arrays, RNA and kits
IL263439B1 (en) 2016-06-06 2025-02-01 Beyondspring Pharmaceuticals Inc Composition and method for reducing neutropenia
CA3026420A1 (en) 2016-06-07 2017-12-14 Gliknik Inc. Cysteine-optimized stradomers
WO2017214182A1 (en) * 2016-06-07 2017-12-14 The United States Of America. As Represented By The Secretary, Department Of Health & Human Services Fully human antibody targeting pdi for cancer immunotherapy
KR20190015748A (ko) 2016-06-08 2019-02-14 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 Atf4 경로 억제제로서의 화학적 화합물
BR112018075615A2 (pt) 2016-06-08 2019-07-02 Glaxosmithkline Ip Dev Ltd compostos químicos
WO2017218435A1 (en) * 2016-06-13 2017-12-21 Askgene Pharma Inc. PD-L1 Specific Monoclonal Antibodies for Disease Treatment and Diagnosis
KR102218714B1 (ko) 2016-06-14 2021-02-24 머크 샤프 앤드 돔 코포레이션 항응고 인자 xi 항체
MA45250B1 (fr) 2016-06-14 2020-09-30 Novartis Ag Forme crystalline de (r)-4-(5-(cyclopropyléthynyl)isoxazol-3-yl)-n-hydroxy-2-méthyl-2-(méthylsulfonyl)butanamide en tant qu'agent antibacteriel
WO2017216685A1 (en) 2016-06-16 2017-12-21 Novartis Ag Pentacyclic pyridone compounds as antivirals
WO2017216686A1 (en) 2016-06-16 2017-12-21 Novartis Ag 8,9-fused 2-oxo-6,7-dihydropyrido-isoquinoline compounds as antivirals
JP2019517813A (ja) * 2016-06-16 2019-06-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Cd81に対するヒト化及びキメラモノクローナル抗体
EP3471754A1 (en) 2016-06-20 2019-04-24 Kymab Limited Anti-pd-l1 antibodies
SG10202012828TA (en) 2016-06-20 2021-01-28 Incyte Corp Heterocyclic compounds as immunomodulators
BR112018077021A2 (pt) 2016-06-24 2019-04-02 Infinity Pharmaceuticals, Inc. terapias de combinação
JP6993056B2 (ja) 2016-07-05 2022-02-15 ベイジーン リミテッド 癌治療のためのpd-1アンタゴニスト及びraf阻害剤の組合せ
EP3507367A4 (en) 2016-07-05 2020-03-25 Aduro BioTech, Inc. CYCLIC DINUCLEOTID COMPOUNDS WITH INCLUDED NUCLEIC ACIDS AND USES THEREOF
WO2018009507A1 (en) 2016-07-06 2018-01-11 Bristol-Myers Squibb Company Combination of tim-4 antagonist and methods of use
IL264104B2 (en) 2016-07-07 2024-08-01 Iovance Biotherapeutics Inc PD-L1 binding proteins and methods of using them
WO2018011166A2 (en) 2016-07-12 2018-01-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of myeloid dendritic cells in a tissue sample
TWI802545B (zh) 2016-07-13 2023-05-21 英商4D製藥有限公司 包含細菌菌株之組合物
RU2656181C1 (ru) * 2016-07-13 2018-05-31 Закрытое Акционерное Общество "Биокад" Анти-pd-1-антитела, способ их получения и способ применения
JP2019532017A (ja) 2016-07-14 2019-11-07 フレッド ハッチンソン キャンサー リサーチ センター がんを治療するための異なるエピトープ結合を示す複数の二重特異性結合ドメイン構築物
KR102493282B1 (ko) 2016-07-14 2023-02-01 브리스톨-마이어스 스큅 컴퍼니 Tim3에 대한 항체 및 그의 용도
CN109789135A (zh) 2016-07-20 2019-05-21 葛兰素史密斯克莱知识产权发展有限公司 作为perk抑制剂的异喹啉衍生物
EP3487883B1 (en) 2016-07-20 2023-01-04 Stcube, Inc. Methods of cancer treatment and therapy using a combination of antibodies that bind glycosylated pd-l1
CN109641947B (zh) 2016-07-20 2023-04-14 犹他大学研究基金会 Cd229 car t细胞及其使用方法
EP3490676A1 (en) 2016-07-29 2019-06-05 Eli Lilly and Company Combination therapy with merestinib and anti-pd-l1 or anti-pd-1 inhibitors for use in the treatment of cancer
NL2017267B1 (en) 2016-07-29 2018-02-01 Aduro Biotech Holdings Europe B V Anti-pd-1 antibodies
EP3496746A4 (en) 2016-08-03 2020-02-12 Nextcure, Inc. COMPOSITIONS AND METHODS FOR MODULATING LAIR SIGNAL TRANSDUCTION
US11649289B2 (en) 2016-08-04 2023-05-16 Glaxosmithkline Intellectual Property Development Limited Anti-ICOS and anti-PD-1 antibody combination therapy
CN109963871A (zh) 2016-08-05 2019-07-02 豪夫迈·罗氏有限公司 具有激动活性的多价及多表位抗体以及使用方法
RU2725950C1 (ru) * 2016-08-05 2020-07-07 И-Байолоджикс Инк. Антитела против белка-1 запрограммированной клеточной смерти (pd-1) и их применение
WO2018026248A1 (ko) * 2016-08-05 2018-02-08 주식회사 와이바이오로직스 프로그램화된 세포 사멸 단백질(pd-1)에 대한 신규 항체 및 이의 용도
CN109476748B (zh) 2016-08-08 2023-05-23 豪夫迈·罗氏有限公司 用于癌症的治疗和诊断方法
WO2018027524A1 (en) 2016-08-09 2018-02-15 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibody formulation
KR102604433B1 (ko) * 2016-08-09 2023-11-24 키맵 리미티드 항-icos 항체
WO2018031865A1 (en) 2016-08-12 2018-02-15 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a vegf inhibitor
WO2018029336A1 (en) 2016-08-12 2018-02-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for determining whether a subject was administered with an activator of the ppar beta/delta pathway.
JP6960635B2 (ja) * 2016-08-15 2021-11-05 国立大学法人北海道大学 抗pd−1抗体
EP3500574B1 (en) 2016-08-19 2021-11-24 Bristol-Myers Squibb Company Seco-cyclopropapyrroloindole compounds, antibody-drug conjugates thereof, and methods of making and use
ES2971881T3 (es) 2016-08-19 2024-06-10 Beigene Switzerland Gmbh Combinación de zanubrutinib con un anticuerpo anti-cd20 o anti-pd-1 para su uso en el tratamiento del cáncer
CN106977602B (zh) 2016-08-23 2018-09-25 中山康方生物医药有限公司 一种抗pd1单克隆抗体、其药物组合物及其用途
WO2018035710A1 (en) 2016-08-23 2018-03-01 Akeso Biopharma, Inc. Anti-ctla4 antibodies
EP4342978A3 (en) 2016-09-01 2024-07-03 Chimera Bioengineering Inc. Gold optimized car t-cells
US11583516B2 (en) 2016-09-07 2023-02-21 Trustees Of Tufts College Dash inhibitors, and uses related thereto
TW201811788A (zh) 2016-09-09 2018-04-01 瑞士商諾華公司 作為抗病毒劑之多環吡啶酮化合物
US20190218294A1 (en) 2016-09-09 2019-07-18 Bristol-Myers Squibb Company Use of an anti-pd-1 antibody in combination with an anti-mesothelin antibody in cancer treatment
JP2019526595A (ja) 2016-09-09 2019-09-19 ティージー セラピューティクス,インコーポレイテッド 血液癌を治療するための抗cd20抗体、pi3キナーゼ−デルタ阻害剤および抗pd−1抗体または抗pd−l1抗体の組み合わせ
WO2018046738A1 (en) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from cancer
WO2018046736A1 (en) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from cancer
KR102557336B1 (ko) 2016-09-13 2023-07-18 노쓰 캐롤라이나 스테이트 유니버시티 혈소판 조성물 및 치료제의 전달 방법
MX2019002946A (es) 2016-09-14 2019-09-26 Abbvie Biotherapeutics Inc Anticuerpos anti-pd-1 y sus usos.
US11090391B2 (en) 2016-09-16 2021-08-17 The Johns Hopkins University Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery
AU2017327828B2 (en) 2016-09-16 2023-11-16 Shanghai Henlius Biotech, Inc. Anti-PD-1 antibodies
MX2019002867A (es) 2016-09-19 2019-11-12 Celgene Corp Metodos de tratamiento de trastornos inmunologicos usando proteinas de union a pd-1.
US11524988B2 (en) 2016-09-19 2022-12-13 H. Lee Moffitt Cancer Center And Research Institute, Inc. Artificial antigen presenting cells for genetic engineering of immune cells
JP2019534859A (ja) 2016-09-19 2019-12-05 セルジーン コーポレイション Pd−1結合タンパク質を使用して白斑を治療する方法
US11077178B2 (en) 2016-09-21 2021-08-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chimeric antigen receptor (CAR) that targets chemokine receptor CCR4 and its use
KR102527160B1 (ko) * 2016-09-21 2023-04-28 씨스톤 파마슈티컬즈 예정 사멸 1(pd-1)에 대한 신규한 단일클론성 항체
EP4360714A3 (en) 2016-09-21 2024-07-24 Nextcure, Inc. Antibodies for siglec-15 and methods of use thereof
JP7069177B2 (ja) 2016-09-21 2022-05-17 ネクストキュア インコーポレイテッド シグレック-15に対する抗体及びその使用方法
CN114456269A (zh) * 2016-09-21 2022-05-10 基石药业(苏州)有限公司 一种新的pd-1单克隆抗体
EP3515453A1 (en) 2016-09-22 2019-07-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for reprograming immune environment in a subject in need thereof
CN109906232B (zh) 2016-09-23 2023-11-07 马伦戈治疗公司 包含λ轻链和κ轻链的多特异性抗体分子
CN109844536B (zh) 2016-09-26 2023-04-14 豪夫迈·罗氏有限公司 预测对pd-1轴抑制剂的响应
CN110267651B (zh) 2016-09-27 2023-09-01 得克萨斯系统大学评议会 通过调节微生物组来增强免疫检查点阻断疗法的方法
CN109863402A (zh) 2016-09-27 2019-06-07 鼎航医药股份有限公司 基于β2-糖蛋白1水平的用巴维昔单抗治疗癌症的方法和其测定
JOP20190061A1 (ar) 2016-09-28 2019-03-26 Novartis Ag مثبطات بيتا-لاكتاماز
JP2019534251A (ja) 2016-09-29 2019-11-28 ジェネンテック, インコーポレイテッド Mek阻害剤、pd−1軸阻害剤、及びタキサンを用いた併用療法
CR20190168A (es) 2016-10-04 2019-05-17 Merck Sharp & Dohme Compuestos de benzo[b]tiofeno como agonistas de sting
AU2017339517B2 (en) 2016-10-06 2024-03-14 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
CN109843324A (zh) 2016-10-06 2019-06-04 辉瑞公司 用于治疗癌症的avelumab用药方案
AU2017341047B2 (en) 2016-10-07 2024-10-10 Novartis Ag Chimeric antigen receptors for the treatment of cancer
US12098202B2 (en) 2016-10-10 2024-09-24 The National Institute for Biotechnology in the Negev Ltd. Non-cytotoxic modified cells and use thereof
TWI764943B (zh) * 2016-10-10 2022-05-21 大陸商蘇州盛迪亞生物醫藥有限公司 一種抗pd-1抗體和vegfr抑制劑聯合在製備治療癌症的藥物中的用途
BR112019006075A2 (pt) 2016-10-11 2019-06-18 Cytlimic Inc medicamento
TWI843168B (zh) 2016-10-11 2024-05-21 美商艾吉納斯公司 抗lag-3抗體及其使用方法
KR102661905B1 (ko) 2016-10-12 2024-04-29 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 Tusc2 면역요법을 위한 방법 및 조성물
WO2018071576A1 (en) 2016-10-14 2018-04-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Treatment of tumors by inhibition of cd300f
SG11201902974PA (en) 2016-10-14 2019-05-30 Merck Sharp & Dohme Combination of a pd-1 antagonist and eribulin for treating urothelial cancer
TW201819380A (zh) 2016-10-18 2018-06-01 瑞士商諾華公司 作為抗病毒劑之稠合四環吡啶酮化合物
WO2018075447A1 (en) 2016-10-19 2018-04-26 The Trustees Of Columbia University In The City Of New York Combination of braf inhibitor, talimogene laherparepvec, and immune checkpoint inhibitor for use in the treatment cancer (melanoma)
WO2018075842A1 (en) 2016-10-20 2018-04-26 Bristol-Myers Squibb Company Condensed benzodiazepine derivatives and conjugates made therefrom
ES2917000T3 (es) 2016-10-24 2022-07-06 Orionis Biosciences BV Interferón-gamma mutante diana y usos del mismo
LT3532607T (lt) 2016-10-26 2024-05-10 Iovance Biotherapeutics, Inc. Kriokonservuotų naviką infiltruojančių limfocitų restimuliacija
KR102634093B1 (ko) 2016-10-28 2024-02-07 브리스톨-마이어스 스큅 컴퍼니 항-pd-1 항체를 사용하여 요로상피 암종을 치료하는 방법
WO2018081648A2 (en) 2016-10-29 2018-05-03 Genentech, Inc. Anti-mic antibidies and methods of use
BR112019008634A2 (pt) * 2016-10-30 2019-07-09 Shanghai Henlius Biotech Inc anticorpos anti-pd-l1 e variantes
TWI788307B (zh) 2016-10-31 2023-01-01 美商艾歐凡斯生物治療公司 用於擴增腫瘤浸潤性淋巴細胞之工程化人造抗原呈現細胞
AU2017354071A1 (en) 2016-11-01 2019-05-23 Anaptysbio, Inc. Antibodies directed against T cell immunoglobulin and mucin protein 3 (TIM-3)
CA3041684C (en) 2016-11-01 2023-09-26 Anaptysbio, Inc. Antibodies directed against programmed death- 1 (pd-1)
AU2017355401A1 (en) 2016-11-02 2019-05-02 Jounce Therapeutics, Inc. Antibodies to PD-1 and uses thereof
UY37463A (es) 2016-11-02 2018-05-31 Glaxosmithkline Ip No 2 Ltd Proteínas de unión
US11124577B2 (en) 2016-11-02 2021-09-21 Engmab Sàrl Bispecific antibody against BCMA and CD3 and an immunological drug for combined use in treating multiple myeloma
EP3534947A1 (en) 2016-11-03 2019-09-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
SG11201902857SA (en) 2016-11-03 2019-05-30 Bristol Myers Squibb Co Activatable anti-ctla-4 antibodies and uses thereof
US10342785B2 (en) 2016-11-04 2019-07-09 Askat Inc. Use of EP4 receptor antagonists for the treatment of NASH-associated liver cancer
US10988507B2 (en) 2016-11-07 2021-04-27 Bristol-Myers Squibb Company Immunomodulators
WO2018089293A2 (en) 2016-11-08 2018-05-17 Qilu Puget Sound Biotherapeutics Corporation Anti-pd1 and anti-ctla4 antibodies
EP3538112A4 (en) 2016-11-09 2020-09-02 Musc Foundation for Research Development CD38-NAD + REGULATED METABOLIC AXIS IN ANTITUMOR IMMUNOTHERAPY
US11471515B2 (en) 2016-11-09 2022-10-18 The Brigham And Women's Hospital, Inc. Restoration of tumor suppression using MRNA-based delivery system
WO2018087391A1 (en) 2016-11-14 2018-05-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for modulating stem cells proliferation or differentiation
MX2019005438A (es) 2016-11-15 2019-08-16 Genentech Inc Dosificacion para tratamiento con anticuerpos bispecificos anti-cd20 / anti-cd3.
TWI782931B (zh) 2016-11-17 2022-11-11 美國德州系統大學評議委員會 具有對抗帶有egfr或her2外顯子20突變之癌細胞之抗腫瘤活性的化合物
WO2018094167A1 (en) 2016-11-17 2018-05-24 Iovance Biotherapeutics, Inc. Remnant tumor infiltrating lymphocytes and methods of preparing and using the same
WO2018094275A1 (en) 2016-11-18 2018-05-24 Tolero Pharmaceuticals, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
US11359018B2 (en) 2016-11-18 2022-06-14 Symphogen A/S Anti-PD-1 antibodies and compositions
WO2018094282A1 (en) * 2016-11-18 2018-05-24 The Regents Of The University Of California Engineered antibodies and uses thereof
WO2018091542A1 (en) 2016-11-21 2018-05-24 Idenix Pharmaceuticals Llc Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
TWI776827B (zh) 2016-11-28 2022-09-11 日商中外製藥股份有限公司 能夠調節配體結合活性的配體結合分子
CA3045306A1 (en) 2016-11-29 2018-06-07 Boston Biomedical, Inc. Naphthofuran derivatives, preparation, and methods of use thereof
TW201825119A (zh) 2016-11-30 2018-07-16 日商協和醱酵麒麟有限公司 使用抗ccr4抗體及抗pd-1抗體治療癌症之方法
EP3548071A4 (en) 2016-11-30 2020-07-15 OncoMed Pharmaceuticals, Inc. METHOD FOR TREATING CANCER WITH TIGIT-BINDING ACTIVE SUBSTANCES
US20190343803A1 (en) 2016-12-01 2019-11-14 Glaxosmithkline Intellectual Property Development Limited Combination therapy
AU2017369994A1 (en) 2016-12-01 2019-06-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
MX2019006448A (es) * 2016-12-01 2020-02-05 Regeneron Pharma Anticuerpos anti-pd-l1 radiomarcados para imagenes de inmuno-pet.
US20190358262A1 (en) 2016-12-03 2019-11-28 Juno Therapeutics, Inc. Methods for modulation of car-t cells
WO2018106738A1 (en) 2016-12-05 2018-06-14 Massachusetts Institute Of Technology Brush-arm star polymers, conjugates and particles, and uses thereof
MA50949B1 (fr) 2016-12-07 2023-12-29 Memorial Sloan Kettering Cancer Center Anticorps anti-ctla-4 et leurs procédés d'utilisation
PE20190921A1 (es) * 2016-12-07 2019-06-26 Agenus Inc Anticuerpos y metodos de su utilizacion
IL290857B2 (en) 2016-12-08 2023-03-01 Lixte Biotechnology Inc Oxabicycloheptanes for immune response modulation
PE20191354A1 (es) 2016-12-09 2019-10-01 Gliknik Inc Optimizacion de fabricacion de gl-2045, un stradomer multimerizante
KR20190112263A (ko) 2016-12-12 2019-10-04 멀티비르 인코포레이티드 암 및 감염성 질환의 치료 및 예방을 위한 바이러스 유전자 치료요법 및 면역 체크포인트 억제제를 포함하는 방법 및 조성물
KR20190095921A (ko) 2016-12-12 2019-08-16 제넨테크, 인크. 항-pd-l1 항체 및 안티안드로겐을 사용하여 암을 치료하는 방법
BR112019011794A2 (pt) 2016-12-12 2019-10-29 Daiichi Sankyo Co Ltd composição farmacêutica, e, método terapêutico.
WO2018112266A1 (en) 2016-12-14 2018-06-21 The Board Of Trustees Of The Leland Stanford Junior University Il-13 superkine: immune cell targeting constructs and methods of use thereof
WO2018112360A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating cancer
WO2018112364A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating melanoma
AU2017382850B2 (en) * 2016-12-21 2024-11-21 Cephalon Llc Antibodies that specifically bind to human IL-15 and uses thereof
RS62456B1 (sr) 2016-12-22 2021-11-30 Amgen Inc Derivati benzizotiazola, izotiazolo[3,4-b]piridina, hinazolina, ftalazina, pirido[2,3-d]piridazina i pirido[2,3-d]pirimidina kao kras g12c inhibitori za tretman raka pluća, pankreasa ili debelog creva
IL295660A (en) 2016-12-22 2022-10-01 Incyte Corp Benzooxazole derivatives as immunomodulators
CN106519034B (zh) * 2016-12-22 2020-09-18 鲁南制药集团股份有限公司 抗pd-1抗体及其用途
BR112019013125B1 (pt) * 2016-12-23 2022-02-08 Keio University Composições farmacêuticas compreendendo uma mistura bacteriana purificada
WO2018119474A2 (en) * 2016-12-23 2018-06-28 Remd Biotherapeutics, Inc. Immunotherapy using antibodies that bind programmed death 1 (pd-1)
WO2018115458A1 (en) 2016-12-23 2018-06-28 Virttu Biologics Limited Treatment of cancer
WO2018122245A1 (en) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting the survival time of patients suffering from cms3 colorectal cancer
WO2018122249A1 (en) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from a microsatellite stable colorectal cancer
KR102679324B1 (ko) 2017-01-05 2024-06-28 네트리 파르마 네트린-1 간섭 약물과 면역 관문 억제제 약물의 조합 치료
EP3565812B1 (en) 2017-01-06 2023-12-27 Beyondspring Pharmaceuticals, Inc. Tubulin binding compounds and therapeutic use thereof
JP2020503351A (ja) 2017-01-06 2020-01-30 アイオバンス バイオセラピューティクス,インコーポレイテッド カリウムチャネルアゴニストによる腫瘍浸潤リンパ球の増殖及びその治療的使用
EP4219563A3 (en) 2017-01-09 2023-10-04 Tesaro, Inc. Methods of treating cancer with anti-pd-1 antibodies
ES2988845T3 (es) 2017-01-09 2024-11-21 Onkosxcel Therapeutics Llc Procedimientos predictivos y diagnósticos para cáncer de próstata
US11584733B2 (en) 2017-01-09 2023-02-21 Shuttle Pharmaceuticals, Inc. Selective histone deacetylase inhibitors for the treatment of human disease
TWI841209B (zh) 2017-01-09 2024-05-01 美商提薩羅有限公司 用抗tim-3抗體治療癌症之方法
WO2018129533A1 (en) 2017-01-09 2018-07-12 Shuttle Pharmaceuticals, Llc Selective histone deacetylase inhibitors for the treatment of human disease
EP3568412A2 (en) 2017-01-13 2019-11-20 Agenus Inc. T cell receptors that bind to ny-eso-1 and methods of use thereof
WO2018134279A1 (en) 2017-01-18 2018-07-26 Pieris Pharmaceuticals Gmbh Novel fusion polypeptides specific for lag-3 and pd-1
WO2018134784A1 (en) 2017-01-20 2018-07-26 Novartis Ag Combination therapy for the treatment of cancer
WO2018140391A1 (en) 2017-01-24 2018-08-02 The Broad Institute, Inc. Compositions and methods for detecting a mutant variant of a polynucleotide
CN108341871A (zh) * 2017-01-24 2018-07-31 三生国健药业(上海)股份有限公司 抗pd-1单克隆抗体及其制备方法和应用
WO2018137681A1 (en) 2017-01-25 2018-08-02 Beigene, Ltd. Crystalline forms of (s) -7- (1- (but-2-ynoyl) piperidin-4-yl) -2- (4-phenoxyphenyl) -4, 5, 6, 7-tetrahy dropyrazolo [1, 5-a] pyrimidine-3-carboxamide, preparation, and uses thereof
JP7062010B2 (ja) 2017-01-27 2022-05-02 セルジーン コーポレイション 3-(1-オキソ-4-((4-((3-オキソモルホリノ)メチル)ベンジル)オキシ)イソインドリン-2-イル)ピペリジン-2,6-ジオン及びそのアイソトポログ
CA3052190A1 (en) 2017-02-01 2018-08-09 Beyondspring Pharmaceuticals, Inc. Method of reducing neutropenia
JOP20190187A1 (ar) 2017-02-03 2019-08-01 Novartis Ag مترافقات عقار جسم مضاد لـ ccr7
WO2018141959A1 (en) 2017-02-06 2018-08-09 Innate Pharma Immunomodulatory antibody drug conjugates binding to a human mica polypeptide
CN110573172A (zh) 2017-02-06 2019-12-13 奥里尼斯生物科学有限公司 靶向的工程化干扰素及其用途
JP7476467B2 (ja) 2017-02-06 2024-05-01 オリオンズ バイオサイエンス ビーブイ 標的化キメラタンパク質及びその使用
WO2018146128A1 (en) 2017-02-07 2018-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Detection of kit polymorphism for predicting the response to checkpoint blockade cancer immunotherapy
WO2018146148A1 (en) 2017-02-07 2018-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) A method for predicting the response to checkpoint blockade cancer immunotherapy
HUE057337T2 (hu) 2017-02-10 2022-05-28 Novartis Ag 1-(4-amino-5-bróm-6-(1H-pirazol-1-il)pirimidin-2-il)-1H-pirazol-4-ol és alkalmazása rák kezelésében
EP3582855A1 (en) 2017-02-15 2019-12-25 GlaxoSmithKline Intellectual Property Development Limited Combination treatment for cancer
US20200291089A1 (en) 2017-02-16 2020-09-17 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
WO2018156494A1 (en) 2017-02-21 2018-08-30 Regeneron Pharmaceuticals, Inc. Anti-pd-1 antibodies for treatment of lung cancer
US12077590B2 (en) 2017-02-22 2024-09-03 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bispecific antibody for cancer immunotherapy
US11458169B2 (en) 2017-02-22 2022-10-04 H. Lee Moffitt Cancer Center And Research Institute, Inc. TIM3-binding chimeric antigen receptors
US11684672B2 (en) 2017-02-24 2023-06-27 Bayer Pharma Aktiengesellschaft Combinations of copanlisib with anti-PD-1 antibody
EP3586136B1 (en) 2017-02-24 2023-11-08 Board Of Regents, The University Of Texas System Assay for detection of early stage pancreatic cancer
IL268836B2 (en) 2017-02-24 2024-04-01 Macrogenics Inc Bispecific binding molecules that are capable of binding cd137 and tumor antigens, and uses thereof
US11815435B2 (en) 2017-02-24 2023-11-14 Hibercell, Inc. Beta glucan immunopharmacodynamics
EP3585486A1 (en) 2017-02-27 2020-01-01 Novartis AG Dosing schedule for a combination of ceritinib and an anti-pd-1 antibody molecule
BR112019017738A2 (pt) 2017-02-27 2020-04-07 Glaxosmithkline Ip Dev Ltd combinação, composição farmacêutica, uso de uma combinação ou composição farmacêutica, método para tratar câncer em um humano, e, composto
CN116440257A (zh) 2017-02-28 2023-07-18 百时美施贵宝公司 具有增强的adcc的抗ctla-4抗体增强对疫苗的免疫应答的用途
EP3366703B1 (en) 2017-02-28 2019-04-03 Ralf Kleef Immune checkpoint therapy with hyperthermia
JP6949131B2 (ja) 2017-02-28 2021-10-13 サノフイSanofi 治療用rna
US20180271996A1 (en) 2017-02-28 2018-09-27 Mersana Therapeutics, Inc. Combination therapies of her2-targeted antibody-drug conjugates
AU2018228873A1 (en) 2017-03-01 2019-08-29 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2018162944A1 (en) * 2017-03-04 2018-09-13 Shenzhen Runshin Bioscience Recombinant antibodies to programmed death 1 (pd-1) and uses therefor
WO2018163051A1 (en) 2017-03-06 2018-09-13 Novartis Ag Methods of treatment of cancer with reduced ubb expression
US20200150125A1 (en) 2017-03-12 2020-05-14 Yeda Research And Development Co., Ltd. Methods of diagnosing and prognosing cancer
WO2018167780A1 (en) 2017-03-12 2018-09-20 Yeda Research And Development Co. Ltd. Methods of prognosing and treating cancer
BR112019018915A2 (pt) 2017-03-15 2020-04-14 Pandion Therapeutics Inc imunotolerância direcionada
MA51630A (fr) 2017-03-15 2020-01-22 Amgen Inc Utilisation de virus oncolytiques, seuls ou en combinaison avec un inhibiteur de point de contrôle immunitaire, pour le traitement du cancer
SG11201908391XA (en) 2017-03-15 2019-10-30 Cue Biopharma Inc Methods for modulating an immune response
KR102584011B1 (ko) 2017-03-16 2023-09-27 이나뜨 파르마 에스.에이. 암 치료를 위한 조성물 및 방법
WO2018172508A1 (en) 2017-03-24 2018-09-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
CN108623686A (zh) 2017-03-25 2018-10-09 信达生物制药(苏州)有限公司 抗ox40抗体及其用途
ES2963635T3 (es) 2017-03-28 2024-04-01 Ohio State Innovation Foundation Vacunas de péptido PD1 humano y usos de las mismas
US11254913B1 (en) 2017-03-29 2022-02-22 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP3601338A4 (en) * 2017-03-29 2020-12-16 Celgene Corporation FORMULATIONS INCLUDING PROTEINS BINDING PD-1 AND THEIR PREPARATION METHODS
JOP20190224A1 (ar) 2017-03-29 2019-09-26 Iovance Biotherapeutics Inc عمليات من أجل إنتاج الخلايا اللمفاوية المرتشحة للأورام واستخداماتها في العلاج المناعي
EP3601353A1 (en) 2017-03-31 2020-02-05 Five Prime Therapeutics, Inc. Combination therapy for cancer using anti-gitr antibodies
CA3053226A1 (en) 2017-03-31 2018-10-04 Boehringer Ingelheim International Gmbh Anticancer combination therapy
WO2018181963A1 (ja) 2017-03-31 2018-10-04 富士フイルム株式会社 リポソーム組成物および医薬組成物
SG10202110594UA (en) 2017-03-31 2021-11-29 Bristol Myers Squibb Co Methods of treating tumor
CA3055769A1 (en) 2017-04-03 2018-10-11 Oncologie, Inc. Methods for treating cancer using ps-targeting antibodies with immuno-oncology agents
SG11201909205YA (en) 2017-04-03 2019-11-28 Hoffmann La Roche Immunoconjugates of an anti-pd-1 antibody with a mutant il-2 or with il-15
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
EP3606556A1 (en) 2017-04-05 2020-02-12 Boehringer Ingelheim International GmbH Anticancer combination therapy
KR102737715B1 (ko) 2017-04-05 2024-12-03 르 라보레또레 쎄르비에르 Pd-1, tim-3 및 lag-3을 표적화하는 조합 요법
MA49038B1 (fr) 2017-04-05 2025-01-31 F. Hoffmann-La Roche Ag Anticorps bispécifiques se liant particulièrement à pd1 et lag3
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
TWI788340B (zh) 2017-04-07 2023-01-01 美商必治妥美雅史谷比公司 抗icos促效劑抗體及其用途
CN110546166B (zh) 2017-04-13 2024-03-29 艾吉纳斯公司 抗cd137抗体和其使用方法
MX2019012187A (es) 2017-04-13 2019-11-25 Hoffmann La Roche Un inmunoconjugado de interleuquina-2, un agonista de cd40 y opcionalmente un antagonista de union al eje pd-1 para uso en metodos para tratar cancer.
TW201839400A (zh) 2017-04-14 2018-11-01 美商建南德克公司 用於癌症之診斷及治療方法
ES2914311T3 (es) 2017-04-18 2022-06-09 Tempest Therapeutics Inc Compuestos bicíclicos y su uso en el tratamiento del cáncer
CN108728444A (zh) 2017-04-18 2018-11-02 长春华普生物技术股份有限公司 免疫调节性多核苷酸及其应用
EP3612563A1 (en) 2017-04-19 2020-02-26 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
JOP20180040A1 (ar) 2017-04-20 2019-01-30 Gilead Sciences Inc مثبطات pd-1/pd-l1
CN106939049B (zh) * 2017-04-20 2019-10-01 苏州思坦维生物技术股份有限公司 拮抗抑制人pd-1抗原与其配体结合的单克隆抗体及其制备方法与应用
BR112019022009A2 (pt) 2017-04-21 2020-05-12 Sillajen, Inc. Terapia de combinação de vírus vaccinia oncolítico e inibidor de ponto de verificação
JP2020517699A (ja) 2017-04-26 2020-06-18 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company ジスルフィド結合の還元を最小限にする抗体製造法
AR111419A1 (es) 2017-04-27 2019-07-10 Novartis Ag Compuestos fusionados de indazol piridona como antivirales
CN108794467A (zh) 2017-04-27 2018-11-13 博笛生物科技有限公司 2-氨基-喹啉衍生物
EP3615055A1 (en) 2017-04-28 2020-03-04 Novartis AG Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
AU2018258661A1 (en) 2017-04-28 2019-10-17 Five Prime Therapeutics, Inc. Methods of treatment with CD80 extracellular domain polypeptides
WO2018201047A1 (en) 2017-04-28 2018-11-01 Elstar Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
UY37695A (es) 2017-04-28 2018-11-30 Novartis Ag Compuesto dinucleótido cíclico bis 2’-5’-rr-(3’f-a)(3’f-a) y usos del mismo
AR111651A1 (es) 2017-04-28 2019-08-07 Novartis Ag Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación
WO2018204303A1 (en) 2017-05-01 2018-11-08 The Children's Medical Center Coporation Methods and compositions relating to anti-pd1 antibody reagents
US11021537B2 (en) 2017-05-01 2021-06-01 Agenus Inc. Anti-TIGIT antibodies and methods of use thereof
JP2020518598A (ja) * 2017-05-02 2020-06-25 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 単独およびプログラム死受容体1(pd−1)抗体と組み合わされた抗ctla4抗体の安定な製剤、ならびにその使用方法
JOP20190260A1 (ar) 2017-05-02 2019-10-31 Merck Sharp & Dohme صيغ ثابتة لأجسام مضادة لمستقبل الموت المبرمج 1 (pd-1) وطرق استخدامها
BR112019022873A8 (pt) 2017-05-02 2023-04-11 Merck Sharp & Dohme Formulação, e, vaso ou dispositivo de injeção.
UY37718A (es) 2017-05-05 2018-11-30 Novartis Ag 2-quinolinonas triciclicas como agentes antibacteriales
WO2018209270A1 (en) 2017-05-11 2018-11-15 Northwestern University Adoptive cell therapy using spherical nucleic acids (snas)
US11466047B2 (en) 2017-05-12 2022-10-11 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
WO2018209298A1 (en) 2017-05-12 2018-11-15 Harpoon Therapeutics, Inc. Mesothelin binding proteins
JP2020519576A (ja) 2017-05-16 2020-07-02 エーザイ・アール・アンド・ディー・マネジメント株式会社 肝細胞癌の治療
JP7274426B2 (ja) 2017-05-16 2023-05-16 ブリストル-マイヤーズ スクイブ カンパニー 抗gitrアゴニスト抗体での癌の処置
US10646464B2 (en) 2017-05-17 2020-05-12 Boston Biomedical, Inc. Methods for treating cancer
JP7285220B2 (ja) 2017-05-18 2023-06-01 モデルナティエックス インコーポレイテッド 連結したインターロイキン-12(il12)ポリペプチドをコードするポリヌクレオチドを含む脂質ナノ粒子
BR112019023992A2 (pt) 2017-05-19 2020-06-16 Wuxi Biologics (Shanghai) Co., Ltd. Anticorpo ou fragmento de ligação ao antígeno do mesmo, seu método de produção, seus usos, bem como molécula de ácido nucleico, vetor de clonagem ou expressão, célula hospedeira, hibridoma, composição farmacêutica e imunoconjugado
AR111760A1 (es) 2017-05-19 2019-08-14 Novartis Ag Compuestos y composiciones para el tratamiento de tumores sólidos mediante administración intratumoral
CN116478289A (zh) * 2017-05-19 2023-07-25 上海药明生物技术有限公司 一种新的ctla-4单克隆抗体
JOP20190272A1 (ar) 2017-05-22 2019-11-21 Amgen Inc مثبطات kras g12c وطرق لاستخدامها
JP2020520911A (ja) 2017-05-22 2020-07-16 フォーディー ファーマ リサーチ リミテッド4D Pharma Research Limited 細菌株を含む組成物
CN108948206B (zh) * 2017-05-23 2022-08-23 赵磊 一种抗egfr/pd-1双靶向抗体、其制备方法及用途
EP3630162A1 (en) 2017-05-24 2020-04-08 Novartis AG Antibody-cytokine engrafted proteins and methods of use
MX2019013517A (es) 2017-05-24 2020-08-17 Pandion Operations Inc Inmunotolerancia dirigida.
AU2018274216A1 (en) 2017-05-24 2019-12-12 Novartis Ag Antibody-cytokine engrafted proteins and methods of use in the treatment of cancer
WO2018215937A1 (en) 2017-05-24 2018-11-29 Novartis Ag Interleukin-7 antibody cytokine engrafted proteins and methods of use in the treatment of cancer
WO2018215782A1 (en) 2017-05-24 2018-11-29 4D Pharma Research Limited Compositions comprising bacterial strain
WO2018218056A1 (en) 2017-05-25 2018-11-29 Birstol-Myers Squibb Company Antibodies comprising modified heavy constant regions
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
WO2018219956A1 (en) 2017-05-29 2018-12-06 Gamamabs Pharma Cancer-associated immunosuppression inhibitor
CA3060989A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent
WO2018222722A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
AU2018277824A1 (en) 2017-05-30 2019-10-17 Bristol-Myers Squibb Company Treatment of LAG-3 positive tumors
AU2018277545A1 (en) 2017-05-31 2019-12-19 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to BTN1A1
EP3630836A1 (en) 2017-05-31 2020-04-08 Elstar Therapeutics, Inc. Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof
JOP20190279A1 (ar) 2017-05-31 2019-11-28 Novartis Ag الصور البلورية من 5-برومو -2، 6-داي (1h-بيرازول -1-يل) بيريميدين -4- أمين وأملاح جديدة
JP2020522486A (ja) 2017-06-01 2020-07-30 サイトメックス セラピューティクス インコーポレイテッド 活性化可能抗pdl1抗体、およびその使用方法
EP3630840A1 (en) 2017-06-01 2020-04-08 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-pd-1 antibody
WO2018223004A1 (en) 2017-06-01 2018-12-06 Xencor, Inc. Bispecific antibodies that bind cd20 and cd3
US20200181274A1 (en) 2017-06-01 2020-06-11 Novartis Ag Bispecific antibodies that bind cd 123 cd3
KR20200054160A (ko) 2017-06-02 2020-05-19 주노 쎄러퓨티크스 인코퍼레이티드 입양 세포 요법을 사용한 치료를 위한 물품 제조 및 방법
MX2019014199A (es) 2017-06-02 2020-01-23 Boehringer Ingelheim Int Tratamiento de combinacion antineoplasico.
EP3630126A4 (en) 2017-06-02 2021-03-17 The Penn State Research Foundation CERAMIDE NANOLIPOSOMES, COMPOSITIONS AND METHODS OF USE FOR IMMUNOTHERAPY
JP2020522516A (ja) 2017-06-05 2020-07-30 アイオバンス バイオセラピューティクス,インコーポレイテッド 二重抵抗性黒色腫において腫瘍浸潤リンパ球を使用する方法
KR20200026209A (ko) 2017-06-06 2020-03-10 주식회사 에스티큐브앤컴퍼니 Btn1a1 또는 btn1a1-리간드에 결합하는 항체 및 분자를 사용하여 암을 치료하는 방법
WO2018225093A1 (en) 2017-06-07 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds as atf4 pathway inhibitors
EP3634584B1 (en) 2017-06-09 2024-09-18 Providence Health & Services - Oregon Tumor-infiltrating t-cells for use in the treatment of cancer
WO2018225033A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
HUE052319T2 (hu) 2017-06-14 2021-04-28 4D Pharma Res Ltd Baktériumtörzseket tartalmazó készítmények
IL283973B (en) 2017-06-14 2022-08-01 4D Pharma Res Ltd Compositions comprising bacterial strains
TWI812624B (zh) 2017-06-14 2023-08-21 南韓商希杰生物科技股份有限公司 包含細菌品系之組成物
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
JP7433051B2 (ja) 2017-06-19 2024-02-19 メディシナ セラピューティクス インコーポレイテッド Il-2スーパーアゴニスト、アゴニスト、およびそれらの融合体の使用および方法
WO2018234367A1 (en) 2017-06-20 2018-12-27 Institut Curie SUV39H1 HISTONE METHYLTRANSFERASE INHIBITOR FOR USE IN ANTICANCER POLYTHERAPY
US11654135B2 (en) 2017-06-22 2023-05-23 Moonshot Pharma Llc Methods for treating colon cancer with compositions comprising amlexanox and immune checkpoint inhibitors
EP3642240A1 (en) 2017-06-22 2020-04-29 Novartis AG Antibody molecules to cd73 and uses thereof
MY204117A (en) 2017-06-22 2024-08-08 Novartis Ag Antibody molecules to cd73 and uses thereof
CN110996955A (zh) 2017-06-22 2020-04-10 细胞基因公司 以乙型肝炎病毒感染为特征的肝细胞癌的治疗
WO2018237153A1 (en) 2017-06-23 2018-12-27 Bristol-Myers Squibb Company Immunomodulators acting as antagonists of pd-1
CA3067268A1 (en) 2017-06-23 2018-12-27 Birdie Biopharmaceuticals, Inc. Crystalline resiquimod monosulfate anhydrate and its preparation and uses
EP3645740A4 (en) * 2017-06-25 2021-08-18 Systimmune, Inc. ANTI-PD-1 ANTIBODIES AND PROCESSES FOR PREPARATION AND USE
EP3645738A4 (en) * 2017-06-25 2021-08-18 Systimmune, Inc. ANTI-PD-L1 ANTIBODIES AND METHODS FOR PREPARATION AND USE
EP3645569A4 (en) 2017-06-26 2021-03-24 BeiGene, Ltd. IMMUNOTHERAPY FOR LIVER CELL CARCINOMA
US11560425B2 (en) 2017-06-27 2023-01-24 Neuracle Science Co., Ltd. Use of anti-FAM19A5 antibodies for treating cancers
CA3066747A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
MX2019015155A (es) 2017-06-29 2020-08-03 Juno Therapeutics Inc Modelo de raton para valorar toxicidades asociadas con inmunoterapias.
SI3644999T1 (sl) 2017-06-30 2023-04-28 Celgene Corporation Sestavki in postopki uporabe 2-(4-klorofenil)-N-((2-(2,6-dioksopiperidin-3-il)-1-oksoizoindolin-5-il) metil)-2,2-difluoroacetamida
TWI828626B (zh) * 2017-06-30 2024-01-11 日商小野藥品工業股份有限公司 併用包含溶血性鏈球菌之菌體的製劑的療法
US20210145771A1 (en) 2017-07-03 2021-05-20 Glaxosmithkline Intellectual Property Development Limited N-(3-(2-(4-chlorophenoxy)acetamido)bicyclo[1.1.1] pentan-1-yl)-2-cyclobutane-1- carboxamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases
US20200140383A1 (en) 2017-07-03 2020-05-07 Glaxosmithkline Intellectual Property Development Limited 2-(4-chlorophenoxy)-n-((1 -(2-(4-chlorophenoxy)ethynazetidin-3-yl)methyl)acetamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases
KR20200042467A (ko) 2017-07-06 2020-04-23 메뤼스 엔.페. 이중특이적 항pd-1 tim3 항체
KR102715567B1 (ko) 2017-07-06 2024-10-14 메뤼스 엔.페. 세포에 의해 발현된 생물학적 활성을 조정하는 결합 분자
EA202090005A1 (ru) * 2017-07-06 2020-06-18 Мерус Н.В. Антитела, модулирующие биологическую активность, проявляемую клеткой
BR112020000118A2 (pt) 2017-07-07 2020-07-07 H. Lee Moffitt Cancer Center And Research Institute, Inc. receptores de antígenos quiméricos com domínios coestimulatórios cd28 mutados
HRP20241553T1 (hr) 2017-07-10 2025-01-17 Celgene Corporation 4-(4-(4-(((2-(2,6-dioksopiperidin-3-il)-l-oksoizoindolin-4-il)oksi)metil)benzil)piperazin-l-il)-3-fluorobenzonitril kao antiproliferativni spoj
KR102677225B1 (ko) 2017-07-10 2024-06-24 이나뜨 파르마 에스.에이. Siglec-9 중화 항체
WO2019016174A1 (en) 2017-07-18 2019-01-24 Institut Gustave Roussy METHOD FOR ASSESSING RESPONSE TO TARGETING DRUG PD-1 / PDL-1 MEDICINES
CN111163798A (zh) 2017-07-20 2020-05-15 诺华股份有限公司 用于抗lag-3抗体的给药方案及其用途
CN111492245A (zh) 2017-07-21 2020-08-04 基因泰克公司 癌症的治疗和诊断方法
CA3070446A1 (en) 2017-07-25 2019-01-31 Immutics, Inc. Treating cancer by blocking the interaction of tim-3 and its ligand
US11926664B2 (en) 2017-07-25 2024-03-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for modulating monocytopoiesis
WO2019021208A1 (en) 2017-07-27 2019-01-31 Glaxosmithkline Intellectual Property Development Limited USEFUL INDAZOLE DERIVATIVES AS PERK INHIBITORS
EP3658914A1 (en) 2017-07-28 2020-06-03 Bristol-Myers Squibb Company Predictive peripheral blood biomarker for checkpoint inhibitors
MX2020001233A (es) 2017-08-03 2020-07-20 Otsuka Pharma Co Ltd Compuesto farmaceutico y metodos de purificacion del mismo.
HUE058233T2 (hu) 2017-08-03 2022-07-28 Amgen Inc Interleukin-21-muteinek és kezelési eljárások
AU2018311966A1 (en) 2017-08-04 2020-02-13 Merck Sharp & Dohme Llc Benzo[b]thiophene sting agonists for cancer treatment
EP3661499A4 (en) 2017-08-04 2021-04-21 Merck Sharp & Dohme Corp. COMBINATIONS OF PD-1 ANTAGONISTS AND STING BENZO AGONISTS [B
US10494370B2 (en) 2017-08-16 2019-12-03 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a pyridine or pyrazine moiety, conjugates thereof, and methods and uses therefor
US10508115B2 (en) 2017-08-16 2019-12-17 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having heteroatom-linked aromatic moieties, conjugates thereof, and methods and uses therefor
US10457681B2 (en) 2017-08-16 2019-10-29 Bristol_Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a tricyclic moiety, conjugates thereof, and methods and uses therefor
US10487084B2 (en) 2017-08-16 2019-11-26 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a heterobiaryl moiety, conjugates thereof, and methods and uses therefor
US10472361B2 (en) 2017-08-16 2019-11-12 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a benzotriazole moiety, conjugates thereof, and methods and uses therefor
WO2019035985A1 (en) 2017-08-18 2019-02-21 Tragara Pharmaceuticals, Inc. POLYMORPHIC FORM OF TG02
WO2019036855A1 (en) 2017-08-21 2019-02-28 Adagene Inc. ANTI-CD137 MOLECULES AND THEIR USE
CN107383174B (zh) * 2017-08-21 2019-01-18 生工生物工程(上海)股份有限公司 一种能与pd-1特异性结合的肿瘤抑制肽及其用途
CN111094982A (zh) 2017-08-28 2020-05-01 百时美施贵宝公司 用于治疗和诊断癌症的tim-3拮抗剂
CA3073055A1 (en) 2017-09-04 2019-03-07 Agenus Inc. T cell receptors that bind to mixed lineage leukemia (mll)-specific phosphopeptides and methods of use thereof
CN118909118A (zh) 2017-09-07 2024-11-08 奥古斯塔大学研究所公司 程序性细胞死亡蛋白1抗体
UY37866A (es) 2017-09-07 2019-03-29 Glaxosmithkline Ip Dev Ltd Nuevos compuestos derivados de benzoimidazol sustituidos que reducen la proteína myc (c-myc) en las células e inhiben la histona acetiltransferasa de p300/cbp.
MX2020002502A (es) 2017-09-08 2020-07-20 Amgen Inc Inhibidores de kras g12c y metodos para utilizarlos.
WO2019053617A1 (en) 2017-09-12 2019-03-21 Glaxosmithkline Intellectual Property Development Limited CHEMICAL COMPOUNDS
WO2019055579A1 (en) 2017-09-12 2019-03-21 Tolero Pharmaceuticals, Inc. TREATMENT REGIME FOR CANCERS THAT ARE INSENSITIVE TO BCL-2 INHIBITORS USING THE MCL-1 ALVOCIDIB INHIBITOR
CN111479586A (zh) 2017-09-13 2020-07-31 戊瑞治疗有限公司 用于胰腺癌的组合抗csf1r和抗pd-1抗体的组合疗法
EP3684410A1 (en) 2017-09-19 2020-07-29 Institut Curie Agonist of aryl hydrocarbon receptor for use in cancer combination therapy
EP3684413A1 (en) 2017-09-20 2020-07-29 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
WO2019061324A1 (en) 2017-09-29 2019-04-04 Curis Inc. CRYSTALLINE FORMS OF IMMUNOMODULATORS
CN111148534A (zh) * 2017-09-29 2020-05-12 勃林格殷格翰国际有限公司 抗igf和抗pd-1抗癌组合疗法
EP3692053A1 (en) 2017-10-03 2020-08-12 Bristol-Myers Squibb Company Immunomodulators
JP7291130B2 (ja) 2017-10-05 2023-06-14 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド インターフェロン遺伝子の刺激物質(sting)の調節物質
EP3692033A1 (en) 2017-10-05 2020-08-12 GlaxoSmithKline Intellectual Property Development Limited Modulators of stimulator of interferon genes (sting) useful in treating hiv
CN111542539B (zh) 2017-10-06 2023-10-20 先天制药公司 通过cd39/cd73轴恢复t细胞活性
WO2019072566A1 (en) 2017-10-10 2019-04-18 Biotest Ag COMBINATION OF ANTI-IL10 AND ANTI-PD1 ANTIBODIES FOR THE TREATMENT OF CANCER
BR112020006669A2 (pt) 2017-10-11 2020-09-24 Aurigene Discovery Technologies Limited formas cristalinas de 1,2,4-oxadiazol 3-substituído
IL315737A (en) 2017-10-13 2024-11-01 Harpoon Therapeutics Inc B-cell maturation antigen-binding proteins
EP3694884A1 (en) 2017-10-15 2020-08-19 Bristol-Myers Squibb Company Methods of treating tumor
WO2019077062A1 (en) 2017-10-18 2019-04-25 Vivia Biotech, S.L. C-CELLS ACTIVATED BY BIT
US11685782B2 (en) 2017-10-23 2023-06-27 Children's Medical Center Corporation Methods of treating cancer using LSD1 inhibitors in combination with immunotherapy
EP3700933A1 (en) 2017-10-25 2020-09-02 Novartis AG Antibodies targeting cd32b and methods of use thereof
WO2019089832A1 (en) 2017-10-31 2019-05-09 Janssen Biotech, Inc. Methods of treating high risk multiple myeloma
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
CN111542544A (zh) 2017-11-01 2020-08-14 百时美施贵宝公司 用于治疗癌症的免疫刺激性激动性抗体
PT3703750T (pt) 2017-11-01 2025-01-17 Memorial Sloan Kettering Cancer Center Recetores de antigénio quimérico específicos para o antigénio de maturação das células b e polinucleótidos codificantes
US12031975B2 (en) 2017-11-01 2024-07-09 Juno Therapeutics, Inc. Methods of assessing or monitoring a response to a cell therapy
US20210179607A1 (en) 2017-11-01 2021-06-17 Merck Sharp & Dohme Corp. Novel substituted tetrahydroquinolin compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
JP7256197B2 (ja) 2017-11-01 2023-04-11 ジュノー セラピューティクス インコーポレイテッド B細胞成熟抗原に特異的な抗体およびキメラ抗原受容体
JP7159007B2 (ja) 2017-11-01 2022-10-24 小野薬品工業株式会社 脳腫瘍の治療のための医薬
SG11202003625VA (en) 2017-11-03 2020-05-28 Aurigene Discovery Tech Ltd Dual inhibitors of tim-3 and pd-1 pathways
KR20200084333A (ko) 2017-11-06 2020-07-10 오리진 디스커버리 테크놀로지스 리미티드 면역조절을 위한 병행 요법
BR112020008316A2 (pt) 2017-11-06 2020-10-20 Bristol-Myers Squibb Company métodos para o tratamento de um tumor
CA3077664A1 (en) 2017-11-06 2019-05-09 Genentech, Inc. Diagnostic and therapeutic methods for cancer
EP3707165A4 (en) 2017-11-07 2021-09-08 The Board of Regents of The University of Texas System TARGETING LILRB4 WITH CAR-T OR CAR-NK CELLS IN CANCER TREATMENT
AU2018364114B2 (en) 2017-11-08 2024-09-26 Yafei Shanghai Biolog Medicine Science & Technology Co., Ltd. Conjugates of biomolecule and use thereof
ES2939112T3 (es) 2017-11-10 2023-04-19 Armo Biosciences Inc Composiciones y métodos de uso de interleucina-10 en combinación con inhibidores de vías de puntos de control inmunitario
KR102718287B1 (ko) 2017-11-14 2024-10-16 머크 샤프 앤드 돔 엘엘씨 인돌아민 2,3-디옥시게나제 (ido) 억제제로서의 신규 치환된 비아릴 화합물
US11498904B2 (en) 2017-11-14 2022-11-15 Merck Sharp & Dohme Llc Substituted biaryl compounds as indoleamine 2,3-dioxygenase (IDO) inhibitors
CN109467603B (zh) * 2017-11-14 2020-02-21 拜西欧斯(北京)生物技术有限公司 抗pd-1抗体及其制备方法和应用
AU2018369841A1 (en) 2017-11-14 2020-05-07 Pfizer Inc. EZH2 inhibitor combination therapies
RU2020119578A (ru) 2017-11-16 2021-12-17 Новартис Аг Комбинированные терапии
MX2020005128A (es) 2017-11-17 2020-07-27 Merck Sharp & Dohme Anticuerpos especificos para el transcrito similar a la inmunoglobulina tipo 3 (ilt3) y sus usos.
CN111315749A (zh) 2017-11-17 2020-06-19 诺华股份有限公司 新颖的二氢异噁唑化合物及其在治疗乙型肝炎中的用途
EP4501408A2 (en) 2017-11-17 2025-02-05 Iovance Biotherapeutics, Inc. Til expansion from fine needle aspirates and small biopsies
WO2019101956A1 (en) 2017-11-24 2019-05-31 Institut National De La Santé Et De La Recherche Médicale (Inserm) Methods and compositions for treating cancers
WO2019104289A1 (en) 2017-11-27 2019-05-31 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
AU2018377783A1 (en) 2017-11-28 2020-06-11 Chugai Seiyaku Kabushiki Kaisha Polypeptide including antigen-binding domain and carrying section
TW202402792A (zh) 2017-11-28 2024-01-16 日商中外製藥股份有限公司 可調整配體結合活性的配體結合分子
CN111801334B (zh) * 2017-11-29 2023-06-09 百济神州瑞士有限责任公司 使用包含btk抑制剂的组合治疗惰性或侵袭性b-细胞淋巴瘤
CN111727373A (zh) 2017-11-30 2020-09-29 诺华股份有限公司 靶向bcma的嵌合抗原受体及其用途
WO2019104716A1 (en) * 2017-12-01 2019-06-06 Adagene Inc. Methods for using cd137 ligand as biomarker for treatment with anti-cd137 antibody
US10946068B2 (en) 2017-12-06 2021-03-16 Pandion Operations, Inc. IL-2 muteins and uses thereof
US10174092B1 (en) 2017-12-06 2019-01-08 Pandion Therapeutics, Inc. IL-2 muteins
EP3720881A1 (en) 2017-12-08 2020-10-14 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
US11946094B2 (en) 2017-12-10 2024-04-02 Augusta University Research Institute, Inc. Combination therapies and methods of use thereof
EP3724225A1 (en) 2017-12-15 2020-10-21 Juno Therapeutics, Inc. Anti-cct5 binding molecules and methods of use thereof
US11793867B2 (en) 2017-12-18 2023-10-24 Biontech Us Inc. Neoantigens and uses thereof
KR20200100147A (ko) 2017-12-19 2020-08-25 더 락커펠러 유니버시티 개선된 이펙터 기능을 갖는 사람 IgG Fc 도메인 변이체
WO2019123285A1 (en) 2017-12-20 2019-06-27 Novartis Ag Fused tricyclic pyrazolo-dihydropyrazinyl-pyridone compounds as antivirals
US11685761B2 (en) 2017-12-20 2023-06-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
TW201929908A (zh) 2017-12-21 2019-08-01 美商梅爾莎納醫療公司 吡咯并苯并二氮呯抗體共軛物
CN109970856B (zh) 2017-12-27 2022-08-23 信达生物制药(苏州)有限公司 抗lag-3抗体及其用途
JP7284759B2 (ja) 2017-12-27 2023-05-31 ブリストル-マイヤーズ スクイブ カンパニー 抗cd40抗体およびその使用
WO2019129137A1 (zh) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 抗lag-3抗体及其用途
CN115925943A (zh) * 2017-12-27 2023-04-07 信达生物制药(苏州)有限公司 抗pd-l1抗体及其用途
BR112020013285A2 (pt) 2017-12-28 2020-12-01 The General Hospital Corporation direcionamento do complexo de sinalossoma cbm que induz células t reguladoras a atingirem o microambiente tumoral
WO2019133847A1 (en) 2017-12-29 2019-07-04 Oncorus, Inc. Oncolytic viral delivery of therapeutic polypeptides
WO2019134946A1 (en) 2018-01-04 2019-07-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma resistant
US11324774B2 (en) 2018-01-05 2022-05-10 Augusta University Research Institute, Inc. Compositions of oral alkaline salts and metabolic acid inducers and uses thereof
TW201930591A (zh) 2018-01-08 2019-08-01 瑞士商諾華公司 用於與嵌合抗原受體療法併用之免疫增強rna
US11713446B2 (en) 2018-01-08 2023-08-01 Iovance Biotherapeutics, Inc. Processes for generating TIL products enriched for tumor antigen-specific T-cells
WO2019136459A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
EP3737743A1 (en) 2018-01-08 2020-11-18 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
MX2020007281A (es) 2018-01-08 2021-01-29 H Lee Moffitt Cancer Ct & Res Composiciones y métodos que se dirigen a cánceres que expresan cd99.
CA3088878A1 (en) 2018-01-09 2019-07-18 H. Lee Moffitt Cancer Center And Research Institute Inc. Compositions and methods for targeting clec12a-expressing cancers
EP3737692A4 (en) 2018-01-09 2021-09-29 Elstar Therapeutics, Inc. CALRETICULIN AND MODIFIED T-LYMPHOCYTES BINDING CONSTRUCTIONS FOR THE TREATMENT OF DISEASES
ES2983284T3 (es) 2018-01-09 2024-10-22 Shuttle Pharmaceuticals Inc Inhibidores selectivos de histona deacetilasa para el tratamiento de enfermedades humanas
US12129297B2 (en) 2018-01-12 2024-10-29 Bristol-Myers Squibb Company Antibodies against TIM3 and uses thereof
CN111727197A (zh) * 2018-01-12 2020-09-29 美国安进公司 抗pd-1抗体和治疗方法
SG11202005323SA (en) * 2018-01-12 2020-07-29 Bristol Myers Squibb Co Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer
KR20200109339A (ko) 2018-01-16 2020-09-22 브리스톨-마이어스 스큅 컴퍼니 Tim3에 대한 항체를 사용하여 암을 치료하는 방법
AU2019210332A1 (en) 2018-01-22 2020-09-10 Pascal Biosciences Inc. Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells
WO2019144098A1 (en) 2018-01-22 2019-07-25 Bristol-Myers Squibb Company Compositions and methods of treating cancer
WO2019147670A1 (en) 2018-01-23 2019-08-01 Nextcure, Inc. B7-h4 antibodies and methods of use thereof
US11786523B2 (en) 2018-01-24 2023-10-17 Beyondspring Pharmaceuticals, Inc. Composition and method for reducing thrombocytopenia
US11673897B2 (en) 2018-01-26 2023-06-13 Exelixis, Inc. Compounds for the treatment of kinase-dependent disorders
SG11202006921PA (en) 2018-01-26 2020-08-28 Exelixis Inc Compounds for the treatment of kinase-dependent disorders
US11708367B2 (en) 2018-01-26 2023-07-25 Exelixis, Inc. Compounds for the treatment of kinase-dependent disorders
US20200354424A1 (en) 2018-01-26 2020-11-12 Orionis Biosciences, Inc. Xcr1 binding agents and uses thereof
EP3746480A1 (en) 2018-01-31 2020-12-09 F. Hoffmann-La Roche AG Bispecific antibodies comprising an antigen-binding site binding to lag3
WO2019152743A1 (en) 2018-01-31 2019-08-08 Celgene Corporation Combination therapy using adoptive cell therapy and checkpoint inhibitor
US20210038659A1 (en) 2018-01-31 2021-02-11 Novartis Ag Combination therapy using a chimeric antigen receptor
CN108314734B (zh) * 2018-01-31 2021-11-05 中国药科大学 抗pd-1单克隆抗体及其应用
WO2019148445A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Precision/context-dependent activatable antibodies, and methods of making and using the same
MX2020008208A (es) 2018-02-05 2020-11-09 Orionis Biosciences Inc Agentes de unión a fibroblastos y uso de estos.
CN112533613A (zh) 2018-02-06 2021-03-19 通用医疗公司 作为肿瘤免疫应答的生物标志物的重复rna
WO2019157124A1 (en) 2018-02-08 2019-08-15 Bristol-Myers Squibb Company Combination of a tetanus toxoid, anti-ox40 antibody and/or anti-pd-1 antibody to treat tumors
CN111886333A (zh) 2018-02-09 2020-11-03 学校法人庆应义塾 诱导cd8+t细胞的组合物和方法
TWI804572B (zh) 2018-02-09 2023-06-11 日商小野藥品工業股份有限公司 雙特異性抗體
NL2020422B1 (en) 2018-02-12 2019-08-19 Stichting Het Nederlands Kanker Inst Antoni Van Leeuwenhoek Ziekenhuis Methods for Predicting Treatment Outcome and/or for Selecting a Subject Suitable for Immune Checkpoint Therapy.
JP2021513540A (ja) * 2018-02-13 2021-05-27 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 抗pd−1抗体及び抗ctla4抗体によるがんの処置方法
EP3752203A1 (en) 2018-02-13 2020-12-23 Novartis AG Chimeric antigen receptor therapy in combination with il-15r and il15
BR102019002873A2 (pt) 2018-02-13 2019-09-10 Gilead Sciences Inc inibidores de pd-1/pd-l1
US11591399B2 (en) 2018-02-14 2023-02-28 Abba Therapeutics Ag Anti-human PD-L2 antibodies
US20210080467A1 (en) 2018-02-21 2021-03-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sk1 as biomarker for predicting response to immunecheckpoint inhibitors
WO2019165195A1 (en) 2018-02-22 2019-08-29 Srivastava Satish Combination therapy for the treatment of cancer
BR122023024273A2 (pt) 2018-02-27 2024-02-20 Incyte Corporation Compostos imidazopirimidinas e triazolopirimidinas, seus usos, método para inibir uma atividade de um receptor de adenosina e composição farmacêutica dos mesmos
CN111801331A (zh) 2018-02-28 2020-10-20 诺华股份有限公司 吲哚-2-羰基化合物及其用于治疗乙型肝炎的用途
WO2019169229A1 (en) 2018-03-01 2019-09-06 Nextcure, Inc. Klrg1 binding compositions and methods of use thereof
TWI708787B (zh) 2018-03-02 2020-11-01 美商美國禮來大藥廠 Pd-1促效劑抗體及其用途
WO2019170727A1 (en) 2018-03-06 2019-09-12 Institut Curie Inhibitor of setdb1 histone methyltransferase for use in cancer combination therapy
WO2019171253A1 (en) 2018-03-07 2019-09-12 Pfizer Inc. Anti-pd-1 antibody compositions
GB201803746D0 (en) * 2018-03-08 2018-04-25 Ultrahuman Eight Ltd PD1 binding agents
GB201803745D0 (en) 2018-03-08 2018-04-25 Ultrahuman Eight Ltd PD1 binding agents
JP2021517589A (ja) 2018-03-12 2021-07-26 アンセルム(アンスティチュート・ナシオナル・ドゥ・ラ・サンテ・エ・ドゥ・ラ・ルシェルシュ・メディカル) 癌の治療のための化学免疫療法を増強するためのカロリー制限模倣物の使用
JP7154634B2 (ja) * 2018-03-13 2022-10-18 国立大学法人大阪大学 腫瘍免疫賦活剤
CN108434452A (zh) * 2018-03-13 2018-08-24 安徽瀚海博兴生物技术有限公司 一种将pd-1抗体和jmjd6联合用于制备抗癌药物的应用
WO2019178364A2 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
US20210363268A1 (en) 2018-03-14 2021-11-25 Surface Oncology, Inc. Antibodies That Bind CD39 and Uses Thereof
WO2019178362A1 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
CN110272490B (zh) * 2018-03-14 2021-05-14 上海开拓者生物医药有限公司 靶向ctla-4抗体、其制备方法和用途
WO2019183093A1 (en) * 2018-03-19 2019-09-26 Abeome Corporation High affinity neutralizing monoclonal antibodies to programmed death ligand 1 (pd-l1) and uses thereof
CN112020510B (zh) 2018-03-19 2024-10-11 茂体外尔公司 包含用于治疗癌症的肿瘤抑制基因疗法和cd122/cd132激动剂的方法及组合物
WO2019179396A1 (en) * 2018-03-20 2019-09-26 Wuxi Biologics (Shanghai) Co., Ltd. Novel anti-pd-1 antibodies
KR20200135421A (ko) 2018-03-21 2020-12-02 파이브 프라임 테라퓨틱스, 인크. 산성 pH에서 VISTA에 결합하는 항체
TWI841554B (zh) 2018-03-21 2024-05-11 丹麥商珍美寶股份有限公司 以鉑為主之劑與抗組織因子抗體-藥物共軛物的組合治療癌症之方法
CN112512571B (zh) 2018-03-22 2025-02-07 表面肿瘤学有限责任公司 抗il-27抗体及其用途
MX2020009861A (es) 2018-03-23 2020-10-08 Bristol Myers Squibb Co Anticuerpos contra el complejo principal de histocompatibilidad relacionado con las cadenas a y b clase i (mica) y/o (micb) y sus usos.
US10760075B2 (en) 2018-04-30 2020-09-01 Snipr Biome Aps Treating and preventing microbial infections
AU2019246043B2 (en) 2018-03-25 2024-07-04 Snipr Biome Aps. Treating and preventing microbial infections
SG11202009498RA (en) 2018-03-27 2020-10-29 Univ Texas Compounds with anti-tumor activity against cancer cells bearing her2 exon 19 mutations
EP3589660A4 (en) * 2018-03-29 2021-04-07 I-Mab Biopharma US Limited ANTI-PD-L1 ANTIBODIES AND USES THEREOF
WO2019185792A1 (en) 2018-03-29 2019-10-03 Philogen S.P.A Cancer treatment using immunoconjugates and immune check-point inhibitors
SMT202400287T1 (it) 2018-03-29 2024-09-16 Iovance Biotherapeutics Inc Procedimenti per la produzione di linfociti infiltranti il tumore e loro usi in immunoterapia
CN108588030B (zh) * 2018-03-30 2020-07-14 四川迈克生物新材料技术有限公司 抗人IgM单克隆抗体、其杂交瘤细胞株及应用
EP4212529B1 (en) 2018-03-30 2025-01-29 Incyte Corporation Heterocyclic compounds as immunomodulators
EP3774911A1 (en) 2018-03-30 2021-02-17 Bristol-Myers Squibb Company Methods of treating tumor
WO2019195063A1 (en) 2018-04-03 2019-10-10 Merck Sharp & Dohme Corp. Aza-benzothiophene compounds as sting agonists
MA52189A (fr) 2018-04-03 2021-02-17 Merck Sharp & Dohme Benzothiophènes et composés associés utilisés en tant qu'agonistes de sting
EP3774903A1 (en) 2018-04-04 2021-02-17 Bristol-Myers Squibb Company Anti-cd27 antibodies and uses thereof
WO2019193540A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Heteroaryl derivatives of formula (i) as atf4 inhibitors
WO2019193541A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Bicyclic aromatic ring derivatives of formula (i) as atf4 inhibitors
MX2020010604A (es) 2018-04-12 2020-10-20 Bristol Myers Squibb Co Terapia de combinacion anticancer con anticuerpo antagonista del grupo de diferenciacion 73 (cd73) y anticuerpo antagonista del eje proteina de muerte programada 1 (pd-1)/ligando de muerte programada 1 (pd-l1).
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
WO2019204132A1 (en) * 2018-04-15 2019-10-24 Biosion Inc. Antibodies binding pd-1 and uses thereof
WO2019201169A1 (en) * 2018-04-15 2019-10-24 Salubris (Chengdu) Biotech Co., Ltd Antibodies binding pd-1 and uses thereof
JP7520366B2 (ja) 2018-04-16 2024-07-23 オンクオリティー ファーマシューティカルズ チャイナ リミテッド 腫瘍療法の副作用の予防または治療方法
JP7361713B2 (ja) 2018-04-17 2023-10-16 テンペスト セラピューティクス,インク. 二環式カルボキサミドおよびその使用方法
CN112867734A (zh) 2018-04-18 2021-05-28 Xencor股份有限公司 包含IL-15/IL-15Ra Fc融合蛋白和PD-1抗原结合结构域的靶向PD-1的异源二聚体融合蛋白及其用途
IL310398A (en) 2018-04-18 2024-03-01 Xencor Inc Proteins from heterodimeric il-15/il-15rα fc and their uses
CN112105733B (zh) 2018-04-19 2024-10-29 查美特制药公司 合成rig-i样受体激动剂
JP7242702B2 (ja) 2018-04-19 2023-03-20 ギリアード サイエンシーズ, インコーポレイテッド Pd-1/pd-l1阻害剤
WO2019204179A1 (en) 2018-04-20 2019-10-24 Merck Sharp & Dohme Corp. Novel substituted rig-i agonists: compositions and methods thereof
US11485741B2 (en) 2018-04-24 2022-11-01 Bristol-Myers Squibb Company Macrocyclic toll-like receptor 7 (TLR7) agonists
WO2019207030A1 (en) 2018-04-26 2019-10-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer
JP2021522239A (ja) 2018-04-26 2021-08-30 アジェナス インコーポレイテッド 熱ショックタンパク質結合ペプチド組成物およびその使用方法
JP6630026B1 (ja) * 2018-04-27 2020-01-15 隆代 大田 免疫チェックポイント阻害剤によるがん治療の効果を評価するためのバイオマーカー
EP3784351A1 (en) 2018-04-27 2021-03-03 Novartis AG Car t cell therapies with enhanced efficacy
AU2019257749A1 (en) 2018-04-27 2020-10-22 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP3788369A1 (en) 2018-05-01 2021-03-10 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
US12048745B2 (en) 2018-05-01 2024-07-30 Augusta University Research Institute, Inc. Methods for detecting and reversing immune therapy resistance
JP7368453B2 (ja) 2018-05-03 2023-10-24 シャンハイ エピムアブ バイオセラピューティクス カンパニー リミテッド Pd-1およびlag-3に対する高親和性抗体ならびにそれらから作製された二重特異性結合タンパク質
MA52501A (fr) 2018-05-04 2021-03-10 Amgen Inc Inhibiteurs de kras g12c et leurs procédés d'utilisation
KR20210006353A (ko) 2018-05-04 2021-01-18 톨리스 상피 세포 및 골수 세포 모두를 활성화시키는 tlr3 리간드
US20210246208A1 (en) 2018-05-04 2021-08-12 Merck Patent Gmbh Combined inhibition of pd-1/pd-l1, tgfb and dna-pk for the treatment of cancer
CR20200591A (es) 2018-05-04 2021-03-31 Incyte Corp Sales de un inhibidor de fgfr
BR112020022392A2 (pt) 2018-05-04 2021-02-02 Incyte Corporation formas sólidas de um inibidor de fgfr e processos para preparação das mesmas
US11045484B2 (en) 2018-05-04 2021-06-29 Amgen Inc. KRAS G12C inhibitors and methods of using the same
JP7519907B2 (ja) * 2018-05-07 2024-07-22 ジェンマブ エー/エス 抗pd-1抗体と抗組織因子抗体-薬物コンジュゲートとの組み合わせを用いるがんの治療方法
MA52564A (fr) 2018-05-10 2021-03-17 Amgen Inc Inhibiteurs de kras g12c pour le traitement du cancer
WO2019217753A1 (en) 2018-05-10 2019-11-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP4219492B1 (en) 2018-05-11 2024-11-27 Incyte Corporation Heterocyclic compounds as immunomodulators
MX2020012137A (es) 2018-05-14 2021-01-29 Gilead Sciences Inc Inhibidores de mcl-1.
WO2019222359A1 (en) 2018-05-15 2019-11-21 Duke University Systems and methods for genetic manipulation of akkermansia species
SG11202011117VA (en) 2018-05-15 2020-12-30 Medimmune Ltd Treatment of cancer
GB201807924D0 (en) 2018-05-16 2018-06-27 Ctxt Pty Ltd Compounds
JP7535503B2 (ja) * 2018-05-17 2024-08-16 ナンジン リーズ バイオラブズ カンパニー リミテッド Pd-1に結合する抗体及びその使用
MX2020012376A (es) 2018-05-18 2021-03-09 Incyte Corp Derivados de pirimidina fusionados como inhibidores de los receptores de adenosina a2a/a2b.
EP3569618A1 (en) 2018-05-19 2019-11-20 Boehringer Ingelheim International GmbH Antagonizing cd73 antibody
KR20210021996A (ko) 2018-05-23 2021-03-02 셀진 코포레이션 병용 사용을 위한 bcma 및 cd3에 대한 항증식성 화합물 및 이중특이성 항체
CN112492874A (zh) 2018-05-23 2021-03-12 细胞基因公司 治疗多发性骨髓瘤以及生物标志物对于4-(4-(4-(((2-(2,6-二氧代哌啶-3-基)-1-氧代异吲哚啉-4-基)氧基)甲基)苄基)哌嗪-1-基)-3-氟苄腈的用途
CN112188902A (zh) 2018-05-29 2021-01-05 百时美施贵宝公司 用于前药和缀合物的经修饰的自消灭部分以及使用和制造方法
UY38247A (es) 2018-05-30 2019-12-31 Novartis Ag Anticuerpos frente a entpd2, terapias de combinación y métodos de uso de los anticuerpos y las terapias de combinación
US11352320B2 (en) 2018-05-31 2022-06-07 Merck Sharp & Dohme Corp. Substituted [1.1.1] bicyclo compounds as indoleamine 2,3-dioxygenase inhibitors
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
CN112165974B (zh) 2018-05-31 2024-11-08 诺华股份有限公司 乙型肝炎抗体
EP3810109B1 (en) 2018-05-31 2024-08-07 Peloton Therapeutics, Inc. Compounds and compositions for inhibiting cd73
EP3802535B1 (en) 2018-06-01 2022-12-14 Amgen, Inc Kras g12c inhibitors and methods of using the same
WO2019232523A1 (en) 2018-06-01 2019-12-05 The Board Of Trustees Of The Leland Stanford Junior University Il-13/il-4 superkines: immune cell targeting constructs and methods of use thereof
MX2020012940A (es) 2018-06-01 2021-03-25 Eisai R&D Man Co Ltd Metodos de uso de moduladores de empalme.
WO2019227490A1 (en) * 2018-06-01 2019-12-05 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and methods for imaging
JP2021525769A (ja) 2018-06-01 2021-09-27 ノバルティス アーゲー Cd123及びcd3に結合する二重特異性抗体の投与
EP3802611A2 (en) 2018-06-01 2021-04-14 Novartis AG Binding molecules against bcma and uses thereof
JP2021525806A (ja) 2018-06-01 2021-09-27 タユー ファシャ バイオテック メディカル グループ カンパニー, リミテッド 疾患または状態を処置するための組成物およびそれらの使用
CA3102398A1 (en) 2018-06-03 2019-12-12 Lamkap Bio Beta Ltd. Bispecific antibodies against ceacam5 and cd47
AU2019284472B2 (en) 2018-06-11 2024-05-30 Amgen Inc. KRAS G12C inhibitors for treating cancer
US20210230289A1 (en) 2018-06-12 2021-07-29 The Regents Of The University Of California Single-chain bispecific chimeric antigen receptors for the treatment of cancer
CA3100390A1 (en) 2018-06-12 2020-03-12 Amgen Inc. Kras g12c inhibitors encompassing piperazine ring and use thereof in the treatment of cancer
SG11202011830SA (en) 2018-06-13 2020-12-30 Novartis Ag Bcma chimeric antigen receptors and uses thereof
EP3806848A2 (en) 2018-06-15 2021-04-21 Flagship Pioneering Innovations V, Inc. Increasing immune activity through modulation of postcellular signaling factors
DK3807316T3 (da) 2018-06-18 2024-07-29 Innate Pharma Sammensætninger og fremgangsmåder til behandling af cancer
WO2019245817A1 (en) 2018-06-19 2019-12-26 Armo Biosciences, Inc. Compositions and methods of use of il-10 agents in conjunction with chimeric antigen receptor cell therapy
WO2019246286A1 (en) 2018-06-19 2019-12-26 Neon Therapeutics, Inc. Neoantigens and uses thereof
EP3811949B1 (en) 2018-06-20 2024-07-03 FUJIFILM Corporation Combined medicine comprising gemcitabine-encapsulated liposome composition and immune checkpoint blockade
FI3811931T3 (fi) 2018-06-20 2024-09-12 Fujifilm Corp Liposomikoostumukseen kapseloidun lääkkeen ja immuunitarkistuspisteinhibiittorin sisältävä yhdistelmälääkitys
US11274111B2 (en) 2018-06-20 2022-03-15 Merck Sharp & Dohme Corp. Arginase inhibitors and methods of use
TW202005985A (zh) 2018-06-21 2020-02-01 美商再生元醫藥公司 用雙特異性抗CD3xMUC16抗體及抗PD-1抗體治療癌症的方法
CN112585166A (zh) 2018-06-23 2021-03-30 豪夫迈·罗氏有限公司 用pd-1轴结合拮抗剂、铂剂和拓扑异构酶ii抑制剂治疗肺癌的方法
WO2020005068A2 (en) 2018-06-29 2020-01-02 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Gene signatures and method for predicting response to pd-1 antagonists and ctla-4 antagonists, and combination thereof
CN112955465A (zh) 2018-07-03 2021-06-11 马伦戈治疗公司 抗tcr抗体分子及其用途
JP7490631B2 (ja) 2018-07-05 2024-05-27 インサイト・コーポレイション A2a/a2b阻害剤としての縮合ピラジン誘導体
WO2020014285A2 (en) * 2018-07-09 2020-01-16 Intrexon Corporation Fusion constructs and methods of using thereof
EP3820904A2 (en) 2018-07-09 2021-05-19 Five Prime Therapeutics, Inc. Antibodies binding to ilt4
WO2020012339A1 (en) 2018-07-09 2020-01-16 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
HRP20231295T1 (hr) 2018-07-10 2024-02-02 Novartis Ag Derivati 3-(5-hidroksi-1-oksoizoindolin-2-il)piperidin-2,6-diona i njihova upotreba u liječenju bolesti ovisnih o cinkovom prstu 2 (ikzf2) obitelji ikaros
BR112021000303A2 (pt) 2018-07-11 2021-04-13 Five Prime Therapeutics, Inc. Anticorpos que se ligam a vista em ph ácido
MX2021000165A (es) 2018-07-11 2021-05-28 Actym Therapeutics Inc Cepas bacterianas inmunoestimuladoras modificadas y usos de las mismas.
GB201811410D0 (en) 2018-07-12 2018-08-29 F Star Beta Ltd OX40 Binding molecules
KR20210031479A (ko) 2018-07-12 2021-03-19 에프-스타 베타 리미티드 Cd137 및 ox40에 결합하는 항체 분자
US10774071B2 (en) 2018-07-13 2020-09-15 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
WO2020014583A1 (en) 2018-07-13 2020-01-16 Bristol-Myers Squibb Company Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a mehtod of treating a cancer or a solid tumor
MX2021000558A (es) 2018-07-18 2021-04-13 Genentech Inc Metodos para tratar el cancer de pulmon con un antagonista de fijacion al eje pd-1, un antimetabolito y un agente de platino.
CN113861295B (zh) * 2018-07-20 2024-05-24 厦门大学 抗pd-1抗体及其用途
US20210301020A1 (en) 2018-07-24 2021-09-30 Amgen Inc. Combination of lilrb1/2 pathway inhibitors and pd-1 pathway inhibitors
CN112739371A (zh) 2018-07-26 2021-04-30 百时美施贵宝公司 用于治疗癌症的lag-3组合疗法
WO2020021061A1 (en) 2018-07-26 2020-01-30 Pieris Pharmaceuticals Gmbh Humanized anti-pd-1 antibodies and uses thereof
US11554120B2 (en) 2018-08-03 2023-01-17 Bristol-Myers Squibb Company 1H-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (TLR7) agonists and methods and uses therefor
WO2020030571A1 (en) 2018-08-06 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Combinations of a pd-1 antibody and a tlr4 modulator and uses thereof
US20210236633A1 (en) 2018-08-06 2021-08-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers
WO2020031107A1 (en) 2018-08-08 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
EP3833762A4 (en) 2018-08-09 2022-09-28 Verseau Therapeutics, Inc. OLIGONUCLEOTIDE COMPOSITIONS FOR TARGETING CCR2 AND CSF1R AND THEIR USES
CN110423757B (zh) * 2018-08-11 2021-03-30 广东天科雅生物医药科技有限公司 一种工程化核酸、t细胞及其应用和产生方法
US12173070B2 (en) * 2018-08-21 2024-12-24 Abl Bio Inc. Anti-PD-L1/anti-LAG3 bispecific antibodies and uses thereof
WO2020043683A1 (en) 2018-08-27 2020-03-05 Pieris Pharmaceuticals Gmbh Combination therapies comprising cd137/her2 bispecific agents and pd-1 axis inhibitors and uses thereof
CN113366117A (zh) * 2018-08-28 2021-09-07 10X基因组学股份有限公司 用于生物样品中转座酶介导的空间标记和分析基因组dna的方法
WO2020044206A1 (en) 2018-08-29 2020-03-05 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors for use in the treatment cancer
TW202031273A (zh) 2018-08-31 2020-09-01 美商艾歐凡斯生物治療公司 抗pd-1抗體難治療性之非小細胞肺癌(nsclc)病患的治療
WO2020047345A1 (en) 2018-08-31 2020-03-05 Yale University Compositions and methods of using cell-penetrating antibodies in combination with immune checkpoint modulators
WO2020044252A1 (en) 2018-08-31 2020-03-05 Novartis Ag Dosage regimes for anti-m-csf antibodies and uses thereof
WO2020051099A1 (en) 2018-09-03 2020-03-12 Genentech, Inc. Carboxamide and sulfonamide derivatives useful as tead modulators
WO2020048942A1 (en) 2018-09-04 2020-03-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses
WO2020049534A1 (en) 2018-09-07 2020-03-12 Novartis Ag Sting agonist and combination therapy thereof for the treatment of cancer
SG11202100888WA (en) 2018-09-07 2021-02-25 Pfizer Anti-avb8 antibodies and compositions and uses thereof
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
WO2020055840A1 (en) 2018-09-11 2020-03-19 Curis Inc. Combination therapy with a phosphoinositide 3-kinase inhibitor with a zinc binding moiety
EP3849979A1 (en) 2018-09-12 2021-07-21 Novartis AG Antiviral pyridopyrazinedione compounds
EP3849606A4 (en) 2018-09-13 2022-06-29 Merck Sharp & Dohme Corp. Combination of pd-1 antagonist and lag3 antagonist for treating non-microsatellite instablity-high/proficient mismatch repair colorectal cancer
KR20210063330A (ko) 2018-09-19 2021-06-01 제넨테크, 인크. 방광암에 대한 치료 및 진단 방법
US20220177587A1 (en) 2018-09-19 2022-06-09 Alpine Immune Sciences, Inc. Methods and uses of variant cd80 fusion proteins and related constructs
JP7618950B2 (ja) 2018-09-19 2025-01-22 インサーム (インスティテュート ナショナル デ ラ サンテ エ デ ラ ルシェルシェ メディカル) 免疫チェックポイント治療に抵抗性のある癌の治療のための方法および医薬組成物
KR20210064269A (ko) 2018-09-20 2021-06-02 이오반스 바이오테라퓨틱스, 인크. 동결보존된 종양 샘플로부터의 til의 확장
WO2020061482A1 (en) 2018-09-21 2020-03-26 Harpoon Therapeutics, Inc. Egfr binding proteins and methods of use
MX2021003213A (es) 2018-09-21 2021-05-12 Genentech Inc Metodos de diagnostico para cancer de mama triple negativo.
CN113286817B (zh) 2018-09-25 2025-01-28 哈普恩治疗公司 Dll3结合蛋白及使用方法
AU2019346645A1 (en) 2018-09-27 2021-04-29 Marengo Therapeutics, Inc. CSF1R/CCR2 multispecific antibodies
EP3856782A1 (en) 2018-09-28 2021-08-04 Novartis AG Cd19 chimeric antigen receptor (car) and cd22 car combination therapies
WO2020069405A1 (en) 2018-09-28 2020-04-02 Novartis Ag Cd22 chimeric antigen receptor (car) therapies
JP7557882B2 (ja) 2018-09-28 2024-09-30 マサチューセッツ インスティテュート オブ テクノロジー コラーゲンに局在化される免疫調節分子およびその方法
CN112839715B (zh) 2018-09-29 2024-12-03 诺华股份有限公司 抑制shp2活性化合物的制造方法
EP3860578A1 (en) 2018-10-01 2021-08-11 Institut National de la Santé et de la Recherche Médicale (INSERM) Use of inhibitors of stress granule formation for targeting the regulation of immune responses
US11358999B2 (en) 2018-10-03 2022-06-14 Xencor, Inc. IL-12 heterodimeric Fc-fusion proteins
CN112839962A (zh) 2018-10-09 2021-05-25 百时美施贵宝公司 用于治疗癌症的抗mertk抗体
US11066404B2 (en) 2018-10-11 2021-07-20 Incyte Corporation Dihydropyrido[2,3-d]pyrimidinone compounds as CDK2 inhibitors
TWI855000B (zh) 2018-10-11 2024-09-11 日商小野藥品工業股份有限公司 Sting促效化合物
PE20211055A1 (es) 2018-10-12 2021-06-07 Xencor Inc Proteinas de fusion il-15 / il-15 ralpha f c dirigidas a pd-1 y usos en terapias de combinacion de las mismas
EP3868784A4 (en) 2018-10-15 2022-07-27 Industry-Academic Cooperation Foundation, Yonsei University ANTIBODIES WITH INCREASED PRODUCTIVITY AND METHODS FOR THEIR PRODUCTION
CN112867803A (zh) 2018-10-16 2021-05-28 诺华股份有限公司 单独的或与免疫标志物组合的肿瘤突变负荷作为生物标志物用于预测对靶向疗法的应答
BR112021007318A2 (pt) 2018-10-17 2021-08-31 Biolinerx Ltd. Tratamento de adenocarcinoma pancreático metastático
US12152019B2 (en) 2018-10-17 2024-11-26 Merck Sharp & Dohme Llc Arylalkyl pyrazole compounds as indoleamine 2,3-dioxygenase inhibitors
MX2021004348A (es) 2018-10-18 2021-05-28 Genentech Inc Procedimientos de diagnóstico y terapéuticos para el cáncer de riñón sarcomatoide.
US20210340240A1 (en) 2018-10-18 2021-11-04 INSERM (Institut National de la Santé et de la Recherche Médicale Combination of a big-h3 antagonist and an immune checkpoint inhibitor for the treatment of solid tumor
MX2021003903A (es) 2018-10-19 2021-06-04 Bristol Myers Squibb Co Terapia combinada para el melanoma.
US20210324081A1 (en) 2018-10-22 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Dosing
KR20210081384A (ko) 2018-10-23 2021-07-01 브리스톨-마이어스 스큅 컴퍼니 종양을 치료하는 방법
JP7158577B2 (ja) 2018-10-24 2022-10-21 ギリアード サイエンシーズ, インコーポレイテッド Pd-1/pd-l1阻害剤
CN113613680A (zh) 2018-10-29 2021-11-05 威斯康星校友研究基金会 用于增强癌症免疫疗法的与免疫检查点抑制剂复合的树枝状聚合物
EA202191175A1 (ru) 2018-10-29 2021-09-08 Мерсана Терапьютикс, Инк. Сконструированные с цистеином конъюгаты антитело-лекарственное средство, содержащие пептидсодержащие линкеры
US11564995B2 (en) 2018-10-29 2023-01-31 Wisconsin Alumni Research Foundation Peptide-nanoparticle conjugates
EP3873540A4 (en) 2018-10-31 2022-07-27 Mayo Foundation for Medical Education and Research Methods and materials for treating cancer
WO2020089811A1 (en) 2018-10-31 2020-05-07 Novartis Ag Dc-sign antibody drug conjugates
AU2019374103A1 (en) 2018-11-01 2021-05-20 Juno Therapeutics, Inc. Chimeric antigen receptors specific for G Protein-Coupled Receptor Class C Group 5 Member D (GPRC5D)
EP3873943A2 (en) 2018-11-01 2021-09-08 Juno Therapeutics, Inc. Methods for treatment using chimeric antigen receptors specific for b-cell maturation antigen
WO2020092183A1 (en) 2018-11-01 2020-05-07 Merck Sharp & Dohme Corp. Novel substituted pyrazole compounds as indoleamine 2,3-dioxygenase inhibitors
CA3118616A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
KR20210091212A (ko) 2018-11-05 2021-07-21 이오반스 바이오테라퓨틱스, 인크. 항-pd-1 항체에 불응성인 nsclc 환자의 치료
CN113272421B (zh) 2018-11-05 2025-02-18 艾欧凡斯生物治疗公司 用于产生肿瘤浸润性淋巴细胞的方法及其在免疫疗法中的用途
US12065438B2 (en) 2018-11-06 2024-08-20 Merck Sharp & Dohme Llc Substituted tricyclic compounds as indoleamine 2,3-dioxygenase inhibitors
US20220001026A1 (en) 2018-11-08 2022-01-06 Modernatx, Inc. Use of mrna encoding ox40l to treat cancer in human patients
CA3119563A1 (en) 2018-11-14 2020-05-22 Bayer Aktiengesellschaft Pharmaceutical combination of anti-ceacam6 and either anti-pd-1 or anti-pd-l1 antibodies for the treatment of cancer
TW202028222A (zh) 2018-11-14 2020-08-01 美商Ionis製藥公司 Foxp3表現之調節劑
EP3880186B1 (en) 2018-11-14 2024-04-03 Regeneron Pharmaceuticals, Inc. Intralesional administration of pd-1 inhibitors for treating skin cancer
KR20210104713A (ko) 2018-11-16 2021-08-25 주노 쎄러퓨티크스 인코퍼레이티드 B 세포 악성 종양 치료를 위한 조작된 t 세포 투약 방법
US11274150B2 (en) 2018-11-16 2022-03-15 Bristol-Myers Squibb Company Anti-human natural killer cell inhibitory receptor group 2A protein (NKG2A) antibodies
JP7516029B2 (ja) 2018-11-16 2024-07-16 アムジエン・インコーポレーテツド Kras g12c阻害剤化合物の重要な中間体の改良合成法
US20200155521A1 (en) 2018-11-16 2020-05-21 Arqule, Inc. Pharmaceutical combination for treatment of cancer
US20220008515A1 (en) 2018-11-16 2022-01-13 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor
JP7454572B2 (ja) 2018-11-19 2024-03-22 アムジエン・インコーポレーテツド Kras g12c阻害剤及びその使用方法
JP7377679B2 (ja) 2018-11-19 2023-11-10 アムジエン・インコーポレーテツド がん治療のためのkrasg12c阻害剤及び1種以上の薬学的に活性な追加の薬剤を含む併用療法
JP7630832B2 (ja) 2018-11-19 2025-02-18 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム Carおよびtcr形質導入用のモジュール式ポリシストロニックベクター
WO2020104479A1 (en) 2018-11-20 2020-05-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies
WO2020104496A1 (en) 2018-11-20 2020-05-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Bispecific antibody targeting transferrin receptor 1 and soluble antigen
EP3883610A4 (en) 2018-11-20 2022-11-02 Cornell University MACROCYCLIC COMPLEXES OF RADIONUCLIDES AND THEIR USE IN CANCER RADIATION THERAPY
US20220040184A1 (en) 2018-11-20 2022-02-10 Merck Sharp Dohme Corp. Substituted amino triazolopyrimidine and amino triazolopyrazine adenosine receptor antagonists, pharmaceutical compositions and their use
JP2022507734A (ja) 2018-11-20 2022-01-18 メルク・シャープ・アンド・ドーム・コーポレーション 置換アミノトリアゾロピリミジン及びアミノトリアゾロピラジンアデノシン受容体アンタゴニスト、医薬組成物及びそれらの使用
EP3886842A1 (en) 2018-11-26 2021-10-06 Debiopharm International SA Combination treatment of hiv infections
TWI818120B (zh) 2018-11-27 2023-10-11 日商小野藥品工業股份有限公司 藉由免疫檢查點阻礙藥與folfirinox療法之併用的癌症治療
CN113348177A (zh) 2018-11-28 2021-09-03 百时美施贵宝公司 包含经修饰的重链恒定区的抗体
EA202191463A1 (ru) 2018-11-28 2021-10-13 Борд Оф Риджентс, Дзе Юниверсити Оф Техас Систем Мультиплексное редактирование генома иммунных клеток для повышения функциональности и устойчивости к подавляющей среде
WO2020112581A1 (en) 2018-11-28 2020-06-04 Merck Sharp & Dohme Corp. Novel substituted piperazine amide compounds as indoleamine 2, 3-dioxygenase (ido) inhibitors
US20220018828A1 (en) 2018-11-28 2022-01-20 Inserm (Institut National De La Santé Et La Recherche Médicale Methods and kit for assaying lytic potential of immune effector cells
CA3121210A1 (en) 2018-11-29 2020-06-04 Board Of Regents, The University Of Texas System Methods for ex vivo expansion of natural killer cells and use thereof
EP4427810A3 (en) 2018-11-30 2024-12-04 Juno Therapeutics, Inc. Methods for treatment using adoptive cell therapy
CN113613724B (zh) 2018-11-30 2024-11-08 葛兰素史克知识产权开发有限公司 可用于hiv疗法的化合物
ES2943474T3 (es) 2018-11-30 2023-06-13 Bristol Myers Squibb Co Anticuerpo que comprende una extensión carboxiterminal de una cadena ligera que contiene glutamina, conjugados del mismo, y métodos y usos
AR117164A1 (es) 2018-11-30 2021-07-14 Merck Sharp & Dohme Derivados de amino-triazoloquinazolina 9-sustituidos como antagonistas del receptor de adenosina, composiciones farmacéuticas y su uso para el tratamiento de diversos tipos de cáncer
EP3887548A1 (en) 2018-11-30 2021-10-06 GBG Forschungs GmbH Method for predicting the response to cancer immunotherapy in cancer patients
MX2021006430A (es) 2018-12-03 2021-09-14 Agensys Inc Composiciones farmacéuticas que comprenden conjugados de fármaco-anticuerpo anti-191p4d12 y métodos de uso de las mismas.
KR20210099066A (ko) 2018-12-04 2021-08-11 스미토모 다이니폰 파마 온콜로지, 인크. 암의 치료를 위한 작용제로서 사용하기 위한 cdk9 억제제 및 그의 다형체
KR20210100656A (ko) 2018-12-05 2021-08-17 제넨테크, 인크. 암 면역요법을 위한 진단 방법 및 조성물
WO2020115262A1 (en) 2018-12-07 2020-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes
WO2020115261A1 (en) 2018-12-07 2020-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
MX2021006831A (es) 2018-12-11 2021-07-02 Theravance Biopharma R&D Ip Llc Inhibidores de alk5.
WO2020120592A1 (en) 2018-12-12 2020-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating melanoma
US20220031860A1 (en) 2018-12-12 2022-02-03 Bristol-Myers Squibb Company Antibodies modified for transglutaminase conjugation, conjugates thereof, and methods and uses
EP3897624A1 (en) 2018-12-17 2021-10-27 Institut National de la Santé et de la Recherche Médicale (INSERM) Use of sulconazole as a furin inhibitor
WO2020131885A1 (en) * 2018-12-17 2020-06-25 Eamonn Hobbs In situ therapeutic cancer vaccine creation system and method
GB201820547D0 (en) 2018-12-17 2019-01-30 Oxford Univ Innovation Modified antibodies
MX2021007369A (es) 2018-12-19 2021-07-15 Bayer Ag Combinacion farmaceutica de anticuerpos anti ceacam6 y tim3.
EP3898699A1 (en) 2018-12-19 2021-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers by immuno-modulation using antibodies against cathespin-d
JP2022513967A (ja) 2018-12-20 2022-02-09 アムジエン・インコーポレーテツド Kif18a阻害剤として有用なヘテロアリールアミド
ES2997190T3 (en) 2018-12-20 2025-02-14 Amgen Inc Heteroaryl amides useful as kif18a inhibitors
KR20210106474A (ko) 2018-12-20 2021-08-30 암젠 인크 Kif18a 억제제
WO2020132646A1 (en) 2018-12-20 2020-06-25 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and nkg2d antigen binding domains
BR112021011874A2 (pt) 2018-12-20 2021-09-08 Novartis Ag Regime de dosagem e combinação farmacêutica compreendendo derivados de 3-(1-oxoisoindolin-2-il)piperidina-2,6-diona
JP2022514268A (ja) 2018-12-20 2022-02-10 アムジエン・インコーポレーテツド Kif18a阻害剤
JP7450622B2 (ja) 2018-12-21 2024-03-15 ヴァレリオ・セラピューティクス 新規のコンジュゲートされた核酸分子及びその使用
MX2021007593A (es) 2018-12-21 2021-09-10 Novartis Ag Anticuerpos anti-pmel17 y conjugados de los mismos.
WO2020127885A1 (en) 2018-12-21 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Compositions for treating cancers and resistant cancers
BR112021012037A2 (pt) 2018-12-21 2021-11-03 Ose Immunotherapeutics Molécula anti-pd-1/il-7 bifuncional
CN111349162A (zh) * 2018-12-21 2020-06-30 神州细胞工程有限公司 人源化抗pd-1抗体及其用途
CN113574067A (zh) 2018-12-21 2021-10-29 Ose免疫疗法公司 双功能抗PD-1/SIRPα分子
SG11202106295WA (en) 2018-12-21 2021-07-29 Aim Immunotech Inc Compositions and methods for cancer therapy
US20220025056A1 (en) 2018-12-26 2022-01-27 Innate Pharma Leucocyte immunoglobulin-like receptor neutralizing antibodies
AU2019414968A1 (en) * 2018-12-27 2021-08-12 Gigagen, Inc. Anti-PD-1 binding proteins and methods of use thereof
AR117547A1 (es) 2018-12-27 2021-08-11 Amgen Inc Formulaciones de virus liofilizadas
CA3125476A1 (en) 2019-01-03 2020-07-09 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer
EA202191620A1 (ru) 2019-01-09 2021-11-01 Селджин Корпорейшн Твердые формы, содержащие (s)-4-(4-(4-(((2-(2,6-диоксопиперидин-3-ил)-1-оксоизоиндолин-4-ил)окси)метил)бензил)пиперазин-1-ил)-3-фторбензонитрил и его соли, и содержащие их композиции и способы их применения
CN114409630B (zh) 2019-01-09 2024-04-02 细胞基因公司 包含氧代异吲哚化合物的药物组合物以及使用它的方法
CN118178417A (zh) 2019-01-09 2024-06-14 细胞基因公司 用于治疗多发性骨髓瘤的抗增殖化合物和第二活性剂
CN111423510B (zh) 2019-01-10 2024-02-06 迈威(上海)生物科技股份有限公司 重组抗人pd-1抗体及其应用
CN113710702A (zh) 2019-01-14 2021-11-26 健泰科生物技术公司 用pd-1轴结合拮抗剂和rna疫苗治疗癌症的方法
WO2020148338A1 (en) 2019-01-15 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Mutated interleukin-34 (il-34) polypeptides and uses thereof in therapy
JP7636330B2 (ja) 2019-01-17 2025-02-26 ジョージア テック リサーチ コーポレイション 酸化コレステロールを含有する薬物送達システム
CA3126822A1 (en) 2019-01-18 2020-07-23 Dracen Pharmaceuticals, Inc. Combinaton therapy with a don prodrug and an immune checkpoint inhibitor
KR20210118870A (ko) 2019-01-21 2021-10-01 사노피 진행성 단계의 고형 종양 암에 대한 치료용 rna 및 항-pd1 항체
EP3914289A1 (en) 2019-01-23 2021-12-01 Massachusetts Institute of Technology Combination immunotherapy dosing regimen for immune checkpoint blockade
TW202043466A (zh) 2019-01-25 2020-12-01 德商百靈佳殷格翰國際股份有限公司 編碼ccl21之重組棒狀病毒
CA3123303A1 (en) 2019-01-29 2020-08-06 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase like orphan receptor 1 (ror1)
TWI829857B (zh) 2019-01-29 2024-01-21 美商英塞特公司 作為a2a / a2b抑制劑之吡唑并吡啶及三唑并吡啶
CN113366316A (zh) 2019-01-30 2021-09-07 国家医疗保健研究所 用于鉴定患有癌症的受试者是否将获得对免疫检查点抑制剂的应答的方法和组合物
CA3127113A1 (en) 2019-01-30 2020-08-06 Dongxu Sun Anti-gal3 antibodies and uses thereof
CA3128064A1 (en) 2019-02-01 2020-08-06 Glaxosmithkline Intellectual Property Development Limited Combination treatments for cancer comprising belantamab mafodotin and an anti ox40 antibody and uses and methods thereof
MX2021009041A (es) 2019-02-03 2021-08-19 Jiangsu Hengrui Medicine Co Anticuerpo anti-pd-1, fragmento de union a antigeno del mismo y uso farmaceutico del mismo.
WO2020161083A1 (en) 2019-02-04 2020-08-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating blood-brain barrier
JP2022519649A (ja) 2019-02-08 2022-03-24 ジェネンテック, インコーポレイテッド がんの診断および治療方法
JP2022519385A (ja) 2019-02-12 2022-03-23 ノバルティス アーゲー Tno155及びpd-1阻害剤を含む医薬組合せ
KR20210146290A (ko) 2019-02-12 2021-12-03 스미토모 다이니폰 파마 온콜로지, 인크. 헤테로시클릭 단백질 키나제 억제제를 포함하는 제제
WO2020165370A1 (en) 2019-02-13 2020-08-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for selecting a cancer treatment in a subject suffering from cancer
WO2020165374A1 (en) 2019-02-14 2020-08-20 Ose Immunotherapeutics Bifunctional molecule comprising il-15ra
EP3924054B1 (en) 2019-02-15 2025-04-02 Novartis AG 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
US11384083B2 (en) 2019-02-15 2022-07-12 Incyte Corporation Substituted spiro[cyclopropane-1,5′-pyrrolo[2,3-d]pyrimidin]-6′(7′h)-ones as CDK2 inhibitors
WO2020168244A1 (en) 2019-02-15 2020-08-20 Incelldx, Inc. Assaying bladder-associated samples, identifying and treating bladder-associated neoplasia, and kits for use therein
MA54947A (fr) 2019-02-15 2021-12-22 Incyte Corp Biomarqueurs de kinase 2 dépendant de la cycline et leurs utilisations
CN113329792B (zh) 2019-02-15 2024-06-28 诺华股份有限公司 取代的3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
PT3927370T (pt) 2019-02-19 2024-06-03 Turnstone Biologics Corp Métodos para produção de células t autólogas para tratar cancros e composições destas
US11279932B2 (en) 2019-02-27 2022-03-22 Ionis Pharmaceuticals, Inc. Modulators of MALAT1 expression
CN113490529A (zh) 2019-02-28 2021-10-08 瑞泽恩制药公司 用于治疗皮肤癌的pd-1抑制剂的施用
JP2022522778A (ja) 2019-03-01 2022-04-20 レボリューション メディシンズ インコーポレイテッド 二環式ヘテロシクリル化合物及びその使用
KR20210146287A (ko) 2019-03-01 2021-12-03 레볼루션 메디슨즈, 인크. 이환식 헤테로아릴 화합물 및 이의 용도
US11472791B2 (en) 2019-03-05 2022-10-18 Incyte Corporation Pyrazolyl pyrimidinylamine compounds as CDK2 inhibitors
BR112021017551A2 (pt) 2019-03-05 2021-11-09 Amgen Inc Uso de vírus oncolíticos para o tratamento de câncer
MA55204A (fr) 2019-03-06 2022-01-12 Regeneron Pharma Inhibiteurs de la voie il-4/il-13 pour une efficacité améliorée dans le traitement du cancer
WO2020185532A1 (en) 2019-03-08 2020-09-17 Incyte Corporation Methods of treating cancer with an fgfr inhibitor
TW202100556A (zh) 2019-03-14 2021-01-01 美商建南德克公司 使用her2 t細胞依賴性雙特異性抗體之治療
WO2020183011A1 (en) 2019-03-14 2020-09-17 Institut Curie Htr1d inhibitors and uses thereof in the treatment of cancer
SG11202109066RA (en) 2019-03-19 2021-09-29 Fundacio Privada Inst Dinvestigacio Oncològica De Vall Hebron Combination therapy with omomyc and an antibody binding pd-1 or ctla-4 for the treatment of cancer
WO2020191326A1 (en) 2019-03-20 2020-09-24 Sumitomo Dainippon Pharma Oncology, Inc. Treatment of acute myeloid leukemia (aml) with venetoclax failure
EP3941463A1 (en) 2019-03-22 2022-01-26 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
MA55516A (fr) 2019-03-26 2022-02-09 Univ Michigan Regents Agents de dégradation, à petites molécules, de stat3
KR20210146349A (ko) 2019-03-28 2021-12-03 브리스톨-마이어스 스큅 컴퍼니 종양을 치료하는 방법
WO2020198672A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
TW202102543A (zh) 2019-03-29 2021-01-16 美商安進公司 溶瘤病毒在癌症新輔助療法中之用途
BR112021019365A2 (pt) 2019-03-29 2021-11-30 Genentech Inc Métodos para identificar um indivíduo que tem câncer, para selecionar uma terapia, para identificar uma interação proteína-proteína e para identificar um modulador, métodos de tratamento de um indivíduo com câncer, de identificação, de seleção de uma terapia e de identificação de um modulador, coleções de polipeptídeos, de vetores e de células e moduladores isolados
JP2022527481A (ja) 2019-03-29 2022-06-02 アンスティテュ・クリー 生物活性が改変されたインターロイキン-2バリアント
WO2020205560A1 (en) 2019-03-29 2020-10-08 Incyte Corporation Sulfonylamide compounds as cdk2 inhibitors
BR112021019328A2 (pt) 2019-03-29 2021-11-30 Myst Therapeutics Llc Métodos ex vivo para produzir um produto terapêutico de célula t e composições e métodos relacionados
US20220185831A1 (en) 2019-03-29 2022-06-16 The Regents Of The University Of Michigan Stat3 protein degraders
WO2020201362A2 (en) 2019-04-02 2020-10-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
SG11202109274TA (en) 2019-04-03 2021-10-28 Targimmune Therapeutics Ag Immunotherapy for the treatment of cancer
US20220177465A1 (en) 2019-04-04 2022-06-09 Merck Sharp & Dohme Corp. Inhibitors of histone deacetylase-3 useful for the treatment of cancer, inflammation, neurodegeneration diseases and diabetes
US20220160692A1 (en) 2019-04-09 2022-05-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sk2 inhibitors in combination with immune checkpoint blockade therapy for the treatment of cancer
MX2021012406A (es) 2019-04-11 2022-01-19 Bayer Ag Combinaciones de anticuerpos anti-ildr2 y antagonistas de pd-1.
CN110095612B (zh) * 2019-04-12 2022-05-10 河北仁博科技有限公司 一种基于spr快速筛选单克隆抗体的方法
AU2020271998A1 (en) 2019-04-12 2021-09-30 Vascular Biogenics Ltd. Methods of anti-tumor therapy
EP3956446A1 (en) 2019-04-17 2022-02-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treatment of nlrp3 inflammasome mediated il-1beta dependent disorders
WO2020215037A1 (en) 2019-04-18 2020-10-22 The Regents Of The University Of Michigan Combination with checkpoint inhibitors to treat cancer
AU2020258480A1 (en) 2019-04-19 2021-10-21 Genentech, Inc. Anti-mertk antibodies and their methods of use
EP3725370A1 (en) 2019-04-19 2020-10-21 ImmunoBrain Checkpoint, Inc. Modified anti-pd-l1 antibodies and methods and uses for treating a neurodegenerative disease
CN113784981B (zh) 2019-04-23 2025-01-28 先天制药公司 Cd73阻断抗体
CN110402892A (zh) * 2019-04-30 2019-11-05 梁廷波 选择性敲除胰腺上皮细胞程序性死亡配体1分子的自发胰腺癌小鼠模型的建立方法
EP3963109A1 (en) 2019-04-30 2022-03-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2020223233A1 (en) 2019-04-30 2020-11-05 Genentech, Inc. Prognostic and therapeutic methods for colorectal cancer
WO2020223469A1 (en) 2019-05-01 2020-11-05 Incyte Corporation N-(1-(methylsulfonyl)piperidin-4-yl)-4,5-di hydro-1h-imidazo[4,5-h]quinazolin-8-amine derivatives and related compounds as cyclin-dependent kinase 2 (cdk2) inhibitors for treating cancer
US11447494B2 (en) 2019-05-01 2022-09-20 Incyte Corporation Tricyclic amine compounds as CDK2 inhibitors
US20200345820A1 (en) 2019-05-01 2020-11-05 Sensei Biotherapeutics, Inc. Combination therapies for cancer
WO2020227159A2 (en) 2019-05-03 2020-11-12 Flagship Pioneering Innovations V, Inc. Methods of modulating immune activity
WO2020225552A1 (en) 2019-05-06 2020-11-12 Medimmune Limited Combination of monalizumab, durvalumab, chemotherapy and bevacizumab or cetuximab for the treatment of colorectal cancer
EP3965821A1 (en) 2019-05-07 2022-03-16 Immunicom, Inc. Increasing responses to checkpoint inhibitors by extracorporeal apheresis
CA3138348A1 (en) 2019-05-09 2020-11-12 FUJIFILM Cellular Dynamics, Inc. Methods for the production of hepatocytes
WO2020232019A1 (en) 2019-05-13 2020-11-19 Regeneron Pharmaceuticals, Inc. Combination of pd-1 inhibitors and lag-3 inhibitors for enhanced efficacy in treating cancer
EP3738593A1 (en) 2019-05-14 2020-11-18 Amgen, Inc Dosing of kras inhibitor for treatment of cancers
WO2020232375A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Oxoacridinyl acetic acid derivatives and methods of use
WO2020232378A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use
EP3968971A1 (en) 2019-05-17 2022-03-23 Cancer Prevention Pharmaceuticals, Inc. Methods for treating familial adenomatous polyposis
IL266728B (en) 2019-05-19 2020-11-30 Yeda Res & Dev Identification of recurrent mutant neopeptides
BR112021023345A2 (pt) 2019-05-20 2022-02-01 Pandion Operations Inc Imunotolerância com alvo em madcam
MX2021014126A (es) 2019-05-21 2022-01-04 Amgen Inc Formas en estado solido.
WO2020239558A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
EP3976832A1 (en) 2019-05-30 2022-04-06 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
JP2022534967A (ja) 2019-05-30 2022-08-04 ブリストル-マイヤーズ スクイブ カンパニー 多腫瘍遺伝子シグネチャーおよびその使用
US20220233691A1 (en) 2019-05-30 2022-07-28 Bristol-Myers Squibb Company Cell localization signature and combination therapy
AU2020289485A1 (en) 2019-06-03 2022-02-03 The University Of Chicago Methods and compositions for treating cancer with collagen binding drug carriers
WO2020247973A1 (en) 2019-06-03 2020-12-10 The University Of Chicago Methods and compositions for treating cancer with cancer-targeted adjuvants
US11246906B2 (en) 2019-06-11 2022-02-15 Alkermes Pharma Ireland Limited Compositions and methods for subcutaneous administration of cancer immunotherapy
CA3141414A1 (en) 2019-06-12 2020-12-17 Vanderbilt University Dibenzylamines as amino acid transport inhibitors
AU2020291012A1 (en) 2019-06-12 2021-12-16 AskGene Pharma, Inc. Novel IL-15 prodrugs and methods of use thereof
JP2022536419A (ja) 2019-06-12 2022-08-16 ヴァンダービルト ユニバーシティー アミノ酸輸送阻害剤及びその使用
EP3983004A1 (en) 2019-06-14 2022-04-20 TILT Biotherapeutics Oy Oncolytic adenovirus and checkpoint inhibitor combination therapy
EP3986454A1 (en) 2019-06-18 2022-04-27 Janssen Sciences Ireland Unlimited Company Combination of hepatitis b virus (hbv) vaccines and anti-pd-1 or anti-pd-l1 antibody
CA3143634A1 (en) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combination of hepatitis b virus (hbv) vaccines and anti-pd-1 antibody
WO2020263399A1 (en) 2019-06-26 2020-12-30 Massachusetts Institute Of Technology Immunomodulatory fusion protein-metal hydroxide complexes and methods thereof
US20230295313A1 (en) 2019-06-26 2023-09-21 Glaxosmithkline Intellectual Property Development Limited Il1rap binding proteins
EP3990635A1 (en) 2019-06-27 2022-05-04 Rigontec GmbH Design method for optimized rig-i ligands
US20220257796A1 (en) 2019-07-02 2022-08-18 Fred Hutchinson Cancer Research Center Recombinant ad35 vectors and related gene therapy improvements
KR20220028075A (ko) 2019-07-03 2022-03-08 스미토모 다이니폰 파마 온콜로지, 인크. 티로신 키나제 비-수용체 1 (tnk1) 억제제 및 그의 용도
WO2021006199A1 (ja) 2019-07-05 2021-01-14 小野薬品工業株式会社 Pd-1/cd3二重特異性タンパク質による血液がん治療
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
TWI819225B (zh) 2019-07-16 2023-10-21 美國密西根州立大學 作為eed抑制劑之咪唑并嘧啶及其用途
GB201910305D0 (en) 2019-07-18 2019-09-04 Ctxt Pty Ltd Compounds
GB201910304D0 (en) 2019-07-18 2019-09-04 Ctxt Pty Ltd Compounds
US12036204B2 (en) 2019-07-26 2024-07-16 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
US11083705B2 (en) 2019-07-26 2021-08-10 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
CA3147575A1 (en) 2019-07-29 2021-02-04 Yeda Research And Development Co. Ltd. Methods of treating and diagnosing lung cancer
CN114391012A (zh) 2019-08-02 2022-04-22 美国安进公司 作为kif18a抑制剂的吡啶衍生物
US20220257698A1 (en) 2019-08-02 2022-08-18 Lanthiopep B.V. Angiotensin type 2 (at2) receptor agonists for use in the treatment of cancer
JP2022542319A (ja) 2019-08-02 2022-09-30 アムジエン・インコーポレーテツド Kif18a阻害剤
MX2022001295A (es) 2019-08-02 2022-02-22 Amgen Inc Inhibidores de kif18a.
AU2020324185A1 (en) * 2019-08-02 2022-03-03 CTTQ-Akeso (ShangHai) Biomed. Tech. Co., Ltd. Anti-PD-1 antibody and medical use thereof
CN114585623A (zh) 2019-08-02 2022-06-03 梅尔莎纳医疗公司 双[N-((5-氨基甲酰基)-1H-苯并[d]咪唑-2-基)吡唑-5-甲酰胺]衍生物和相关化合物作为STING(干扰素基因刺激物)激动剂用于治疗癌症
JP7640521B2 (ja) 2019-08-02 2025-03-05 アムジエン・インコーポレーテツド Kif18a阻害剤として有用なヘテロアリールアミド
EP4011391A4 (en) 2019-08-05 2023-08-16 ONO Pharmaceutical Co., Ltd. BIOMARKERS TO EVALUATE THE EFFECTIVENESS OF AN IMMUNE CHECKPOINT INHIBITOR
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
TW202120550A (zh) 2019-08-08 2021-06-01 日商小野藥品工業股份有限公司 雙特異性蛋白質
JP2022544549A (ja) 2019-08-12 2022-10-19 ピュリノミア バイオテック, インコーポレイテッド Cd39発現細胞のadcc標的化を介してt細胞媒介性免疫応答を促進及び増強するための方法及び組成物
AU2020328025A1 (en) 2019-08-14 2022-03-03 Incyte Corporation Imidazolyl pyrimidinylamine compounds as CDK2 inhibitors
GB201912107D0 (en) 2019-08-22 2019-10-09 Amazentis Sa Combination
JP2022545735A (ja) 2019-08-27 2022-10-28 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン セレブロンe3リガーゼ阻害剤
KR20220053007A (ko) 2019-08-30 2022-04-28 아게누스 인코포레이티드 항-cd96 항체 및 이의 사용 방법
WO2021043961A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and chemotherapy
WO2021048292A1 (en) 2019-09-11 2021-03-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
US12121565B2 (en) 2019-09-13 2024-10-22 Duke University Methods of treatment of specific cancers with NLRP3 inhibitors and anti-PD1/PD-L1 antibodies
BR112022002351A2 (pt) 2019-09-16 2022-07-19 Surface Oncology Inc Composições e métodos de anticorpo anti-cd39
WO2021055306A1 (en) 2019-09-16 2021-03-25 Bristol-Myers Squibb Company Dual capture method for analysis of antibody-drug conjugates
AU2020349516A1 (en) 2019-09-17 2022-03-17 Bial-R&D Investments, S.A. Substituted imidazole carboxamides and their use in the treatment of medical disorders
JP2022548747A (ja) 2019-09-17 2022-11-21 バイアル-アールアンドディー インベストメンツ ソシエダッド アノニマ 酸性セラミダーゼ阻害剤としての置換されたn-複素環式カルボキサミド及び医薬としてのその使用
WO2021055630A1 (en) 2019-09-17 2021-03-25 Bial- Biotech Investments, Inc. Substituted, saturated and unsaturated n-heterocyclic carboxamides and related compounds for their use in the treatment of medical disorders
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
JP2022548881A (ja) 2019-09-18 2022-11-22 ノバルティス アーゲー Entpd2抗体、組合せ療法並びに抗体及び組合せ療法を使用する方法
PL4013512T3 (pl) 2019-09-18 2024-06-10 Lamkap Bio Alpha AG Przeciwciała dwuswoiste przeciwko CEACAM5 i CD3
BR112022004475A2 (pt) 2019-09-18 2022-05-31 Novartis Ag Proteínas de fusão nkg2d e usos das mesmas
CN110467675B (zh) * 2019-09-19 2020-08-14 合源生物科技(天津)有限公司 一种ctla-4单克隆抗体6f1及其用于抗肿瘤的用途
CA3149719A1 (en) 2019-09-19 2021-03-25 Bristol-Myers Squibb Company Antibodies binding to vista at acidic ph
AU2020348849A1 (en) 2019-09-19 2022-04-07 The Regents Of The University Of Michigan Spirocyclic androgen receptor protein degraders
KR20220066334A (ko) 2019-09-22 2022-05-24 브리스톨-마이어스 스큅 컴퍼니 Lag-3 길항제 요법에 대한 정량적 공간 프로파일링
JP2022548791A (ja) * 2019-09-24 2022-11-21 ミラティ セラピューティクス, インコーポレイテッド 組み合わせ療法
KR20220069964A (ko) 2019-09-25 2022-05-27 씨젠 인크. 조혈암의 치료를 위한 항-cd30 adc, 항-pd-1 및 화학치료제 조합
WO2021062018A1 (en) 2019-09-25 2021-04-01 Bristol-Myers Squibb Company Composite biomarker for cancer therapy
BR112022004302A2 (pt) 2019-09-25 2022-06-21 Surface Oncology Inc Anticorpos anti-il-27 e usos dos mesmos
TWI867053B (zh) 2019-09-26 2024-12-21 瑞士商諾華公司 抗病毒吡唑并吡啶酮化合物
KR20220070011A (ko) 2019-09-27 2022-05-27 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 항원 결합 단백질
US20220356221A1 (en) 2019-09-28 2022-11-10 AskGene Pharma, Inc. Cytokine prodrugs and dual-prodrugs
MX2022003578A (es) 2019-09-30 2022-05-30 Incyte Corp Compuestos de pirido[3,2-d]pirimidina como inmunomoduladores.
AU2020358726A1 (en) 2019-10-01 2022-04-07 Silverback Therapeutics, Inc. Combination therapy with immune stimulatory conjugates
US12122767B2 (en) 2019-10-01 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
EP3800201A1 (en) 2019-10-01 2021-04-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd28h stimulation enhances nk cell killing activities
EP4037714A1 (en) 2019-10-03 2022-08-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating macrophages polarization
CN115916233A (zh) 2019-10-03 2023-04-04 Xencor股份有限公司 靶向IL-12异源二聚体Fc融合蛋白
EP4037710A1 (en) 2019-10-04 2022-08-10 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer
WO2021072232A1 (en) 2019-10-11 2021-04-15 Incyte Corporation Bicyclic amines as cdk2 inhibitors
TW202128757A (zh) 2019-10-11 2021-08-01 美商建南德克公司 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白
CN115835908A (zh) 2019-10-14 2023-03-21 因赛特公司 作为fgfr抑制剂的双环杂环
US20240139193A1 (en) 2019-10-15 2024-05-02 Amgen Inc. Combination therapy of kras inhibitor and shp2 inhibitor for treatment of cancers
WO2021074683A1 (en) 2019-10-16 2021-04-22 Avacta Life Sciences Limited Bispecific anti-pd-l1 and anti-fcrn polypeptides
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
CA3157889A1 (en) 2019-10-17 2021-04-22 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods for diagnosing nasal intestinal type adenocarcinomas
CA3158298A1 (en) 2019-10-21 2021-04-29 Novartis Ag Combination therapies with venetoclax and tim-3 inhibitors
CN114786680A (zh) 2019-10-21 2022-07-22 诺华股份有限公司 Tim-3抑制剂及其用途
EP4048304A1 (en) 2019-10-22 2022-08-31 Institut Curie Immunotherapy targeting tumor neoantigenic peptides
CA3155202A1 (en) 2019-10-23 2021-04-29 Arthur M. Krieg Synthetic rig-i-like receptor agonists
CA3155857A1 (en) 2019-10-24 2021-04-29 Amgen Inc. Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer
WO2021080682A1 (en) 2019-10-24 2021-04-29 Massachusetts Institute Of Technology Monoclonal antibodies that bind human cd161 and uses thereof
JP2022553389A (ja) 2019-10-25 2022-12-22 アイオバンス バイオセラピューティクス,インコーポレイテッド 腫瘍浸潤リンパ球の遺伝子編集及び免疫療法におけるその使用
WO2021079958A1 (ja) 2019-10-25 2021-04-29 第一三共株式会社 抗garp抗体と免疫調節剤の組み合わせ
NL2024108B1 (en) 2019-10-26 2021-07-19 Vitroscan B V Methods and apparatus for measuring immune-cell mediated anti-tumoroid responses
CN114829357A (zh) 2019-10-28 2022-07-29 中国科学院上海药物研究所 五元杂环氧代羧酸类化合物及其医药用途
EP4051278A1 (en) 2019-10-29 2022-09-07 Eisai R&D Management Co., Ltd. Combination of a pd-1 antagonist, a vegfr/fgfr/ret tyrosine kinase inhibitor and a cbp/beta-catenin inhibitor for treating cancer
WO2021083959A1 (en) 2019-10-29 2021-05-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating uveal melanoma
WO2021087458A2 (en) 2019-11-02 2021-05-06 Board Of Regents, The University Of Texas System Targeting nonsense-mediated decay to activate p53 pathway for the treatment of cancer
US20220387529A1 (en) 2019-11-04 2022-12-08 Duke University Treatment for primary and metastatic cancer
CN114867735A (zh) 2019-11-04 2022-08-05 锐新医药公司 Ras抑制剂
EP4054720A1 (en) 2019-11-04 2022-09-14 Revolution Medicines, Inc. Ras inhibitors
WO2021090146A1 (en) 2019-11-04 2021-05-14 Astrazeneca Ab Combination therapy for treating cancer
JP2022553858A (ja) 2019-11-04 2022-12-26 レボリューション メディシンズ インコーポレイテッド Ras阻害剤
CN115298549A (zh) 2019-11-05 2022-11-04 百时美施贵宝公司 M蛋白测定及其用途
AU2020379680A1 (en) 2019-11-05 2022-05-26 Celgene Corporation Combination therapy with 2-(4-chlorophenyl)-N-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl) methyl)-2,2-difluoroacetamide
KR20220092580A (ko) 2019-11-06 2022-07-01 제넨테크, 인크. 혈액암의 치료를 위한 진단과 치료 방법
WO2021092221A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092220A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
JP2023500054A (ja) 2019-11-07 2023-01-04 オンクセルナ セラピューティクス,インコーポレイテッド 腫瘍微小環境の分類
US20220411499A1 (en) 2019-11-08 2022-12-29 Bristol-Myers Squibb Company LAG-3 Antagonist Therapy for Melanoma
WO2021092115A1 (en) 2019-11-08 2021-05-14 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
IL292524A (en) 2019-11-11 2022-06-01 Incyte Corp Salts and crystalline forms of a pd-1/pd-l1 inhibitor
CR20220207A (es) 2019-11-13 2022-06-06 Genentech Inc Compuestos terapéuticos y métodos de uso
AU2020381492A1 (en) 2019-11-14 2022-05-26 Amgen Inc. Improved synthesis of KRAS G12C inhibitor compound
TW202132271A (zh) 2019-11-14 2021-09-01 美商安進公司 Kras g12c抑制劑化合物之改善的合成
EP4058465A1 (en) 2019-11-14 2022-09-21 Cohbar Inc. Cxcr4 antagonist peptides
WO2021098757A1 (en) * 2019-11-21 2021-05-27 Beigene, Ltd. Methods of cancer treatment using anti-ox40 antibodies in combination with anti-tigit antibodies
US20230000864A1 (en) 2019-11-22 2023-01-05 Sumitomo Pharma Oncology, Inc. Solid dose pharmaceutical composition
EP3824954A1 (en) 2019-11-22 2021-05-26 Centre National de la Recherche Scientifique Device, apparatus and method for minibeam radiation therapy
AU2020385400A1 (en) 2019-11-22 2022-06-09 Theravance Biopharma R&D Ip, Llc Substituted 1,5-naphthyridines or quinolines as ALK5 inhibitors
CN113179631B (zh) * 2019-11-25 2024-08-30 中国科学院理化技术研究所杭州研究院 通过临近使能反应疗法开发的共价蛋白质药物
US20210154281A1 (en) 2019-11-26 2021-05-27 Massachusetts Institute Of Technology Cell-based cancer vaccines and cancer therapies
JP2023503161A (ja) 2019-11-26 2023-01-26 ノバルティス アーゲー Cd19及びcd22キメラ抗原受容体及びその使用
US20220401540A1 (en) 2019-11-27 2022-12-22 Cytlimic Inc. Pharmaceutical composition
IL293350A (en) 2019-11-27 2022-07-01 Myst Therapeutics Llc Method of producing tumor-reactive t cell composition using modulatory agents
JP2023505100A (ja) 2019-11-27 2023-02-08 レボリューション メディシンズ インコーポレイテッド 共有ras阻害剤及びその使用
CN110927389B (zh) * 2019-11-29 2021-07-16 中国科学院苏州生物医学工程技术研究所 一种癌症生物标志物、用途
EP3831849A1 (en) 2019-12-02 2021-06-09 LamKap Bio beta AG Bispecific antibodies against ceacam5 and cd47
CA3163875A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
CN115052635A (zh) 2019-12-04 2022-09-13 奥纳治疗公司 环状rna组合物和方法
JP2023505257A (ja) 2019-12-04 2023-02-08 インサイト・コーポレイション Fgfr阻害剤の誘導体
WO2021113644A1 (en) 2019-12-05 2021-06-10 Multivir Inc. Combinations comprising a cd8+ t cell enhancer, an immune checkpoint inhibitor and radiotherapy for targeted and abscopal effects for the treatment of cancer
US20230074558A1 (en) 2019-12-06 2023-03-09 Mersana Therapeutics, Inc. Dimeric compounds as sting agonists
US11897950B2 (en) 2019-12-06 2024-02-13 Augusta University Research Institute, Inc. Osteopontin monoclonal antibodies
CN115066259A (zh) 2019-12-09 2022-09-16 思进公司 使用liv1-adc和pd-1拮抗剂的组合疗法
CA3161104A1 (en) 2019-12-11 2021-06-17 Cecile Chartier-Courtaud Processes for the production of tumor infiltrating lymphocytes (tils) and methods of using the same
GB201918230D0 (en) 2019-12-11 2020-01-22 Prec Therapeutics Ltd Antibodies and their uses
BR112022007837A2 (pt) 2019-12-16 2022-07-05 Bayer Ag Combinação de um inibidor de ahr e um anticorpo inibidor de pd1 e seu uso no tratamento de câncer
US20230028414A1 (en) 2019-12-16 2023-01-26 Amgen Inc. Dosing regimen of kras g12c inhibitor
WO2021127217A1 (en) 2019-12-17 2021-06-24 Flagship Pioneering Innovations V, Inc. Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly
WO2021122866A1 (en) 2019-12-17 2021-06-24 Ose Immunotherapeutics Bifunctional molecules comprising an il-7 variant
JP2023506899A (ja) 2019-12-18 2023-02-20 シーティーエックスティー・ピーティーワイ・リミテッド 化合物
WO2021127554A1 (en) 2019-12-19 2021-06-24 Bristol-Myers Squibb Company Combinations of dgk inhibitors and checkpoint antagonists
AU2020408198A1 (en) 2019-12-19 2022-07-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and vaccine compositions to treat cancers
CA3165274A1 (en) 2019-12-20 2021-06-24 Novartis Ag Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome
WO2021121373A1 (zh) * 2019-12-20 2021-06-24 广东菲鹏制药股份有限公司 抗人程序死亡因子-1单克隆抗体
CN113024670A (zh) * 2019-12-25 2021-06-25 百奥泰生物制药股份有限公司 Ctla-4抗体及其制备方法
CN113045655A (zh) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 抗ox40抗体及其用途
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
TW202135824A (zh) 2020-01-03 2021-10-01 美商英塞特公司 包含a2a/a2b及pd-1/pd-l1抑制劑之組合療法
JP2023509701A (ja) 2020-01-07 2023-03-09 レヴォリューション・メディスンズ,インコーポレイテッド Shp2阻害剤投薬およびがんを処置する方法
WO2021141977A1 (en) 2020-01-07 2021-07-15 Board Of Regents, The University Of Texas System Improved human methyl thioadenosine/adenosine depleting enzyme variants for cancer therapy
US11981705B2 (en) 2020-01-10 2024-05-14 The Brigham And Women's Hospital, Inc. Methods and compositions for delivery of immunotherapy agents across the blood-brain barrier to treat brain cancer
WO2021142237A1 (en) 2020-01-10 2021-07-15 Clovis Oncology, Inc. Methods for administering lucitanib and combinations thereof
WO2021146424A1 (en) 2020-01-15 2021-07-22 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
CA3167413A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
US20230076415A1 (en) 2020-01-17 2023-03-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
CN115038466A (zh) 2020-01-28 2022-09-09 葛兰素史密斯克莱知识产权发展有限公司 联合治疗及其用途和方法
CA3161513A1 (en) 2020-01-28 2021-08-05 Irwin DAVIDSON Antisense oligonucleotide targeting linc00518 for treating melanoma
KR20220132598A (ko) 2020-01-28 2022-09-30 제넨테크, 인크. 암 치료를 위한 IL15/IL15R 알파 이종이량체 Fc-융합 단백질
EP4097130A1 (en) 2020-01-30 2022-12-07 Ona Therapeutics S.L. Combination therapy for treatment of cancer and cancer metastasis
WO2021152400A1 (en) 2020-01-30 2021-08-05 Gnubiotics Sciences Sa Compositions comprising pig stomach mucins and uses thereof
EP4096708A1 (en) 2020-01-31 2022-12-07 Genentech, Inc. Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
WO2021156360A1 (en) 2020-02-05 2021-08-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for discontinuing a treatment with a tyrosine kinase inhibitor (tki)
JP2023514152A (ja) 2020-02-06 2023-04-05 ブリストル-マイヤーズ スクイブ カンパニー Il-10およびその使用
CN113244385A (zh) * 2020-02-07 2021-08-13 上海君实生物医药科技股份有限公司 抗pd-1抗体在治疗恶性肿瘤中的用途
CA3168337A1 (en) 2020-02-17 2021-08-26 Marie-Andree Forget Methods for expansion of tumor infiltrating lymphocytes and use thereof
US11981715B2 (en) 2020-02-21 2024-05-14 Pandion Operations, Inc. Tissue targeted immunotolerance with a CD39 effector
JP2023516195A (ja) 2020-02-26 2023-04-18 バイオグラフ 55,インク. C19 c38二特異性抗体
EP4512828A2 (en) 2020-02-27 2025-02-26 Turnstone Biologics Corp. Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof
EP4110319A4 (en) 2020-02-27 2024-02-14 H. Lee Moffitt Cancer Center & Research Institute, Inc. LYMPHOCYTES INFILTRATING TUMORS WITH ENHANCED TUMOR REACTIVITY
WO2021170777A1 (en) 2020-02-28 2021-09-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing, prognosing and managing treatment of breast cancer
JP2023516155A (ja) 2020-02-28 2023-04-18 ノバルティス アーゲー ダブラフェニブ、erk阻害剤及びraf阻害剤又はpd-1阻害剤を含む三重の医薬品の組合せ
WO2021171264A1 (en) 2020-02-28 2021-09-02 Novartis Ag Dosing of a bispecific antibody that binds cd123 and cd3
MX2022010936A (es) 2020-03-05 2022-11-16 Neotx Therapeutics Ltd ³métodos y composiciones para el tratamiento del cáncer con células inmunológicas.
IL296564A (en) 2020-03-06 2022-11-01 Celgene Quanticel Res Inc Combination of an lsd-1 inhibitor and nivolumab for use in treating sclc or sqnsclc
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
JP2023516441A (ja) 2020-03-06 2023-04-19 インサイト・コーポレイション Axl/mer阻害剤及びpd-1/pd-l1阻害剤を含む併用療法
WO2021177822A1 (en) 2020-03-06 2021-09-10 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Modulating anti-tumor immunity
BR112022016720A2 (pt) 2020-03-06 2022-11-16 Ona Therapeutics S L Anticorpos anti-cd36 e seu uso para tratamento de câncer
EP3878446A1 (en) 2020-03-09 2021-09-15 Universite De Geneve Hsd11b1 inhibitors for use in immunotherapy and uses thereof
WO2021183428A1 (en) 2020-03-09 2021-09-16 Bristol-Myers Squibb Company Antibodies to cd40 with enhanced agonist activity
WO2021183318A2 (en) 2020-03-09 2021-09-16 President And Fellows Of Harvard College Methods and compositions relating to improved combination therapies
US20210332136A1 (en) * 2020-03-13 2021-10-28 Research Development Foundation Methods for diagnosing and treating cancers
BR112022018854A2 (pt) 2020-03-20 2023-03-07 Orna Therapeutics Inc Composições e métodos de rna circular
PE20230821A1 (es) 2020-03-23 2023-05-19 Bristol Myers Squibb Co Anticuerpos anti-ccr8 para el tratamiento del cancer
WO2021195481A1 (en) 2020-03-26 2021-09-30 The Regents Of The University Of Michigan Small molecule stat protein degraders
AU2021242305A1 (en) * 2020-03-26 2022-10-20 Cureimmune Therapeutics Inc. Anti-PD-1 antibodies and methods of use
JP2023519346A (ja) 2020-03-27 2023-05-10 メンドゥス・ベスローテン・フェンノートシャップ 養子細胞療法の有効性を増強するための白血病由来の改変細胞のエクスビボ(ex vivo)使用
EP4126824A1 (en) 2020-03-31 2023-02-08 Theravance Biopharma R&D IP, LLC Substituted pyrimidines and methods of use
MX2022012304A (es) 2020-04-02 2022-11-30 Mersana Therapeutics Inc Conjugados de anticuerpo-farmaco que comprenden agonistas de sting.
EP4127724A1 (en) 2020-04-03 2023-02-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
EP4133107A1 (en) 2020-04-06 2023-02-15 Yeda Research and Development Co. Ltd Methods of diagnosing cancer and predicting responsiveness to therapy
US20230141284A1 (en) 2020-04-10 2023-05-11 Ono Pharmaceutical Co., Ltd. Cancer therapeutic method
EP4134134A4 (en) 2020-04-10 2023-12-27 ONO Pharmaceutical Co., Ltd. STING AGONIST COMPOUND
CN115916223A (zh) 2020-04-10 2023-04-04 朱诺治疗学股份有限公司 与用靶向b细胞成熟抗原的嵌合抗原受体工程化的细胞疗法相关的方法和用途
US20230140694A1 (en) 2020-04-14 2023-05-04 GlaxoSmithKline Intellectual Property Developement Limited Combination treatment for cancer involving anti-icos and anti-pd1 antibodies, optionally further involving anti-tim3 antibodies
CN115397861A (zh) 2020-04-14 2022-11-25 葛兰素史密斯克莱知识产权发展有限公司 用于癌症的组合治疗
PE20230825A1 (es) 2020-04-16 2023-05-19 Incyte Corp Inhibidores de kras triciclicos fusionados
US20230149560A1 (en) 2020-04-20 2023-05-18 Massachusetts Institute Of Technology Lipid compositions for delivery of sting agonist compounds and uses thereof
EP4138819A1 (en) 2020-04-21 2023-03-01 Novartis AG Dosing regimen for treating a disease modulated by csf-1r
WO2021216488A1 (en) 2020-04-21 2021-10-28 Regeneron Pharmaceuticals, Inc. Il-2 variants with reduced binding to il-2 receptor alpha and uses thereof
MX2022013065A (es) 2020-04-22 2022-12-08 Iovance Biotherapeutics Inc Sistemas y metodos para coordinar la manufactura de celulas para inmunoterapia especifica de acuerdo al paciente.
PE20231648A1 (es) 2020-04-22 2023-10-17 Merck Sharp And Dohme Llc CONJUGADOS DE INTERLEUCINA 2 HUMANA SESGADOS AL DIMERO DEL RECEPTOR DE INTERLEUCINA 2 byc Y CONJUGADOS CON UN POLIMERO HIDROSOLUBLE NO PEPTIDICO
TW202206100A (zh) 2020-04-27 2022-02-16 美商西健公司 癌症之治療
EP4143345A1 (en) 2020-04-28 2023-03-08 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
US20230181756A1 (en) 2020-04-30 2023-06-15 Novartis Ag Ccr7 antibody drug conjugates for treating cancer
WO2021226085A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
EP4146216A4 (en) * 2020-05-04 2024-05-29 Beyondspring Pharmaceuticals Inc. TRITHERAPY TO IMPROVE THE DESTRUCTION OF CANCER CELLS IN LOW IMMUNOGENICITY CANCERS
WO2021224186A1 (en) 2020-05-04 2021-11-11 Institut Curie New pyridine derivatives as radiosensitizers
EP4147052A1 (en) 2020-05-05 2023-03-15 F. Hoffmann-La Roche AG Predicting response to pd-1 axis inhibitors
EP4146345A2 (en) 2020-05-05 2023-03-15 Teon Therapeutics, Inc. Cannabinoid receptor type 2 (cb2) modulators and uses thereof
US11826386B2 (en) 2020-05-05 2023-11-28 Regeneron Pharmaceuticals, Inc. Compositions and methods for treating cancer
EP4146644A1 (en) 2020-05-06 2023-03-15 Merck Sharp & Dohme LLC Il4i1 inhibitors and methods of use
JP2023525082A (ja) 2020-05-07 2023-06-14 アンスティテュ・クリー 免疫抑制線維芽細胞集団のバイオマーカーとしてのantxr1及び免疫療法に対する応答を予測するためのその使用
WO2021231350A1 (en) 2020-05-13 2021-11-18 Massachusetts Institute Of Technology Compositions of polymeric microdevices and their use in cancer immunotherapy
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
WO2021231732A1 (en) 2020-05-15 2021-11-18 Bristol-Myers Squibb Company Antibodies to garp
AU2021276332A1 (en) 2020-05-19 2022-11-17 Boehringer Ingelheim International Gmbh Binding molecules for the treatment of cancer
JP2023528293A (ja) 2020-05-20 2023-07-04 アンスティテュ・クリー 単一ドメイン抗体及びがん治療におけるその使用
JP2023526416A (ja) 2020-05-21 2023-06-21 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム Vgll1特異性を有するt細胞受容体およびその使用法
KR20230015954A (ko) 2020-05-26 2023-01-31 리제너론 파마슈티칼스 인코포레이티드 Pd-1 억제제의 투여에 의한 자궁경부암의 치료 방법
KR20230042222A (ko) 2020-05-26 2023-03-28 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 중증 급성 호흡기 증후군 코로나바이러스 2(sars-cov-2) 폴리펩티드 및 백신 목적을 위한 이의 용도
EP4157319A1 (en) 2020-05-28 2023-04-05 Modernatx, Inc. Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer
US20230173095A1 (en) 2020-05-29 2023-06-08 President And Fellows Of Harvard College Living cells engineered with polyphenol-functionalized biologically active nanocomplexes
WO2021247836A1 (en) 2020-06-03 2021-12-09 Board Of Regents, The University Of Texas System Methods for targeting shp-2 to overcome resistance
BR112022023753A2 (pt) 2020-06-03 2022-12-20 Boehringer Ingelheim Int Rhabdovírus recombinante que codifica para uma proteína de fusão fc de domínio extracelular cd80
US11767353B2 (en) 2020-06-05 2023-09-26 Theraly Fibrosis, Inc. Trail compositions with reduced immunogenicity
EP4165041A1 (en) 2020-06-10 2023-04-19 Theravance Biopharma R&D IP, LLC Naphthyridine derivatives useful as alk5 inhibitors
KR20230024967A (ko) 2020-06-11 2023-02-21 노파르티스 아게 Zbtb32 억제제 및 이의 용도
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
IL299039A (en) 2020-06-16 2023-02-01 Genentech Inc Methods and preparations for the treatment of triple-negative breast cancer
JP2023530351A (ja) 2020-06-18 2023-07-14 レヴォリューション・メディスンズ,インコーポレイテッド Ras阻害剤への獲得耐性を遅延させる、防止する、及び、治療する方法
TW202214857A (zh) 2020-06-19 2022-04-16 法商昂席歐公司 新型結合核酸分子及其用途
CN115916825A (zh) 2020-06-19 2023-04-04 豪夫迈·罗氏有限公司 与cd3和cd19结合的抗体
KR20230027056A (ko) 2020-06-23 2023-02-27 노파르티스 아게 3-(1-옥소이소인돌린-2-일)피페리딘-2,6-디온 유도체를 포함하는 투약 요법
WO2021260675A1 (en) 2020-06-24 2021-12-30 Yeda Research And Development Co. Ltd. Agents for sensitizing solid tumors to treatment
WO2021260443A1 (en) 2020-06-24 2021-12-30 Bayer Aktiengesellschaft Combinations of 2,3-dihydroimidazo[1,2-c]quinazolines
WO2021262969A1 (en) 2020-06-24 2021-12-30 The General Hospital Corporation Materials and methods of treating cancer
EP4171550A1 (en) 2020-06-25 2023-05-03 Celgene Corporation Methods for treating cancer with combination therapies
EP4172184A2 (en) 2020-06-26 2023-05-03 Amgen Inc. Il-10 muteins and fusion proteins thereof
WO2021263166A1 (en) * 2020-06-26 2021-12-30 Sorrento Therapeutics, Inc. Anti-pd1 antibodies and uses thereof
WO2022006179A1 (en) 2020-06-29 2022-01-06 Flagship Pioneering Innovations V, Inc. Viruses engineered to promote thanotransmission and their use in treating cancer
KR20230033647A (ko) 2020-06-30 2023-03-08 멘두스 비.브이. 난소암 백신에서 백혈병 유래 세포의 용도
EP4172628A1 (en) 2020-06-30 2023-05-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapy and radical surgery
CN115997123A (zh) 2020-06-30 2023-04-21 国家医疗保健研究所 用于预测实体癌患者在术前辅助治疗后复发和/或死亡风险的方法
IL299657A (en) 2020-07-07 2023-03-01 Celgene Corp Pharmaceutical preparations including (S)-4-(4-(4-(((2-(2,6-DIOXOPIPERIDIN-3-YL)-1-OXOISOINDOLIN-4-YL)OXY)M ETHYL) BENZYL)PIPERAZIN-1 -YL)-3-FLUOROBENZONITRILE AND METHODS OF USING THEM
EP4178611A1 (en) 2020-07-07 2023-05-17 BioNTech SE Therapeutic rna for hpv-positive cancer
WO2022011205A1 (en) 2020-07-10 2022-01-13 The Regents Of The University Of Michigan Androgen receptor protein degraders
WO2022011204A1 (en) 2020-07-10 2022-01-13 The Regents Of The University Of Michigan Small molecule androgen receptor protein degraders
WO2022009157A1 (en) 2020-07-10 2022-01-13 Novartis Ag Lhc165 and spartalizumab combinations for treating solid tumors
WO2022015716A2 (en) * 2020-07-13 2022-01-20 The Children's Medical Center Corporation Novel anti-pd1 antibodies for inhibiting t-cell activity
TW202216778A (zh) 2020-07-15 2022-05-01 美商安進公司 Tigit及cd112r阻斷
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
WO2022026306A1 (en) * 2020-07-27 2022-02-03 Macrogenics, Inc. Methods for the use of a pd-1 x ctla-4 bispecific molecule
JP2023535610A (ja) 2020-07-28 2023-08-18 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル ガンを予防及び処置するための方法及び組成物
JP2023535792A (ja) * 2020-07-30 2023-08-21 ティジアーナ ライフ サイエンシズ パブリック リミティド カンパニー コロナウイルス治療のための抗cd3抗体
TW202221031A (zh) 2020-07-30 2022-06-01 英商阿法克塔生命科學有限公司 血清半衰期延長之pd-l1抑制多肽
EP4188549A1 (en) 2020-08-03 2023-06-07 Novartis AG Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
CA3190415A1 (en) 2020-08-05 2022-02-10 Synthekine, Inc. Il2rb/il2rg synthetic cytokines
JP2023536653A (ja) 2020-08-05 2023-08-28 シンセカイン インコーポレイテッド Gp130結合分子および使用方法
AU2021320233A1 (en) 2020-08-05 2023-03-23 Synthekine, Inc. IL10Ra binding molecules and methods of use
CA3190430A1 (en) 2020-08-05 2022-02-10 Synthekine, Inc. Il10rb binding molecules and methods of use
KR20250028534A (ko) 2020-08-05 2025-02-28 신테카인, 인크. Il10 수용체 결합 분자 및 사용 방법
EP4196612A1 (en) 2020-08-12 2023-06-21 Genentech, Inc. Diagnostic and therapeutic methods for cancer
JP2023537412A (ja) 2020-08-13 2023-08-31 ブリストル-マイヤーズ スクイブ カンパニー 目的の細胞を標的とするためのil-2の向け直し方法
CN111944052B (zh) * 2020-08-26 2022-02-11 中国药科大学 抗TNF-α/PD-1双特异性抗体及其应用
CA3190573A1 (en) 2020-08-26 2022-03-03 Andreas Loew Methods of detecting trbc1 or trbc2
IL300328A (en) 2020-08-26 2023-04-01 Regeneron Pharma Methods for treating cancer by administering a PD-1 inhibitor
US11999752B2 (en) 2020-08-28 2024-06-04 Incyte Corporation Vinyl imidazole compounds as inhibitors of KRAS
EP4204095A1 (en) 2020-08-28 2023-07-05 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hepatocellular carcinoma
CN111808196B (zh) * 2020-08-31 2020-12-29 北京百奥赛图基因生物技术有限公司 抗pd-1抗体及其用途
EP4204453A1 (en) 2020-08-31 2023-07-05 Bristol-Myers Squibb Company Cell localization signature and immunotherapy
US20230265196A1 (en) 2020-09-02 2023-08-24 Pharmabcine Inc. Combination Therapy of a PD-1 Antagonist and an Antagonist for VEGFR-2 for Treating Patients with Cancer
CA3170207A1 (en) 2020-09-03 2022-03-10 Chieh-I CHEN Methods of treating cancer pain by administering a pd-1 inhibitor
CN116209438A (zh) 2020-09-03 2023-06-02 锐新医药公司 使用sos1抑制剂治疗具有shp2突变的恶性疾病
PE20240492A1 (es) 2020-09-14 2024-03-15 Boehringer Ingelheim Int Vacuna heterologa de estimulo primario
EP4214209A1 (en) 2020-09-15 2023-07-26 Revolution Medicines, Inc. Indole derivatives as ras inhibitors in the treatment of cancer
US11767320B2 (en) 2020-10-02 2023-09-26 Incyte Corporation Bicyclic dione compounds as inhibitors of KRAS
EP4222171A1 (en) 2020-10-02 2023-08-09 Regeneron Pharmaceuticals, Inc. Combination of antibodies for treating cancer with reduced cytokine release syndrome
KR20230080460A (ko) 2020-10-05 2023-06-07 브리스톨-마이어스 스큅 컴퍼니 단백질을 농축시키는 방법
EP4225330A1 (en) 2020-10-06 2023-08-16 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
US20230364127A1 (en) 2020-10-06 2023-11-16 Codiak Biosciences, Inc. Extracellular vesicle-aso constructs targeting stat6
KR20230084476A (ko) 2020-10-08 2023-06-13 타르그이뮨 테라퓨틱스 아게 암의 치료를 위한 면역요법
CA3193688A1 (en) 2020-10-09 2022-04-14 Vladimir Lazar Novel prediction method and gene signatures for the treatment of cancer
CA3173768A1 (en) 2020-10-13 2022-04-21 Brian Furmanski Viral vector constructs for delivery of nucleic acids encoding cytokines and uses thereof for treating cancer
EP4229090A1 (en) 2020-10-16 2023-08-23 Université d'Aix-Marseille Anti-gpc4 single domain antibodies
EP4232453A1 (en) 2020-10-20 2023-08-30 Institut Curie Metallic trans-(n-heterocyclic carbene)-amine-platinum complexes and uses thereof for treating cancer
EP4232040A1 (en) 2020-10-20 2023-08-30 F. Hoffmann-La Roche AG Combination therapy of pd-1 axis binding antagonists and lrrk2 inhitibors
TW202233671A (zh) 2020-10-20 2022-09-01 美商建南德克公司 Peg結合抗mertk抗體及其使用方法
US20240101666A1 (en) 2020-10-23 2024-03-28 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022084531A1 (en) 2020-10-23 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating glioma
EP4236960A1 (en) 2020-10-28 2023-09-06 Ikena Oncology, Inc. Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine
CN116390757A (zh) 2020-10-28 2023-07-04 卫材R&D管理有限公司 用于治疗肿瘤的药物组合物
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
EP4240492A2 (en) 2020-11-04 2023-09-13 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
WO2022098628A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
WO2022098648A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
CA3195572A1 (en) 2020-11-04 2022-05-12 Heidelberg Pharma Research Gmbh Composition comprising a combination of immune checkpoint inhibitor and antibody-amatoxin conjugate for use in cancer therapy
IL302590A (en) 2020-11-06 2023-07-01 Incyte Corp Process for making a pd-1/pd-l1 inhibitor and salts and crystalline forms thereof
WO2022097060A1 (en) 2020-11-06 2022-05-12 Novartis Ag Cd19 binding molecules and uses thereof
US11780836B2 (en) 2020-11-06 2023-10-10 Incyte Corporation Process of preparing a PD-1/PD-L1 inhibitor
US11760756B2 (en) 2020-11-06 2023-09-19 Incyte Corporation Crystalline form of a PD-1/PD-L1 inhibitor
EP4240415A1 (en) 2020-11-08 2023-09-13 Seagen Inc. Combination-therapy antibody drug conjugate with immune cell inhibitor
MX2023005570A (es) 2020-11-12 2023-05-29 Inst Nat Sante Rech Med Anticuerpos conjugados o fusionados al dominio de union del receptor de la proteina de la espicula de sars-cov-2 y usos de los mismos con fines de vacunacion.
WO2022104109A1 (en) 2020-11-13 2022-05-19 Catamaran Bio, Inc. Genetically modified natural killer cells and methods of use thereof
US20230390303A1 (en) 2020-11-13 2023-12-07 Ono Pharmaceutical Co., Ltd. Cancer treatment by combination of ep4 antagonist and immune checkpoint inhibitor
EP4244391A1 (en) 2020-11-16 2023-09-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating uveal melanoma
US20230416838A1 (en) 2020-11-16 2023-12-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating uveal melanoma
WO2022101463A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of the last c-terminal residues m31/41 of zikv m ectodomain for triggering apoptotic cell death
JP2023549581A (ja) 2020-11-17 2023-11-27 シージェン インコーポレイテッド ツカチニブ及び抗pd-1/抗pd-l1抗体の組み合わせによりがんを治療する方法
WO2022106505A1 (en) 2020-11-18 2022-05-27 Institut Curie Dimers of biguanidines and their therapeutic uses
WO2022112198A1 (en) 2020-11-24 2022-06-02 Worldwide Innovative Network Method to select the optimal immune checkpoint therapies
AU2021388155A1 (en) 2020-11-25 2023-06-15 Catamaran Bio, Inc. Cellular therapeutics engineered with signal modulators and methods of use thereof
KR20230113594A (ko) 2020-11-30 2023-07-31 애들레이 노르티 바이오파마 컴퍼니 리미티드 Pik3ca 돌연변이 암을 치료하기 위한 병용 요법
JP2023551906A (ja) 2020-12-02 2023-12-13 ジェネンテック, インコーポレイテッド ネオアジュバントおよびアジュバント尿路上皮癌腫療法のための方法および組成物
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
PH12023500013A1 (en) 2020-12-04 2024-03-11 Tidal Therapeutics Inc Ionizable cationic lipids and lipi nanoparticles, and methods of synthesis and use thereof
EP4259149A1 (en) 2020-12-08 2023-10-18 Infinity Pharmaceuticals, Inc. Eganelisib for use in the treatment of pd-l1 negative cancer
TW202237119A (zh) 2020-12-10 2022-10-01 美商住友製藥腫瘤公司 Alk﹘5抑制劑和彼之用途
WO2022130206A1 (en) 2020-12-16 2022-06-23 Pfizer Inc. TGFβr1 INHIBITOR COMBINATION THERAPIES
MX2023007301A (es) 2020-12-17 2023-07-04 Ose Immunotherapeutics Moleculas bifuncionales anti-pd1/il-7.
ES2967381T3 (es) 2020-12-18 2024-04-30 Lamkap Bio Beta Ag Anticuerpos biespecíficos contra CEACAM5 y CD47
TW202245808A (zh) 2020-12-21 2022-12-01 德商拜恩迪克公司 用於治療癌症之治療性rna
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
TW202241885A (zh) 2020-12-22 2022-11-01 大陸商上海齊魯銳格醫藥研發有限公司 Sos1抑制劑及其用途
IL303648A (en) 2020-12-28 2023-08-01 Bristol Myers Squibb Co Antibody compositions and methods of use thereof
CA3196999A1 (en) 2020-12-28 2022-07-07 Masano HUANG Methods of treating tumors
CA3207066A1 (en) 2020-12-29 2022-07-07 Incyte Corporation Combination therapy comprising a2a/a2b inhibitors, pd-1/pd-l1 inhibitors, and anti-cd73 antibodies
JP2024501845A (ja) 2020-12-31 2024-01-16 アイオバンス バイオセラピューティクス,インコーポレイテッド 腫瘍浸潤リンパ球の自動化された産生のためのデバイス及びプロセス
WO2022148781A1 (en) 2021-01-05 2022-07-14 Institut Curie Combination of mcoln activators and immune checkpoint inhibitors
MX2023007846A (es) 2021-01-06 2023-07-07 Hoffmann La Roche Tratamiento conjunto que usa un anticuerpo biespecifico contra pd1-lag3 y un anticuerpo biespecifico de linfocitos t cd20.
CA3204392A1 (en) 2021-01-08 2022-07-14 Bristol-Myers Squibb Company Combination therapy using an anti-fucosyl-gm1 antibody
CA3204162A1 (en) 2021-01-11 2022-07-14 Robert Kastelein Compositions and methods related to receptor pairing
WO2022152862A1 (en) 2021-01-14 2022-07-21 Institut Curie Her2 single domain antibodies variants and cars thereof
US20240076355A1 (en) 2021-01-14 2024-03-07 AskGene Pharma, Inc. Interferon Prodrugs and Methods of Making and Using the Same
JP2024503480A (ja) 2021-01-19 2024-01-25 ウィリアム マーシュ ライス ユニバーシティ ポリペプチドの骨特異的送達法
US20220249639A1 (en) 2021-01-22 2022-08-11 Dcprime B.V. Methods of tumor vaccination
EP4284510A1 (en) 2021-01-29 2023-12-06 Novartis AG Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
WO2022165403A1 (en) 2021-02-01 2022-08-04 Yale University Chemotherapeutic bioadhesive particles with immunostimulatory molecules for cancer treatment
TW202241494A (zh) 2021-02-10 2022-11-01 大陸商同潤生物醫藥(上海)有限公司 治療腫瘤的方法和組合
WO2022174102A1 (en) 2021-02-12 2022-08-18 Synthorx, Inc. Lung cancer combination therapy with il-2 conjugates and an anti-pd-1 antibody or antigen-binding fragment thereof
US20220267446A1 (en) * 2021-02-18 2022-08-25 Qilu Puget Sound Biotherapeutics Corporation Combinations of anti-pd1 and anti-ctla4 antibodies
CN116917322A (zh) 2021-02-19 2023-10-20 沙裴隆有限公司 针对pd-l1及cd47的双特异性单域抗体及其用途
AU2022222423A1 (en) 2021-02-19 2023-09-28 Seoul National University R&Db Foundation Single domain antibody against pd-l1 and use thereof
PH12023552345A1 (en) 2021-03-02 2024-04-22 Glaxosmithkline Ip Dev Ltd Substituted pyridines as dnmt1 inhibitors
WO2022187423A1 (en) 2021-03-03 2022-09-09 The Regents Of The University Of Michigan Cereblon ligands
WO2022187419A1 (en) 2021-03-03 2022-09-09 The Regents Of The University Of Michigan Small molecule degraders of androgen receptor
EP4301138A2 (en) 2021-03-05 2024-01-10 Iovance Biotherapeutics, Inc. Tumor storage and cell culture compositions
CN117677634A (zh) 2021-03-05 2024-03-08 利达提斯有限公司 三聚体多肽及其在治疗癌症中的用途
WO2022189618A1 (en) 2021-03-12 2022-09-15 Institut Curie Nitrogen-containing heterocycles as radiosensitizers
US20220305100A1 (en) 2021-03-12 2022-09-29 Dcprime B.V. Methods of vaccination and use of cd47 blockade
US20240165094A1 (en) 2021-03-17 2024-05-23 Institut National de la Santé et de la Recherche Médicale Methods and compositions for treating melanoma
CN117321418A (zh) 2021-03-18 2023-12-29 诺华股份有限公司 癌症生物标志物及其使用方法
CA3212571A1 (en) 2021-03-19 2022-09-22 Trained Therapeutix Discovery, Inc. Compounds for regulating trained immunity, and their methods of use
BR112023018189A2 (pt) 2021-03-19 2023-10-24 Heidelberg Pharma Res Gmbh Conjugados de anticorpos de amatoxina específicos de linfócitos b, composição famacêutica e uso relacionados
KR20230159590A (ko) 2021-03-23 2023-11-21 리제너론 파아마슈티컬스, 인크. Pd-1 억제제를 투여함에 의한 면역억제 또는 면역손상된 환자에서 암을 치료하는 방법
TW202304506A (zh) 2021-03-25 2023-02-01 日商安斯泰來製藥公司 涉及抗claudin 18.2抗體的組合治療以治療癌症
IL306090A (en) 2021-03-25 2023-11-01 Oncxerna Therapeutics Inc Targeted cancer treatments
JP2024514245A (ja) 2021-03-29 2024-03-29 ジュノー セラピューティクス インコーポレイテッド チェックポイント阻害剤療法とcar t細胞療法との組合せを用いた投薬および処置のための方法
CA3214085A1 (en) 2021-03-31 2022-10-06 Darby Rye Schmidt Thanotransmission polypeptides and their use in treating cancer
JP2024511831A (ja) 2021-03-31 2024-03-15 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド 抗原結合タンパク質およびそれらの組み合わせ
KR20230163503A (ko) * 2021-03-31 2023-11-30 메뤼스 엔.페. 신규한 pd-1 결합 도메인
EP4314068A1 (en) 2021-04-02 2024-02-07 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
AU2022255506A1 (en) 2021-04-08 2023-11-09 Marengo Therapeutics, Inc. Multifunctional molecules binding to tcr and uses thereof
WO2022217123A2 (en) 2021-04-08 2022-10-13 Nurix Therapeutics, Inc. Combination therapies with cbl-b inhibitor compounds
EP4319728A1 (en) 2021-04-09 2024-02-14 Genentech, Inc. Combination therapy with a raf inhibitor and a pd-1 axis inhibitor
TW202304999A (zh) 2021-04-09 2023-02-01 美商思進公司 以抗tigit抗體治療癌症之方法
IL307419A (en) 2021-04-09 2023-12-01 Ose Immunotherapeutics A new scaffold for bifunctional molecules with improved properties
KR20240006541A (ko) 2021-04-09 2024-01-15 셀덱스 쎄라퓨틱스, 인크. Ilt4에 대한 항체, 이중특이적 항-ilt4/pd-l1 항체 및 이의 용도
US20240182572A1 (en) 2021-04-09 2024-06-06 Ose Immunotherapeutics Scaffold for bifunctional molecules comprising pd-1 or cd28 and sirp binding domains
EP4323405A1 (en) 2021-04-12 2024-02-21 Incyte Corporation Combination therapy comprising an fgfr inhibitor and a nectin-4 targeting agent
AU2022257621A1 (en) 2021-04-13 2023-11-23 Nuvalent, Inc. Amino-substituted heterocycles for treating cancers with egfr mutations
WO2022219080A1 (en) 2021-04-14 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to improve nk cells cytotoxicity
US20240252668A1 (en) 2021-04-16 2024-08-01 Anne-Sophie BLUEMMEL Antibody drug conjugates and methods for making thereof
KR20230171980A (ko) 2021-04-20 2023-12-21 씨젠 인크. 항체 의존성 세포 독성의 조절
WO2022223791A1 (en) 2021-04-23 2022-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cell senescence accumulation related disease
CA3216276A1 (en) 2021-04-29 2022-11-03 Yardena Samuels T cell receptors directed against ras-derived recurrent neoantigens and methods of identifying same
WO2022227015A1 (en) 2021-04-30 2022-11-03 Merck Sharp & Dohme Corp. Il4i1 inhibitors and methods of use
TW202243689A (zh) 2021-04-30 2022-11-16 瑞士商赫孚孟拉羅股份公司 抗cd20/抗cd3雙特異性抗體及抗cd78b抗體藥物結合物的組合治療之給藥
JP2024516230A (ja) 2021-04-30 2024-04-12 ジェネンテック, インコーポレイテッド がんのための治療及び診断方法並びに組成物
JP2024517847A (ja) 2021-05-05 2024-04-23 レボリューション メディシンズ インコーポレイテッド Ras阻害剤
AR125787A1 (es) 2021-05-05 2023-08-16 Revolution Medicines Inc Inhibidores de ras
CN117500811A (zh) 2021-05-05 2024-02-02 锐新医药公司 共价ras抑制剂及其用途
US20220389089A1 (en) 2021-05-07 2022-12-08 Surface Oncology, Inc. Anti-il-27 antibodies and uses thereof
US20240269282A1 (en) 2021-05-10 2024-08-15 Institut Curie Methods for the Treatment of Cancer, Inflammatory Diseases and Autoimmune Diseases
US20240269180A1 (en) 2021-05-17 2024-08-15 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
JP2024518641A (ja) 2021-05-21 2024-05-01 天津立博美華基因科技有限責任公司 医薬物組合せ及びその使用
CN113030475B (zh) * 2021-05-25 2021-08-10 泛肽生物科技(浙江)有限公司 一种基于细胞线粒体质量评估的t细胞pd-1检测方法
JP2024520067A (ja) 2021-05-26 2024-05-21 セントロ デ インミュノロヒア モレキュラル 上皮起源の腫瘍を有する患者の処置のための治療用組成物の使用
WO2022251359A1 (en) 2021-05-26 2022-12-01 Theravance Biopharma R&D Ip, Llc Bicyclic inhibitors of alk5 and methods of use
AU2022280511A1 (en) 2021-05-28 2023-12-14 Nippon Kayaku Kabushiki Kaisha Combined use of ubenimex and immune checkpoint inhibitor
TW202307210A (zh) 2021-06-01 2023-02-16 瑞士商諾華公司 Cd19和cd22嵌合抗原受體及其用途
WO2022256538A1 (en) 2021-06-03 2022-12-08 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and cetuximab
GB202107994D0 (en) 2021-06-04 2021-07-21 Kymab Ltd Treatment of cancer
WO2022261018A1 (en) 2021-06-07 2022-12-15 Providence Health & Services - Oregon Cxcr5, pd-1, and icos expressing tumor reactive cd4 t cells and their use
AR126101A1 (es) 2021-06-09 2023-09-13 Incyte Corp Heterociclos tricíclicos como inhibidores de fgfr
EP4352059A1 (en) 2021-06-09 2024-04-17 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
AU2022289317A1 (en) 2021-06-10 2023-12-14 Ono Pharmaceutical Co., Ltd. Method for treating cancer through combination of cd47 inhibitor, immune checkpoint inhibitor, and standard therapy
TW202317623A (zh) 2021-06-14 2023-05-01 美商再生元醫藥公司 基於il2之治療劑及其使用方法
US20240287199A1 (en) 2021-06-18 2024-08-29 Alligator Bioscience Ab Novel combination therapies and uses thereof
US11981671B2 (en) 2021-06-21 2024-05-14 Incyte Corporation Bicyclic pyrazolyl amines as CDK2 inhibitors
JP2024525475A (ja) 2021-06-29 2024-07-12 フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド タノトランスミッションを促進するように操作された免疫細胞及びその使用
WO2023279092A2 (en) 2021-07-02 2023-01-05 Genentech, Inc. Methods and compositions for treating cancer
EP4367269A1 (en) 2021-07-05 2024-05-15 Inserm (Institut National De La Sante Et De La Recherche Medicale) Gene signatures for predicting survival time in patients suffering from renal cell carcinoma
CA3224674A1 (en) 2021-07-07 2023-01-12 Pei Gan Tricyclic compounds as inhibitors of kras
MX2024000674A (es) 2021-07-13 2024-02-07 BioNTech SE Agentes de union multiespecificos contra cd40 y cd137 en terapia de combinacion.
JP2024529347A (ja) 2021-07-14 2024-08-06 インサイト・コーポレイション Krasの阻害剤としての三環式化合物
CA3226163A1 (en) 2021-07-14 2023-01-19 Synthekine, Inc. Methods and compositions for use in cell therapy of neoplastic disease
CA3225932A1 (en) 2021-07-19 2023-01-26 Regeneron Pharmaceuticals, Inc. Combination of checkpoint inhibitors and an oncolytic virus for treating cancer
CN117715936A (zh) 2021-07-28 2024-03-15 豪夫迈·罗氏有限公司 用于治疗癌症的方法和组合物
EP4377350A2 (en) 2021-07-28 2024-06-05 Genentech, Inc. Methods and compositions for treating cancer
EP4377348A1 (en) 2021-07-30 2024-06-05 Seagen Inc. Treatment for cancer
KR20240042476A (ko) 2021-07-30 2024-04-02 오엔에이 테라퓨틱스 에스.엘. 항-cd36 항체 및 암을 치료하기 위한 이의 용도
JP2024528217A (ja) 2021-08-03 2024-07-26 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 二重特異性抗体および使用方法
EP4380596A1 (en) 2021-08-04 2024-06-12 Genentech, Inc. Il15/il15r alpha heterodimeric fc-fusion proteins for the expansion of nk cells in the treatment of solid tumours
JP2024531910A (ja) 2021-08-04 2024-09-03 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイト Lat活性化キメラ抗原受容体t細胞及びその使用方法
WO2023011879A1 (en) 2021-08-05 2023-02-09 Institut Curie Scanning dynamic device for minibeams production
IL310662A (en) 2021-08-23 2024-04-01 Immunitas Therapeutics Inc Anti-CD161 antibodies and their uses
US20230174555A1 (en) 2021-08-31 2023-06-08 Incyte Corporation Naphthyridine compounds as inhibitors of kras
TW202325306A (zh) 2021-09-02 2023-07-01 美商天恩治療有限公司 改良免疫細胞之生長及功能的方法
WO2023031366A1 (en) 2021-09-02 2023-03-09 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Anti-cecam6 antibodies with reduced side-effects
US20240376100A1 (en) 2021-09-08 2024-11-14 Redona Therapeutics, Inc. Papd5 and/or papd7 inhibiting 4-oxo-1, 4-dihydroquinoline-3-carboxylic acid derivatives
US20240376203A1 (en) * 2021-09-10 2024-11-14 Trustees Of Tufts College Anti-pd-1 immunoglobulin polypeptides and uses thereof
JP2024535811A (ja) 2021-09-13 2024-10-02 プランティバディーズ 組換えタンパク質作製のための遺伝子改変された生物
WO2023041744A1 (en) 2021-09-17 2023-03-23 Institut Curie Bet inhibitors for treating pab1 deficient cancer
US12030883B2 (en) 2021-09-21 2024-07-09 Incyte Corporation Hetero-tricyclic compounds as inhibitors of KRAS
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
EP4408536A1 (en) 2021-10-01 2024-08-07 Incyte Corporation Pyrazoloquinoline kras inhibitors
WO2023057882A1 (en) 2021-10-05 2023-04-13 Pfizer Inc. Combinations of azalactam compounds with a pd-1 axis binding antagonist for the treatment of cancer
MX2024004122A (es) 2021-10-05 2024-05-13 Cytovia Therapeutics Llc Células citolíticas (asesinas) naturales y métodos de uso de las mismas.
EP4413040A1 (en) 2021-10-06 2024-08-14 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination
AR127308A1 (es) 2021-10-08 2024-01-10 Revolution Medicines Inc Inhibidores ras
TW202333802A (zh) 2021-10-11 2023-09-01 德商拜恩迪克公司 用於肺癌之治療性rna(二)
MX2024004444A (es) 2021-10-14 2024-05-08 Incyte Corp Compuestos de quinolina como inhibidores de la proteina del virus de sarcoma de rata kirsten (kras).
WO2023068382A2 (en) 2021-10-20 2023-04-27 Takeda Pharmaceutical Company Limited Compositions targeting bcma and methods of use thereof
IL312221A (en) 2021-10-20 2024-06-01 Synthekine Inc FC heterodimeric cytokines and their uses
WO2023076880A1 (en) 2021-10-25 2023-05-04 Board Of Regents, The University Of Texas System Foxo1-targeted therapy for the treatment of cancer
KR20240099331A (ko) 2021-10-28 2024-06-28 라이엘 이뮤노파마, 인크. 면역 세포를 배양하기 위한 방법
WO2023077090A1 (en) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hematological cancer
WO2023081730A1 (en) 2021-11-03 2023-05-11 Teon Therapeutics, Inc. 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer
WO2023079428A1 (en) 2021-11-03 2023-05-11 Pfizer Inc. Combination therapies using tlr7/8 agonist
WO2023078900A1 (en) 2021-11-03 2023-05-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating triple negative breast cancer (tnbc)
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023086835A1 (en) 2021-11-09 2023-05-19 Sensei Biotherapeutics, Inc. Anti-vista antibodies and uses thereof
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
CA3240096A1 (en) 2021-11-12 2023-05-19 Novartis Ag Combination therapy for treating lung cancer
JP2024539432A (ja) 2021-11-15 2024-10-28 中国科学院生物物理研究所 インターロイキン15を有効成分とする融合タンパク質構築物およびその使用
CN118765283A (zh) 2021-11-17 2024-10-11 国家健康科学研究所 通用沙贝病毒疫苗
WO2023089032A1 (en) 2021-11-19 2023-05-25 Institut Curie Methods for the treatment of hrd cancer and brca-associated cancer
WO2023091746A1 (en) 2021-11-22 2023-05-25 Incyte Corporation Combination therapy comprising an fgfr inhibitor and a kras inhibitor
TW202340212A (zh) 2021-11-24 2023-10-16 美商建南德克公司 治療性化合物及其使用方法
TW202332429A (zh) 2021-11-24 2023-08-16 美商建南德克公司 治療性化合物及其使用方法
WO2023097211A1 (en) 2021-11-24 2023-06-01 The University Of Southern California Methods for enhancing immune checkpoint inhibitor therapy
US20230203010A1 (en) 2021-12-03 2023-06-29 Incyte Corporation Bicyclic amine cdk12 inhibitors
WO2023099763A1 (en) 2021-12-03 2023-06-08 Institut Curie Sirt6 inhibitors for use in treating resistant hrd cancer
TW202328438A (zh) 2021-12-08 2023-07-16 新加坡商泰莎治療有限公司 淋巴瘤之治療
WO2023107705A1 (en) 2021-12-10 2023-06-15 Incyte Corporation Bicyclic amines as cdk12 inhibitors
US11976073B2 (en) 2021-12-10 2024-05-07 Incyte Corporation Bicyclic amines as CDK2 inhibitors
CN118660964A (zh) 2021-12-16 2024-09-17 瓦莱里奥治疗公司 新型缀合核酸分子及其用途
EP4448526A1 (en) 2021-12-17 2024-10-23 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023122573A1 (en) 2021-12-20 2023-06-29 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
EP4452257A1 (en) 2021-12-21 2024-10-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
JP2025500466A (ja) 2021-12-22 2025-01-09 インサイト・コーポレイション Fgfr阻害剤の塩及び固体の形態ならびにその調製方法
WO2023129438A1 (en) 2021-12-28 2023-07-06 Wisconsin Alumni Research Foundation Hydrogel compositions for use for depletion of tumor associated macrophages
WO2023130081A1 (en) 2021-12-30 2023-07-06 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and vegf antagonist
EP4460520A1 (en) 2022-01-07 2024-11-13 Regeneron Pharmaceuticals, Inc. Methods of treating recurrent ovarian cancer with bispecific anti-muc16 x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies
EP4469477A1 (en) 2022-01-26 2024-12-04 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
EP4470565A1 (en) 2022-01-28 2024-12-04 OnQuality Pharmaceuticals China Ltd. Method for preventing or treating disease or disorder associated with antineoplastic agent
CN118984837A (zh) 2022-01-28 2024-11-19 乔治穆内公司 作为pd-1激动剂的程序性细胞死亡蛋白1的抗体
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023154905A1 (en) 2022-02-14 2023-08-17 Gilead Sciences, Inc. Antiviral pyrazolopyridinone compounds
WO2023154799A1 (en) 2022-02-14 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination immunotherapy for treating cancer
US12052261B2 (en) 2022-02-15 2024-07-30 Bank Of America Corporation System and method for authenticating the receiving end of data transmission via LiFi and holochain network
US12074641B2 (en) 2022-02-15 2024-08-27 Bank Of America Corporation System and method for secured data transmission using LiFi and holochain network
AU2023221738A1 (en) 2022-02-17 2024-08-29 Regeneron Pharmaceuticals, Inc. Combinations of checkpoint inhibitors and oncolytic virus for treating cancer
JP2025505812A (ja) 2022-02-21 2025-02-28 オンクオリティ ファーマシューティカルズ チャイナ リミテッド 化合物及びその用途
EP4482947A1 (en) 2022-02-24 2025-01-01 Amazentis SA Uses of urolithins
AU2023226078A1 (en) 2022-02-25 2024-08-22 Bristol-Myers Squibb Company Combination therapy for colorectal carcinoma.
WO2023168404A1 (en) 2022-03-04 2023-09-07 Bristol-Myers Squibb Company Methods of treating a tumor
IL315457A (en) 2022-03-07 2024-11-01 Incyte Corp Solid forms, salts and preparation processes of the Sidikii2 inhibitor
EP4489780A1 (en) 2022-03-07 2025-01-15 Mabxience Research, S.L. Stable formulations for antibodies
CN119136806A (zh) 2022-03-08 2024-12-13 锐新医药公司 用于治疗免疫难治性肺癌的方法
WO2023170606A1 (en) 2022-03-08 2023-09-14 Alentis Therapeutics Ag Use of anti-claudin-1 antibodies to increase t cell availability
CN118871127A (zh) 2022-03-10 2024-10-29 格纳西尼有限公司 用于治疗头颈癌的三重组合药物给药疗法
WO2023176881A1 (ja) 2022-03-16 2023-09-21 第一三共株式会社 多重特異的分子と免疫チェックポイント阻害剤の組み合わせ
AU2023236126A1 (en) 2022-03-17 2024-09-19 Regeneron Pharmaceuticals, Inc. Methods of treating recurrent epithelioid sarcoma with bispecific anti-muc16 x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies
WO2023178329A1 (en) 2022-03-18 2023-09-21 Bristol-Myers Squibb Company Methods of isolating polypeptides
EP4499134A1 (en) 2022-03-24 2025-02-05 Institut Curie Immunotherapy targeting tumor transposable element derived neoantigenic peptides in glioblastoma
WO2023187024A1 (en) 2022-03-31 2023-10-05 Institut Curie Modified rela protein for inducing interferon expression and engineered immune cells with improved interferon expression
CN114835810B (zh) * 2022-03-31 2024-01-05 浙江特瑞思药业股份有限公司 一种抗pd-1纳米抗体及其应用
CN119487067A (zh) 2022-04-01 2025-02-18 基因泰克公司 用抗fcrh5/抗cd3双特异性抗体进行治疗的给药
WO2023192478A1 (en) 2022-04-01 2023-10-05 Bristol-Myers Squibb Company Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer
EP4504220A1 (en) 2022-04-06 2025-02-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2023194608A1 (en) 2022-04-07 2023-10-12 Institut Curie Myeloid cells modified by chimeric antigen receptor and uses thereof for anti-cancer therapy
EP4504244A1 (en) 2022-04-07 2025-02-12 Institut Curie Myeloid cells modified by chimeric antigen receptor with cd40 and uses thereof for anti-cancer therapy
WO2023196987A1 (en) 2022-04-07 2023-10-12 Bristol-Myers Squibb Company Methods of treating tumor
WO2023196988A1 (en) 2022-04-07 2023-10-12 Modernatx, Inc. Methods of use of mrnas encoding il-12
EP4487226A1 (en) 2022-04-08 2025-01-08 Bristol-Myers Squibb Company Machine learning identification, classification, and quantification of tertiary lymphoid structures
AU2023253705A1 (en) 2022-04-13 2024-10-17 F. Hoffmann-La Roche Ag Pharmaceutical compositions of therapeutic proteins and methods of use
CN119013299A (zh) 2022-04-13 2024-11-22 基因泰克公司 莫苏尼妥珠单抗的药物组合物及使用方法
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
WO2023211972A1 (en) 2022-04-28 2023-11-02 Medical University Of South Carolina Chimeric antigen receptor modified regulatory t cells for treating cancer
WO2023213763A1 (en) 2022-05-02 2023-11-09 Transgene Poxvirus encoding a binding agent comprising an anti- pd-l1 sdab
WO2023213764A1 (en) 2022-05-02 2023-11-09 Transgene Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
EP4522653A1 (en) 2022-05-11 2025-03-19 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
EP4522657A1 (en) 2022-05-12 2025-03-19 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
AU2023272836A1 (en) 2022-05-16 2024-12-12 Regeneron Pharmaceuticals, Inc. Methods of treating metastatic castration-resistant prostate cancer with bispecific anti-psma x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies
EP4527853A1 (en) 2022-05-19 2025-03-26 Shaperon Inc. Bispecific humanized single domain antibody to pd-l1 and cd47, and use thereof
CN119255825A (zh) 2022-05-24 2025-01-03 第一三共株式会社 抗-cdh6抗体-药物缀合物的剂量方案
WO2023230554A1 (en) 2022-05-25 2023-11-30 Pfizer Inc. Combination of a braf inhibitor, an egfr inhibitor, and a pd-1 antagonist for the treatment of braf v600e-mutant, msi-h/dmmr colorectal cancer
AR129423A1 (es) 2022-05-27 2024-08-21 Viiv Healthcare Co Compuestos útiles en la terapia contra el hiv
WO2023227949A1 (en) 2022-05-27 2023-11-30 Takeda Pharmaceutical Company Limited Dosing of cd38-binding fusion protein
IL317319A (en) 2022-06-02 2025-01-01 Bristol Myers Squibb Co Antibody compounds and methods of using them
IL317449A (en) 2022-06-07 2025-02-01 Genentech Inc Method for determining the efficacy of a lung cancer treatment comprising an anti-PD-L1 antagonist and an anti-TIGIT antibody-antagonist
TW202423482A (zh) 2022-06-08 2024-06-16 美商泰德治療公司 可電離陽離子脂質和脂質奈米顆粒、及其合成方法和用途
AU2023284958A1 (en) 2022-06-08 2025-01-02 Incyte Corporation Tricyclic triazolo compounds as dgk inhibitors
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors
US20240076343A1 (en) 2022-06-16 2024-03-07 Cephalon Llc Anti-pd-1 antibody-attenuated il-2 immunoconjugates and uses thereof
EP4514851A1 (en) 2022-06-16 2025-03-05 LamKap Bio beta Ltd. Combination therapy of bispecific antibodies against ceacam5 and cd47 and bispecific antibodies against ceacam5 and cd3
WO2023250430A1 (en) 2022-06-22 2023-12-28 Incyte Corporation Bicyclic amine cdk12 inhibitors
CN119546638A (zh) 2022-06-22 2025-02-28 朱诺治疗学股份有限公司 用于cd19靶向的car t细胞的二线疗法的治疗方法
GB202209518D0 (en) 2022-06-29 2022-08-10 Snipr Biome Aps Treating & preventing E coli infections
WO2024003360A1 (en) 2022-07-01 2024-01-04 Institut Curie Biomarkers and uses thereof for the treatment of neuroblastoma
KR20250034101A (ko) 2022-07-01 2025-03-10 트랜스진 계면활성제-단백질-d 및 tnfsf의 구성원을 포함하는 융합 단백질
WO2024011114A1 (en) 2022-07-06 2024-01-11 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
US20240101557A1 (en) 2022-07-11 2024-03-28 Incyte Corporation Fused tricyclic compounds as inhibitors of kras g12v mutants
WO2024015864A1 (en) 2022-07-12 2024-01-18 Hotspot Therapeutics, Inc. Cbl-b inhibitors and anti-pd1/anti-pd-l1 for use in the treatment of cancer
WO2024015372A1 (en) 2022-07-14 2024-01-18 Teon Therapeutics, Inc. Adenosine receptor antagonists and uses thereof
AU2023308528A1 (en) 2022-07-15 2025-01-23 Pheon Therapeutics Ltd Antibody-drug conjugates
CN119604530A (zh) 2022-07-19 2025-03-11 基因泰克公司 用抗fcrh5/抗cd3双特异性抗体进行治疗的给药
EP4310197A1 (en) 2022-07-21 2024-01-24 Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
AU2023313118A1 (en) 2022-07-27 2025-03-06 Astrazeneca Ab Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors
WO2024023750A1 (en) 2022-07-28 2024-02-01 Astrazeneca Uk Limited Combination of antibody-drug conjugate and bispecific checkpoint inhibitor
IL318426A (en) 2022-08-02 2025-03-01 Regeneron Pharma Methods for treating metastatic castration-resistant prostate cancer using bispecific antibodies against PSMA and CD28 in combination with anti-PD-1 antibodies
WO2024028794A1 (en) 2022-08-02 2024-02-08 Temple Therapeutics BV Methods for treating endometrial and ovarian hyperproliferative disorders
WO2024028386A1 (en) 2022-08-02 2024-02-08 Ose Immunotherapeutics Multifunctional molecule directed against cd28
AU2023320568A1 (en) 2022-08-05 2025-02-06 Juno Therapeutics, Inc. Chimeric antigen receptors specific for gprc5d and bcma
WO2024033399A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sigmar1 ligand for the treatment of pancreatic cancer
WO2024033400A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sk2 inhibitor for the treatment of pancreatic cancer
WO2024040175A1 (en) 2022-08-18 2024-02-22 Pulmatrix Operating Company, Inc. Methods for treating cancer using inhaled angiogenesis inhibitor
WO2024040264A1 (en) 2022-08-19 2024-02-22 Massachusetts Institute Of Technology Compositions and methods for targeting dendritic cell lectins
CN119630431A (zh) 2022-08-26 2025-03-14 卫材R&D管理有限公司 抗体药物缀合物
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024052356A1 (en) 2022-09-06 2024-03-14 Institut National de la Santé et de la Recherche Médicale Inhibitors of the ceramide metabolic pathway for overcoming immunotherapy resistance in cancer
WO2024056716A1 (en) 2022-09-14 2024-03-21 Institut National de la Santé et de la Recherche Médicale Methods and pharmaceutical compositions for the treatment of dilated cardiomyopathy
WO2024068617A1 (en) 2022-09-26 2024-04-04 Institut Curie Myeloid cells expressing il-2 and uses thereof for quick anticancer therapy
WO2024069009A1 (en) 2022-09-30 2024-04-04 Alentis Therapeutics Ag Treatment of drug-resistant hepatocellular carcinoma
WO2024076926A1 (en) 2022-10-03 2024-04-11 Regeneron Pharmaceuticals, Inc. Methods of treating cancer with bispecific egfr x cd28 antibodies alone or in combination with anti-pd-1 antibodies
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer
US20240174732A1 (en) 2022-10-05 2024-05-30 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additional polypeptides and their use in treating cancer
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024081736A2 (en) 2022-10-11 2024-04-18 Yale University Compositions and methods of using cell-penetrating antibodies
WO2024081916A1 (en) 2022-10-14 2024-04-18 Black Diamond Therapeutics, Inc. Methods of treating cancers using isoquinoline or 6-aza-quinoline derivatives
WO2024084013A1 (en) 2022-10-20 2024-04-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Combination therapy for the treatment of cancer
WO2024086739A1 (en) 2022-10-20 2024-04-25 Synthekine, Inc. Methods and compositions of il12 muteins and il2 muteins
WO2024086827A2 (en) 2022-10-20 2024-04-25 Repertoire Immune Medicines, Inc. Cd8 t cell targeted il2
WO2024084034A1 (en) 2022-10-21 2024-04-25 Institut National de la Santé et de la Recherche Médicale Methods and pharmaceutical compositions for the treatment of osteoarthritis
WO2024089418A1 (en) 2022-10-24 2024-05-02 Cancer Research Technology Limited Tumour sensitisation to checkpoint inhibitors with redox status modifier
WO2024089417A1 (en) 2022-10-24 2024-05-02 Memorial Sloan-Kettering Cancer Center Tumour stratification for responsiveness to an immune checkpoint inhibitor
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
AR130916A1 (es) 2022-11-01 2025-01-29 Heidelberg Pharma Res Gmbh Anticuerpo anti-gucy2c y usos del mismo
WO2024102722A1 (en) 2022-11-07 2024-05-16 Neoimmunetech, Inc. Methods of treating a tumor with an unmethylated mgmt promoter
WO2024105180A1 (en) 2022-11-16 2024-05-23 Boehringer Ingelheim International Gmbh Predictive efficacy biomarkers for anti-sirpa antibodies
US20240217989A1 (en) 2022-11-18 2024-07-04 Incyte Corporation Heteroaryl Fluoroalkenes As DGK Inhibitors
WO2024107477A1 (en) * 2022-11-18 2024-05-23 Massachusetts Institute Of Technology Compositions and methods for antibody mediated delivery of antigen to b cell follicles
WO2024112571A2 (en) 2022-11-21 2024-05-30 Iovance Biotherapeutics, Inc. Two-dimensional processes for the expansion of tumor infiltrating lymphocytes and therapies therefrom
WO2024112867A1 (en) 2022-11-23 2024-05-30 University Of Georgia Research Foundation, Inc. Compositions and methods of use thereof for increasing immune responses
TW202434306A (zh) 2022-11-24 2024-09-01 瑞士商百濟神州瑞士有限責任公司 抗cea抗體藥物軛合物及使用方法
WO2024118836A1 (en) 2022-11-30 2024-06-06 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes with shortened rep step
WO2024115725A1 (en) 2022-12-01 2024-06-06 BioNTech SE Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy
TW202440157A (zh) 2022-12-01 2024-10-16 英商梅迪繆思有限公司 用於治療癌症的組合療法
WO2024115966A2 (en) 2022-12-01 2024-06-06 Innate Pharma Compositions and methods for neoadjuvant treatment in cancer
WO2024119193A2 (en) 2022-12-02 2024-06-06 AskGene Pharma, Inc. Mutant il-2 polypeptides and il-2 prodrugs
US20240226298A1 (en) 2022-12-13 2024-07-11 Juno Therapeutics, Inc. Chimeric antigen receptors specific for baff-r and cd19 and methods and uses thereof
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024129555A1 (en) * 2022-12-15 2024-06-20 Merck Sharp & Dohme Llc Lyospheres containing programmed death receptor 1 (pd-1) antibodies and methods of use thereof
WO2024137589A2 (en) 2022-12-20 2024-06-27 Genentech, Inc. Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2024137776A1 (en) 2022-12-21 2024-06-27 Bristol-Myers Squibb Company Combination therapy for lung cancer
TW202430560A (zh) 2023-01-06 2024-08-01 美商拉森醫療公司 抗il-18bp抗體
TW202432591A (zh) 2023-01-06 2024-08-16 美商拉森醫療公司 抗il-18bp抗體
US20240269251A1 (en) 2023-01-09 2024-08-15 Flagship Pioneering Innovations V, Inc. Genetic switches and their use in treating cancer
WO2024150177A1 (en) 2023-01-11 2024-07-18 Advesya Treatment methods for solid tumors
WO2024151346A1 (en) 2023-01-12 2024-07-18 Incyte Corporation Heteroaryl fluoroalkenes as dgk inhibitors
WO2024151885A1 (en) 2023-01-13 2024-07-18 Iovance Biotherapeutics, Inc. Use of til as maintenance therapy for nsclc patients who achieved pr/cr after prior therapy
WO2024150017A1 (en) 2023-01-13 2024-07-18 Akrivia Biomedics Limited Method of profiling diseases
WO2024153168A2 (en) 2023-01-19 2024-07-25 Beigene, Ltd. Anti-cmet antibodies and methods of use
TW202444764A (zh) 2023-01-20 2024-11-16 德商百靈佳殷格翰國際股份有限公司 IL-12 Fc融合蛋白
US20240294651A1 (en) 2023-01-30 2024-09-05 Kymab Limited Antibodies
WO2024163477A1 (en) 2023-01-31 2024-08-08 University Of Rochester Immune checkpoint blockade therapy for treating staphylococcus aureus infections
TW202436345A (zh) 2023-03-06 2024-09-16 瑞士商百濟神州瑞士有限責任公司 抗cd3多特異性抗體及使用方法
TW202436354A (zh) 2023-03-06 2024-09-16 瑞士商百濟神州瑞士有限責任公司 抗cldn6抗體以及其使用方法
WO2024184810A1 (en) 2023-03-06 2024-09-12 Beigene Switzerland Gmbh Anti-cldn6 and anti-cd3 multispecific antibodies and methods of use
CN116218786B (zh) * 2023-03-09 2024-01-23 山东大学齐鲁医院 一种多重基因编辑的通用型巨噬细胞及在制备抗肿瘤药物中的应用
WO2024192051A1 (en) 2023-03-13 2024-09-19 Turnstone Biologics Corp. Composition of selected tumor infiltrating lymphocytes and related methods of producing and using the same
WO2024188965A1 (en) 2023-03-13 2024-09-19 F. Hoffmann-La Roche Ag Combination therapy employing a pd1-lag3 bispecific antibody and an hla-g t cell bispecific antibody
WO2024192033A1 (en) 2023-03-13 2024-09-19 Regeneron Pharmaceuticals, Inc. Combination of pd-1 inhibitors and lag-3 inhibitors for enhanced efficacy in treating melanoma
WO2024189048A1 (en) 2023-03-13 2024-09-19 Heidelberg Pharma Research Gmbh Subcutaneously administered antibody-drug conjugates for use in cancer treatment
WO2024196952A1 (en) 2023-03-20 2024-09-26 Bristol-Myers Squibb Company Tumor subtype assessment for cancer therapy
TW202440636A (zh) 2023-03-21 2024-10-16 美商傳記55有限公司 Cd19/cd38多特異性抗體
WO2024194673A1 (en) 2023-03-21 2024-09-26 Institut Curie Methods for the treatment of dedifferentiated liposarcoma
WO2024194402A1 (en) 2023-03-21 2024-09-26 Institut Curie Farnesyl transferase inhibitor for use in methods for the treatment of hrd cancer
WO2024194401A1 (en) 2023-03-21 2024-09-26 Institut Curie Vps4b inhibitor for use in methods for the treatment of hrd cancer
WO2024206155A1 (en) 2023-03-24 2024-10-03 Cornell University Utilizing t cells derived from tumor draining lymph nodes for chimeric antigen receptor (car) t cell therapy for the treatment of cancer
WO2024200571A1 (en) 2023-03-28 2024-10-03 Institut National de la Santé et de la Recherche Médicale Method for discriminating mono-immunotherapy from combined immunotherapy in cancers
US20240336608A1 (en) 2023-03-29 2024-10-10 Merck Sharp & Dohme Llc Il4i1 inhibitors and methods of use
WO2024206858A1 (en) 2023-03-30 2024-10-03 Revolution Medicines, Inc. Compositions for inducing ras gtp hydrolysis and uses thereof
WO2024200823A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof
WO2024200826A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell inhibiting molecule and use thereof
WO2024211551A1 (en) 2023-04-06 2024-10-10 Glaxosmithkline Intellectual Property (No.4) Limited Methods for treating and monitoring cancer
WO2024209072A1 (en) 2023-04-06 2024-10-10 Genmab A/S Multispecific binding agents against pd-l1 and cd137 for treating cancer
WO2024211663A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors
WO2024211712A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors
WO2024216028A1 (en) 2023-04-12 2024-10-17 Agenus Inc. Methods of treating cancer using an anti-ctla4 antibody and an enpp1 inhibitor
WO2024213782A1 (en) 2023-04-13 2024-10-17 Institut Curie Methods for the treatment of t-cell acute lymphoblastic leukemia
WO2024213533A1 (en) 2023-04-13 2024-10-17 Alligator Bioscience Ab Combination therapies
TW202446388A (zh) 2023-04-14 2024-12-01 美商銳新醫藥公司 Ras抑制劑之結晶形式、含有其之組合物及其使用方法
US20240352038A1 (en) 2023-04-14 2024-10-24 Revolution Medicines, Inc. Crystalline forms of ras inhibitors, compositions containing the same, and methods of use thereof
WO2024213767A1 (en) 2023-04-14 2024-10-17 Institut National de la Santé et de la Recherche Médicale Engraftment of mesenchymal stromal cells engineered to stimulate immune infiltration in tumors
WO2024220532A1 (en) 2023-04-18 2024-10-24 Incyte Corporation Pyrrolidine kras inhibitors
WO2024223299A2 (en) 2023-04-26 2024-10-31 Isa Pharmaceuticals B.V. Methods of treating cancer by administering immunogenic compositions and a pd-1 inhibitor
WO2024228167A1 (en) 2023-05-03 2024-11-07 Iox Therapeutics Inc. Inkt cell modulator liposomal compositions and methods of use
WO2024229461A2 (en) 2023-05-04 2024-11-07 Novasenta, Inc. Anti-cd161 antibodies and methods of use thereof
WO2024229406A1 (en) 2023-05-04 2024-11-07 Revolution Medicines, Inc. Combination therapy for a ras related disease or disorder
WO2024233341A1 (en) 2023-05-05 2024-11-14 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024233646A1 (en) 2023-05-10 2024-11-14 Genentech, Inc. Methods and compositions for treating cancer
WO2024231384A1 (en) 2023-05-10 2024-11-14 Institut National de la Santé et de la Recherche Médicale Compositions for treating senescence related disease
WO2024245951A1 (en) 2023-05-26 2024-12-05 Institut National de la Santé et de la Recherche Médicale Combination of slc8a1 inhibitor and mitochondria-targeted antioxidant for treating melanoma
EP4470542A1 (en) 2023-05-31 2024-12-04 Fundación Miguel Servet Oleuropein in the management of cancer
WO2024254245A1 (en) 2023-06-09 2024-12-12 Incyte Corporation Bicyclic amines as cdk2 inhibitors
WO2024256635A1 (en) 2023-06-15 2024-12-19 Institut National de la Santé et de la Recherche Médicale Dpm1 inhibitor for treating cancer
WO2024261302A1 (en) 2023-06-22 2024-12-26 Institut National de la Santé et de la Recherche Médicale Nlrp3 inhibitors, pak1/2 inhibitors and/or caspase 1 inhibitors for use in the treatment of rac2 monogenic disorders
WO2024261239A1 (en) 2023-06-23 2024-12-26 Imcheck Therapeutics Bispecific antibodies targeting btn3a and the pd-1/pd-l1 inhibitory axis
WO2024263904A1 (en) 2023-06-23 2024-12-26 Genentech, Inc. Methods for treatment of liver cancer
WO2024263195A1 (en) 2023-06-23 2024-12-26 Genentech, Inc. Methods for treatment of liver cancer
WO2025003193A1 (en) 2023-06-26 2025-01-02 Institut National de la Santé et de la Recherche Médicale Sertraline and indatraline for disrupting intracellular cholesterol trafficking and subsequently inducing lysosomal damage and anti-tumor immunity
WO2025006811A1 (en) 2023-06-27 2025-01-02 Lyell Immunopharma, Inc. Methods for culturing immune cells
WO2025012620A1 (en) 2023-07-07 2025-01-16 Mestag Therapeutics Ltd Binding constructs
WO2025012417A1 (en) 2023-07-13 2025-01-16 Institut National de la Santé et de la Recherche Médicale Anti-neurotensin long fragment and anti-neuromedin n long fragment antibodies and uses thereof
WO2025024257A1 (en) 2023-07-21 2025-01-30 Genentech, Inc. Diagnostic and therapeutic methods for cancer
IL304887A (en) 2023-07-31 2025-02-01 Yeda Res & Dev T-cell receptor directed against RAS neoantigen
WO2025030044A1 (en) 2023-08-02 2025-02-06 Regeneron Pharmaceuticals, Inc. Methods of treating clear cell renal cell carcinoma with bispecific anti-psma x anti-cd28 antibodies
WO2025030041A1 (en) 2023-08-02 2025-02-06 Regeneron Pharmaceuticals, Inc. Methods of treating metastatic castration-resistant prostate cancer with bispecific anti-psma x anti-cd28 antibodies
US20250049810A1 (en) 2023-08-07 2025-02-13 Revolution Medicines, Inc. Methods of treating a ras protein-related disease or disorder
WO2025034883A1 (en) 2023-08-08 2025-02-13 Quanta Therapeutics, Inc. Combination therapies with kras modulators
US20250099605A1 (en) 2023-08-15 2025-03-27 Gilead Sciences, Inc. Treatment of non-small cell lung cancer using sacituzumab govitecan and an anti-pd-1 antibody or antigen binding fragment thereof
WO2025038763A1 (en) 2023-08-15 2025-02-20 Bristol-Myers Squibb Company Ceramic hydroxyapatite chromatography flow through method
WO2025042742A1 (en) 2023-08-18 2025-02-27 Bristol-Myers Squibb Company Compositions comprising antibodies that bind bcma and cd3 and methods of treatment
WO2025043151A2 (en) 2023-08-24 2025-02-27 Incyte Corporation Bicyclic dgk inhibitors
WO2025049277A1 (en) 2023-08-25 2025-03-06 Genentech, Inc. Methods and compositions for treating non-small cell lung cancer comprising an anti-tigit antagonist antibody and a pd-1 axis binding antagonist
WO2025050009A2 (en) 2023-09-01 2025-03-06 Children's Hospital Medical Center Identification of targets for immunotherapy in melanoma using splicing-derived neoantigens
WO2025049858A1 (en) 2023-09-01 2025-03-06 Amgen Inc. Molecules for treatment of cancer
US20250075000A1 (en) 2023-09-06 2025-03-06 Novimmune Sa Combination therapy with a cea x cd28 bispecific antibody and blocking anti-pd-1 antibodies for enhanced in vivo anti-tumor activity
WO2025056180A1 (en) 2023-09-15 2025-03-20 BioNTech SE Methods of treatment using agents binding to epcam and cd137 in combination with pd-1 axis binding antagonists

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634665A (en) 1980-02-25 1987-01-06 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5179017A (en) 1980-02-25 1993-01-12 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4475196A (en) 1981-03-06 1984-10-02 Zor Clair G Instrument for locating faults in aircraft passenger reading light and attendant call control system
US4447233A (en) 1981-04-10 1984-05-08 Parker-Hannifin Corporation Medication infusion pump
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4486194A (en) 1983-06-08 1984-12-04 James Ferrara Therapeutic device for administering medicaments through the skin
DE3572982D1 (en) 1984-03-06 1989-10-19 Takeda Chemical Industries Ltd Chemically modified lymphokine and production thereof
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
US5374548A (en) 1986-05-02 1994-12-20 Genentech, Inc. Methods and compositions for the attachment of proteins to liposomes using a glycophospholipid anchor
MX9203291A (es) 1985-06-26 1992-08-01 Liposome Co Inc Metodo para acoplamiento de liposomas.
GB8601597D0 (en) 1986-01-23 1986-02-26 Wilson R H Nucleotide sequences
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4954617A (en) 1986-07-07 1990-09-04 Trustees Of Dartmouth College Monoclonal antibodies to FC receptors for immunoglobulin G on human mononuclear phagocytes
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US4881175A (en) 1986-09-02 1989-11-14 Genex Corporation Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
EP0307434B2 (en) 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
US5013653A (en) 1987-03-20 1991-05-07 Creative Biomolecules, Inc. Product and process for introduction of a hinge region into a fusion protein to facilitate cleavage
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5132405A (en) 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
AU612370B2 (en) 1987-05-21 1991-07-11 Micromet Ag Targeted multifunctional proteins
US5258498A (en) 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
GB8809129D0 (en) 1988-04-18 1988-05-18 Celltech Ltd Recombinant dna methods vectors and host cells
US5476996A (en) 1988-06-14 1995-12-19 Lidak Pharmaceuticals Human immune system in non-human animal
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
JP2989002B2 (ja) 1988-12-22 1999-12-13 キリン―アムジエン・インコーポレーテツド 化学修飾顆粒球コロニー刺激因子
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5108921A (en) 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
ATE356869T1 (de) 1990-01-12 2007-04-15 Amgen Fremont Inc Bildung von xenogenen antikörpern
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
DE69127627T2 (de) 1990-08-29 1998-02-19 Genpharm Int Produktion und Nützung nicht-menschliche transgentiere zur Produktion heterologe Antikörper
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
PT1024191E (pt) 1991-12-02 2008-12-22 Medical Res Council Produção de auto-anticorpos a partir de reportórios de segmentos de anticorpo e exibidos em fagos
CA2124967C (en) 1991-12-17 2008-04-08 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
US5714350A (en) 1992-03-09 1998-02-03 Protein Design Labs, Inc. Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region
WO1993022332A2 (en) 1992-04-24 1993-11-11 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
US5260074A (en) 1992-06-22 1993-11-09 Digestive Care Inc. Compositions of digestive enzymes and salts of bile acids and process for preparation thereof
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
GB9223377D0 (en) 1992-11-04 1992-12-23 Medarex Inc Humanized antibodies to fc receptors for immunoglobulin on human mononuclear phagocytes
CA2161351C (en) 1993-04-26 2010-12-21 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
AU691811B2 (en) 1993-06-16 1998-05-28 Celltech Therapeutics Limited Antibodies
US5625825A (en) 1993-10-21 1997-04-29 Lsi Logic Corporation Random number generating apparatus for an interface unit of a carrier sense with multiple access and collision detect (CSMA/CD) ethernet data network
IL108501A (en) 1994-01-31 1998-10-30 Mor Research Applic Ltd Antibodies and pharmaceutical compositions containing them
CA2143491C (en) 1994-03-01 2011-02-22 Yasumasa Ishida A novel peptide related to human programmed cell death and dna encoding it
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6410690B1 (en) 1995-06-07 2002-06-25 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US5811097A (en) 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US5855887A (en) 1995-07-25 1999-01-05 The Regents Of The University Of California Blockade of lymphocyte down-regulation associated with CTLA-4 signaling
US6051227A (en) 1995-07-25 2000-04-18 The Regents Of The University Of California, Office Of Technology Transfer Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
ATE352613T1 (de) 1995-08-29 2007-02-15 Kirin Brewery Chimäres tier und methode zu dessen herstellung
US6632976B1 (en) 1995-08-29 2003-10-14 Kirin Beer Kabushiki Kaisha Chimeric mice that are produced by microcell mediated chromosome transfer and that retain a human antibody gene
US5922845A (en) 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
EP1007090B1 (en) * 1996-11-08 2009-12-30 Biogen Idec Inc. Identification of unique binding interactions between certain antibodies and the human b7.1 (cd80) and b7.2 (cd28) co-stimulatory antigens
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
AU6703198A (en) 1997-03-21 1998-10-20 Brigham And Women's Hospital Immunotherapeutic ctla-4 binding peptides
JPH10291996A (ja) 1997-04-22 1998-11-04 Mitsubishi Chem Corp ロジウム錯体溶液の調製方法
ATE319745T1 (de) 1997-05-21 2006-03-15 Biovation Ltd Verfahren zur herstellung von nicht-immunogenen proteinen
WO2004087163A2 (ja) * 1998-12-02 2004-10-14 Masato Kusunoki 薬物動態修飾化学療法
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
AU3657899A (en) 1998-04-20 1999-11-08 James E. Bailey Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
PT1137436E (pt) 1998-12-03 2008-09-15 Univ California Estimulação das células t contra auto-antigénios por meio de agentes bloqueadores de ctla-4
ES2706547T3 (es) 1998-12-23 2019-03-29 Pfizer Anticuerpos monoclonales humanos para CTLA-4
US7041474B2 (en) 1998-12-30 2006-05-09 Millennium Pharmaceuticals, Inc. Nucleic acid encoding human tango 509
MX353234B (es) 1999-01-15 2018-01-08 Genentech Inc Variantes de polipeptidos con función efectora alterada.
US6316462B1 (en) * 1999-04-09 2001-11-13 Schering Corporation Methods of inducing cancer cell death and tumor regression
ES2571230T3 (es) 1999-04-09 2016-05-24 Kyowa Hakko Kirin Co Ltd Procedimiento para controlar la actividad de una molécula inmunofuncional
FR2794025A1 (fr) 1999-05-25 2000-12-01 Transgene Sa Composition destinee a la mise en oeuvre d'un traitement antitumoral ou antiviral chez un mammifere
JP2003505432A (ja) 1999-07-23 2003-02-12 グラクソ グループ リミテッド 抗ep−cam抗体と化学療法剤との組合せ
IL147765A0 (en) 1999-07-29 2002-08-14 Medarex Inc HUMAN MONOCLONAL ANTIBODIES TO HER2/neu
HU228477B1 (en) 1999-08-23 2013-03-28 Dana Farber Cancer Inst Inc Pd-1, a receptor for b7-4, and uses therefor
PL362804A1 (en) 1999-08-23 2004-11-02 Dana-Farber Cancer Institute Novel b7-4 molecules and uses therefor
PT1212422E (pt) 1999-08-24 2007-04-30 Medarex Inc Anticorpos contra citla-4 humana e suas utilizações
US6803192B1 (en) 1999-11-30 2004-10-12 Mayo Foundation For Medical Education And Research B7-H1, a novel immunoregulatory molecule
PT1234031T (pt) 1999-11-30 2017-06-26 Mayo Foundation B7-h1, uma nova molécula imunoregulatória
AU2001233027A1 (en) 2000-01-27 2001-08-07 Genetics Institute, Llc Antibodies against ctla4 (cd152), conjugates comprising same, and uses thereof
EP1265635A1 (en) 2000-03-22 2002-12-18 Glaxo Group Limited Pharmaceutical comprising an agent that blocks the cell cycle and an antibody
US7030219B2 (en) 2000-04-28 2006-04-18 Johns Hopkins University B7-DC, Dendritic cell co-stimulatory molecules
JP2004501631A (ja) 2000-06-28 2004-01-22 ジェネティックス・インスチチュート・リミテッド・ライアビリティ・カンパニー Pd−l2分子:新規pd−1リガンドおよびその使用
AU2002224595A1 (en) * 2000-07-31 2002-02-13 The Nisshin Oil Mills, Ltd. Antitumor agents
AU2599002A (en) 2000-10-20 2002-04-29 Tsuneya Ohno Fusion cells and cytokine compositions for treatment of disease
US7132109B1 (en) 2000-10-20 2006-11-07 University Of Connecticut Health Center Using heat shock proteins to increase immune response
ES2295228T3 (es) 2000-11-30 2008-04-16 Medarex, Inc. Roedores transcromosomicos transgenicos para la preparacion de anticuerpos humanos.
JP2002194491A (ja) 2000-12-27 2002-07-10 Daido Steel Co Ltd ばね用鋼材
AR036993A1 (es) 2001-04-02 2004-10-20 Wyeth Corp Uso de agentes que modulan la interaccion entre pd-1 y sus ligandos en la submodulacion de respuestas inmunologicas
JP2004533226A (ja) 2001-04-02 2004-11-04 ワイス B7−4に対するpd−1、aレセプター、およびその使用
AU2002258941A1 (en) 2001-04-20 2002-11-05 Mayo Foundation For Medical Education And Research Methods of enhancing cell responsiveness
US6727072B2 (en) 2001-05-01 2004-04-27 Dako Corporation EGF-r detection kit
EP1421203A4 (en) 2001-05-17 2005-06-01 Diversa Corp NEW ANTIGEN-BINDING MOLECULES FOR THERAPEUTIC, DIAGNOSTIC, PROPHYLACTIC, ENZYMATIC, INDUSTRIAL AND AGRICULTURAL APPLICATIONS AND METHOD FOR THE PRODUCTION AND SCREENING THEREOF
IL149701A0 (en) * 2001-05-23 2002-11-10 Pfizer Prod Inc Use of anti-ctla-4 antibodies
US6592849B2 (en) 2001-06-21 2003-07-15 Colgate Palmolive Company Chewing gum to control malodorous breath
JP2003029846A (ja) 2001-07-11 2003-01-31 Sanyo Electric Co Ltd 流量調整器および流量調整器を備えた飲料供給装置
WO2003006636A1 (de) 2001-07-12 2003-01-23 Genethor Gmbh Reduktion der stimulationsfähigkeit von antigen präsentierenden zellen
US20040241745A1 (en) 2001-07-31 2004-12-02 Tasuku Honjo Substance specific to pd-1
IL145926A0 (en) 2001-10-15 2002-07-25 Mor Research Applic Ltd Peptide epitopes of mimotopes useful in immunomodulation
DE60232265D1 (de) 2001-10-25 2009-06-18 Genentech Inc Glycoprotein-zusammensetzungen
WO2003042402A2 (en) * 2001-11-13 2003-05-22 Dana-Farber Cancer Institute, Inc. Agents that modulate immune cell activation and methods of use thereof
CN1652821A (zh) * 2002-01-28 2005-08-10 米德列斯公司 抗前列腺特异性膜抗原(psma)的人单克隆抗体
AU2003217912A1 (en) 2002-03-01 2003-09-16 Xencor Antibody optimization
EP1498485A4 (en) 2002-04-09 2006-09-06 Kyowa Hakko Kogyo Kk CELLS WITH MODIFIED GENOM
IL149820A0 (en) 2002-05-23 2002-11-10 Curetech Ltd Humanized immunomodulatory monoclonal antibodies for the treatment of neoplastic disease or immunodeficiency
EP1539218A4 (en) * 2002-06-20 2007-08-22 Univ California COMPOSITIONS AND METHODS FOR MODULATING LYMPHOCYTE ACTIVITY
DE60334303D1 (de) 2002-07-03 2010-11-04 Tasuku Honjo Immunpotenzierende zusammensetzungen
TWI323265B (en) 2002-08-06 2010-04-11 Glaxo Group Ltd Antibodies
AU2003288675B2 (en) 2002-12-23 2010-07-22 Medimmune Limited Antibodies against PD-1 and uses therefor
EP2270051B1 (en) 2003-01-23 2019-05-15 Ono Pharmaceutical Co., Ltd. Antibody specific for human PD-1 and CD3
US7465446B2 (en) * 2003-05-30 2008-12-16 Medarex, Inc. Surrogate therapeutic endpoint for anti-CTLA4-based immunotherapy of disease
EP1661574B1 (en) * 2003-09-01 2017-04-19 Earthus, Inc. Beta-hydroxy short to medium chain fatty acid polymer
US7524634B2 (en) * 2003-10-16 2009-04-28 Institute Of Virology, Slovak Academy Of Sciences MN/CA IX and cancer prognosis
WO2006021955A2 (en) 2004-08-23 2006-03-02 Mor Research Applications Ltd. Use of bat monoclonal antibody for immunotherapy
EP3428191B1 (en) 2004-10-06 2024-12-18 Mayo Foundation for Medical Education and Research B7-h1 and pd-1 in treatment of renal cell carcinoma
US7423128B2 (en) 2004-11-03 2008-09-09 Amgen Fremont Inc. Anti-properdin antibodies, and methods for making and using same
JP4005080B2 (ja) * 2004-11-25 2007-11-07 オリンパス株式会社 内視鏡装置
AU2006244885B2 (en) * 2005-05-09 2011-03-31 E. R. Squibb & Sons, L.L.C. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
WO2006124269A2 (en) * 2005-05-16 2006-11-23 Amgen Fremont Inc. Human monoclonal antibodies that bind to very late antigen-1 for the treatment of inflammation and other disorders
KR101888321B1 (ko) 2005-07-01 2018-08-13 이. 알. 스퀴부 앤드 선즈, 엘.엘.씨. 예정 사멸 리간드 1 (피디-엘1)에 대한 인간 모노클로날 항체
EA023148B1 (ru) * 2008-08-25 2016-04-29 Эмплиммьюн, Инк. Композиции на основе антагонистов pd-1 и их применение
EP2850102A1 (en) 2012-05-15 2015-03-25 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting pd-1/pd-l1 signaling
AR091649A1 (es) * 2012-07-02 2015-02-18 Bristol Myers Squibb Co Optimizacion de anticuerpos que se fijan al gen de activacion de linfocitos 3 (lag-3) y sus usos
CA2958573A1 (en) * 2014-08-19 2016-02-25 National University Corporation Okayama University Agent for treating and/or preventing diseases associated with immune abnormalities by combining biguanide antidiabetic drug with immunosuppressive factor blocking agent or costimulatory receptor agonist
KR102611244B1 (ko) * 2015-09-03 2023-12-06 오노 야꾸힝 고교 가부시키가이샤 Allergin-1 안타고니스트에 의한 암 면역 증강제
ES2900482T3 (es) * 2015-10-01 2022-03-17 Gilead Sciences Inc Combinación de un inhibidor de Btk y un inhibidor de punto de control para el tratamiento del cáncer
JP7159007B2 (ja) * 2017-11-01 2022-10-24 小野薬品工業株式会社 脳腫瘍の治療のための医薬
KR20200109339A (ko) * 2018-01-16 2020-09-22 브리스톨-마이어스 스큅 컴퍼니 Tim3에 대한 항체를 사용하여 암을 치료하는 방법
WO2019188354A1 (ja) * 2018-03-27 2019-10-03 国立大学法人京都大学 免疫チェックポイント阻害剤の奏効性の判定を補助する方法、試薬キット、装置及びコンピュータプログラム
EP3774903A1 (en) * 2018-04-04 2021-02-17 Bristol-Myers Squibb Company Anti-cd27 antibodies and uses thereof
CN112203688A (zh) * 2018-05-31 2021-01-08 小野药品工业株式会社 用于确定免疫检查点抑制剂的有效性的生物标志物
US11274150B2 (en) * 2018-11-16 2022-03-15 Bristol-Myers Squibb Company Anti-human natural killer cell inhibitory receptor group 2A protein (NKG2A) antibodies
TWI818120B (zh) * 2018-11-27 2023-10-11 日商小野藥品工業股份有限公司 藉由免疫檢查點阻礙藥與folfirinox療法之併用的癌症治療
US12036204B2 (en) * 2019-07-26 2024-07-16 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor

Also Published As

Publication number Publication date
RU2013133714A (ru) 2015-01-27
CN109485727A (zh) 2019-03-19
CN117534755A (zh) 2024-02-09
CN105315373A (zh) 2016-02-10
US9358289B2 (en) 2016-06-07
CY1121648T1 (el) 2020-07-31
HK1140793A1 (en) 2010-10-22
JP2024023539A (ja) 2024-02-21
AU2006244885B2 (en) 2011-03-31
MX2007013978A (es) 2008-02-22
NZ563193A (en) 2010-05-28
US20140328833A1 (en) 2014-11-06
EP2161336B2 (en) 2017-03-29
IL187108A0 (en) 2008-02-09
JP2009155338A (ja) 2009-07-16
BRPI0610235B1 (pt) 2020-05-05
RU2494107C2 (ru) 2013-09-27
RU2010135087A (ru) 2012-02-27
PL2161336T5 (pl) 2017-10-31
CA3151350A1 (en) 2006-11-16
EP3530736A2 (en) 2019-08-28
WO2006121168A1 (en) 2006-11-16
PT2161336E (pt) 2013-10-03
US9492539B2 (en) 2016-11-15
CN103059138A (zh) 2013-04-24
CA2970873A1 (en) 2006-11-16
BRPI0610235A2 (pt) 2010-06-08
EP1896582A1 (en) 2008-03-12
CA2607147C (en) 2018-07-17
IL208642A (en) 2012-08-30
NL300782I2 (es) 2016-05-18
CN101213297B (zh) 2013-02-13
NO2018008I1 (no) 2018-02-14
SI2161336T1 (sl) 2013-11-29
TW200716743A (en) 2007-05-01
CY2015057I1 (el) 2016-06-22
US20170088615A1 (en) 2017-03-30
KR20080011428A (ko) 2008-02-04
US20130133091A1 (en) 2013-05-23
EP2439272A3 (en) 2013-07-31
TWI379898B (en) 2012-12-21
FR15C0087I1 (es) 2016-01-22
DK2439273T3 (da) 2019-06-03
RU2732924C2 (ru) 2020-09-24
US9387247B2 (en) 2016-07-12
RU2406760C3 (ru) 2017-11-28
US20090217401A1 (en) 2009-08-27
DK2161336T4 (en) 2017-04-24
JP5028700B2 (ja) 2012-09-19
KR101339628B1 (ko) 2013-12-09
JP2021191793A (ja) 2021-12-16
EP2161336B1 (en) 2013-07-31
US20140348743A1 (en) 2014-11-27
RU2007145419A (ru) 2009-06-20
NO344818B1 (no) 2020-05-04
CN105315373B (zh) 2018-11-09
DK2161336T3 (da) 2013-10-28
US20150165025A1 (en) 2015-06-18
HUS1500067I1 (hu) 2016-02-29
EP2439273A3 (en) 2012-10-03
JP4361545B2 (ja) 2009-11-11
US20200138945A1 (en) 2020-05-07
EP1896582A4 (en) 2009-04-08
US8779105B2 (en) 2014-07-15
JP5872377B2 (ja) 2016-03-01
KR20130032908A (ko) 2013-04-02
FR15C0087I2 (fr) 2017-01-06
JP2014077015A (ja) 2014-05-01
CN101213297A (zh) 2008-07-02
NO20170138A1 (no) 2008-02-11
IL208642A0 (en) 2010-12-30
NO341219B1 (no) 2017-09-18
JP6975733B2 (ja) 2021-12-01
LTC2161336I2 (lt) 2017-07-10
EP2439273B1 (en) 2019-02-27
RU2406760C2 (ru) 2010-12-20
LU92904I2 (fr) 2016-02-10
NO2023031I1 (no) 2023-08-23
BRPI0610235B8 (pt) 2021-05-25
JP2012158605A (ja) 2012-08-23
AU2006244885A1 (en) 2006-11-16
US20140294852A1 (en) 2014-10-02
CY2015057I2 (el) 2016-06-22
JP7443302B2 (ja) 2024-03-05
RU2016133899A (ru) 2018-02-22
CA2607147A1 (en) 2006-11-16
HUE044719T2 (hu) 2019-11-28
NO20075697L (no) 2008-02-11
RU2599417C2 (ru) 2016-10-10
JP6185971B2 (ja) 2017-08-23
PL2161336T3 (pl) 2014-01-31
JP2019103504A (ja) 2019-06-27
ES2427646T3 (es) 2013-10-31
CN103059138B (zh) 2015-10-28
PL2439273T3 (pl) 2019-08-30
JP2016033135A (ja) 2016-03-10
US9084776B2 (en) 2015-07-21
IL187108A (en) 2011-06-30
PT2439273T (pt) 2019-05-13
JP2017052784A (ja) 2017-03-16
NO20200470A1 (no) 2008-02-11
LT2439273T (lt) 2019-05-10
ES2427646T5 (es) 2017-08-22
KR101498834B1 (ko) 2015-03-05
EP2418278A2 (en) 2012-02-15
RU2599417C3 (ru) 2017-11-28
US9492540B2 (en) 2016-11-15
EP2439272A2 (en) 2012-04-11
EP2439273A2 (en) 2012-04-11
EP2418278A3 (en) 2012-07-04
KR20130114226A (ko) 2013-10-16
EP3530736A3 (en) 2019-11-06
US20230272079A1 (en) 2023-08-31
JP2006340714A (ja) 2006-12-21
SI2439273T1 (sl) 2019-05-31
EP2161336A1 (en) 2010-03-10
NO2018008I2 (no) 2018-02-14
CA2970873C (en) 2022-05-17
RU2016133899A3 (es) 2020-01-17
US8008449B2 (en) 2011-08-30
US10441655B2 (en) 2019-10-15
US20140212422A1 (en) 2014-07-31
KR101318469B1 (ko) 2013-10-23

Similar Documents

Publication Publication Date Title
ES2720160T3 (es) Anticuerpos monoclonales humanos contra muerte programada 1(PD-1) y métodos para tratar el cáncer usando anticuerpos dirigidos contra PD-1 solos o junto con otras sustancias inmunoterapéuticas
ES2927547T3 (es) Anticuerpos humanos que se unen al gen de activación de linfocitos 3 (LAG-3) y sus usos
PT1907424E (pt) Anticorpos monoclonais humanos para o ligando 1 de morte programada (pd-l1)