[go: up one dir, main page]

EA018039B1 - Ядерный фактор перепрограммирования - Google Patents

Ядерный фактор перепрограммирования Download PDF

Info

Publication number
EA018039B1
EA018039B1 EA201000858A EA201000858A EA018039B1 EA 018039 B1 EA018039 B1 EA 018039B1 EA 201000858 A EA201000858 A EA 201000858A EA 201000858 A EA201000858 A EA 201000858A EA 018039 B1 EA018039 B1 EA 018039B1
Authority
EA
Eurasian Patent Office
Prior art keywords
cells
gene
genes
cell
factor
Prior art date
Application number
EA201000858A
Other languages
English (en)
Other versions
EA201000858A1 (ru
Inventor
Синиа Яманака
Original Assignee
Киото Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38162968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EA018039(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Киото Юниверсити filed Critical Киото Юниверсити
Publication of EA201000858A1 publication Critical patent/EA201000858A1/ru
Publication of EA018039B1 publication Critical patent/EA018039B1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/605Nanog
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/027Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a retrovirus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Neurology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Diabetes (AREA)
  • Transplantation (AREA)
  • Developmental Biology & Embryology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)

Abstract

Настоящее изобретение относится к ядерному фактору перепрограммирования, обладающему способностью перепрограммирования дифференцированной соматической клетки для получения индуцированной плюрипотентной стволовой клетки. Ядерный фактор перепрограммирования для соматической клетки, содержащий каждый из следующих трех типов генов: гена семейства Oct, гена семейства Klf и гена семейства Myc, используется в качестве средства для индукции перепрограммирования дифференцированной клетки для удобного и высоковоспроизводимого получения индуцированной плюрипотентной стволовой клетки, обладающей плюрипотентностью и способностью к росту, такими же, как у ES-клеток, без использования эмбриона или ES-клетки.

Description

Настоящее изобретение относится к ядерному фактору перепрограммирования, обладающему способностью перепрограммирования дифференцированной соматической клетки для получения индуцированной плюрипотентной стволовой клетки.
Предшествующий уровень техники
Эмбриональные стволовые клетки (Е8-клетки) представляют собой стволовые клетки, полученные из ранних эмбрионов человека или мыши, обладающие тем характерным свойством, что их можно культивировать в течение длительного периода, поддерживая плюрипотентную способность к дифференцировке во все виды клеток, существующие в живых организмах. Считается, что эмбриональные стволовые клетки человека можно использовать в качестве ресурса для способов трансплантационной клеточной терапии различных заболеваний, таких как болезнь Паркинсона, юношеский диабет и лейкоз, пользуясь преимуществами вышеупомянутых свойств. Однако при трансплантации Е8-клеток существует проблема отторжения таким же образом, что и при трансплантации органов. Более того, с этической точки зрения существует много особых мнений против использования Е8-клеток, которые получают, разрушая эмбрионы человека. Если можно индуцировать дедифференцировку собственных дифференцированных соматических клеток пациента для получения клеток, обладающих плюрипотентностью и способностью к росту, такой же, как у Е8-клеток (в данном описании эти клетки обозначены как индуцированные плюрипотентные стволовые клетки (ίΡδ-клетки), хотя иногда их называют клетками, подобными эмбриональным стволовым клеткам, или Е8-подобными клетками), полагают, что такие клетки можно использовать как идеальные плюрипотентные клетки, свободные от отторжения или этических проблем.
В качестве способа перепрограммирования соматического ядра опубликован, например, способ получения эмбриональной стволовой клетки из клонированного эмбриона, полученного путем трансплантации ядра соматической клетки в яйцеклетку (^.8. Н^апд е1 а1., 8с1епсе, 303, рр. 1669-74, 2004; \7.8. Н\\апд е1 а1., 8с1епсе, 308, рр.1777-83, 2005: однако было доказано, что эти статьи являлись фальсификациями, и позднее они были отозваны). Однако этот способ получения клонированного эмбриона только с целью получения Е8-клеток обладает гораздо более серьезными этическими проблемами по сравнению с обычными Е8-клетками с использованием избыточных эмбрионов, полученных при терапии для оплодотворения. Опубликован также способ перепрограммирования ядра соматической клетки посредством слияния соматической клетки и Е8-клетки (М. Таба е1 а1., Сигг. ΒίοΙ., 11, рр.1553-1558, 2001; С.А. Со\\ап е1 а1., 8с1епсе, 309, рр.1369-73, 2005). Однако данный способ приводит к использованию Е8-клеток человека, что не дает возможности решения этических трудностей. Кроме того, опубликован способ перепрограммирования ядра клетки посредством реакции экстракта линии клеток, полученных из опухоли зародышевых клеток, развившейся у человека, с дифференцированной клеткой (С.К. Тагапдег е1 а1., Мо1. Βίο1. Се11, 16, рр.5719-35, 2005). Однако оставалось совершенно неизвестным, какой компонент в экстракте индуцирует перепрограммирование по этому способу, и таким образом, этот способ связан с проблемами технической надежности и безопасности.
Предложен способ скрининга ядерного фактора перепрограммирования, обладающего действием перепрограммирования дифференцированных соматических клеток для получения индуцированных плюрипотентных стволовых клеток (Международная публикация \7О 2005/80598). Этот способ включает в себя стадии контактирования соматических клеток, содержащих ген, в которых маркерный ген расположен так, чтобы его экспрессия находилась под контролем области контроля экспрессии генов ЕСАТ (ассоциированных с Е8-клетками транскриптов) (т.е. класса генов, специфически экспрессирующихся в Е8-клетках), с каждым тестируемым веществом; проверки присутствия или отсутствия появления клетки, экспрессирующей маркерный ген; и выбора тестируемого соединения, индуцирующего появление указанной клетки, в качестве кандидата на роль ядерного фактора перепрограммирования соматических клеток. Способ перепрограммирования соматической клетки описан в примере 6 и т.п. вышеуказанной публикации. Однако в этой публикации не смогли опубликовать действительную идентификацию ядерного фактора перепрограммирования.
Патентный документ 1: Международная публикация \7О 2005/80598
Описание изобретения
Целью настоящего изобретения является предоставление ядерного фактора перепрограммирования. Более конкретно, целью настоящего изобретения является предоставление средств для индукции перепрограммирования дифференцированной клетки без использования яйцеклеток, эмбрионов или Е8клеток для удобного и высоковоспроизводимого получения индуцированной плюрипотентной стволовой клетки, обладающей плюрипотентностью и способностью к росту, такими же, как у Е8-клеток.
Авторы настоящего изобретения проводили различные исследования для достижения вышеупомянутой цели и пытались идентифицировать ядерный фактор перепрограммирования с использованием способа скрининга ядерного фактора перепрограммирования, описанного в Международной публикации \7О 2005/80598. В результате обнаружили 24 вида генов-кандидатов на роль генов, относящихся к перепрограммированию ядра, и среди них обнаружили три вида генов, необходимых для перепрограммирования ядра. Настоящее изобретение сделано на основе вышеупомянутых обнаружений.
- 1 018039
Таким образом, настоящее изобретение относится к ядерному фактору перепрограммирования для соматической клетки, который содержит каждый из следующих трех типов генов: гена семейства Ос1. гена семейства К1£ и гена семейства Мус. Согласно предпочтительному варианту осуществления изобретения здесь представлен вышеупомянутый фактор, содержащий гена каждого из трех следующих типов генов: Ос!3/4, К1£4 и с-Мус.
Согласно другому предпочтительному варианту осуществления представлен вышеупомянутый фактор, дополнительно содержащий ген семейства 8ох, и в качестве более предпочтительного варианта осуществления представлен вышеупомянутый фактор, содержащий ген 8ох2.
Согласно другому предпочтительному варианту осуществления представлен вышеупомянутый фактор, содержащий цитокин вместе с геном семейства Мус, или, альтернативно, вместо гена семейства Мус. В качестве более предпочтительного варианта осуществления представлен вышеупомянутый фактор, где цитокин представляет собой основной фактор роста фибробластов (ЬРСР) и/или фактор стволовых клеток (8СР).
Согласно особенно предпочтительным вариантам осуществления представлены ядерный фактор перепрограммирования для соматической клетки, содержащий ген ТЕНТ в дополнение к каждому из: гена семейства Ос1, гена семейства К1£, гена семейства Мус и гена семейства 8ох; и вышеупомянутый фактор, содержащий ген или один или нескольких типов генов, выбранных из группы, состоящей из следующих генов: для большого Т-антигена 8У40, НРУ16 Е6, НРУ16 Е7 и ВтЛ, в дополнение к продукту каждого из: гена семейства Ос!, гена семейства К1£, гена семейства Мус, гена семейства 8ох и гена ТЕНТ.
В дополнение к этим факторам представлен вышеупомянутый фактор, дополнительно содержащий один или нескольких типов генов, выбранных из группы, состоящей из следующих: ЕЬх15, Ыапод, ЕКак, ЕСАТ15-2, Тс11 и β-катенин.
Согласно другому предпочтительному варианту осуществления вышеупомянутого изобретения представлен также вышеупомянутый фактор, содержащий один или нескольких типов генов, выбранных из группы, состоящей из следующего: ЕСАТ1, Е§д1, Ппт!3Ь, ЕСАТ8, Сб!3, 8ох15, ЕСАТ15-1, ЕФ117, 8а114, Кех1, ИТЕ1, 8!е11а, 8!а!3 и СгЬ2.
В другом аспекте настоящее изобретение относится к способу получения индуцированной плюрипотентной стволовой клетки посредством перепрограммирования ядра соматической клетки, который включает в себя стадию контактирования вышеупомянутого ядерного фактора перепрограммирования с соматической клеткой.
Согласно предпочтительному варианту осуществления изобретения представлен вышеупомянутый способ, который включает в себя стадию добавления вышеупомянутого ядерного фактора перепрограммирования к культуре соматической клетки; вышеупомянутый способ, который включает в себя стадию введения гена, кодирующего вышеупомянутый ядерный фактор перепрограммирования, в соматическую клетку; вышеупомянутый способ, который включает в себя стадию введения указанного гена в соматическую клетку с использованием рекомбинантного вектора, содержащего по меньшей мере один тип гена, кодирующего вышеупомянутый ядерный фактор перепрограммирования; и вышеупомянутый способ, где в качестве соматической клетки используют соматическую клетку, выделенную у пациента.
В другом аспекте настоящее изобретение относится к индуцированной плюрипотентной стволовой клетке, полученной посредством вышеупомянутого способа. Настоящее изобретение также относится к соматической клетке, полученной посредством индукции дифференцировки вышеупомянутой индуцированной плюрипотентной стволовой клетки.
Настоящее изобретение также относится к способу улучшения способности к дифференцировке и/или росту клетки, который включает в себя стадию контактирования вышеупомянутого ядерного фактора перепрограммирования с клеткой и, кроме того, относится к клетке, которую можно получить посредством вышеупомянутого способа, и к соматической клетке, полученной посредством индукции дифференцировки клетки, полученной посредством вышеупомянутого способа.
Посредством использования ядерного фактора перепрограммирования, представленного по настоящему изобретению, перепрограммирование ядра дифференцированной клетки можно удобно и с высокой воспроизводимостью индуцировать без использования эмбрионов или Е8-клеток, и можно получить индуцированную плюрипотентную стволовую клетку в форме недифференцированной клетки, обладающей способностью к дифференцировке, плюрипотентностью и способностью к росту, такими же, как у Е8-клеток. Например, индуцированную плюрипотентную стволовую клетку, обладающую высокой способностью к росту и плюрипотентностью при дифференцировке, можно получить из собственной соматической клетки пациента с использованием ядерного фактора перепрограммирования по настоящему изобретению. Клетки, которые можно получить посредством дифференцировки указанной клетки (например, клетки сердечной мышцы, инсулинпродуцирующие клетки, нервные клетки и т.п.), являются необычайно полезными, поскольку их можно использовать для видов терапии трансплантацией стволовых клеток для множества заболеваний, таких как сердечная недостаточность, инсулинозависимый сахарный диабет, болезнь Паркинсона и повреждение спинного мозга; таким образом, можно избегать этических проблем, касающихся использования эмбриона человека, и отторжения после трансплантации. Кроме того, различные клетки, которые можно получить посредством дифференцировки индуци
- 2 018039 рованной плюрипотентной стволовой клетки (например, клетки сердечной мышцы, клетки печени и т.п.), являются очень полезными в качестве систем для оценки эффективности или токсичности соединений, лекарственных средств, ядов и т.п.
Краткое описание фигур
На фиг. 1 показан способ скрининга факторов перепрограммирования с использованием эмбриональных фибробластов (МЕЕ) мыши с нокином вдео в гене ЕЬх15.
На фиг. 2 - фотографии, изображающие морфологию ίΡδ-клеток, полученных посредством введения 24 генов, показанных в табл. 4. Морфология дифференцированных клеток (МЕЕ) и нормальных эмбриональных стволовых клеток (Е8) также показана в качестве контроля.
На фиг. 3 - профили экспрессии маркерных генов в ίΡδ-клетках. Показаны результаты К.Т-РСК. с использованием тотальной РНК, выделенной из ίΡδ-клеток, Е8-клеток и МЕЕ-клеток в качестве матриц.
На фиг. 4 - статус метилирования ДНК в ίΡδ-клетках. Геномную ДНК, выделенную из ίΡδ-клеток, Е8-клеток и МЕЕ-клеток, обрабатывали бисульфитом. ДНК-мишени амплифицировали Ρί'Έ и затем вставляли в плазмиду. Для каждого из генов выделяли и секвенировали десять клонов плазмиды. Метилированные СрС показаны сплошными кругами, а неметилированные СрС незакрашенными кругами.
На фиг. 5 - число колоний устойчивых к 0418 клеток, полученных посредством трансдукции группы из 24 генов и групп из 23 генов, где каждый отдельный ген убирали из группы из 24 генов. На нижних частях графика показано число колоний, полученное через одну неделю после отбора с 0418, а на верхних частях графика показано число клонов, полученных за три недели. Когда каждый из заключенных в рамку генов (идентификационный номер для каждого гена является таким же, как указано в табл. 1) удаляли, колоний не получали совсем, или через 3 недели наблюдали только небольшое число колоний.
На фиг. 6 показано число колоний устойчивых к 0418 клеток, полученных посредством трансдукции группы из 10 генов и групп из 9 генов, где каждый отдельный ген убирали из группы из 10 генов. Когда убирали каждый из генов № 14, 15 или 20, колоний не получали. Когда удаляли ген № 22, получали немного устойчивых к 0418 колоний. Однако клетки обладали дифференцированной морфологией, явно отличной от морфологии ίΡδ-клеток.
На фиг. 7 - число появившихся устойчивых к 0418 колоний (перепрограммированных колоний) для группы из 10 генов, группы из 4 генов, групп из 3 генов или групп из 2 генов. Показаны типичные морфология и размеры колоний.
На фиг. 8 показаны фотографии, изображающие результаты окрашивания гематоксилином-эозином (Н и Е) опухолей, сформировавшихся после подкожной трансплантации ίΡδ-клеток, полученных из МЕЕ, мышам пибе. Наблюдали дифференцировку во многие ткани системы трех зародышевых листков.
На фиг. 9 показаны фотографии эмбрионов, полученных посредством трансплантации ίΡδ-клеток, полученных из фибробластов кожи взрослых, в бластоцисты мыши и трансплантации клеток в матки псевдобеременных мышей. Можно наблюдать, что в верхнем левом эмбрионе клетки, полученные из ίΡδ-клеток (испускающие зеленую флуоресценцию), распределены системно. На нижних фотографиях можно наблюдать, что почти все клетки сердца, печени и спинного мозга эмбриона являются 0ЕΡположительными и происходят из ίΡδ-клеток.
На фиг. 10 показаны фотографии, изображающие результаты ΡΤ-Ρί.Έ. подтверждающие экспрессию маркерных генов Е8-клетки. На фотографиях 8ох2 минус обозначает ίΡδ-клетки, полученные посредством трансдукции 3 генов в МЕЕ, 4ЕСАТ обозначает ίΡδ-клетки, полученные посредством трансдукции 4 генов в МЕЕ, 10ЕСАТ обозначает ίΡδ-клетки, полученные посредством трансдукции 10 генов в МЕЕ, фибробласт кожи с 10ЕСАТ обозначает ίΡδ-клетки, полученные посредством трансдукции 10 генов в фибробласты кожи, Е8 обозначает Е8-клетки мыши и МЕЕ обозначает клетки МЕЕ без трансдукции гена. Числовые значения под символами обозначают номера клонов.
На фиг. 11 показано действие ЬЕ0Е на получение ίΡδ-клеток из МЕЕ. Четыре фактора (верхний ряд) или три фактора за исключением с-Мус (нижний ряд) с помощью ретровирусов трансдуцировали в МЕЕ, полученные у мышей ЕЬх15вдео/вдео, и культивировали на обычных клетках-фидерах (клетки 8ТО) (слева) и клетках 8ТО с введенным экспрессирующим ЬЕ0Е вектором (справа). Отбор с 0418 проводили в течение 2 недель, клетки окрашивали кристаллическим синим и фотографировали. Числовые значения обозначают число колоний.
На фиг. 12 показаны объяснения экспериментов с использованием мышей Nаηод-ЕΟЕΡ-IΚЕδ-Ρи^о. А: Выделяли искусственную хромосому Е. сой (ВАС), содержащую ген Иапод мыши в середине, и кассету ЕΟЕΡ-IΚЕ8-Ρи^о вставляли выше кодирующей области Иапод посредством рекомбинации. В: Получали трансгенных мышей с модифицированной ВАС. Наблюдали экспрессию 0ЕΡ, ограниченную внутренними массами клеток бластоцист и гонад.
На фиг. 13 показаны объяснения экспериментов с использованием мышей Nаηод-ЕΟЕΡ-IΚЕδ-Ρи^о. Из эмбрионов мышей Nаηод-ЕΟЕΡ-IΒЕδ-Ρи^о (13,5 суток после оплодотворения) извлекали головы, внутренние органы и гонады для получения МЕЕ. По результатам анализа на сортере клеток почти не присутствовало ΟЕΡ-положительных клеток в МЕЕ, полученных у мышей Nаηод-ЕΟЕΡ-IΚЕ8-Ρи^о
- 3 018039 (Ыапод), а также в МЕЕ, полученных у мыши ЕЬх15вдео/вдео (ЕЬх15) или в МЕЕ, полученных у мыши дикого типа (дикий).
На фиг. 14 показаны фотографии ίΡδ-клеток, полученных у МЕЕ мыши Хапод-Е6ЕР-1КЕ8-Риго (слева) и у МЕЕ мыши ЕЬх15вдео/вдео (справа). Клетки отбирали с пуромицином и 6418, соответственно.
На фиг. 15 показаны результаты роста 1Р8-клеток. 100000 клеток каждых из Е8-клеток, ίΡδ-клеток, полученных у МЕЕ мыши Ыапод-Е6ЕР-1КЕ8-Риго (Ыапод 1Р8, слева), и ίΡδ-клеток, полученных у МЕЕ мыши ЕЬх15|1део/1део (ЕЬх 1Р8), высевали на 24-луночные планшеты и пассировали каждые 3 суток. Показаны результаты подсчета клеток. Числовые значения представляют среднее время удвоения.
На фиг. 16 показаны профили экспрессии генов в 1Р8-клетках. Экспрессию маркерных генов в МЕЕ, Е8-клетках, 1Р8-клетках, полученных у МЕЕ мыши Ыапод-Е6ЕР-1КЕ8-Риго (Ыапод 1Р8, слева), и 1Р8клетках, полученных у МЕЕ мыши ЕЬх15вдео/вдео (ЕЬх 1Р8), анализировали посредством КТ-РСК. Числовые значения внизу указывают число пассажей.
На фиг. 17 показано формирование тератомы из Ыапод 1Р8-клеток. 1000000 клеток каждых из Е8клеток или Ыапод 1Р8-клеток подкожно инъецировали в спину мышей ннйс. и показан внешний вид опухолей, сформированных через 3 недели (слева), и изображения тканей (справа, окрашенные Н и Е).
На фиг. 18 показано получение химерных мышей с помощью Ыапод 1Р8-клеток. Химерные мыши рождались после трансплантации Ыапод 1Р8-клеток (клон №МЕ4ЕК-24, пассированный 6 раз) в бластоцисты. Из 90 трансплантированных эмбрионов родилось четыре химерных мыши.
На фиг. 19 показан перенос зародышевой линии из №под 1Р8-клеток. Анализом РСК геномной ДНК мышей, рожденных благодаря скрещиванию химерных мышей, показанных на фиг. 18, и мышей С57ВЬ/6, выявили присутствие трансгенов Ос13/4 и К1£4 у всех мышей, таким образом подтверждая перенос зародышевой линии.
На фиг. 20 показана индукция дифференцировки в нервные клетки из 1Р8-клеток. Показаны нервные клетки (сверху, βΙΙΙ-тубулин-положительные), олигодендроциты (слева, О4-положительные) и астроциты (справа, 6ЕАР-положительные), дифференцированные ш νίΐϊΌ из 1Р8-клеток, полученных из фибробластов кожи.
На фиг. 21 показано объяснение получения 1Р8-клеток без использования отбора с лекарственным средством. МЕЕ высевали до от 10000 до 100000 клеток на 10-см чашку и 4 фактора трансдуцировали с помощью ретровирусов. В контроле (пустой, слева) не появилось колоний, в то время как на чашках с трансдукцией 4 факторов получили выпуклые колонии, сходные с колониями 1Р8-клеток (в центре), а также плоские колонии трансформантов. При пассировании клеток получили клетки, сходные с 1Р8клетками (справа).
На фиг. 22 показаны профили экспрессии генов в клетках, полученных без использования отбора с лекарственным средством. РНК выделяли из полученных клеток, показанных на фиг. 21, и экспрессию маркерных генов Е8-клетки анализировали посредством КТ-РСК.
На фиг. 23 показаны клетки, подобные 1Р8-клеткам, полученные из фибробластов человека. Показаны колонии, полученные посредством трансдукции с помощью ретровирусов гомологичных генов человека для 4 факторов в фибробласты, полученные из эмбрионов человека (слева), и клетки после двух пассажей (справа).
На фиг. 24 показано получение 1Р8-клеток из фибробластов кожи взрослого человека. Факторы, упомянутые в левой колонке, трансдуцировали с помощью ретровирусов в фибробласты кожи взрослого человека, инфицированные рецептором для ретровирусов мыши с помощью лентивируса. На фотографиях показаны фазово-контрастные изображения (объектх 10) на сутки 8 после вирусной инфекции.
Наилучший способ осуществления изобретения
Ядерный фактор перепрограммирования по настоящему изобретению характеризуется тем, что содержит продукт гена для каждого из следующих трех типов генов: гена семейства Ос1, гена семейства К1£ и гена семейства Мус; и согласно предпочтительному варианту осуществления он характеризуется тем, что содержит продукт гена семейства 8ох в дополнение к вышеупомянутым трем типам генов.
В качестве средства для подтверждения ядерного фактора перепрограммирования по настоящему изобретению можно использовать, например, способ скрининга ядерных факторов перепрограммирования, описанный в Международной публикации \УО 2005/80598. Полное содержание вышеупомянутой публикации включено в содержание данного описания посредством ссылки. С помощью ссылки на вышеупомянутую публикацию специалисты в данной области могут проводить скрининг ядерных факторов перепрограммирования для подтверждения присутствия и действия фактора перепрограммирования по настоящему изобретению.
Например, в качестве экспериментальной системы, позволяющей наблюдать феномен перепрограммирования, можно использовать мышь, у которой проведен нокин вдео (гена, слитого из гена β галактозидазы и гена устойчивости к неомицину) в локусе ЕЬх15. Подробности описаны в примерах данного описания. Ген ЕЬх15 мыши представляет собой ген, специфически экспрессирующийся в плюрипотентных при дифференцировке клетках, таких как Е8-клетки и ранние эмбрионы. В гомомутантной мыши, у которой проведен нокин вдео в гене ЕЬх15 мыши, так что она является дефектной по функции
- 4 018039
РЬх15; аномальных фенотипов, включая относящиеся к плюрипотентности при дифференцировке или размножении, как правило, не наблюдают. У этой мыши экспрессия вдео находится под контролем энхансера и промотора гена РЬх15, и дифференцированные соматические клетки, в которых не экспрессируется вдео, обладают чувствительностью к 0418. В отличие от этого, гомомутантные Е8-клетки с нокином вдео обладают устойчивостью к 0418 в очень высокой концентрации (равной или превышающей 12 мг/мл). Посредством использования этого феномена можно сконструировать экспериментальную систему для визуализации перепрограммирования соматических клеток.
Посредством применения вышеупомянутой экспериментальной системы фибробласты (РЬх15вдео/вдео МЕР) можно сначала выделить из эмбриона гомомутантной мыши с нокином вдео (13,5 суток после оплодотворения. МЕР не экспрессируют ген РЬх15 и, соответственно, также не экспрессируют вдео, что приводит к чувствительности к 0418. Однако, когда МЕР сливают со свободными от генетических манипуляций Е8-клетками (также обладающими чувствительностью к 0418), вдео экспрессируется, и клетки становятся устойчивыми к 0418 в результате перепрограммирования ядер МЕР. Таким образом, посредством использования этой экспериментальной системы феномен перепрограммирования можно визуализировать как устойчивость к 0418.
Ядерные факторы перепрограммирования можно отбирать с использованием вышеупомянутой экспериментальной системы. В качестве кандидатов на роль генов, относящихся к ядерным факторам перепрограммирования, можно отобрать множество генов, которые обладают специфической экспрессией в Е8-клетках, или для которых предполагают важную роль в поддержании плюрипотентности при дифференцировке Е8-клеток, и можно подтвердить, может ли каждый из генов-кандидатов индуцировать перепрограммирование ядра самостоятельно или в подходящем их сочетании. Например, подтвердили, что сочетание всех выбранных первичных генов-кандидатов способно индуцировать перепрограммирование дифференцированных клеток в состояние, близкое к состоянию Е8-клеток. Затем получали сочетания посредством удаления каждого отдельного гена из вышеупомянутого сочетания и подтверждали то же самое действие сочетаний, чтобы выбрать каждый из вторичных генов-кандидатов, отсутствие которых вызывает снижение способности к индукции перепрограммирования или потерю способности к индукции перепрограммирования. Посредством повтора таких же стадий для вторичных генов-кандидатов, выбранных, как описано выше, можно выбрать необходимые сочетания генов для перепрограммирования ядра и можно подтвердить, что сочетание продуктов каждого из трех типов генов, гена семейства Ос1, гена семейства К1Г и гена семейства Мус, действует как ядерный фактор перепрограммирования. Кроме того, можно подтвердить, что сочетание продукта гена семейства 8ох в дополнение к продуктам вышеупомянутых трех типов генов обладает необычайно превосходными характеристиками в качестве ядерного фактора перепрограммирования. Конкретные примеры способа отбора ядерных факторов перепрограммирования показаны в примерах данного описания. Таким образом, с помощью ссылки на приведенные выше общие объяснения и конкретные объяснения в примерах, специалисты в данной области легко могут подтвердить, что сочетание указанных трех типов генов индуцирует перепрограммирование соматических клеток и что сочетание продуктов указанных трех типов генов является необходимым для перепрограммирования ядра.
Ядерный фактор перепрограммирования, представленный по настоящему изобретению, содержит по меньшей мере сочетание продуктов гена семейства Ос1, гена семейства К1Г и гена семейства Мус, например, сочетание продуктов трех типов генов Ос13/4, К1Г 4 и с-Мус. Примеры гена семейства Ос! включают в себя, например, Ос!3/4, Ос!1А, Ос!б и т.п. Ос!3/4 представляет собой фактор транскрипции, принадлежащий к семейству РОИ, и опубликовано, что он является маркером недифференцированных клеток (К. Окато!о е! а1., Се11, б0, рр. 461-72, 1990).
Опубликовано, что Ос!3/4 также участвует в поддержании плюрипотентности (1. №с1то1к е! а1., Се11, 95, рр. 379-91, 1998). Примеры гена семейства К1Г включают в себя К1Г1, К1Г2, К1Г4, К1Г5 и т.п. К1Г 4 (Кгирре1-подобный фактор-4) опубликован в качестве фактора репрессии опухолей (А.М. 0йа1еЬ е! а1., Се11 Кек., 15, рр.92-б, 2005). Примеры гена семейства Мус включают в себя с-Мус, Ν-Мус, Ь-Мус и т.п. сМус представляет собой фактор контроля транскрипции, вовлеченный в дифференцировку и пролиферацию клеток (8. АйЫкагу, М. ЕНегк, Να!. Неу. Мо1. Се11 Вю1., 6, рр. 635-45, 2005), и опубликовано также, что он вовлечен в поддержание плюрипотентности (Р. СагКспдЫ е! а1., Оеуе1ортеп1. 132, рр.885-96, 2005). Регистрационные номера в ΝΟΒΙ для генов из семейств, отличных от Ос!3/4, К1Г4 и с-Мус, следующие:
- 5 018039
Таблица 1
Мышь Человек
К1Е1 Кгирре1-подобный фактор 1 (эритроид) ΝΜ_010635 N14^0 0 6563
К1Е2 Кгирре1-подобный фактор 2 (легкое) ΝΜ_008452 ΝΜ_018270
К1Е5 Кгирре1-подобный фактор 5 НМ_009769 ΝΜ_001730
с-Мус онкоген миелоцитоматоза КМ 010849 ΝΜ 002467
Ν-Мус онкоген, родственный онкогену νМус вируса миелоцитоматоза, полученный из нейробластомы (птичий) ΝΜ_008709 ΝΜ005378
Ь-Мус гомолог 1 онкогена вируса миелоцитоматоза ν-Мус, полученный из карциномы легкого (птичий) ΝΜ_008506 ΝΜ_005376
ΟσίΙΑ домен РОИ, класс 2, фактор транскрипции 1 ΝΜ_198934 ΝΜ_002697
оспе домен ΡΟϋ, класс 3, фактор транскрипции 1 ΝΜ_011141 ΝΜ_002699
Все эти гены являются широко распространенными у млекопитающих, включая человека, и для использования продуктов вышеупомянутых генов по настоящему изобретению можно использовать гены, полученные у любых млекопитающих (гены, полученные у таких млекопитающих, как мышь, крыса, бык, овца, лошадь, обезьяна и т.п.). Помимо продуктов генов дикого типа можно использовать также продукты мутантных генов, содержащие замену, вставку и/или делецию нескольких (например, 1-10, предпочтительно 1-6, более предпочтительно 1-4, еще более предпочтительно 1-3 и наиболее предпочтительно 1 или 2) аминокислот и обладающие сходной функцией с продуктами генов дикого типа. Например, в качестве продукта гена с-Мус можно использовать продукт стабильного типа (Т58А), также как продукт дикого типа. Приведенное выше объяснение можно сходным образом применять к продуктам других генов.
Ядерный фактор перепрограммирования по настоящему изобретению может содержать продукт гена, отличный от вышеупомянутых трех типов продуктов генов. Пример такого продукта гена включает в себя продукт гена семейства 8ох. Примеры гена семейства 8ох включают в себя, например, 8ох1, 8ох3, 8ох7, 8ох15, 8ох17 и 8ох18, и предпочтительный пример включает в себя 8ох2. Ядерный фактор перепрограммирования, содержащий, по меньшей мере, сочетание продуктов четырех типов генов, гена семейства Ос( (например, Ос13/4). гена семейства Κΐί (например, К114), гена семейства Мус (например, сМус) и гена семейства 8ох (например, 8ох2), представляет собой предпочтительный вариант осуществления настоящего изобретения с точки зрения эффективности перепрограммирования, и в частности, сочетание с продуктом гена семейства 8ох иногда является предпочтительным для получения плюрипотентности. 8ох2, экспрессирующийся в процессе раннего развития, представляет собой ген, кодирующий фактор транскрипции (А.А. АуШои с1 а1., Сспс5 Осу., 17, рр.126-40, 2003). Регистрационные номера в ΝΟΒΙ для генов семейства 8ох, отличных от 8ох2, следующие.
Таблица 2
Мышь Человек
30X1 Содержащий 5ΚΥ-6οκο ген 1 ΝΜ 009233 ΝΜ 005986
30X3 Содержащий 3ΚΥ-βοκο ген 3 ЫМ 009237 ΝΜ 005634
30X7 Содержащий 5ΚΥ-6οκο ген 7 ΝΜ_011446 ΝΜ 031439
3οχ15 Содержащий ΞΚΥ-бокс ген 15 ΝΜ_009235 ΝΜ_006942
30X17 Содержащий ΒΚΥ-бокс ген 17 ΝΜ_011441 ΝΜ_022454
30X18 Содержащий ΒΚΥ-бокс ген 18 ΝΜ—009236 ΝΜ 018419
Кроме того, продукт гена семейства Мус можно заменять на цитокин. В качестве цитокина предпочтительными являются, например, 8СР, ЬРСР или т.п. Однако данные примеры цитокинов не являются ограничивающими.
В качестве более предпочтительного варианта осуществления пример включает в себя фактор, индуцирующий иммортализацию клеток, в дополнение к вышеупомянутым трем типам продуктов генов, предпочтительно к четырем типам продуктов генов. Например, пример включает в себя сочетание фактора, содержащего продукт гена ТЕНТ, с фактором, содержащим продукт или продукты одного или нескольких типов генов, выбранных из группы, состоящей из следующих генов: для большого Т-антигена 8У40, НРУ16 Е6, НРУ16 Е7 и ВшН. ТЕНТ является необходимым для поддержания структуры теломеры на конце хромосомы во время репликации ДНК, и ген экспрессируется в стволовых клетках или клетках
- 6 018039 опухоли человека, в то время как он не экспрессируется во многих соматических клетках (I. Нопка\\а. е! а1., Ргос. Νη11. Асаб. 8ск И8А, 102, рр.18437-442, 2005). Опубликовано, что большой Т-антиген 8У40, НРУ16 Е6, НРУ16 Е7 или ВшИ индуцируют иммортализацию соматических клеток человека в сочетании с большим Т-антигеном (8. Лк1шоу е! а1., 8!ет Се11к, 23, рр.1423-1433, 2005; Р. 8а1шоп е! а1., Мо1. Ткет., 2, рр. 404-414, 2000). Указанные факторы являются особенно полезными, в частности, когда 1Р8клетки являются индуцированными из клеток человека. Регистрационные номера в Νί'ΒΙ для генов ТЕНТ и Вш11 следующие.
Таблица 3
Мышь Человек
ТЕК.Т обратная транскриптаза теломеразы ΝΜ 009354 ΝΜ_198253
ВтИ область вставки 1 Мо-МЬУ для Влимфомы ΝΜ_007552 ΝΜ_005180
Более того, продукт или продукты одного или нескольких типов генов, выбранных из группы, состоящей из следующих:
БЬх15, №под, ЕВак, ЕСАТ15-2, Те11 и β-катенина, можно объединять. Пример особенно предпочтительного варианта осуществления с точки зрения эффективности перепрограммирования, включает в себя ядерный фактор перепрограммирования, содержащий всего десять типов продуктов генов, где продукты генов БЬх15, Nаπод, ЕВак, ЕСАТ15-2, Те11 и β-катенина объединяют с вышеупомянутыми четырьмя типами продуктов генов. БЬх15 (Υ. Токнхаюа е! а1., Мо1. Се11 Вю1., 23, рр. 2699-708, 2003), Nаπод (К. Мйкш е! а1., Се11, 113, рр. 631-42, 2003), ЕВак (К. Такакаккц К. Мйкш, 8. Υатаηака, №!лте, 423, рр. 541-5, 2003) и ЕСАТ15-2 (А. Войуш е! а1., Оеуе1ортеп!, 130, рр. 1673-80, 2003) представляют собой гены, специфически экспрессирующиеся в Е8-клетках. Те11 вовлечен в активацию Ак! (А. Вог1у|п е! а1., Оеуе1ортеп!, 130, рр. 1673-80, 2003), и β-катенин представляет собой важный фактор, приводящий в действие путь передачи сигнала \Уп1 и опубликовано также, что он вовлечен в поддержание плюрипотентности (Ν. 8а!о е! а1, N81. Меб., 10, рр. 55-63, 2004).
Кроме того, ядерный фактор перепрограммирования по настоящему изобретению может содержать, например, продукт или продукты одного или нескольких типов генов, выбранных из группы, состоящей из следующих: ЕСАТ1, Екд1, Ппт!3Ь, ЕСАТ8, ОбО, 8ох15, ЕСАТ15-1, Е!к117, 8а114, Вех1, ИТБ1, 8!е11а, 8!а!3 и ОтЬ2. ЕСАТ1, Екд1, ЕСАТ8, Об13 и ЕСАТ15-1 представляют собой гены, специфически экспрессирующиеся в Е8-клетках (К. Мйкш е! а1., Се11, 113, рр. 631-42, 2003). Ппт!3Ь представляет собой фактор, связанный с метилирующим ДНК ферментом, и 8ох15 представляет собой класс генов, экспрессирующихся в процессе раннего развития и кодирующих факторы транскрипции (М. Магиуата е! а1., 1. Вю1. Скет., 280, рр.24371-9, 2005). Е!к117 кодирует подобный тяжелому полипептиду ферритина 17 (А. соШотю!, Т. Вооп, С. Эе 8те!, 1п!. 1. Сапсег, 105, рр.371-6, 2003), 8а114 кодирует белок с Ζη-пальцами, в большом количестве экспрессирующийся в эмбриональных стволовых клетках (1. Кок1каке е! а1., Су!одепе!. Оепоте Век., 98, рр.274-7, 2002), и Вех1 кодирует фактор транскрипции, расположенный ниже Ос!3/4 (Е. Веп-8киккап, ЕВ. Ткотркоп, Ьб. бибак, Υ. Ветдтап, Мо1. Се11 Вю1., 18, рр.1866-78, 1998). ИТЕ1 представляет собой кофактор транскрипции, расположенный ниже Ос!3/4, и опубликовано, что супрессия пролиферации Е8-клеток индуцирована, когда данный фактор супрессирован (А. Окиба е! а1., ЕМВО 1., 17, рр.2019-32, 1998). 8!а!3 представляет собой сигнальный фактор для пролиферации и дифференцировки клеток. Активация 8!а!3 запускает действие ЫЕ, и таким образом, фактор играет важную роль в поддержании плюрипотентности (Н. ΝΑν-Γ Т. Вигбоп, I. СкатЬегк, А. 8ткк, Оепек Оеу., 12, рр.2048-60, 1998). ОгЬ2 кодирует белок, являющийся промежуточным звеном между различными рецепторами факторов роста, существующими на мембранах клетки, и каскадом Вак/МАРК (А.М. Скепд е! а1., Се11, 95, рр.793-803, 1998).
Однако продукты генов, которые можно включать в ядерный фактор перепрограммирования по настоящему изобретению, не являются ограниченными продуктами генов, конкретно указанных выше. Ядерный фактор перепрограммирования по настоящему изобретению может содержать один или несколько факторов, относящихся к дифференцировке, развитию, пролиферации или т.п., и факторов, обладающих другими видами физиологической активности, а также другие продукты генов, которые могут функционировать как ядерный фактор перепрограммирования. Понятно, что такие варианты осуществления попадают в объем настоящего изобретения. Посредством использования соматических клеток, в которых экспрессируются только один или два гена из трех типов генов Ос!3/4, К1Е4 и с-Мус, можно идентифицировать продукты других генов, которые могут функционировать как ядерный фактор перепрограммирования, например, посредством скрининга продукта гена, который может индуцировать перепрограммирование ядер указанных клеток. В соответствии с настоящим изобретением вышеупомянутый способ скрининга также представлен как новый способ скрининга ядерного фактора перепрограм мирования.
Продукты генов, содержащиеся в ядерном факторе перепрограммирования по настоящему изобретению, могут представлять собой, например, белок, собственно полученный с помощью вышеупомяну
- 7 018039 того гена, или, альтернативно, в форме продукта слитного гена для указанного белка с другим белком, пептидом или т.п. Например, можно использовать также слитый белок с зеленым флуоресцентным белком (СЕР) или продукт слитого гена с таким пептидом, как гистидиновая метка. Кроме того, посредством получения и использования слитого белка с пептидом ТАТ, полученным из вируса Ηΐν, можно способствовать внутриклеточному поглощению ядерного фактора перепрограммирования через мембраны клеток, таким образом, обеспечивая возможность индукции перепрограммирования посредством только добавления слитого белка в среду, таким образом, исключая сложные операции, такие как трансдукция гена. Поскольку способы получения продуктов таких слитых генов хорошо известны специалистам в данной области, специалисты в данной области легко могут сконструировать и получить продукт соответствующего слитого гена в зависимости от цели.
Посредством использования ядерного фактора перепрограммирования по настоящему изобретению, ядро соматической клетки можно перепрограммировать для получения индуцированной плюрипотентной стволовой клетки. В данном описании термин индуцированные плюрипотентные стволовые клетки обозначает клетки, обладающие свойствами, сходными со свойствами Е8-клеток, и более конкретно термин относится к недифференцированным клеткам, обладающим плюрипотентностью и способностью к росту. Однако термин не следует истолковывать узко в каком-либо смысле, и следует истолковывать его в самом широком смысле. Способ получения индуцированных плюрипотентных стволовых клеток с использованием ядерного фактора перепрограммирования описан в Международной публикации \УО 2005/80598 (в публикации используют термин Е8-подобные клетки), и конкретно описаны также способы для выделения индуцированных плюрипотентных стволовых клеток. Таким образом, с помощью ссылки на вышеупомянутую публикацию специалисты в данной области могут легко получить индуцированные плюрипотентные стволовые клетки с использованием ядерного фактора перепрограммирования по настоящему изобретению.
Способ получения индуцированных плюрипотентных стволовых клеток из соматических клеток с использованием ядерного фактора перепрограммирования по настоящему изобретению не является ограниченным конкретно. Можно применять любой способ до тех пор, пока ядерный фактор перепрограммирования может контактировать с соматическими клетками в условиях, при которых возможна пролиферация соматических клеток и индуцированных плюрипотентных стволовых клеток. Например, продукт гена, содержащийся в ядерном факторе перепрограммирования по настоящему изобретению, можно добавлять в среду. Альтернативно, с использованием вектора, содержащего ген, с которого можно экспрессировать ядерный фактор перепрограммирования по настоящему изобретению, можно применять способы трансдукции указанного гена в соматическую клетку. При использовании такого вектора два или более типов генов можно вводить в вектор, и продукты каждого из генов можно одновременно экспрессировать в соматической клетке. Когда один или несколько из продуктов генов, содержащихся в ядерном факторе перепрограммирования по настоящему изобретению, уже экспрессируются в соматической клетке, подлежащей перепрограммированию, продукты указанных генов можно исключить из ядерного фактора перепрограммирования по настоящему изобретению. Понятно, что такой вариант осуществления попадает в объем настоящего изобретения.
При получении индуцированных плюрипотентных стволовых клеток с использованием ядерного фактора перепрограммирования по настоящему изобретению типы соматических клеток, подлежащих перепрограммированию, не являются ограниченными конкретно, и можно использовать любые виды соматических клеток. Например, можно использовать зрелые соматические клетки, а также соматические клетки эмбрионального периода. Когда индуцированные плюрипотентные стволовые клетки используют для терапевтического лечения заболеваний, желательно использовать соматические клетки, выделенные у пациентов. Например, можно использовать соматические клетки, вовлеченные в заболевания, соматические клетки, участвующие в терапевтическом лечении заболеваний, и т.п. Способ для отбора индуцированных плюрипотентных стволовых клеток, которые присутствуют в среде согласно способу по настоящему изобретению, не является ограниченным конкретно, и соответственно, можно использовать хорошо известные способы, например, ген устойчивости к лекарственному средству или т.п. можно использовать в качестве маркерного гена для выделения индуцированных плюрипотентных стволовых клеток с использованием устойчивости к лекарственному средству в качестве показателя. Различные среды, которые могут поддерживать недифференцированное состояние и плюрипотентность Е8-клеток, и различные среды, которые не могут поддерживать такие свойства, известны в данной области, и индуцированные плюрипотентные стволовые клетки можно эффективно выделить с использованием сочетания подходящей среды. Специалисты в данной области легко могут подтвердить способность к дифференцировке и пролиферации выделенных индуцированных плюрипотентных стволовых клеток с использованием способов подтверждения, широко применяемых для Е8-клеток.
Применения индуцированных плюрипотентных стволовых клеток, полученных способом по настоящему изобретению, не являются ограниченными конкретно. Клетки можно использовать для любых экспериментов и исследований, проводимых с Е8-клетками, видов терапевтического лечения с использованием Е8-клеток и т.п. Например, желаемые дифференцированные клетки (например, нервные клетки,
- 8 018039 клетки сердечной мышцы, гемоциты и т.п.) можно получить посредством обработки индуцированных плюрипотентных стволовых клеток, полученных способом по настоящему изобретению, ретиноевой кислотой, факторами роста, такими как ЕСР, глюкокортикоид или т.п., и терапию стволовыми клетками, основанную на аутотрансплантации клеток, можно выполнять посредством возвращения пациенту дифференцированных клеток, полученных, как описано выше. Однако применения индуцированных плюрипотентных стволовых клеток по настоящему изобретению не являются ограниченными вышеупомянутыми конкретными вариантами осуществления.
Примеры
Настоящее изобретение будет более конкретно объяснено на примерах. Однако объем настоящего изобретения не является ограниченным следующими примерами.
Пример 1. Отбор фактора перепрограммирования.
Чтобы идентифицировать факторы перепрограммирования, требуется экспериментальная система для простого наблюдения феномена перепрограммирования. В качестве экспериментальной системы использовали мышь с нокином вдео (слитого гена из гена β-галактозидазы и гена устойчивости к неомицину) в локусе РЬх15. Ген РЬх15 мыши представляет собой ген, специфически экспрессирующийся при дифференцировке плюрипотентных клеток, таких как Е8-клетки, и в ранних эмбрионах. Однако у гомомутантной мыши, с нокином вдео в гене РЬх15 мыши таким, что удалена функция РЬх15, не наблюдали аномальных фенотипов, включая фенотипы, относящиеся к плюрипотентности при дифференцировке или развитии. У этой мыши контроль экспрессии вдео осуществляют посредством энхансера и промотора гена РЬх15. Конкретно, вдео не экспрессируется в дифференцированных соматических клетках, и они являются чувствительными к С418. В отличие от этого, гомомутантные Е8-клетки с нокином вдео обладают устойчивостью к С418 в необычайно высокой концентрации (равной или превышающей 12 мг/мл). Посредством использования вышеуказанного феномена сконструировали экспериментальную систему для визуализации перепрограммирования соматических клеток.
В вышеупомянутой экспериментальной системе фибробласты (РЬх15вдео/вдео МЕР) сначала выделяли из эмбриона гомоутантной мыши с нокином вдео (13,5 суток после оплодотворения). Поскольку МЕР не экспрессируют ген РЬх15, клетки также не экспрессируют вдео и таким образом обладают чувствительностью к С418. В то же время, когда МЕР слиты с Е8-клетками, не подвергавшимися манипуляции с генами (также обладающими чувствительностью к С418), ядра МЕР являются перепрограммированными, и в результате вдео экспрессируется и придает устойчивость к С418. Феномен перепрограммирования можно таким образом визуализировать как устойчивость к С418 посредством использования этой экспериментальной системы (Международная публикация νΟ 2005/80598). Поиски факторов перепрограммирования проводили с использованием вышеупомянутой экспериментальной системы (фиг. 1), и всего 24 типа генов выбрали в качестве кандидатов на роль факторов перепрограммирования, включая гены, для которых показали специфическую экспрессию в Е8-клетках, и гены, для которых предполагают важную роль в поддержании плюрипотентности при дифференцировке Е8-клеток. Эти гены показаны в табл. 4 и 5 ниже. В случае в-катенина (№ 21) и с-Мус (№ 22) использовали мутанты активного типа (катенин: 833Υ, с-Мус: Т58А).
- 9 018039
Таблица 4
Номер Наименова ние гена Описание гена
1 ЕСАТ1 Ассоциированный с ЕЗ-клетками транскрипт 1 (ЕСАТ1)
2 ЕСАТ2 Ассоциированный с плюрипотентностью при развитии 5 (ΌΡΡΑ5), специфический для ЕЗклетки ген 1 (Е331)
3 ЕСАТЗ Р-бокс-белок 15 (ЕЬх15),
4 ЕСАТ4 Фактор транскрипции с гомеобоксом Цапод
5 ЕСАТ5 Экспрессирующийся в ЕЗ-клетке Еаз (ЕЕаз),
6 ЕСАТ7 ДНК (цитозин-5-)-метилтрансфераза 3-подобный (ЦппЛ31) , вариант 1
7 ЕСАТ8 Ассоциированный с ЕЗ-клетками транскрипт 8 (ЕСАТ8)
3 ЕСАТ9 Фактор роста и дифференцировки 3 (СД£3),
9 ЕСАТ10 Содержащий ЗЕУ-бокс ген 15 (Зох15),
10 ЕСАТ15-1 Ассоциированный с плюрипотентностью при развитии 4 фрра4), вариант 1
11 ЕСАТ15-2 Ассоциированный с плюрипотентностью при развитии 2 (Брра2)
12 ЕВЫ17 Подобный тяжелому полипептиду ферритина 17 (ГЫ1117)
13 За114 8а1-подобный 4 (ВгозорЫ1а) (За114), вариант транскрипта а
14 ОсЬЗ/4 домен РОИ, класс 5, фактор транскрипции 1 . (Рои5£1)
15 Зох2 Содержащий 3ΕΥ-6οκσ ген 2 (Зох2)
16 Кех1 Белок с цинковыми пальцами 42 (Ζ£ρ42)
17 ОН1 Фактор транскрипции недифференцированной эмбриональной клетки 1 (Ш:£1)
18 Тс11 Контрольная точка Т-клеточной лимфомы 1 (Тс11)
19 ЗСе11а Ассоциированный с плюрипотентностью при развитии 3 (ОрраЗ)
20 К1£4 Ктирре1-подобный фактор 4 (кишечник) (К1Е4)
21 β-катенин Катенин (кадгерин-ассоциированный белок), бета 1, 88 кДа (СХппЫ)
22 с-Мус Онкоген миелоцитоматоза (Мус)
23 ЗОаЬЗ Передатчик сигнала и активатор транскрипции 3 (ЗОаЬЗ), вариант транскрипта 1
24 <ЗгЬ2 Связанный с рецептором фактора роста белок 2 (<ЗгЬ2)
- 10 018039
Таблица 5
Регистрационный номер в №СВ1
Но мер Наимено вание гена Характерное свойство Мышь Человек
1 ЕСАТ1 Ген, специфически экспрессирующийся в Е5клетке АВ211060 АВ211062
2 ЕСАТ2 Ген, специфически экспрессирующийся в ЕЗклетке НМ_02Б274 ΝΜ_0010252 90
3 ЕСАТЗ Ген, специфически экспрессирующийся в ЕЗклетке ΝΜ_015798 ΝΜ_152676
4 ЕСАТ4 Фактор транскрипции, обладающий гомеодоменом, необходимый фактор для поддержания плюрипотентности при дифференцировке ΆΒ093574 ΝΜ_024865
5 ЕСАТ5 Белок семейства Раз, фактор, стимулирующий рост ЕЗ-клетки ΝΜ_181548 Ж_181532
б ЕСАТ7 Фактор, связанный с ферментом метилирования ДНК, необходимый для импринтинга ΝΜ_019448 ΝΜ_013369
7 ЕСАТЗ Ген, специфически экспрессирующийся в ЕЗклетке, обладающий доменом ТиЗог ΆΒ211061 ΑΒ211063
8 ЕСАТ9 Ген, специфически экспрессирующийся в Е5клетке, принадлежащий семейству ΤΟΓβ ΝΜ-008108 ΝΜ_020634
9 ЕСАТ10 Ген, специфически экспрессирующийся в ЕЗклетке, фактор транскрипции семейства 3ΗΥ ΝΜ_009235 ΝΜ_006942
10 ЕСАТ15- 1 Ген, специфически экспрессирующийся в ЕЗклетке ΝΜ_028610 ΝΜ_018189
11 ЕСАТ15- 2 Ген, специфически экспрессирующийся в ЕЗклетке ΝΜ_028615 ΝΜ_138815
12 ЕДЫ 17 Ген, специфически экспрессирующийся в Е5клетке, подобный тяжелой цепи ферритина ΝΜ_031261 ΝΜ_031894
13 За114 Ген, специфически экспрессирующийся в Е8клетке, белок с Ζη-пальцами ΝΜ_175303 ΝΜ_020436
14 ОсЬЗ/4 Фактор транскрипции семейства рои, необходимый для поддержания плюрипотентности ΝΜ_013633 ΝΜ-002701
15 5ох2 Фактор транскрипции семейства 5Κ.Υ, необходимый для поддержания плюрипотентности ΝΜ_011443 ΝΜ_003106
16 Кех1 Ген, специфически экспрессирующийся в Е5клетке, белок с Ζη-пальцами ΝΜ_009556 ΝΜ_174900
17 иъ£1 Фактор регуляции транскрипции с высоким уровнем экспрессии в ЕЗклетке, стимулирующий рост ΕΞ ΝΜ_009482 ΝΜ_003577
- 11 018039
18 ТС11 Активирующий онкоген АКТ, в большом количестве экспрессирующийся в ЕЗклетке ЫМ_009337 ΝΜ_021966
19 ЗЪе11а Ген, специфически экспрессирующийся в ЕЗклетке ΝΜ_139218 ΝΜ_1$9286
20 К1£4 В большом количестве экспрессирующийся в ЕЗклетке, опубликовано действие как в качестве антионкогена, так и в качестве онкогена ММ_010637 ΝΜ_004235
21 β- катенин Фактор транскрипции, активирующийся по сигналу ИпС, опубликовано вовлечение в поддержание плюрипотентности ММ_007614 ΝΜ_001904
22 с-Мус Фактор контроля транскрипции, опубликован как участвующий в пролиферации и дифференцировке клетки, и как онкоген, вовлеченный в поддержание плюрипотентности ΝΜ_010849 ΝΜ_002467
23 зеаьз Фактор транскрипции, активирующийся по сигналу ЫР, считается необходимым для поддержания плюрипотентности ЕЗ-клеток мьтпги ΝΜ_213659 ΝΜ_139276
24 СгЬ2 Адапторный белок, являющийся промежуточным звеном между рецепторами факторов роста и каскадом Наз/МАРК ΝΜ_008163 ΝΜ_002086
кДНК указанных генов вставляли в ретровирусный вектор рМХ-дет способом Са1е\гау. Сначала каждым из 24 генов инфицировали РЬх15вдео/вдео МЕР, и затем проводили отбор с С418 в условиях культивирования Е8-клеток. Однако не получили устойчивых к С418 колоний. Затем ретровирусными векторами для всех 24 генов одновременно инфицировали РЬх15вдео/вдео МЕР. Когда проводили отбор с С418 в условиях культивирования Е8-клеток, получили множество колоний, устойчивых к лекарственному средству. Эти колонии выделяли, и продолжали культивирование. Обнаружили, что культивирование этих клеток можно проводить в течение длительного периода времени и что эти клетки обладают морфологией, сходной с морфологией Е8-клеток (фиг. 2). На фигуре ίΡδ-клетки представляют собой индуцированные плюрипотентные стволовые клетки (называемые также подобные Е8-клетки, Е8подобные клетки или Е8Ь-клетки), Е8 представляют собой эмбриональные стволовые клетки, и МЕР представляют собой дифференцированные клетки (эмбриональные фибробласты).
Когда профили экспрессии маркерных генов исследовали посредством РТ-РСВ обнаружили экспрессию таких маркеров дедифференцировки, как Ыаиод и Ос13/4 (фиг. 3). Обнаружили, что экспрессия Ыаиод являлось близкой к экспрессии в Е8-клетках, в то время как экспрессия Ос13/4 была ниже, чем в Е8-клетках. Когда исследовали статус метилирования ДНК способом бисульфитного секвенирования, обнаружили, что ген Ыаиод и ген РЬх15 являются высокометилированными в МЕР, в то время как они являются деметилированными в ίΡδ-клетках (фиг. 4).
Приблизительно 50% гена 1СР2, гена импринтинга, являлось метилированным как в клетках МЕР, так и в ίΡδ-клетках. Поскольку известно, что память импринтинга удалена и ген 1СР2 почти полностью деметилирован в примордиальных зародышевых клетках через 13,5 суток после оплодотворения, из которых выделены РЬх15вдео/вдео МЕР, заключили, что ίΡδ-клетки не происходят из примордиальных зародышевых клеток, оставшихся в виде примеси в РЬх15вдео/вдео МЕР. Вышеуказанные результаты показали, что перепрограммирование дифференцированных клеток (МЕР) до состояния, близкого к состоянию Е8клеток, можно индуцировать с помощью сочетания 24 типов факторов.
Затем проводили исследования того, все ли из 24 типов генов являются необходимыми для перепрограммирования. 23 генами, с удалением каждого отдельного гена, трансфицировали РЬх15вдео/вдео МЕР. В результате для 10 генов обнаружили ингибирование формирования колоний при удалении каждого из них (фиг. 5, номера генов соответствуют номерам генов, показанных в табл. 4, и гены представляют собой следующие 10 типов генов: № 3, № 4, № 5, № 11, № 14, № 15, № 18, № 20, № 21 и № 22). Ко
- 12 018039 гда этими десятью генами одновременно трансфицировали ЕЬх15|1део/1део МЕЕ, устойчивые к 0418 колонии получали со значительно большей эффективностью по сравнению с одновременной трансфекцией 24 генами.
Кроме того, 9 генами, с удалением каждого отдельного гена из 10 генов, трансфицировали ЕЬх15вдео/вдео МЕЕ. В результате обнаружили, что колонии устойчивых к 0418 ίΡδ-клеток не формировались, когда удаляли каждый из 4 типов генов (№ 14, № 15, № 20 или № 22) (фиг. 6). Таким образом, предположили, что эти четыре типа генов среди десяти генов играют особенно важные роли в индукции перепрограммирования.
Пример 2. Индукция перепрограммирования с помощью сочетания 4 типов генов.
Исследовали, можно ли достичь индукции перепрограммирования соматических клеток с помощью четырех типов генов, для которых предполагали особенную важность среди 10 генов. С использованием сочетания вышеупомянутых 10 типов генов, сочетания вышеупомянутых 4 типов генов, сочетаний только 3 типов генов среди 4 типов генов и сочетаний только 2 типов генов среди 4 типов генов, эти наборы генов трансдуцировали с помощью ретровирусов в МЕЕ-клетки, как в соматические клетки, в которых проведен нокин гена вдео в гене ЕЬх15. В результате при трансдукции 4 типов генов получили 160 устойчивых к 0418 колоний. Хотя этот результат является почти таким же, как результат, полученный посредством трансдукции с 10 типами генов (179 колоний), колонии, полученные посредством трансдукции 4 генов, были меньше, чем колонии после трансдукции 10 генами. При пассировании этих колоний число колоний, обладающих морфологией ίΡδ-клеток, составляло 9 клонов среди 12 клонов в случае трансдукции 10 генами, в то время как присутствовала тенденция к некоторому понижению - 7 клонов среди 12 клонов в случае трансдукции 4 генами. В случае 4 генов почти такое же число ίΡδ-клеток получили как для клеток, полученных у мыши, так и для клеток, полученных у человека.
При трансдукции 3 генов, выбранных из вышеупомянутых 4 генов, получили 36 плоских колоний с одним из сочетаний (№ 14, № 15 и № 20). Однако при их пассировании ίΡδ-клеток не наблюдали. С другим сочетанием (№ 14, № 20 и № 22) получили 54 небольшие колонии. При пассировании 6 относительно крупных колоний из этих колоний, клетки, подобные Е8-клеткам, получили для всех этих 6 клонов. Однако, по-видимому, адгезия этих клеток между собой и к культуральной чашке была слабее, чем адгезия Е8-клеток. Скорость пролиферации клеток также являлась более медленной, чем скорость, наблюдаемая в случае трансдукции 4 генами. Кроме того, по одной колонии сформировалось с каждым из двух других видов сочетаний 3 генов из 4 генов. Однако пролиферации клеток не наблюдали при пассировании клеток. С любым из сочетаний 2 генов, выбранных из 4 генов (6 сочетаний), не сформировалось устойчивых к 0418 колоний. Вышеуказанные результаты показаны на фиг. 7.
Кроме того, результаты наблюдения профилей экспрессии маркерных генов Е8-клетки посредством КТ-РСК показаны на фиг. 10. Подробности способа следующие. Из ίΡδ-клеток, полученных посредством трансдукции 3 генов (Ос!3/4, К1Г4 и с-Мус: представлены как 8ох2 минус), 4 генов (8ох2 добавляли к трем генам: представлены как 4ЕСАТ) и 10 генов (№ 3, № 4, № 5, № 11, № 18 и № 21 в табл. 4 добавляли к четырем генам: представлены как 10ЕСАТ) в ЕЬх15вдео/вдео МЕЕ, ίΡδ-клеток, полученных посредством трансдукции 10 генов в фибробласты, полученные из кончика хвоста взрослой мыши, у которой проведен нокин вдео в гене ЕЬх15 (представлены как фибробласты кожи с 10ЕСАТ), Е8-клеток мыши и МЕЕ-клеток без трансдукции генов выделяли тотальную РНК и обрабатывали ДНКазой I для удаления загрязнения геномной ДНК. Первые цепи кДНК получали реакцией обратной транскрипции, и профили экспрессии маркерных генов Е8-клетки исследовали посредством ΡΟΚ В случае Ос!3/4, Иапод и ЕКак, ΡΟΗ проводили с использованием праймеров, которые амплифицируют только продукт транскрипции эндогенного гена, не с трансдуцированного ретровируса. Последовательности праймеров показаны в табл. 6.
- 13 018039
Таблица 6
ЕСАТ1 ЕСАТ1-ЙТ-3 ТОТ ССС ССС СТС ААА ССС САС СТС АСА Т
ЕСАТ1-ЕТ-А5 АТС ССС ССС САТ АСС АСС АСС СТС ААС Т
Езд1 РН34-Ц38 САА СТС ТСС ТТС СТТ ССС АСС АТС
рН34-Ь394 АСТ ССА ТАС АСТ ССС СТА ОС
Напод 6047-51 САС СТС ТТТ САС ССТ АСС ТС
6047-А31 ССС ТТС АТС АТС СТА САС ТС
ЕНаз 45328-Б118 АСТ ССС ССТ САТ САС АСТ ССТ АСТ
ЕКаэ-А3304 САС ТСС СТТ СТА СТС ССС ТАС СТС
са£з Сй£3-и253 СТТ ССА АСС ТОТ ССС ТСС сст стт
<ЗОГЗ Ы6914 АСС САС ССА ТСС АСА САС ССС АСС АС
Рд£4 Гд£4-КТ-3 ССТ ССТ САС САТ СТТ ССС АСТ СС
Ед£4-ΕΤ-ΑΞ ССТ ТСТ ТСС ТСС ССС ССТ ТСТ ТА
Сгхрро Сг1р£о-3 АТС САС ССА АСТ СТС ААС АТС АТС ТТС ССА
Сг1р£о-А3 СТТ ТСА ССТ ССТ ССТ ССА ТСА ССТ САС САТ
Ζ£ρ296 Ζ£ρ296-367 ССА ТТА ССС ССС АТС АТС ССТ ТТС
Ζ£ρ296-Α3350 САС ТСС ТСА СТС САС ССС ССТ ТСС
ϋβχΐ Оах1-5Ю96 ТСС ТСС ССТ ССА ССС САТ САА САС
ЦЭХ1-А31305 ССС САС ТСТ ТСА СТТ САС ССС АТС
ОсЪЗ/4 0с£3/4-39 ТСТ ТТС САС САС ССС ССС ССС ТС
0с£3/4-А32Ю ТСС ССС ССС АСА ТСС ССА САТ СС
НАТТ НАТ1 Ц283 АТТ СТТ ССТ ТСТ САА ССС ССС ААА СТС САС
ΝΑΤ1 Ь4 76 АОТ ТОТ ТТО СТО СОО АСТ тот САТ стс отс
Результаты, показанные на данной фигуре, показывают, что посредством трансдукции 3 генов эффективно индуцирована экспрессия каждого из ЕКаз и РдГ4. однако экспрессия каждого из Ое13/4 и №1под, факторов, необходимых для поддержания плюрипотентности, не являлась индуцированной или являлась очень слабой даже при индукции. Однако при трансдукции 4 генов присутствовал один клон (№ 7), в котором Ое13/4 и Ναηο§ являлись относительно сильно индуцированными среди изучаемых 4 клонов. Кроме того, при трансдукции 10 генов сильную индукцию каждого из Ое13/4 и Ναηο§ наблюдали в 3 клонах среди исследуемых 5 клонов.
Эти результаты показывают, что сочетание по меньшей мере 3 генов (№ 14, № 20 и № 22) является необходимым для перепрограммирования, и в случае группы из 4 генов и группы из 10 генов, включая 3 типа генов, эффективность перепрограммирования увеличивалась пропорционально увеличению числа генов.
Пример 3. Анализ плюрипотентности перепрограммированных клеток.
Чтобы оценить плюрипотентность при дифференцировке полученных ίΡδ-клеток, ίΡδ-клетки, полученные с помощью 24 факторов, 10 факторов и 4 факторов, подкожно трансплантировали мышам пибе. В результате опухоли, обладающие размером, сходным с опухолями, наблюдаемыми в случае Е8-клеток, сформировались у всех животных. Г истологически опухоли состояли из множества типов клеток, и наблюдали хрящевые ткани, нервные ткани, мышечные ткани, жировые ткани и ткани, подобные тканям кишечника (фиг. 8), что подтверждает плюрипотентность ίΡδ-клеток. В отличие от этого, хотя опухоли формировались, когда клетки, полученные с помощью 3 факторов трансплантировали мышам пибе, гистологически они являлись сформированными только из недифференцированных клеток. Таким образом, обнаружили, что ген семейства 8ох является необходимым для индукции плюрипотентности при дифференцировке.
- 14 018039
Пример 4. Перепрограммирование фибробластов, полученных из хвостов взрослых мышей.
фактора, идентифицированные в эмбриональных фибробластах мыши (МЕЕ), трансдуцировали в фибробласты, полученные из хвостов взрослых мышей с нокином вдео ЕЬх15, с системной экспрессией зеленого флуоресцентного белка (СЕР). Затем клетки культивировали на фидерных клетках в тех же самых условиях, что и условия культивирования Е8-клеток, и проводили отбор по С418. Через приблизительно две недели после начала отбора с лекарственным средством получили множество колоний 1Р8клеток. Когда эти клетки подкожно трансплантировали мышам пибе, формировались тератомы, состоящие из множества тканей из всех трех зародышевых листков. Кроме того, когда 1Р8-клетки, полученные из фибробластов кожи взрослых, трансплантировали в бластоцисты, и затем трансплантировали в матки псевдобеременных мышей, получили эмбрионы, в которых СЕР-положительные клетки являлись системно распределенными через 13,5 суток после оплодотворения (фиг. 9), что показывает, что 1Р8-клетки обладают плюрипотентностью и способны вносить вклад в эмбриогенез мыши. Эти результаты показывают, что идентифицированный класс факторов обладает способностью индуцировать перепрограммирование не только соматических клеток в эмбриональном периоде, но также соматических клеток зрелой мыши. На практике является чрезвычайно важным, что перепрограммирование можно индуцировать в клетках, полученных из кожи взрослых.
Пример 5.
Исследовали действие цитокинов на получение 1Р8-клеток. Экспрессирующий вектор (ретровирусный вектор рМХ) для основного фактора роста фибробластов (ЬЕСЕ) или фактора стволовых клеток (8СЕ) трансдуцировали в фидерные клетки (клетки 8ТО) для получения клеток, постоянно экспрессирующих цитокины. МЕЕ, полученные у мыши ЕЬх15вдео/вдео (500000 клеток/100-мм чашку) культивировали на этих клетках 8ТО, трансдуцировали 4 факторами и затем подвергали отбору с С418. В результате число сформированных колоний увеличивалось в 20 раз или выше на клетках 8ТО, продуцирующих ЬЕСЕ (фиг. 11) или 8СЕ (данные не представлены), по сравнению с культивированием на нормальных клетках 8ТО. Кроме того, хотя при трансдукции 3 факторов, отличных от с-Мус, не сформировалось колоний 1Р8-клеток на нормальных клетках 8ТО, формирование колоний наблюдали на клетках 8ТО, продуцирующих ЬЕСЕ (фиг. 11) или 8СЕ (данные не представлены). Эти результаты показывают, что стимуляция цитокином увеличивает эффективность получения 1Р8-клеток из МЕЕ и перепрограммирования ядер можно достигать с использованием цитокина вместо с-Мус.
Пример 6.
Существуют семейства всех генов Ос13/4. К1Г4, с-Мус и 8ох2 (табл. 1 и 2). Соответственно, проводили исследования, можно ли получить 1Р8-клетки с генами из семейств вместо этих 4 генов. В табл. 7 показаны объединенные экспериментальные результаты для двух параллелей. По отношению к семейству 8ох, для 8ох1 получили почти такое же число сформированных устойчивых к С418 колоний и эффективность получения 1Р8-клеток, как и полученные с 8ох2. Что касается 8ох3, число сформировавшихся устойчивых к С418 колоний составляло приблизительно 1/10 от числа колоний с 8ох2, однако эффективность получения 1Р8-клеток из отобранных колоний фактически была выше, чем эффективность с 8ох2. Что касается 8ох15, как число сформировавшихся устойчивых к С418 колоний, так и эффективность получения 1Р8-клеток были ниже, чем с 8ох2. Что касается 8ох17, число сформировавшихся устойчивых к С418 колоний являлось почти таким же, как с 8ох2, однако эффективность получения 1Р8-клеток являлась низкой. Что касается семейства К1Г, для К1Г2 получили меньшее число устойчивых к С418 колоний, чем с К1Г4, однако для них получили почти такую же эффективность получения 1Р8-клеток. Что касается семейства Мус, обнаружили, что с-Мус дикого типа являлся почти таким же, как мутант Т58А, как по числу сформировавшихся устойчивых к С418 колоний, так и по эффективности получения 1Р8-клеток. Кроме того, каждый из Ν-Мус и Ь-Мус (каждый дикого типа) являлся почти таким же, как с-Мус, как по числу сформировавшихся устойчивых к С418 колоний, так и по эффективности получения 1Р8-клеток.
- 15 018039
Таблица 7
Трансдуцироваяный ген Число сформировавшихся колоний Число отобранных колоний Число полученных штаммов 1Р5-клеток Эффективность получения1Р8клеток(%)
4 фактора (сМусТБЗА) 35 12 5 42
Зох1 84 12 7 58
5 охЗ 8 8 7 92
Зох15 11 11 1 8
30X17 78 12 2 17
К1£2 11 10 5 50
с-МусИТ 53 11 8 72
Ν-МусИТ 40 12 7 58
Ц-МусИТ 50 12 11 92
3 фактора <-Зох2) 6 6 2 17
Пример 7.
Проводили исследования, можно ли получить 1Р8-клетки с репортером, отличным от РЬх15-вдео. Выделяли искусственную бактериальную хромосому (ВАС) ЕксйепсЫа сой, содержащую ген №1под в середине, и затем проводили нокин гена 0РР и гена устойчивости к пуромицину Е. сой посредством рекомбинации (фиг. 12А). Затем вышеуказанную модифицированную ВАС вводили в Е8-клетки, чтобы подтвердить, что клетки становятся 0РР-положительными специфическим для недифференцированного состояния образом (данные не представлены). Затем эти Е8-клетки трансплантировали в бластоцисты мыши для получения трансгенных мышей через химерных мышей. У этих мышей наблюдали специфические 0РР-положительные клетки во внутренних клеточных массах бластоцист или гонад эмбрионов через 13,5 суток после оплодотворения (фиг. 12В). Гонады удаляли из эмбрионов через 13,5 суток после оплодотворения (гибрид мышей ЭВА, 129 и С57ВЙ/6) и выделяли МЕР. Подтверждали, что МЕР являются 0РР-отрицательными (фиг. 13) посредством проточной цитометрии. Эти МЕР трансдуцировали с помощью ретровирусов с 4 факторами и подвергали отбору с пуромицином, и в результате получили большое число устойчивых колоний. Только приблизительно 10-20% колоний являлись 0РРположительными. При пассировании 0РР-положительных колоний для них получали морфологию (фиг. 14) и пролиферацию (фиг. 15), такие же, как и для Е8-клеток. Исследование характера экспрессии генов показало, что характер экспрессии был ближе к характеру экспрессии в Е8-клетках по сравнению с 1Р8клетками, выделенными из РЬх15вдео/вдео МЕР посредством отбора с 0418 (фиг. 16). При трансплантации этих клеток мышам иийе, индуцировали формирование тератомы, таким образом, подтверждали, что клетки являются 1Р8-клетками (фиг. 17). Кроме того, получали рождение химерных мышей посредством трансплантации 1Р8-клеток, полученных посредством отбора по №1под-0ЕР, в бластоцисты мышей С57ВЙ/6 (фиг. 18). При скрещивании этих химерных мышей наблюдали перенос зародышевой линии (фиг. 19). В этих 1Р8-клетках, полученных посредством отбора с №иод-0РР, более близких к Е8клеткам, экспрессия 4 факторов из ретровирусов являлась почти полностью молчащей, что позволяет предполагать, что самовоспроизведение поддерживают эндогенные Ос!3/4 и 8ох2.
Пример 8.
1Р8-клетки из 10-см конфлюэнтного слоя обрабатывали трипсином и суспендировали в среде для Е8-клеток (клетки 8ТО удаляли посредством адгезии на покрытых желатином чашках в течение 10-20 мин после суспендирования). 2х106 клеток культивировали в течение четырех суток в покрытых НЕМА (2-гидроксиэтилметакрилатом) культуральных чашках для Е. сой в суспензионной культуре для формирования эмбриоидных телец (ЕВ) (сутки 1-4). На 4-е сутки формирования ЕВ (сутки 4), все ЕВ переносили в 10-см культуральную чашку и культивировали в среде для Е8-клеток в течение 24 ч, чтобы обеспечить адгезию. Через 24 ч (сутки 5) среду меняли на среду, содержащую 1Т8/фибронектин. Культивирование проводили в течение 7 суток (среду меняли каждые 2 суток) и отбирали положительные по нестину клетки (клетки из других семейств погибали до определенной степени в условиях культивирования в бессывороточной среде) (сутки 5-12). Затем индуцировали А2В5-положительные клетки. Через 7 суток (сутки 12) клетки разделяли посредством обработки трипсином и удаляли оставшиеся ЕВ. 1 х 105 клеток высевали на покрытый поли-Ь-орнитином/фибронектином 24-луночный планшет и культивировали в течение 4 суток в среде, содержащей №/ЬР0Р (среду меняли каждые 2 суток) (сутки 12-16). Через 4 суток (сутки 16) среду меняли на среду, содержащую №/ЬР0Р/Е0Р, и продолжали культивирование в течение 4 суток (среду меняли каждые 2 суток) (сутки 16-20). Через 4 суток (сутки 20) среду меняли на среду, содержащую №/ЬР0Р/РП0Р, и продолжали культивирование в течение 4 суток (среду меняли каждые 2 суток) (сутки 20-24). В течение этого периода (сутки 12-24), когда клетки избыточно размножались и достигали конфлюэнтности, их пассировали соответствующее число раз и высевали по 1-2х105
- 16 018039 клеток (число клеток менялось в зависимости от интервалов времени пассирования). Через 4 суток (сутки 24) среду меняли на среду Ν2/Τ3 и продолжали культивирование в течение 7 суток (сутки 24-31) с заменой среды каждые 2 суток. На сутки 31 клетки фиксировали и подвергали иммуноокрашиванию. В результате наблюдали дифференцировку ίΡδ-клеток в положительные по βΙΙΙ-тубулину нервные клетки, 04-положительные олигодендроциты и ΟΕΑΡ-положительные астроциты (фиг. 20).
Пример 9.
Для получения ίΡδ-клеток из произвольно выбранных соматических клеток мыши, отличных от клеток, полученных у мыши с нокином ЕЬх15-вдео, разработали способ получения без использования отбора с лекарственным средством. Эмбриональные фибробласты мыши (МЕЕ) культивировали в 10-см чашке (на фидерных клетках δΤ0) в меньших количествах, чем используемые выше (10000, 50000 или 100000 клеток), и контрольную ДНК или 4 фактора трансдуцировали с помощью ретровирусов. Когда культивирование проводили в течение 2 недель в среде для Е8-клеток (без отбора с 0418), не наблюдали формирования колоний на чашке с трансдукцией контрольной ДНК, в то время как на чашке с трансдукцией 4 факторов сформировалось множество компактных колоний, а также плоских колоний, которые считали трансформированными (фиг. 21). Когда из этих колоний отбирали 24 колонии и продолжали культивирование, наблюдали морфологию, подобную морфологии Е8-клеток. Профили экспрессии их генов исследовали посредством КТ-РСК, и в результате экспрессию Е§д1, маркера Е8-клеток, наблюдали в 7 клонах. Индукцию многих маркеров Е8-клеток, таких как №тод. ЕКак, ΟΌΕ3, 0с13/4 и 8ох2, наблюдали в клоне 4, и таким образом, считали, что клетки являются ίΡδ-клетками (фиг. 22). Вышеуказанные результаты показали, что отбор с лекарственным средством с использованием нокина ЕЬх15-вдео или т.п. не является обязательным для получения ίΡδ-клетки, и ίΡδ-клетки можно получать из соматических клеток, полученных из выбранной случайным образом мыши. Это также позволяет предполагать возможность того, что посредством вышеупомянутого способа ίΡδ-клетки можно получать из соматических клеток мыши, являющейся модельной для заболевания.
Пример 10.
В качестве клеток, из которых индуцировали ίΡδ-клетки, исследовали гепатоциты и клетки слизистой оболочки желудка, являющиеся клетками, отличными от фибробластов. Гепатоциты выделяли из печени мышей ЕЬх15|1део/1део посредством перфузии. В эти гепатоциты с помощью ретровирусов вводили 4 фактора и затем подвергали их отбору с 0418 для получения множества колоний ίΡδ-клеток. В качестве результата анализа характера экспрессии генов с использованием микрочипов ДНК обнаружили, что ίΡδ-клетки, полученные из печени, являются более сходными с Еδ-клетками, чем ίΡδ-клетки, полученные из фибробластов кожи или эмбриональных фибробластов. ίΡδ-клетки получили также из клеток слизистой оболочки желудка таким же способом, как из гепатоцитов.
Пример 11.
ΡΌ98059 представляет собой ингибитор ΜΑΡ-киназы, супрессирующий пролиферацию различных дифференцированных клеток. Однако известно, что он стимулирует поддержание недифференцированного статуса и пролиферации Еδ-клеток. Таким образом, изучали действия ΡΌ98059 на получение ίΡδклеток. В МЕЕ, полученные у мыши, обладающей селективными маркерами Nаηод-Е^ΕΡ-IКЕδ-Ρи^о, с помощью ретровирусов вводили 4 фактора и подвергали отбору с пуромицином. Без добавления ΡΌ98059 процент ΟΕΡ-положительных колоний составлял 8% из полученных колоний ίΡδ-клеток. Однако в группе, в которой ΡΌ98059 (конечная концентрация: 25 мкМ) постоянно добавляли со следующих суток после ретровирусной трансфекции, 45% из полученных колоний являлись ΟΕΡ-положительными. Результаты интерпретировали, как обусловленные тем, что ΡΌ98059 стимулирует пролиферацию ΟΕΡположительных ίΡδ-клеток, которые являются более близкими к Еδ-клеткам, в то время как ΡΌ98059 супрессирует пролиферацию ΟΕΡ-отрицательных ίΡδ-клеток или дифференцированных клеток. По этим результатам показали, что ΡΌ98059 можно использовать для получения ίΡδ-клеток, более близких к Еδклеткам, или получения ίΡδ-клеток без использования отбора с лекарственным средством.
Пример 12.
Плазмиду, содержащую ген красного флуоресцентного белка ниже промотора гена 0с13/4 мыши и ген устойчивости к гигромицину ниже промотора ΡΟΚ, вводили посредством нуклеофекции в эмбриональные фибробласты кожи человека (ΗΌΕ), в которых посредством лентивирусной трансдукции экспрессировали растворимый носитель семейства 7 (81с7а1, регистрационный номер в ΝΟΒΙ ΝΜ_007513) в качестве рецептора экотропного вируса мыши. Проводили отбор с гигромицином для получения штаммов со стабильной экспрессией. 800000 клеток высевали на клетках δΤ0, обработанных митомицином, и на следующие сутки 0с13/4, δоx2, Κ1Ε4 и с-Мус (каждый получен у человека) с помощью ретровирусов трансдуцировали в клетки. Отбирали 24 колонии из полученных через 3 недели (фиг. 23, слева), переносили в 24-луночный планшет, на котором рассеяны клетки δΤ0, и затем культивировали. Через 2 недели один из выращиваемых клонов высевали в 6-луночном планшете, на котором высеяны клетки δΤ0, и культивировали. В результате получили клетки, морфологически сходные с Еδ-клетками (фиг. 23, справа), что позволяет предполагать, что клетки представляли собой ίΡδ-клетки. В качестве среды в каждом случае использовали среду для Еδ-клеток мыши.
- 17 018039
Пример 13.
Фибробласты кожи взрослого человека (взрослые ΗΌΓ) трансдуцировали 81с7а1 (рецептор для ретровирусов мыши) с использованием лентивируса и полученные клетки высевали на 800000 фидерных клеток (обработанные митомицином клетки 8ТО). Гены трансдуцировали с помощью ретровирусов в виде следующих сочетаний.
1. Ос13/4, 8ох2, К114, с-Мус, ТЕКТ и большой Т антиген §ν40
2. Ос13/4, 8ох2, К114, С-Мус, ТЕКТ, ΗΡνΐ6 Е6
3. Ос13/4, 8ох2, К114, С-Мус, ТЕКТ, ΗΡνΐ6 Е7
4. Ос13/4, 8ох2, К1£4, С-Мус, ТЕКТ, ΗΡνΐ6 Е6, ΗΡνΐ6 Е7
5. Ос13/4, 8ох2, К1£4, с-Мус, ТЕКТ, ВтИ (Ос13/4, 8ох2, К114, с-Мус и ТЕКТ получены у человека, а ВшИ получен у мыши).
Культивирование продолжали в условиях культивирования для Е8-клеток мыши без отбора с лекарственным средством. В результате колонии, которые сочли колониями ίΡΞ-клеток, появились на 8-е сутки после вирусной трансфекции на чашке, на которую факторы вводили согласно сочетанию 1 (фиг. 24). Колонии ίΡΞ-подобных-клеток появлялись также с другими сочетаниями (2-5), хотя они являлись не такими заметными по сравнению с сочетанием 1. При трансдукции только 4 факторами не появлялось колоний.
Промышленная применимость
С использованием ядерного фактора перепрограммирования, предоставленного по настоящему изобретению, можно удобно с высокой воспроизводимостью индуцировать перепрограммирование ядер дифференцированных клеток без использования эмбрионов или Е8-клеток и можно получать индуцированные плюрипотентные стволовые клетки в виде недифференцированных клеток, обладающих способностью к дифференцировке, плюрипотентностью и способностью к росту, сходными с Е8-клетками.

Claims (16)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Ядерный фактор перепрограммирования для соматической клетки, содержащий каждый из следующих трех типов генов: гена семейства Ос1, гена семейства К11 и гена семейства Мус.
  2. 2. Фактор по п.1, содержащий каждый из трех следующих типов генов: Ос13/4, К114 и с-Мус.
  3. 3. Фактор по п.1 или 2, дополнительно содержащий ген семейства 8ох.
  4. 4. Фактор по п.3, содержащий следующий ген 8ох2.
  5. 5. Фактор по любому из пп.1-4, содержащий цитокин вместе с геном семейства Мус или вместо гена семейства Мус.
  6. 6. Фактор по п.5, где цитокин представляет собой ЬЕ6Е и/или 8СЕ.
  7. 7. Фактор по любому из пп.1-6, дополнительно содержащий ген ТЕКТ.
  8. 8. Фактор по любому из пп.1-7, дополнительно содержащий один или несколько типов генов, выбранных из группы, состоящей из следующих генов: гена большого Т-антигена 8У40. гена ΗΡν16 Е6, гена ΗΡν16 Е7и гена ВтИ.
  9. 9. Фактор по любому из пп.1-8, дополнительно содержащий один или несколько типов генов, выбранных из группы, состоящей из генов ЕЬх15, Иаиод, ЕКау ЕСАТ15-2, Тс11 и β-катенина.
  10. 10. Фактор по любому из пп.1-9, дополнительно содержащий один или несколько типов генов, выбранных из группы, состоящей из генов ЕСАТ1, Езд1, Опт13Б. ЕСАТ8, 6613, 8ох15, ЕСАТ15-1, Е1Ы17, 8а114, Кех1, ИТЕ1, §1е11а, 81а13 и 6гЬ2.
  11. 11. Способ получения индуцированной плюрипотентной стволовой клетки посредством перепрограммирования ядра соматической клетки, включающий в себя стадию приведения в контакт ядерного фактора перепрограммирования по любому из пп.1-10 с соматической клеткой.
  12. 12. Способ по п.11, где соматическая клетка является клеткой человека.
  13. 13. Индуцированная плюрипотентная стволовая клетка, полученная способом по п.11 или 12.
  14. 14. Соматическая клетка, полученная посредством индукции дифференцировки индуцированной плюрипотентной стволовой клетки по п.13.
  15. 15. Способ улучшения способности к дифференцировке и/или способности роста клетки, который включает в себя стадию приведения в контакт ядерного фактора перепрограммирования по любому из пп.1-10 с клеткой.
  16. 16. Способ по п.15, где клетка является клеткой человека.
EA201000858A 2005-12-13 2006-12-06 Ядерный фактор перепрограммирования EA018039B1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359537 2005-12-13

Publications (2)

Publication Number Publication Date
EA201000858A1 EA201000858A1 (ru) 2011-02-28
EA018039B1 true EA018039B1 (ru) 2013-05-30

Family

ID=38162968

Family Applications (2)

Application Number Title Priority Date Filing Date
EA200870046A EA014166B1 (ru) 2005-12-13 2006-12-06 Ядерный фактор перепрограммирования
EA201000858A EA018039B1 (ru) 2005-12-13 2006-12-06 Ядерный фактор перепрограммирования

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EA200870046A EA014166B1 (ru) 2005-12-13 2006-12-06 Ядерный фактор перепрограммирования

Country Status (18)

Country Link
US (1) US8048999B2 (ru)
EP (6) EP1970446B1 (ru)
JP (8) JP5098028B2 (ru)
KR (1) KR101420740B1 (ru)
CN (4) CN103773804A (ru)
AU (1) AU2006325975B2 (ru)
BR (1) BRPI0619794B8 (ru)
CA (1) CA2632142C (ru)
DK (1) DK1970446T3 (ru)
EA (2) EA014166B1 (ru)
ES (1) ES2367525T3 (ru)
HK (2) HK1125131A1 (ru)
IL (1) IL191903A (ru)
MX (2) MX352337B (ru)
NZ (1) NZ569530A (ru)
PT (1) PT1970446E (ru)
WO (1) WO2007069666A1 (ru)
ZA (1) ZA200804673B (ru)

Families Citing this family (603)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
US7682828B2 (en) * 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
DK1740945T3 (en) 2004-04-07 2019-01-21 Ncardia Ag KKE-INVASIVE, IN-VITRO FUNCTIONAL TISSUE TEST SYSTEMS
EP2270196B1 (en) 2004-05-11 2016-04-20 Axiogenesis Ag Assay for drug discovery based on in vitro differentiated cells
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
EP1984487B1 (en) * 2005-08-03 2022-10-12 Astellas Institute for Regenerative Medicine Improved methods of reprogramming animal somatic cells
US9012219B2 (en) * 2005-08-23 2015-04-21 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US20090227032A1 (en) * 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
BRPI0619794B8 (pt) 2005-12-13 2022-06-14 Univ Kyoto Uso de um fator de reprogramação, agente para a preparação de uma célula-tronco pluripotente induzida a partir de uma célula somática e métodos para preparar uma célula- tronco pluripotente induzida método e para preparar uma célula somática e uso de células-tronco pluripotentes induzidas
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US10647960B2 (en) * 2005-12-13 2020-05-12 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
US9157066B2 (en) 2005-12-13 2015-10-13 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
ES2698600T3 (es) 2005-12-13 2019-02-05 Univ Pennsylvania Métodos para transfectar ácidos nucleicos en células vivas
AU2007222165A1 (en) 2006-03-06 2007-09-13 Agency For Science, Technology And Research Human embryonic stem cell methods and PODXL expression
JPWO2008102602A1 (ja) * 2007-02-22 2010-05-27 国立大学法人 東京大学 Blastocystcomplementationを利用した臓器再生法
EP3399025A1 (en) * 2007-03-23 2018-11-07 Wisconsin Alumini Research Foundation Somatic cell reprogramming
RU2502799C2 (ru) * 2007-04-07 2013-12-27 Уайтхед Инститьют Фор Биомедикал Рисёч Способ перепрограммирования соматических клеток
AU2016216711B2 (en) * 2007-04-07 2018-01-25 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
JP2010528613A (ja) * 2007-05-29 2010-08-26 クリストファー ビー. リード, 多能細胞集団を産生する方法およびその使用
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
JP2008307007A (ja) * 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
CN101952415B (zh) 2007-07-31 2017-06-27 生命扫描有限公司 人胚胎干细胞的分化
US20120282229A1 (en) * 2007-08-01 2012-11-08 Christian Kannemeier Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
US9102919B2 (en) * 2007-08-31 2015-08-11 Whitehead Institute For Biomedical Research WNT pathway stimulation in reprogramming somatic cells with nuclear reprogramming factors
EP2096169B1 (en) * 2007-10-31 2020-11-18 Kyoto University Nuclear reprogramming method
CA2706560C (en) 2007-11-27 2017-02-28 Lifescan, Inc. Differentiation of human embryonic stem cells to pancreatic cells
EP2227540A4 (en) * 2007-11-29 2011-11-02 Children S Hospital Of Orange County DIFFERENTIATION OF HUMAN CELLS
JP5626619B2 (ja) * 2008-12-08 2014-11-19 国立大学法人京都大学 効率的な核初期化方法
KR101532442B1 (ko) 2007-12-10 2015-06-29 고쿠리츠 다이가쿠 호진 교토 다이가쿠 효율적인 핵 초기화 방법
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
US8609413B2 (en) 2007-12-11 2013-12-17 Research Development Foundation Neurons, astrocytes and oligodendrocytes differentiated from a mammalian pluripotent or neural stem cells exposed to a pyridine deriviative
EP2072618A1 (en) * 2007-12-14 2009-06-24 Johannes Gutenberg-Universität Mainz Use of RNA for reprogramming somatic cells
KR101481164B1 (ko) * 2008-01-30 2015-01-09 주식회사 미래셀바이오 체세포 유래 다능성 줄기세포의 제조 방법
WO2009096049A1 (ja) * 2008-02-01 2009-08-06 Kyoto University 人工多能性幹細胞由来分化細胞
KR101731474B1 (ko) 2008-02-21 2017-05-11 얀센 바이오테크 인코포레이티드 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물
US20110067125A1 (en) * 2008-02-22 2011-03-17 The University Of Tokyo Method for producing founder animal for reproducing animal having lethal phenotype caused by gene modification
JP2009215191A (ja) 2008-03-07 2009-09-24 Keio Gijuku 神経損傷治療剤及び神経損傷治療方法
EP2100954A1 (en) * 2008-03-10 2009-09-16 Assistance Publique - Hopitaux de Paris Method for generating primate cardiac progenitor cells for clinical use from primate embryonic stem cells, and their applications
US9534205B2 (en) 2008-03-17 2017-01-03 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
AU2015201026B2 (en) * 2008-03-17 2017-03-16 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009114949A1 (en) * 2008-03-20 2009-09-24 UNIVERSITé LAVAL Methods for deprogramming somatic cells and uses thereof
WO2009118928A1 (en) 2008-03-26 2009-10-01 Kyoto University Efficient production and use of highly cardiogenic progenitors and cardiomyocytes from embryonic and induced pluripotent stem cells
JPWO2009119105A1 (ja) * 2008-03-28 2011-07-21 国立大学法人 東京大学 GPIbα+GPV+GPVI+血小板のインビトロ調製法
EP2275531B1 (en) 2008-03-31 2015-12-23 Oriental Yeast Co., Ltd. Method for proliferation of pluripotent stem cells
US8546141B2 (en) 2008-04-01 2013-10-01 The University Of Tokyo Method for preparation of platelet from iPS cell
WO2009146098A2 (en) * 2008-04-02 2009-12-03 President And Fellows Of Harvard College Stem cells and uses thereof
KR20110019727A (ko) * 2008-04-07 2011-02-28 뉴포텐셜, 인크. Rna 간섭을 통한 다능 유전자의 유도에 의한 세포 재프로그래밍
US20100021437A1 (en) * 2008-04-07 2010-01-28 The McLean Hospital Corporation Whitehead Institute for Biomedical Research Neural stem cells derived from induced pluripotent stem cells
US8623648B2 (en) * 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
WO2009131262A1 (en) * 2008-04-25 2009-10-29 Mirae Biotech Co., Ltd. Method of manufacturing induced pluripotent stem cell originated from human somatic cell
JP5346925B2 (ja) * 2008-05-02 2013-11-20 国立大学法人京都大学 核初期化方法
EP2283118A4 (en) * 2008-05-06 2012-11-21 Agency Science Tech & Res METHOD FOR LEARNING THE DEDIFFERENCING OF A CELL
WO2009137844A2 (en) * 2008-05-09 2009-11-12 Vistagen Therapeutics, Inc. Pancreatic endocrine progenitor cells derived from pluripotent stem cells
WO2009142717A2 (en) * 2008-05-19 2009-11-26 President And Fellows Of Harvard College Methods and products for dedifferentiation of cells
EP2128245A1 (en) * 2008-05-27 2009-12-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Generation of induced pluripotent stem (iPS) cells
JP2011160661A (ja) * 2008-06-02 2011-08-25 Kyowa Hakko Kirin Co Ltd 血球細胞の初期化法
AU2009256202B2 (en) * 2008-06-04 2014-07-03 FUJIFILM Cellular Dynamics, Inc. Methods for the production of IPS cells using non-viral approach
AU2015202237B2 (en) * 2008-06-13 2017-09-28 Whitehead Institute For Biomedical Research Programming and reprogramming of cells
EP2300611B1 (en) 2008-06-13 2017-08-09 Whitehead Institute for Biomedical Research Programming and reprogramming of cells
WO2010008486A2 (en) 2008-06-24 2010-01-21 Parkinsons Institute Pluripotent cell lines and methods of use thereof
WO2009157201A1 (en) * 2008-06-26 2009-12-30 Osaka University Method and kit for preparing ips cells
WO2009157610A1 (en) * 2008-06-26 2009-12-30 Pusan National University Industry-University Cooperation Foundation Selenium dedifferentiated cell, preparation method and usage thereof
CA2695590C (en) * 2008-06-27 2018-01-09 Kyoto University Method of efficiently establishing induced pluripotent stem cells
JP5734183B2 (ja) 2008-06-30 2015-06-17 ヤンセン バイオテツク,インコーポレーテツド 多能性幹細胞の分化
EP2322611B1 (en) 2008-07-16 2016-06-01 IP Pharma Co., Ltd. Method for production of reprogrammed cell using chromosomally unintegrated virus vector
CA2697621C (en) 2008-07-30 2017-01-17 Kyoto University Method of efficiently establishing induced pluripotent stem cells
AU2008360135A1 (en) * 2008-07-31 2010-02-04 Gifu University Efficient method for establishing induced pluripotent stem cells
WO2010016253A1 (en) 2008-08-05 2010-02-11 Keio University Method for selecting secondary neurosphere derived from differentiated cell-derived pluripotent stem cell, clone selected by the method and use of the clone
WO2010017562A2 (en) 2008-08-08 2010-02-11 Mayo Foundation For Medical Education And Research Induced pluripotent stem cells
CA2734128A1 (en) * 2008-08-12 2010-02-18 Cellular Dynamics International, Inc. Methods for the production of ips cells
US20110190348A1 (en) * 2008-08-21 2011-08-04 Pradeep Banerjee Methods for treating cns disorders
GB2475656B (en) * 2008-08-22 2013-04-24 Univ Tokyo Organ regeneration method utilizing ips cell and blastocyst complementation
US20110231944A1 (en) 2008-09-04 2011-09-22 Riken B cell-derived ips cells and application thereof
AU2009289521A1 (en) * 2008-09-04 2010-03-11 Abt Holding Company Use of stem cells to prevent neuronal dieback
WO2010027094A1 (ja) 2008-09-08 2010-03-11 独立行政法人理化学研究所 NKT細胞由来iPS細胞およびそれ由来のNKT細胞
JP2012501680A (ja) * 2008-09-12 2012-01-26 スカラブ ジェノミクス リミティド ライアビリティ カンパニー クリーンゲノムバクトフェクション
CN101492676B (zh) * 2008-09-16 2011-02-16 中国科学院广州生物医药与健康研究院 用脑膜细胞生成诱导的多能性干细胞的方法及其用途
SG160248A1 (en) * 2008-09-18 2010-04-29 Agency Science Tech & Res Use of novel monoclonal antibodies targeting human embryonic stem cells to characterize and kill induced pluripotent stem cells
US8703413B2 (en) 2008-09-22 2014-04-22 Children's Medical Center Corporation Detection of human somatic cell reprogramming
EP2345714B1 (en) * 2008-10-24 2018-09-12 Kuraray Co., Ltd. Cell storage method and use thereof for cell transport
JP2012507258A (ja) * 2008-10-30 2012-03-29 国立大学法人京都大学 人工多能性幹細胞の作製方法
BRPI0919885A2 (pt) 2008-10-31 2015-08-11 Centocor Ortho Biotech Inc Diferenciação de células-tronco embrionárias humanas para a linhagem endócrina pancreática
KR102025158B1 (ko) 2008-10-31 2019-09-25 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 췌장 내분비 계통으로의 분화
WO2010052904A1 (en) 2008-11-05 2010-05-14 Keio University Method for producing neural stem cells
KR101687344B1 (ko) 2008-11-20 2016-12-16 얀센 바이오테크 인코포레이티드 평면 기재상의 세포 부착 및 배양을 위한 방법 및 조성물
WO2010059775A1 (en) 2008-11-20 2010-05-27 Centocor Ortho Biotech Inc. Pluripotent stem cell culture on micro-carriers
EP2881461A1 (en) * 2008-11-21 2015-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reprogramming cells toward a pluripotent state
ES2645869T3 (es) * 2008-12-17 2017-12-11 The Scripps Research Institute Generación y mantenimiento de células madre
CA2688804A1 (en) 2008-12-17 2010-06-17 The Uab Research Foundation Polycistronic vector for human induced pluripotent stem cell production
JP5591119B2 (ja) * 2008-12-18 2014-09-17 iPSアカデミアジャパン株式会社 軟骨細胞様細胞、及びその製造方法
US10328103B2 (en) 2009-01-03 2019-06-25 Ray C. Wasielewski Medical treatment composition comprising mammalian dental pulp stem cells
US8470308B2 (en) * 2009-01-03 2013-06-25 Ray C. Wasielewski Enhanced medical implant comprising disrupted tooth pulp and tooth particles
WO2010090007A1 (en) 2009-02-03 2010-08-12 Keio University Culture method of embryoid bodies and/or neural stem cells derived from human differentiated cell-derived pluripotent stem cells
US20100209404A1 (en) * 2009-02-10 2010-08-19 University Of Dayton Enhanced method for producing stem-like cells from somatic cells
CA2753845C (en) 2009-02-27 2019-10-29 Kyoto University Nuclear reprogramming substance comprising glis1
KR101764437B1 (ko) * 2009-03-20 2017-08-02 메소블라스트, 아이엔씨. 재프로그램된 다분화능 세포의 생성 방법
JP5637354B2 (ja) * 2009-03-30 2014-12-10 独立行政法人産業技術総合研究所 精製転写因子の調製法と細胞導入技術
WO2010119819A1 (ja) 2009-04-17 2010-10-21 国立大学法人東北大学 ヒト肺組織幹細胞の調製方法及びヒト肺胞上皮細胞への分化誘導方法
CN101613717B (zh) * 2009-04-17 2012-01-11 中国科学院广州生物医药与健康研究院 用猪成纤维细胞生成诱导的多能性干细胞的方法
CN101580816B (zh) * 2009-04-23 2012-02-29 中国科学院广州生物医药与健康研究院 诱导多能性干细胞快速高效产生的新型无血清培养基以及使用其的方法
JP2010268789A (ja) 2009-04-24 2010-12-02 Kumamoto Univ 細胞医薬の製造方法
EP2253700A1 (en) 2009-05-13 2010-11-24 Helmholtz-Zentrum für Infektionsforschung GmbH A method for producing test systems from donors suffering from adverse effects of medicaments and /or medical treatments, and uses of said systems
CN102575251B (zh) 2009-05-18 2018-12-04 库尔纳公司 通过抑制针对重编程因子的天然反义转录物来治疗重编程因子相关的疾病
EP2438159B1 (en) * 2009-05-29 2018-10-03 Kyoto University Method for selecting clone of induced pluripotent stem cells
US9045738B2 (en) 2009-05-29 2015-06-02 Kyoto University Method for producing induced pluripotent stem cells and method for culturing the same
US9365866B2 (en) 2009-06-03 2016-06-14 National Institute Of Advanced Industrial Science And Technology Vectors for generating pluripotent stem cells and methods of producing pluripotent stem cells using the same
WO2010144696A1 (en) 2009-06-11 2010-12-16 Burnham Institute For Medical Research Directed differentiation of stem cells
US9399758B2 (en) 2009-07-15 2016-07-26 Mari Dezawa SSEA3(+) pluripotent stem cell that can be isolated from body tissue
US9550975B2 (en) * 2009-07-15 2017-01-24 Mari Dezawa SSEA-3 pluripotent stem cell isolated from body tissue
BR112012001480A2 (pt) 2009-07-20 2015-09-01 Janssen Biotech Inc Diferenciação de células-tronco embriônicas humanas
JP5659158B2 (ja) * 2009-07-21 2015-01-28 国立大学法人京都大学 画像処理装置、培養観察装置、及び画像処理方法
SG10201608797WA (en) 2009-08-07 2016-12-29 Univ Kyoto Method of efficiently establishing induced pluripotent stem cells
JP5751548B2 (ja) 2009-08-07 2015-07-22 国立大学法人京都大学 イヌiPS細胞及びその製造方法
CN101993495B (zh) * 2009-08-12 2013-07-24 上海近岸科技有限公司 一种蛋白质混合物及其制备方法
CA2770753C (en) 2009-08-12 2019-01-15 Kyoto University Method for inducing differentiation of pluripotent stem cells into neural precursor cells
EP2468312A4 (en) 2009-08-19 2014-05-14 Univ Tohoku FOIL FOR CORNEAL TRANSPLANTS
CN104293646A (zh) 2009-08-22 2015-01-21 里兰斯坦福初级大学理事会 成像并评估胚胎、卵母细胞和干细胞
US20110052549A1 (en) * 2009-08-27 2011-03-03 The Regents Of The University Of California Cell culture device to differentiate stem cells in a specific orientation
EP2474610B1 (en) 2009-08-31 2016-08-03 Osaka University Method for efficient production of induced pluripotent stem cells utilizing cells derived from gingival fibroblasts
CA2772619C (en) 2009-09-04 2019-07-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods for enhancing genome stability and telomere elongation in embryonic stem cells
GB0915523D0 (en) * 2009-09-07 2009-10-07 Genome Res Ltd Cells and methods for obtaining them
EP2475767B1 (en) 2009-09-08 2017-04-19 Kyoto University Method for producing mast cells from pluripotent stem cells
US20120263689A1 (en) * 2009-09-10 2012-10-18 The Salk Institute For Biological Studies Adipose-derived induced pluripotent stem cells
AU2014240253B2 (en) * 2009-09-15 2017-08-03 The University Of Tokyo Novel Method for Producing Differentiated Cells
RU2661107C1 (ru) 2009-09-15 2018-07-11 Зэ Юниверсити оф Токио Новый способ получения дифференцированных клеток
JP5773393B2 (ja) 2009-09-24 2015-09-02 国立大学法人京都大学 効率的な人工多能性幹細胞の樹立方法
US9422525B2 (en) 2009-09-30 2016-08-23 Agency For Science, Technology And Research Nuclear receptor and mutant thereof and the use of the same in the reprogramming of cells
ES2638464T3 (es) * 2009-10-16 2017-10-20 The Scripps Research Institute Inducción de células pluripotentes
CA2779039A1 (en) 2009-10-29 2011-05-05 Mcmaster University Generating induced pluripotent stem cells and progenitor cells from fibroblasts
EP3633025B1 (en) 2009-11-12 2022-09-14 Technion Research & Development Foundation Ltd. Culture media, cell cultures and methods of culturing pluripotent stem cells in an undifferentiated state
GB0919773D0 (en) 2009-11-12 2009-12-30 Univ Nottingham Induced pluripotent stem cell
WO2011058064A1 (en) 2009-11-13 2011-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Reprogrammation of eukaryotic cells with engineered microvesicles
WO2011062559A1 (en) 2009-11-19 2011-05-26 Agency For Science, Technology And Research Methods of enhancing pluripotentcy
CN102648274B (zh) 2009-12-09 2013-07-31 国立大学法人京都大学 包含双呋脒腙的促进多能干细胞分化成心肌细胞的组合物
EP2512514B1 (en) 2009-12-14 2014-11-05 Kyoto University Screening method for identifying compounds for treating amyotrophic lateral sclerosis
BR112012017761A2 (pt) 2009-12-23 2015-09-15 Centocor Ortho Biotech Inc diferenciação das células-tronco embrionárias humanas
JP2011135864A (ja) * 2009-12-30 2011-07-14 Korea Univ Research & Business Foundation Oct4及びBmi1、またはその上位調節子を用いて体細胞から胚幹細胞類似細胞への逆分化を誘導する組成物及びこれを用いた胚幹細胞類似細胞の製造方法
EP2522725B1 (en) 2010-01-06 2016-10-05 National University Corporation Tottori University Mouse artificial chromosome vector
JP5827220B2 (ja) 2010-01-22 2015-12-02 国立大学法人京都大学 人工多能性幹細胞の樹立効率改善方法
JP5812492B2 (ja) 2010-02-03 2015-11-11 国立研究開発法人国立がん研究センター 誘導肝幹細胞及びその製造方法、並びに、該細胞の応用
KR101857302B1 (ko) 2010-02-16 2018-05-11 고쿠리츠 다이가쿠 호진 교토 다이가쿠 유도된 다능성 줄기 세포의 효율적 확립 방법
CN102884188A (zh) 2010-02-18 2013-01-16 国立大学法人大阪大学 诱导性多能干细胞的制备方法
CN107189979B (zh) 2010-03-01 2021-05-04 詹森生物科技公司 纯化衍生自多能干细胞的细胞的方法
EP2926821B1 (en) 2010-03-05 2019-12-25 Tissue Genesis, LLC Compositions to support tissue integration and inosculation of transplanted tissue and transplanted engineered penile tissue with adipose stromal cells
US20130071919A1 (en) * 2010-03-10 2013-03-21 Kyoto University Method of selecting induced pluripotent stem cell
EP2553086B1 (en) 2010-03-31 2017-04-19 The Scripps Research Institute Reprogramming cells
US9447432B2 (en) 2010-04-16 2016-09-20 Keio University Method for producing induced pluripotent stem cells
US8815592B2 (en) 2010-04-21 2014-08-26 Research Development Foundation Methods and compositions related to dopaminergic neuronal cells
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
CN102242146B (zh) * 2010-05-10 2015-11-25 高丽大学校产学协力团 组合物和用其产生诱导全能干细胞的方法
SG185511A1 (en) 2010-05-12 2012-12-28 Centocor Ortho Biotech Inc Differentiation of human embryonic stem cells
CA2804119A1 (en) 2010-05-25 2011-12-01 National Cancer Center Induced malignant stem cells or pre-induction cancer stem cells capable of self-replication outside of an organism, production method for same, and practical application for same
ES2986590T3 (es) 2010-06-14 2024-11-12 Scripps Research Inst Reprogramación de células hacia un nuevo destino
JP5936134B2 (ja) 2010-06-15 2016-06-15 国立大学法人京都大学 ヒト人工多能性幹細胞の選択方法
JP6039551B2 (ja) * 2010-06-18 2016-12-07 セルラー ダイナミクス インターナショナル, インコーポレイテッド 透析された血清を有する心筋細胞培地
JP5099571B2 (ja) 2010-07-12 2012-12-19 国立大学法人鳥取大学 miRNA導入による新規hiPSC作製法
US9121011B2 (en) 2010-07-21 2015-09-01 Kyoto University Method for inducing differentiation of human pluripotent stem cell into intermediate mesoderm cell
CA2807552A1 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP2603583B1 (en) 2010-08-13 2016-10-05 Kyoto University Method of inducing differentiation from pluripotent stem cells to germ cells
EP2609425A1 (en) 2010-08-23 2013-07-03 President and Fellows of Harvard College Optogenetic probes for measuring membrane potential
US9499790B2 (en) 2010-08-26 2016-11-22 Kyoto University Method for promoting differentiation of pluripotent stem cells into cardiac muscle cells
JP5930205B2 (ja) 2010-08-26 2016-06-08 国立大学法人京都大学 多能性幹細胞の心筋分化促進剤
US9090909B2 (en) 2010-08-30 2015-07-28 Dnavec Corporation Composition for inducing pluripotent stem cell, and use thereof
CN103154239B (zh) 2010-08-31 2018-05-15 詹森生物科技公司 人胚胎干细胞的分化
WO2012030538A2 (en) 2010-08-31 2012-03-08 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
EP2611907B1 (en) 2010-08-31 2016-05-04 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
WO2012029994A1 (en) 2010-09-02 2012-03-08 Kyoto University Pharmaceutical composition for prevention and treatment of amyotrophic lateral sclerosis
EP2616540A4 (en) 2010-09-14 2014-02-19 Univ Kyoto METHOD FOR EFFICIENT MANUFACTURE OF INDUCED PLURIPOTENTER STEM CELLS
EP2616554A1 (en) 2010-09-17 2013-07-24 President and Fellows of Harvard College Functional genomics assay for characterizing pluripotent stem cell utility and safety
PT3590949T (pt) 2010-10-01 2022-08-02 Modernatx Inc Ácidos ribonucleicos contendo n1-metilpseudouracilos e suas utilizações
US20130295064A1 (en) * 2010-10-14 2013-11-07 University Of Central Florida Research Foundation, Inc. Cardiac induced pluripotent stem cells and methods of use in repair and regeneration of myocardium
AU2011316830A1 (en) 2010-10-22 2013-05-02 Biotime Inc. Methods of modifying transcriptional regulatory networks in stem cells
WO2012057052A1 (ja) * 2010-10-25 2012-05-03 公立大学法人横浜市立大学 幹細胞の安定的維持、複製を制御するためのペプチジルプロリルイソメラーゼPin1の利用
US9376665B2 (en) 2010-11-02 2016-06-28 National University Corporation Kumamoto University Method for producing intestinal cells
US9637732B2 (en) 2010-11-04 2017-05-02 Kyoto University Method of efficiently establishing induced pluripotent stem cells
EP2635707B1 (en) 2010-11-05 2019-03-27 Kyoto University Method of examining polycystic kidney disease and method of screening for therapeutic agent of the disease
WO2012063817A1 (ja) * 2010-11-09 2012-05-18 独立行政法人産業技術総合研究所 末梢血単球由来多能性幹細胞作製方法
EP2640829A4 (en) 2010-11-17 2014-06-11 Univ Kyoto CARDIOMYOCYTE AND / OR CARDIOVORA CELL PROLIFERATING AGENTS AND METHOD FOR PROLIFERATING CARDIOMYOCYTES AND / OR CARDIOVORA CELLS
US10813950B2 (en) 2010-12-02 2020-10-27 Riken Immunotherapy using allo-NKT cells, cells for immunotherapy in which alpha chain of t-cell receptor (TCR) gene has been rearranged to uniform Vα-Jα, and banking of NKT cells derived from said cells
US9404082B2 (en) 2010-12-03 2016-08-02 Kyoto University Method for production of eosinophil from pluripotent stem cell
EP2647699B1 (en) * 2010-12-03 2020-04-01 Kyoto University Efficient method for establishing induced pluripotent stem cells
JP5888852B2 (ja) * 2010-12-08 2016-03-22 学校法人近畿大学 免疫不全動物を用いた細胞の製法
JP6182456B2 (ja) 2010-12-22 2017-08-23 フェイト セラピューティクス,インコーポレイテッド 単細胞選別のための細胞培養プラットホームおよびiPSCの再プログラミングの増強
JP2014506453A (ja) 2011-01-19 2014-03-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 生得的多能性体細胞
WO2012098260A1 (en) 2011-01-21 2012-07-26 Axiogenesis Ag A non-viral system for the generation of induced pluripotent stem (ips) cells
WO2012112458A2 (en) * 2011-02-14 2012-08-23 The Regents Of The University Of California Compositions and methods for increasing reprogramming efficiency
CN103460038A (zh) 2011-02-23 2013-12-18 里兰斯坦福初级大学理事会 检测人类胚胎中的非整倍性的方法
US9499789B2 (en) 2011-02-23 2016-11-22 Kyoto University Method for producing dendritic cells from pluripotent stem cells
GB201103600D0 (en) 2011-03-01 2011-04-13 Isis Innovation Dendritic cells
US9353370B2 (en) 2011-03-30 2016-05-31 Riken Functional nucleic acid molecule and use thereof
WO2012133811A1 (ja) 2011-03-31 2012-10-04 独立行政法人理化学研究所 未分化状態の制御剤およびその用途
JP2014511687A (ja) 2011-03-31 2014-05-19 モデルナ セラピューティクス インコーポレイテッド 工学操作された核酸の送達および製剤
US9164093B2 (en) 2011-03-31 2015-10-20 Iheart Japan Corporation Cardiomyocyte marker
US9758765B2 (en) 2011-04-08 2017-09-12 Osaka University Modified laminin and use thereof
WO2012136841A1 (en) 2011-04-08 2012-10-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for rejuvenating cells
WO2012141181A1 (ja) * 2011-04-11 2012-10-18 国立大学法人京都大学 核初期化物質
CN103492555A (zh) 2011-04-20 2014-01-01 国立大学法人大阪大学 角膜上皮分化取向性iPS细胞
AU2012256014B2 (en) 2011-05-13 2016-10-27 Elixirgen, Llc Use of Zscan4 and Zscan4-dependent genes for direct reprogramming of somatic cells
WO2012168434A1 (en) 2011-06-08 2012-12-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Partial reprogramming of somatic cells to induced tissue stem (its) cells
GB201110331D0 (en) 2011-06-16 2011-08-03 Isis Innovation Method of cryopreserving pluripotent stem cells
US10865383B2 (en) 2011-07-12 2020-12-15 Lineage Cell Therapeutics, Inc. Methods and formulations for orthopedic cell therapy
US9856457B2 (en) 2011-07-22 2018-01-02 Centre National De La Recherche Scientifique Use of cellular extracts for obtaining pluripotent stem cells
US20130029416A1 (en) 2011-07-22 2013-01-31 Tayaramma Thatava Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny
CA2843234C (en) 2011-07-25 2019-08-13 Kyoto University Method for screening induced pluripotent stem cells
WO2013031826A1 (ja) * 2011-08-29 2013-03-07 国立大学法人京都大学 核初期化物質
US9145547B2 (en) 2011-08-30 2015-09-29 Riken Nuclear reprogrammed cells generated by introduction of a histone H2aa or TH2A gene, a histone H2ba or TH2B gene, or a phosphorylation-mimic of histone chaperon Npm2 gene, an Oct family gene and a klf family gene into a mammalian somatic cell
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US9523674B2 (en) 2011-09-12 2016-12-20 National University Corporation Kumamoto University Method of screening for substances capable of promoting induction of induced pluripotent stem cells
EP2762560A4 (en) * 2011-09-29 2015-05-20 Univ Tokyo PROCESS FOR INDUCING OREXINE NEURONES
US9480695B2 (en) 2011-09-29 2016-11-01 The University Of Tokyo Methods for inducing orexin neurons and agent for treating narcolepsy or eating disorder
KR20190099538A (ko) 2011-10-03 2019-08-27 모더나 세라퓨틱스, 인코포레이티드 변형된 뉴클레오사이드, 뉴클레오타이드, 및 핵산, 및 이들의 용도
JP6162604B2 (ja) 2011-10-21 2017-07-12 国立大学法人京都大学 層流による多能性維持単一分散細胞培養法
GB2496375A (en) 2011-10-28 2013-05-15 Kymab Ltd A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof
WO2013078433A1 (en) 2011-11-23 2013-05-30 University Of Hawaii Auto-processing domains for polypeptide expression
JP5999658B2 (ja) 2011-11-25 2016-09-28 国立大学法人京都大学 多能性幹細胞の培養方法
CA2853645A1 (en) 2011-11-30 2013-06-06 National Cancer Center Induced malignant stem cells
GB201122047D0 (en) 2011-12-21 2012-02-01 Kymab Ltd Transgenic animals
KR20210134808A (ko) 2011-12-05 2021-11-10 팩터 바이오사이언스 인크. 세포를 형질감염시키는 방법들 및 생성물들
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
SG11201402666WA (en) 2011-12-16 2014-10-30 Moderna Therapeutics Inc Modified nucleoside, nucleotide, and nucleic acid compositions
US9890357B2 (en) 2011-12-19 2018-02-13 Kyoto University Method for inducing differentiation of human pluripotent stem cells into intermediate mesoderm cells
JP6441080B2 (ja) 2011-12-22 2018-12-19 ヤンセン バイオテツク,インコーポレーテツド 単一ホルモンのインスリン陽性細胞へのヒト胚性幹細胞の分化
JP5935224B2 (ja) 2011-12-27 2016-06-15 国立大学法人大阪大学 iPS細胞の腫瘍化を抑制することが可能な分化誘導方法
EP2804944A1 (en) 2012-01-15 2014-11-26 Yeda Research and Development Co. Ltd. Induction of dedifferentiation of mesenchymal stromal cells
JP6274510B2 (ja) 2012-01-27 2018-02-07 国立大学法人京都大学 多能性幹細胞の心筋分化誘導法
EP2823037A4 (en) 2012-03-07 2015-09-16 Janssen Biotech Inc DEFINED MEDIA FOR THE EXPANSION AND CARE OF PLURIPOTENTAL STEM CELLS
JP5920741B2 (ja) 2012-03-15 2016-05-18 iHeart Japan株式会社 人工多能性幹細胞から心筋および血管系混合細胞群を製造する方法
WO2013140927A1 (ja) 2012-03-21 2013-09-26 国立大学法人京都大学 アルツハイマー病の治療薬および/または予防薬のスクリーニング方法
US20150087594A1 (en) 2012-03-21 2015-03-26 Merck Patent Gmbh Induced neural stem cells
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
EP2847329A4 (en) 2012-04-02 2016-08-10 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES FOR THE PREPARATION OF CYTOPLASMA AND CYTOSCELETTE PROTEINS
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9334475B2 (en) 2012-04-06 2016-05-10 Kyoto University Method for inducing erythropoietin-producing cell
US10195229B2 (en) * 2012-04-19 2019-02-05 Elsa R. Flores Generation of human induced pluripotent stem cells using nucleic acid sequences that inhibit Δ-NP63 and DGCR8
EP2853592B1 (en) 2012-05-23 2019-02-20 Kyoto University Highly efficient method for establishing artificial pluripotent stem cell
LT2800811T (lt) 2012-05-25 2017-09-11 The Regents Of The University Of California Būdai ir kompozicijos, skirti tikslinės dnr modifikavimui, panaudojant adresuotą rnr, ir transkripcijos moduliavimui, panaudojant adresuotą rnr
US20140017717A1 (en) 2012-05-31 2014-01-16 Auxogyn, Inc. In vitro embryo blastocyst prediction methods
JP2015521054A (ja) 2012-06-05 2015-07-27 カプリコール,インコーポレイテッド 心臓組織から心臓幹細胞を作製するための最適化方法および心臓治療におけるそれらの使用
EP2859091B1 (en) 2012-06-08 2018-08-29 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells
KR102236805B1 (ko) 2012-07-11 2021-04-05 티슈테크, 인코포레이티드 Hc-ha/ptx3 복합체를 함유하는 조성물 및 이의 사용 방법
US20150184129A1 (en) 2012-07-17 2015-07-02 Kyoto University Novel cardiomyocyte marker
ES2716577T3 (es) 2012-07-31 2019-06-13 Agex Therapeutics Inc Células HLA-G modificadas y métodos
US9828603B2 (en) 2012-08-13 2017-11-28 Cedars Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
WO2014027474A1 (ja) 2012-08-17 2014-02-20 株式会社Clio 心筋梗塞の修復再生を誘導する多能性幹細胞
US20150267174A1 (en) * 2012-10-09 2015-09-24 Nakanobu Hayashi Reprogramming peptide and use thereof
JP2014082956A (ja) 2012-10-19 2014-05-12 Somar Corp 細胞培養基材、およびそれを用いた細胞培養方法並びに多能性幹細胞の分化誘導方法
SG11201503167XA (en) * 2012-10-23 2015-05-28 Univ Kyoto Method of efficiently establishing induced pluripotent stem cells
AU2013339063B2 (en) 2012-10-30 2019-01-17 Daiichi Sankyo Company, Limited Mait-like cells and their preparation method
JP6510416B2 (ja) 2012-11-01 2019-05-08 ファクター バイオサイエンス インコーポレイテッド 細胞中でタンパク質を発現するための方法および生成物
RS63237B1 (sr) 2012-11-26 2022-06-30 Modernatx Inc Terminalno modifikovana rnk
GB201222693D0 (en) * 2012-12-17 2013-01-30 Babraham Inst Novel method
CN104884632B (zh) 2012-12-27 2018-01-02 索尼公司 细胞分析系统及细胞分析方法
WO2014104364A1 (ja) 2012-12-28 2014-07-03 国立大学法人京都大学 人工多能性幹細胞、心筋細胞又はその前駆細胞の製造方法
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
CN105073979B (zh) 2012-12-31 2020-03-06 詹森生物科技公司 使用hb9调节子使人胚胎干细胞分化为胰腺内分泌细胞的方法
RU2658488C2 (ru) 2012-12-31 2018-06-21 Янссен Байотек, Инк. Способ получения клеток, экспрессирующих маркеры, характерные для панкреатических эндокринных клеток
SG11201505119UA (en) 2012-12-31 2015-07-30 Janssen Biotech Inc Suspension and clustering of human pluripotent cells for differentiation into pancreatic endocrine cells
US20160017441A1 (en) 2013-01-16 2016-01-21 Universal Bio Research Co., Ltd. Method for identifying cells
US20150368713A1 (en) 2013-02-01 2015-12-24 THE UNITED STATES OF AMERICAN, as represented by the Secretary, Department of Health and Human Serv METHOD FOR GENERATING RETINAL PIGMENT EPITHELIUM (RPE) CELLS FROM INDUCED PLURIPOTENT STEM CELLS (IPSCs)
WO2014121200A1 (en) 2013-02-01 2014-08-07 Auxogyn, Inc. Abnormal syngamy phenotypes observed with time lapse imaging for early identification of embryos with lower developmental potential
US10450546B2 (en) 2013-02-06 2019-10-22 University Of Rochester Induced pluripotent cell-derived oligodendrocyte progenitor cells for the treatment of myelin disorders
EP2955223B1 (en) 2013-02-08 2019-12-18 Kyoto University Production methods for megakaryocytes and platelets
JP6494903B2 (ja) 2013-02-14 2019-04-03 ソニー株式会社 分析システム、分析プログラム及び分析方法
KR102180319B1 (ko) 2013-03-01 2020-11-18 가부시키가이샤 클리오 다능성 줄기세포를 손상부위로 유도하는 유주인자를 포함하는 의약조성물
WO2014136581A1 (ja) 2013-03-06 2014-09-12 国立大学法人京都大学 多能性幹細胞の培養システム及び多能性幹細胞の継代方法
JP6351567B2 (ja) 2013-03-08 2018-07-04 国立大学法人京都大学 Egf受容体阻害剤を含む多能性幹細胞の心筋分化促進剤
EP4520817A2 (en) 2013-03-14 2025-03-12 The Regents of the University of California In vitro production of medial ganglionic eminence precursor cells
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US10519421B2 (en) 2013-03-21 2019-12-31 Kyoto University Induction of motor neurons from pluripotent stem cells
US10072242B2 (en) 2013-03-25 2018-09-11 Foundation For Biomedical Research And Innovation At Kobe Cell sorting method
GB201306589D0 (en) 2013-04-11 2013-05-29 Abeterno Ltd Live cell imaging
JP6461787B2 (ja) 2013-04-12 2019-01-30 国立大学法人京都大学 肺胞上皮前駆細胞の誘導方法
US9822342B2 (en) 2013-05-14 2017-11-21 Kyoto University Method of efficiently inducing cardiomyocytes
US10159766B2 (en) 2013-05-31 2018-12-25 Iheart Japan Corporation Layered cell sheet incorporating hydrogel
WO2014200905A2 (en) 2013-06-10 2014-12-18 President And Fellows Of Harvard College Early developmental genomic assay for characterizing pluripotent stem cell utility and safety
RU2696315C2 (ru) 2013-06-11 2019-08-01 Киото Юниверсити Способ получения ренальных клеток-предшественников и содержащее их лекарственное средство
US10240126B2 (en) 2013-06-12 2019-03-26 Kyoto University Induced pluripotent stem cell selection method and method for inducing differentiation to blood cells
WO2015020113A1 (ja) 2013-08-07 2015-02-12 国立大学法人京都大学 膵ホルモン産生細胞の製造法
WO2015025959A1 (ja) 2013-08-23 2015-02-26 独立行政法人理化学研究所 蛍光特性を示すポリペプチド、およびその利用
US9890360B2 (en) 2013-08-28 2018-02-13 Gifu University Method for producing induced pluripotent stem cells
CN105492598B (zh) 2013-08-29 2019-12-03 三浦典正 与细胞的抗衰老相关的生物分子群
JP2016536337A (ja) 2013-09-05 2016-11-24 テンポ バイオサイエンス インコーポレイテッドTempo Bioscience Inc. バイオセンサーを有するヒト細胞モデル
CN105849255A (zh) 2013-09-05 2016-08-10 国立大学法人京都大学 新的产多巴胺神经前体细胞诱导方法
CN105849256A (zh) 2013-09-12 2016-08-10 株式会社钟化 诱导多能干细胞的分化诱导方法及筛选方法
EP3045451B1 (en) 2013-09-13 2018-03-28 Kyoto University Compound promoting differentiation of pluripotent stem cells into cardiomyocytes
DK3050961T5 (da) 2013-09-24 2024-10-14 Id Pharma Co Ltd Fremgangsmåde til forbedring af effektiviteten ved inducering af pluripotente stamceller
EP3052106A4 (en) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynucleotides encoding immune modulating polypeptides
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
EP3064577B1 (en) 2013-11-01 2020-09-09 Kyoto University Novel chondrocyte induction method
WO2015066488A2 (en) 2013-11-01 2015-05-07 New England Biolabs, Inc. Method for producing induced pluripotent stem cells
CN105683355B (zh) 2013-11-08 2018-07-06 索尼公司 细胞分析系统、细胞分析程序和细胞分析方法
WO2015069736A1 (en) 2013-11-08 2015-05-14 The Mclean Hospital Corporation METHODS FOR EFFICIENT GENERATION OF GABAergic INTERNEURONS FROM PLURIPOTENT STEM CELLS
US9932607B2 (en) 2013-11-15 2018-04-03 The Board Of Trustees Of The Leland Stanford Junior University Site-specific integration of transgenes into human cells
CN104630136B (zh) * 2013-11-15 2019-10-01 中国科学院广州生物医药与健康研究院 一种制备诱导多能性干细胞的方法以及该方法中所使用的组合物及其应用
EP3375877A1 (en) 2013-11-18 2018-09-19 Crispr Therapeutics AG Crispr-cas system materials and methods
JP6536871B2 (ja) 2013-12-02 2019-07-03 国立大学法人京都大学 Fgfr3病の予防および治療剤ならびにそのスクリーニング方法
KR102070967B1 (ko) * 2013-12-10 2020-01-29 한국한의학연구원 사군자탕을 유효성분으로 포함하는, 세포의 유도만능줄기세포로의 리프로그래밍 촉진용 조성물 및 이를 이용한 유도만능줄기세포의 제조방법
CA2933083A1 (en) 2013-12-11 2015-06-18 Pfizer Limited Method for producing retinal pigment epithelial cells
US9994831B2 (en) 2013-12-12 2018-06-12 The Regents Of The University Of California Methods and compositions for modifying a single stranded target nucleic acid
EP3088415B1 (en) 2013-12-25 2019-11-06 Toagosei Co., Ltd. Method for inducing differentiation of pluripotent stem cells into endodermal cells
EP2896688A1 (en) 2014-01-20 2015-07-22 Centre National de la Recherche Scientifique (CNRS) A method of producing beta pancreatic cells from progenitor cells through the use of hydrogen peroxide
ES2787198T3 (es) 2014-01-31 2020-10-15 Factor Bioscience Inc ARN sintético para su uso en el tratamiento de la epidermólisis ampollosa distrófica
CN106414721A (zh) 2014-03-04 2017-02-15 菲特治疗公司 改良的重编程方法和细胞培养平台
EP3119879B1 (en) 2014-03-19 2019-12-25 INSERM (Institut National de la Santé et de la Recherche Médicale) A method for inducing human cholangiocyte differentiation
US10942170B2 (en) 2014-03-20 2021-03-09 Ares Trading S.A. Quantitative measurement of human blastocyst and morula morphology developmental kinetics
JP6612736B2 (ja) 2014-03-20 2019-11-27 国立大学法人京都大学 心筋細胞の選別方法
CN106164257B (zh) * 2014-03-31 2021-03-09 味之素株式会社 干细胞用培养基
SG10201810739VA (en) 2014-05-16 2019-01-30 Janssen Biotech Inc Use of small molecules to enhance mafa expression in pancreatic endocrine cells
EP3147353B1 (en) 2014-05-21 2022-03-30 Kyoto University Method for producing pancreatic blast cells and pancreatic disease treatment agent containing pancreatic blast cells
EP3150705B1 (en) 2014-05-30 2019-05-15 Kyoto University Method for inducing myocardial differentiation of pluripotent stem cells using low-molecular compound
US9518103B2 (en) 2014-06-18 2016-12-13 President And Fellows Of Harvard College Optogenetic probes for measuring membrane potential
US10138469B2 (en) 2014-06-23 2018-11-27 Toagosei Co., Ltd. Synthetic peptide and use thereof
EP3929302A1 (en) 2014-07-14 2021-12-29 Chugai Seiyaku Kabushiki Kaisha Method for identifying epitope on protein
CN114292817A (zh) 2014-07-18 2022-04-08 国立大学法人京都大学 从多能性干细胞诱导细胞免疫治疗用t细胞的方法
EP3188763B1 (en) 2014-09-02 2020-05-13 The Regents of The University of California Methods and compositions for rna-directed target dna modification
JP6452107B2 (ja) 2014-09-05 2019-01-16 国立大学法人 東京大学 糖尿病性皮膚潰瘍治療のための多能性幹細胞
WO2016054591A1 (en) 2014-10-03 2016-04-07 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
JP6598185B2 (ja) 2014-11-07 2019-10-30 国立大学法人京都大学 軟骨過形成疾患の予防および治療剤ならびにそのスクリーニング方法
GB2548740A (en) 2014-11-25 2017-09-27 Harvard College Methods for generation of podocytes from pluripotent stem cells and cells produced by the same
ES2784264T3 (es) 2014-12-17 2020-09-23 Fundacion Para La Investig Medica Aplicada Construcciones de ácido nucleico y vectores de terapia génica para su uso en el tratamiento de la enfermedad de Wilson y otras afecciones
HUE055002T2 (hu) 2014-12-17 2021-10-28 Fundacion Para La Investig Medica Aplicada Nukleinsav-konstrukciók és génterápiás vektorok Wilson-kór kezelésében történõ alkalmazásra
WO2016104717A1 (ja) 2014-12-26 2016-06-30 国立大学法人京都大学 肝細胞誘導方法
US10077463B2 (en) 2015-01-15 2018-09-18 President And Fellows Of Harvard College Optical selection of cells
WO2016114405A1 (ja) 2015-01-16 2016-07-21 国立研究開発法人産業技術総合研究所 ステルス性を有するrnaを使った遺伝子発現系および当該rnaを含む遺伝子導入・発現ベクター
WO2016131052A1 (en) 2015-02-13 2016-08-18 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
EP3259348A4 (en) 2015-02-17 2018-07-18 University Health Network Methods for making and using sinoatrial node-like pacemaker cardiomyocytes and ventricular-like cardiomyocytes
RS58070B2 (sr) 2015-02-20 2022-10-31 Inst Nat Sante Rech Med Upotreba laminina za diferencijaciju pluripotentnih ćelija u ćelije hepatocitne linije
EP3266864A4 (en) 2015-03-06 2018-08-29 Kyoto University Method for inducing differentiation of alveolar epithelial cells
JP6719449B2 (ja) 2015-03-18 2020-07-08 小野薬品工業株式会社 ナイーブ型多能性幹細胞の製造方法
AU2016248858A1 (en) * 2015-04-14 2017-11-09 Kyoto University Method for producing stem cell clone suitable for inducing differentiation into somatic cells
WO2016165788A1 (en) 2015-04-14 2016-10-20 Uab Ferentis Collagen mimetic peptide
EP3081638A1 (en) 2015-04-16 2016-10-19 Kyoto University Method for producing pseudo-islets
US11359180B2 (en) 2015-04-28 2022-06-14 Toagosei Co., Ltd. Method for producing myocardial cells using synthetic peptide
US9724432B2 (en) 2015-04-30 2017-08-08 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder
FR3037338B1 (fr) 2015-06-12 2020-02-28 Philippe Nirde Procede de greffe de cellule cardiaque sur la membrane choriallantoide d'œuf feconde
WO2017002300A1 (en) 2015-06-30 2017-01-05 Sony Corporation Information processing apparatus, information processing system, and information processing method
JP6746945B2 (ja) 2015-06-30 2020-08-26 ソニー株式会社 情報処理装置、情報処理システム及び情報処理方法
CN107709553A (zh) 2015-07-10 2018-02-16 心脏康复株式会社 高品质iPS细胞的制造方法
EP3327118B1 (en) 2015-07-17 2021-12-29 Kyoto University Method for inducing vascular endothelial cells
EP3344755A4 (en) 2015-08-31 2019-05-22 I Peace, Inc. PREPARATION SYSTEM FOR PLURIPOTENTE STEM CELLS AND METHOD FOR THE PRODUCTION OF INDUCED PLURIPOTENTAL STEM CELLS
HUE057135T2 (hu) 2015-09-01 2022-04-28 Ncardia B V In vitro módszer egy humán pluripotens õssejtpopuláció kardiomiocita sejtpopulációvá történõ differenciálására
JP6986016B2 (ja) 2015-09-08 2021-12-22 フジフィルム セルラー ダイナミクス,インコーポレイテッド Macsを用いた幹細胞由来網膜色素上皮の精製
DK3347456T3 (da) 2015-09-08 2024-02-19 Us Health Fremgangsmåde til reproducerbar differentiering af retinale pigmentepitelceller af klinisk kvalitet
AU2016321015B2 (en) 2015-09-11 2021-09-30 Astellas Pharma Inc. Method for producing renal progenitor cells
EP3353297A1 (en) 2015-09-24 2018-08-01 Crispr Therapeutics AG Novel family of rna-programmable endonucleases and their uses in genome editing and other applications
JP6691756B2 (ja) 2015-09-29 2020-05-13 東亞合成株式会社 合成ペプチドを用いた神経幹細胞の生産方法
WO2017059241A1 (en) 2015-10-02 2017-04-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Lentiviral protein delivery system for rna-guided genome editing
US10842822B2 (en) 2015-10-05 2020-11-24 Orig3N, Inc. Diagnosis and treatment of parkinson's disease based on identification and amelioration of liver dysfunction
CA3001917A1 (en) 2015-10-16 2017-04-20 Fate Therapeutics, Inc. Platform for the induction & maintenance of ground state pluripotency
CN108350429B (zh) 2015-10-20 2022-02-25 富士胶片细胞动力公司 用于将多能干细胞定向分化为免疫细胞的方法
JP2016011317A (ja) * 2015-10-21 2016-01-21 加治佐 功 ゲノム編集用クリスパーキャス9による老化遺伝子切り取り若返り経口不老不死薬7
AU2016355191B2 (en) 2015-11-18 2023-06-29 Orbis Health Solutions Llc T7 alpha viral vector system
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
GB201601503D0 (en) 2016-01-27 2016-03-09 Isis Innovation Dendritic cells
WO2017143071A1 (en) 2016-02-18 2017-08-24 The Regents Of The University Of California Methods and compositions for gene editing in stem cells
CA3017871A1 (en) 2016-03-18 2017-09-21 Kyoto University Method for freezing aggregates of pluripotent stem cell-derived cardiomyocytes
WO2017164746A1 (en) 2016-03-25 2017-09-28 Pluriomics B.V. In vivo method for differentiating human pluripotent stem cells into atrial cardiomyocytes
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
WO2017179720A1 (ja) 2016-04-15 2017-10-19 国立大学法人京都大学 Cd8陽性t細胞を誘導する方法
SG11201809279YA (en) 2016-04-22 2018-11-29 Univ Kyoto Method for producing dopamine-producing neural precursor cells
US20190290702A1 (en) 2016-05-16 2019-09-26 National University Corporation Nagoya University Amelioration and treatment of perinatal brain damage with pluripotent stem cells
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
US20190330603A1 (en) 2016-06-17 2019-10-31 Genesis Technologies Limited Crispr-cas system, materials and methods
CA3029582A1 (en) 2016-07-01 2018-01-04 Research Development Foundation Elimination of proliferating cells from stem cell-derived grafts
WO2018026723A1 (en) 2016-08-01 2018-02-08 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Human induced pluripotent stem cells for high efficiency genetic engineering
CN109689074A (zh) 2016-08-03 2019-04-26 株式会社生命科学研究院 采用多能干细胞的缺血再灌注肺损伤的减轻及治疗
EP3494978A4 (en) 2016-08-03 2020-03-11 National University Corporation Nagoya University IMPROVEMENT AND TREATMENT OF CHRONIC PULMONARY DISEASES USING PLURIPOTENT STEM CELLS
US11259520B2 (en) 2016-08-04 2022-03-01 Fanuc Corporation Stem cell manufacturing system, stem cell information management system, cell transport apparatus, and stem cell frozen storage apparatus
US10354218B2 (en) 2016-08-04 2019-07-16 Fanuc Corporation System and method for iPS cell bank using internet technology
US10373109B2 (en) 2016-08-04 2019-08-06 Fanuc Corporation System and method for iPS cell bank using media
CA3033788A1 (en) 2016-08-17 2018-02-22 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
KR102288953B1 (ko) 2016-09-02 2021-08-11 다카라 바이오 가부시키가이샤 다능성 줄기세포로부터 마이크로글리아를 얻는 방법
US11541078B2 (en) 2016-09-20 2023-01-03 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
US10961505B2 (en) 2016-10-05 2021-03-30 FUJIFILM Cellular Dynamics, Inc. Generating mature lineages from induced pluripotent stem cells with MECP2 disruption
US12098202B2 (en) 2016-10-10 2024-09-24 The National Institute for Biotechnology in the Negev Ltd. Non-cytotoxic modified cells and use thereof
JP6868250B2 (ja) 2016-10-31 2021-05-12 国立大学法人鳥取大学 ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法
US11458225B2 (en) 2016-11-09 2022-10-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services 3D vascularized human ocular tissue for cell therapy and drug discovery
TWI814716B (zh) 2016-12-27 2023-09-11 日商住友化學股份有限公司 人工多能性幹細胞的評估方法及選拔方法,以及人工多能性幹細胞的製造方法
WO2018135646A1 (ja) 2017-01-20 2018-07-26 国立大学法人京都大学 CD8α+β+細胞傷害性T細胞の製造方法
US20210130785A1 (en) 2017-01-26 2021-05-06 Osaka University Medium for inducing differentiation of stem cells into mesodermal cells and method for producing mesodermal cells
EP3587560A4 (en) 2017-01-27 2020-12-16 Kaneka Corporation Endodermal cell mass, and method for producing any one of three primary germ layer cell mass from pluripotent cells
JP7131775B2 (ja) 2017-02-06 2022-09-06 国立研究開発法人国立がん研究センター 新規t細胞受容体
JP7203427B2 (ja) 2017-02-14 2023-01-13 ユニバーシティ オブ ピッツバーグ - オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション ヒト人工多能性幹細胞を操作して肝臓組織を作製する方法
US10828330B2 (en) 2017-02-22 2020-11-10 IO Bioscience, Inc. Nucleic acid constructs comprising gene editing multi-sites and uses thereof
US20200040297A1 (en) 2017-02-24 2020-02-06 Koji Tanabe Cell treatment device, suspension culture vessel, and stem cell induction method
WO2018154791A1 (ja) 2017-02-27 2018-08-30 剛士 田邊 細胞処理システム及び細胞処理装置
EP3530727A4 (en) 2017-02-27 2020-07-08 Koji Tanabe SOMATIC CELL PRODUCTION SYSTEM
EP3591040A4 (en) 2017-03-03 2020-11-11 Kyoto University METHOD OF PRODUCTION OF PANCREATIC PROGENITOR CELLS
EP3597734A4 (en) 2017-03-14 2021-03-03 Kyoto University METHOD FOR PRODUCING HELPER T-CELLS FROM PLURIPOTENT STEM CELLS
CN110494559B (zh) 2017-03-28 2023-10-31 味之素株式会社 不分化地维持用培养基添加剂
AU2018254442B2 (en) 2017-04-18 2024-03-28 FUJIFILM Cellular Dynamics, Inc. Antigen-specific immune effector cells
US11759482B2 (en) 2017-04-19 2023-09-19 Cedars-Sinai Medical Center Methods and compositions for treating skeletal muscular dystrophy
JP2020519306A (ja) * 2017-04-26 2020-07-02 エヌセイジ コーポレーション sRAGEを分泌する幹細胞を含むアルツハイマー病の予防または治療用薬学組成物
JP6647545B2 (ja) 2017-05-02 2020-02-14 剛士 田邊 医薬品組成物及び化粧品組成物
EP3621434A4 (en) 2017-05-10 2021-03-31 University of Rochester TREATMENT METHODS FOR NEUROPSYCHIATRIC DISORDERS
CN117802033A (zh) 2017-05-25 2024-04-02 国立大学法人京都大学 由多能干细胞制造中胚层谱系原条细胞的方法
EP3406712A1 (en) 2017-05-26 2018-11-28 Fundación Centro Nacional De Investigaciones Oncológicas Carlos III Method for expanding stemness and differentiation potential of pluripotent cells
GB201708554D0 (en) * 2017-05-30 2017-07-12 Queens Univ Of Belfast A method for the generation of induced pluirpotent stem cells
JPWO2018230588A1 (ja) 2017-06-14 2020-04-16 武田薬品工業株式会社 細胞封入デバイス
JP6758631B2 (ja) 2017-06-19 2020-09-23 国立大学法人大阪大学 角膜内皮細胞マーカー及びその利用
WO2018235583A1 (ja) 2017-06-19 2018-12-27 公益財団法人神戸医療産業都市推進機構 多能性幹細胞の分化能の予測方法及びそのための試薬
EP3643317A4 (en) 2017-06-20 2021-03-03 National University Corporation Nagoya University IMPROVEMENT AND TREATMENT OF BRAIN DISORDERS RESULTING FROM FETAL GROWTH DELAY USING PLURIPOTENT STEM CELLS
US10660523B2 (en) 2017-07-07 2020-05-26 Hideo Ando Light-source unit, measurement apparatus, near-infrared microscopic apparatus, optical detection method, imaging method, calculation method, functional bio-related substance, state management method, and manufacturing method
SG11202003507QA (en) 2017-10-17 2020-05-28 Univ Hiroshima Pluripotent stem cells inducing osteochondral repair
WO2019078263A1 (ja) 2017-10-17 2019-04-25 国立大学法人京都大学 多能性幹細胞から人工神経筋接合部を得る方法
US20200332315A1 (en) 2017-11-02 2020-10-22 National University Corporation Tottori University Method for high production of protein using mammalian artificial chromosome vector
MA50579A (fr) 2017-11-09 2020-09-16 Crispr Therapeutics Ag Systèmes crispr/cas ou crispr/cpf1 à auto-inactivation (sin) et leurs utilisations
MX2020004939A (es) 2017-11-15 2020-11-11 Semma Therapeutics Inc Fabricacion de composiciones de celulas islote y metodos de uso de las mismas.
SG11202004964WA (en) 2017-11-30 2020-06-29 Univ Kyoto Method for culture of cells
MX2020005561A (es) 2017-12-01 2020-10-12 Encoded Therapeutics Inc Proteinas modificadas de union a adn.
CA3084825A1 (en) 2017-12-14 2019-06-20 Crispr Therapeutics Ag Novel rna-programmable endonuclease systems and their use in genome editing and other applications
EP3727351A4 (en) 2017-12-20 2021-10-06 Cedars-Sinai Medical Center MODIFIED EXTRACELLULAR VESICLES FOR IMPROVED TISSUE DELIVERY
WO2019124540A1 (ja) 2017-12-22 2019-06-27 国立大学法人京都大学 細胞培養装置、培養液アスピレータ及び細胞培養方法
US12146137B2 (en) 2018-02-05 2024-11-19 Cedars-Sinai Medical Center Methods for therapeutic use of exosomes and Y-RNAS
JP6775224B2 (ja) 2018-03-16 2020-10-28 国立大学法人鳥取大学 マウス人工染色体ベクター及びその使用
EP3770253A4 (en) 2018-03-19 2021-12-29 Kyoto University Hydrogel capsule
JP7550648B2 (ja) 2018-03-19 2024-09-13 クリスパー セラピューティクス アーゲー 新規rnaプログラム可能エンドヌクレアーゼ系およびその使用
US20210010030A1 (en) 2018-03-22 2021-01-14 Nserm (Institut National De La Santé Et De La Recherche Médicale) Method for reprogramming somatic cells
EP3778902A4 (en) 2018-03-30 2021-12-29 Kyoto University Cell production method
WO2019189758A1 (ja) 2018-03-30 2019-10-03 味の素株式会社 ポリリジン類縁体を含む、細胞増殖促進用組成物
US12018281B2 (en) 2018-03-30 2024-06-25 Kyoto University Cardiomyocyte maturation promoter
WO2019189553A1 (ja) 2018-03-30 2019-10-03 国立大学法人京都大学 複素環化合物
US11268070B2 (en) 2018-04-16 2022-03-08 Cellular Engineering Technologies, Inc. Methods for creating integration-free, virus-free, exogenous oncogene-free IPS cells and compositions for use in such methods
CA3097428A1 (en) 2018-04-20 2019-10-24 FUJIFILM Cellular Dynamics, Inc. Method for differentiation of ocular cells and use thereof
SG11202009855WA (en) 2018-04-23 2020-11-27 Univ Kyoto Growth inhibitor
EP3786286A4 (en) 2018-04-27 2022-01-26 Kaneka Corporation PRODUCTION PROCESS FOR PANCREATIC BETA CELLS
WO2019236766A1 (en) 2018-06-06 2019-12-12 Ideaya Biosciences, Inc. Methods of culturing and/or expanding stem cells and/or lineage committed progenitor cells using lactam compounds
US20210260002A1 (en) 2018-06-18 2021-08-26 University Of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
US20220062378A1 (en) 2018-06-21 2022-03-03 University Of Rochester Methods of treating or inhibiting onset of huntington's disease
US20210130777A1 (en) 2018-07-13 2021-05-06 Kyoto University Method for producing gamma delta t cells
JP7285015B2 (ja) 2018-07-19 2023-06-01 国立大学法人京都大学 多能性幹細胞由来の板状軟骨およびその製造方法
US20210332329A1 (en) 2018-07-23 2021-10-28 Kyoto University Novel renal progenitor cell marker and method for concentrating renal progenitor cells using same
EP3831931A4 (en) 2018-08-03 2022-05-18 Kyoto University Cell production method
TW202434719A (zh) 2018-08-10 2024-09-01 國立大學法人京都大學 Cd3陽性細胞的製造方法
EP3833365A4 (en) 2018-08-10 2022-05-11 Vertex Pharmaceuticals Incorporated Stem cell derived islet differentiation
US20220145329A1 (en) 2018-08-10 2022-05-12 Kyoto University Method for transfection into cardiomyocytes using cationic lipid
EP3838279B1 (en) 2018-08-14 2025-03-05 National Center for Global Health and Medicine Supernatant of brown adipocytes, method for preparing same and utilization thereof
US20210198635A1 (en) 2018-08-20 2021-07-01 I Peace, Inc. Cell culture or induction method
US11898130B2 (en) 2018-08-20 2024-02-13 Peace, Inc. Cell culture equipment
SG11202101565XA (en) 2018-08-22 2021-03-30 Univ Kyoto Method for producing enteric neural precursors
EP3845654A4 (en) 2018-08-31 2022-05-11 Noile-Immune Biotech, Inc. Car-expressing t cells and car expression vector
IL281531B2 (en) 2018-09-19 2025-03-01 Takeda Pharmaceuticals Co Cells produce insulin
JP7079946B2 (ja) 2018-10-10 2022-06-03 国立大学法人鳥取大学 外来染色体を含むヒト人工多能性幹細胞の製造方法
EP3800250A4 (en) 2018-10-10 2022-03-30 National University Corporation Tottori University Method for producing animal cell containing dna of interest using micronucleate cell fusion method
SG11202103681UA (en) 2018-10-12 2021-05-28 Vivet Therapeutics Codon-optimized transgene for the treatment of progressive familiar intrahepatic cholestasis type 3 (pfic3)
JP7553918B2 (ja) 2018-10-15 2024-09-19 公立大学法人横浜市立大学 栄養組成物
EP3875578A4 (en) 2018-10-31 2022-08-10 Kyoto University METHOD FOR GENERATING PLURIPOTENT STEM CELLS WITH RELEASED DIFFERENTIATION RESISTANCE TO MESENDODERM
KR20210091736A (ko) 2018-11-07 2021-07-22 비베트 테라퓨틱스 진행성 가족성 간내 담즙정체 2형(pfic2)의 치료를 위한 코돈-최적화 abcb11 전이유전자
CN112996524B (zh) 2018-11-07 2024-10-22 爱平世股份有限公司 医药品组合物以及化妆品组合物
CN113302290A (zh) 2018-11-16 2021-08-24 编码治疗公司 治疗威尔逊氏病的组合物和方法
JP7604370B2 (ja) 2018-11-19 2024-12-23 ザ ユナイテッド ステイツ オブ アメリカ アズ リプリゼンテッド バイ ザ セクレタリー、デパートメント オブ ヘルス アンド ヒューマン サービシーズ 生分解性組織置換インプラントおよびその使用
EA202191463A1 (ru) 2018-11-28 2021-10-13 Борд Оф Риджентс, Дзе Юниверсити Оф Техас Систем Мультиплексное редактирование генома иммунных клеток для повышения функциональности и устойчивости к подавляющей среде
US12168781B2 (en) 2018-12-06 2024-12-17 Kirin Holdings Kabushiki Kaisha Production method for T cells or NK cells, medium for culturing T cells or NK cells, method for culturing T cells or NK cells, method for maintaining undifferentiated state of undifferentiated T cells, and growth-accelerating agent for T cells or NK cells
EP3894556A1 (en) 2018-12-11 2021-10-20 University of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
US20220056413A1 (en) 2018-12-21 2022-02-24 Kyoto University Lubricin-localized cartilage-like tissue, method for producing same and composition comprising same for treating articular cartilage damage
WO2020138371A1 (ja) 2018-12-26 2020-07-02 キリンホールディングス株式会社 改変tcr及びその製造方法
US20220089672A1 (en) 2018-12-27 2022-03-24 Kyoto University T-cell receptor modified object
JP7508045B2 (ja) 2019-02-01 2024-07-01 国立大学法人京都大学 細胞の検出方法
WO2020167822A2 (en) 2019-02-13 2020-08-20 University Of Rochester Gene networks that mediate remyelination of the human brain
US20220145255A1 (en) 2019-02-26 2022-05-12 Tohoku University Method for producing osteoblast cluster using ips cells
JP7531170B2 (ja) 2019-03-05 2024-08-09 ファナック株式会社 細胞製造システム
AU2020231380A1 (en) 2019-03-07 2021-09-23 The Regents Of The University Of California CRISPR-Cas effector polypeptides and methods of use thereof
WO2020209959A1 (en) 2019-03-08 2020-10-15 Crispr Therapeutics Ag Nucleobase-editing fusion protein systems, compositions, and uses thereof
AU2020239225A1 (en) 2019-03-12 2021-09-30 Bayer Healthcare Llc Novel high fidelity RNA-programmable endonuclease systems and uses thereof
JP7489377B2 (ja) 2019-03-29 2024-05-23 株式会社カネカ 多能性幹細胞を含む細胞集団及びその製造方法
JP7533896B2 (ja) 2019-03-29 2024-08-14 公立大学法人横浜市立大学 スクリーニング方法および毒性評価法
CN113993528A (zh) 2019-04-10 2022-01-28 千纸鹤治疗公司 类生体组织结构体的制造方法
EP3957722A4 (en) 2019-04-17 2023-01-18 Keio University METHOD FOR PRODUCTION AND KIT OF INDUCED PLURIPOTENT STEM CELLS
US20210047649A1 (en) 2019-05-08 2021-02-18 Vertex Pharmaceuticals Incorporated Crispr/cas all-in-two vector systems for treatment of dmd
CN114207118A (zh) 2019-05-14 2022-03-18 阿利夫农场公司 多能细胞聚集体及其用途
CA3140384A1 (en) 2019-05-15 2020-11-19 Ajinomoto Co., Inc. Method for purifying neural crest cells or corneal epithelial cells
CA3141455A1 (en) 2019-05-20 2020-11-26 Ajinomoto Co., Inc. Expansion culture method for cartilage or bone precursor cells
WO2020250929A1 (ja) 2019-06-10 2020-12-17 アイ ピース, インコーポレイテッド 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法
US20220306993A1 (en) 2019-06-10 2022-09-29 I Peace, Inc. Erythrocyte removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and mononuclear cell collection method
TW202113062A (zh) 2019-06-11 2021-04-01 國立大學法人京都大學 腎間質細胞的製造方法
AU2020306049A1 (en) 2019-06-25 2022-02-10 Vertex Pharmaceuticals Incorporated Enhanced differentiation of beta cells
JP7037141B2 (ja) 2019-06-28 2022-03-16 アイ ピース,インコーポレイテッド 細胞塊分割器、細胞塊分割器の製造方法、及び細胞塊の分割方法
WO2020262354A1 (ja) 2019-06-28 2020-12-30 アイ ピース, インコーポレイテッド 細胞培養器及び細胞培養装置
WO2021014515A1 (ja) 2019-07-19 2021-01-28 東京エレクトロン株式会社 細胞の分化状態の評価方法
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
WO2021030424A1 (en) 2019-08-13 2021-02-18 Semma Therapeutics, Inc. Pancreatic differentiation
CN114269900B (zh) 2019-08-20 2025-01-14 千纸鹤治疗公司 心肌细胞的富集方法
EP4023741A4 (en) 2019-08-29 2023-11-08 Fanuc Corporation DEVICE FOR CELL PRODUCTION AND METHOD FOR CELL PRODUCTION
CN114341337A (zh) 2019-08-29 2022-04-12 发那科株式会社 细胞制造装置
EP4023747A4 (en) 2019-08-29 2023-11-08 Fanuc Corporation CELL PRODUCTION APPARATUS AND SYSTEM THEREOF
US20220380732A1 (en) 2019-10-01 2022-12-01 Kyoto University Method for isolating ureteric bud tip cells
JPWO2021079874A1 (ru) 2019-10-21 2021-04-29
WO2021085639A1 (ja) 2019-10-31 2021-05-06 株式会社生命科学インスティテュート 多能性幹細胞による間質性膀胱炎の治療
CN114729318B (zh) 2019-11-01 2025-03-11 国立大学法人京都大学 T细胞的制备方法
EP4056673A4 (en) 2019-11-06 2024-04-03 I Peace, Inc. CELL CULTURE DEVICE
US20230220352A1 (en) 2019-11-12 2023-07-13 Juntendo Educational Foundation Method for direct transdifferentiation of somatic cell
TW202134429A (zh) 2019-11-25 2021-09-16 國立大學法人京都大學 T細胞主細胞庫
JP7058431B2 (ja) 2019-12-12 2022-04-22 国立大学法人千葉大学 巨核球および血小板を含む凍結乾燥製剤
FR3105260A1 (fr) 2019-12-20 2021-06-25 Centre National De La Recherche Scientifique (Cnrs) Modèle organoïde cardiaque vascularisé apres incorporation de cardiomyocytes dérivés de cellules souches pluripotentes induites humaines
US20210292713A1 (en) 2020-02-28 2021-09-23 Millennium Pharmaceuticals, Inc. Method for producing natural killer cells from pluripotent stem cells
MX2022011245A (es) 2020-03-11 2023-01-11 Bit Bio Ltd Método de generación de células hepáticas.
JP2023517112A (ja) 2020-03-13 2023-04-21 ゴーリヴァー・セラピューティクス 劇症肝障害を処置及び/又は防止するための肝幹細胞様細胞
CN115279880A (zh) 2020-03-18 2022-11-01 发那科株式会社 显微镜观察系统
TW202200783A (zh) 2020-03-19 2022-01-01 國立大學法人京都大學 心肌細胞的精製方法
WO2021187602A1 (ja) 2020-03-19 2021-09-23 国立大学法人京都大学 心筋細胞の精製方法
EP4130239A4 (en) 2020-03-24 2024-05-15 Kaneka Corporation METHODS FOR INDUCING DIFFERENTIATION IN PANCREAS ALPHA CELLS
US20230134859A1 (en) 2020-03-31 2023-05-04 Sky Pharma Co., Ltd. Method for screening for, method for producing, and method for designing drug active ingredients
EP4130253A4 (en) 2020-03-31 2024-05-29 Kyoto University METHOD FOR PRODUCING T-LYMPHOCYTE PROGENITORS
EP4159846A4 (en) 2020-05-26 2024-08-14 Healios K.K. HYPOIMMUNOGENIC CELLS
EP4159838A4 (en) 2020-05-28 2024-07-17 Orizuru Therapeutics, Inc. MASS PRODUCTION PROCESS OF UNIFORM SIZED CELL AGGREGATES
AU2021280332A1 (en) 2020-05-29 2022-12-01 FUJIFILM Cellular Dynamics, Inc. Bilayer of retinal pigmented epithelium and photoreceptors and use thereof
EP4157294A1 (en) 2020-05-29 2023-04-05 FUJIFILM Cellular Dynamics, Inc. Retinal pigmented epithelium and photoreceptor dual cell aggregates and methods of use thereof
US20230235319A1 (en) 2020-06-12 2023-07-27 Bayer Aktiengesellschaft Crispr-cas12a directed random mutagenesis agents and methods
JPWO2021256522A1 (ru) 2020-06-17 2021-12-23
EP4180516A4 (en) 2020-07-13 2024-01-17 Kyoto University SKELETON MUSCLE PRECURSOR CELLS AND METHOD FOR PURIFICATION THEREOF, COMPOSITION FOR THE TREATMENT OF MYOGENIC DISEASES AND METHOD FOR PRODUCING SKELETON MUSCLE PRECURSOR CELLS CONTAINING CELL GROUPS
CN116134130A (zh) 2020-07-20 2023-05-16 学校法人爱知医科大学 多能细胞的未分化维持培养用组合物、多能细胞的未分化维持培养用培养基、多能细胞的未分化状态下的维持培养方法、和多能细胞的制造方法
US20230265456A1 (en) 2020-08-10 2023-08-24 Fundacion Para La Investigacion Medica Aplicada Gene therapy vector expressing cyp27a1 for the treatment of cerebrotendinous xanthomatosis
EP4202041A4 (en) 2020-08-18 2024-10-16 Kyoto University Method for maintaining and amplifying human primordial germ cells / human primordial germ cell-like cells
US20230220025A1 (en) 2020-09-04 2023-07-13 Heartseed Inc. Quality Improving Agent for IPS Cells, Method of Producing IPS Cells, IPS Cells, and Composition for Producing IPS Cells
CN116323941A (zh) 2020-09-29 2023-06-23 吉尼松公司 通过诱导抗肌萎缩蛋白相关蛋白调节元件内的突变增强细胞中抗肌萎缩蛋白相关蛋白表达及其治疗用途
WO2022104109A1 (en) 2020-11-13 2022-05-19 Catamaran Bio, Inc. Genetically modified natural killer cells and methods of use thereof
EP4249587A4 (en) 2020-11-20 2025-02-19 Orizuru Therapeutics Inc MATURING AGENT
AU2021388155A1 (en) 2020-11-25 2023-06-15 Catamaran Bio, Inc. Cellular therapeutics engineered with signal modulators and methods of use thereof
KR20230125806A (ko) 2020-12-16 2023-08-29 우니베르시타트 폼페우 파브라 선천성 근이영양증의 치료를 위한 치료용 lama2 페이로드
JP2022099262A (ja) 2020-12-22 2022-07-04 アイ ピース,インコーポレイテッド 細胞の培養器及び細胞の培養方法
US20240091382A1 (en) 2020-12-23 2024-03-21 Vivet Therapeutics Minimal bile acid inducible promoters for gene therapy
JPWO2022138101A1 (ru) 2020-12-23 2022-06-30
IL303975A (en) 2020-12-25 2023-08-01 Univ Kyoto Method for producing naive human ips cells from somatic cells
WO2022163466A1 (ja) * 2021-01-26 2022-08-04 アイ ピース, インコーポレイテッド オリゴデンドロサイトの作製方法
KR20230145101A (ko) 2021-02-09 2023-10-17 오리즈루 세라퓨틱스 가부시키가이샤 성숙화제
US20240158740A1 (en) 2021-03-09 2024-05-16 National University Corporation Tokyo Medical And Dental University Cell cluster production method
JPWO2022196714A1 (ru) 2021-03-17 2022-09-22
EP4134086A1 (en) 2021-08-12 2023-02-15 Technische Universität Dresden Human macrophages resistant to tumor-induced repolarization
IL305973A (en) 2021-03-19 2023-11-01 Technische Universit?T Dresden Human macrophages are resistant to tumor-induced repolarization
EP4060026A1 (en) 2021-03-19 2022-09-21 Technische Universität Dresden Ex-vivo proliferation of human phagocytic cells
WO2022207889A1 (en) 2021-04-01 2022-10-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Liver organoid manufacturing methods, liver organoids obtained with the same, and uses thereof
KR20230167063A (ko) 2021-04-08 2023-12-07 다케다 야쿠힌 고교 가부시키가이샤 T-세포 활성화 방법
US20240228972A1 (en) 2021-04-28 2024-07-11 National University Corporation Tokyo Medical And Dental University Method for producing cells
WO2022230977A1 (ja) 2021-04-30 2022-11-03 国立研究開発法人理化学研究所 網膜色素上皮細胞のひも状凝集体、それを製造するためのデバイスおよび製造方法、ならびに該ひも状凝集体を含有する治療薬
US20240252545A1 (en) 2021-05-07 2024-08-01 Children's Hospital Los Angeles Methods for Making Stem Cell-Derived Enteric Neural Crest Cells and Their Use in Enteric Neuropathy Treatment
CN117881777A (zh) 2021-05-26 2024-04-12 富士胶片细胞动力公司 防止多能干细胞中基因快速沉默的方法
EP4346928A1 (en) 2021-05-28 2024-04-10 The United States of America, as represented by The Secretary, Department of Health and Human Services Biodegradable tissue scaffold with secondary matrix to host weakly adherent cells
CA3220602A1 (en) 2021-05-28 2022-12-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods to generate macular, central and peripheral retinal pigment epithelial cells
EP4352205A1 (en) 2021-06-07 2024-04-17 Institut National de la Santé et de la Recherche Médicale (INSERM) Method for generating highly functional hepatocytes by differentiating hepatoblasts
CA3222761A1 (en) 2021-06-10 2022-12-15 Ajinomoto Co., Inc. Method for producing mesenchymal stem cells
BR112023023768A2 (pt) 2021-06-11 2024-02-27 Bayer Ag Sistemas de endonucleases programáveis por rna tipo v
EP4101928A1 (en) 2021-06-11 2022-12-14 Bayer AG Type v rna programmable endonuclease systems
AU2022292988A1 (en) 2021-06-15 2024-01-04 Takeda Pharmaceutical Company Limited Method for producing natural killer cells from pluripotent stem cells
JPWO2023277195A1 (ru) 2021-06-29 2023-01-05
JPWO2023286834A1 (ru) 2021-07-15 2023-01-19
WO2023286832A1 (ja) 2021-07-15 2023-01-19 アステラス製薬株式会社 血管内皮増殖因子(vegf)高発現ペリサイト様細胞の製造方法
US20250084373A1 (en) 2021-07-21 2025-03-13 Kyoto University Method of producing retinal tissue
WO2023017848A1 (ja) 2021-08-11 2023-02-16 国立大学法人京都大学 腎間質前駆細胞の製造方法並びにエリスロポエチン産生細胞、およびレニン産生細胞の製造方法
EP4144841A1 (en) 2021-09-07 2023-03-08 Bayer AG Novel small rna programmable endonuclease systems with impoved pam specificity and uses thereof
US20230078230A1 (en) 2021-09-13 2023-03-16 FUJIFILM Cellular Dynamics, Inc. Methods for the production of committed cardiac progenitor cells
KR20240067089A (ko) 2021-09-27 2024-05-16 고쿠리츠 다이가쿠 호진 교토 다이가쿠 T 세포의 제조 방법
WO2023053220A1 (ja) 2021-09-28 2023-04-06 公益財団法人京都大学iPS細胞研究財団 多能性幹細胞の製造方法
EP4419654A1 (en) 2021-10-20 2024-08-28 University of Rochester Method for rejuvenating glial progenitor cells and rejuvenated glial progenitor cells per se
JP2024540974A (ja) 2021-10-20 2024-11-06 ユニヴァーシティ オヴ ロチェスター 細胞の添加療法及び補充療法の予測評価のためのヒト化キメラ
CA3234811A1 (en) 2021-10-20 2023-04-27 Steven Goldman Rejuvenation treatment of age-related white matter loss
CA3234231A1 (en) 2021-10-21 2023-04-27 Vertex Pharmaceuticals Incorporated Hypoimmune cells
WO2023077140A2 (en) 2021-11-01 2023-05-04 Vertex Pharmaceuticals Incorporated Stem cell derived pancreatic islet differentiation
CA3236365A1 (en) 2021-11-02 2023-05-11 University Of Rochester Tcf7l2 mediated remyelination in the brain
WO2023085356A1 (ja) 2021-11-11 2023-05-19 株式会社ヘリオス 遺伝子改変多能性幹細胞、それ由来の免疫担当細胞、それらの製造方法及びそれらの用途
EP4389902A1 (en) 2021-11-15 2024-06-26 National University Corporation Tottori University Method for producing human artificial chromosome vector in human cells
US20240392313A1 (en) 2021-11-16 2024-11-28 National University Corporation Tottori University Mammalian artificial chromosome vector having human immunoglobulin heavy chain locus comprising modified d-region, and cell or non-human animal retaining the vector
KR20240099271A (ko) 2021-11-16 2024-06-28 각코 호진 도쿄 약카 다이가쿠 프로모터 활성화 서열, 그 프로모터 활성화 서열을 포함하는 발현 벡터, 및 그 발현 벡터를 포함하는 포유 동물 세포
US20250084391A1 (en) 2021-12-23 2025-03-13 Bayer Aktiengesellschaft Novel small type v rna programmable endonuclease systems
WO2023150557A1 (en) 2022-02-01 2023-08-10 University Of Rochester Methods of generating a population of neurons from human glial progenitor cells and genetic constructs for carrying out such methods
EP4474476A1 (en) 2022-02-04 2024-12-11 Kyoto University T cell production method
WO2023153464A1 (ja) 2022-02-09 2023-08-17 住友ファーマ株式会社 多能性幹細胞から中脳底板領域の神経系細胞への分化における、培養液中の細胞の分化能を判定する方法
JPWO2023157727A1 (ru) 2022-02-15 2023-08-24
JP7315184B2 (ja) 2022-02-16 2023-07-26 株式会社コーセー 多能性幹細胞から表皮角化細胞への分化誘導方法
US20250057886A1 (en) 2022-03-02 2025-02-20 Lineage Cell Therapeutics, Inc. Methods and compositions for treating hearing loss
WO2023172514A1 (en) 2022-03-07 2023-09-14 Catamaran Bio, Inc. Engineered immune cell therapeutics targeted to her2 and methods of use thereof
JPWO2023171808A1 (ru) 2022-03-11 2023-09-14
CN119256076A (zh) 2022-03-23 2025-01-03 国立大学法人京都大学 用于产生调节性t细胞的方法
EP4514949A1 (en) 2022-04-25 2025-03-05 Hadasit Medical Research Services&Development Ltd. Methods and compositions for treating vision loss
CN119072542A (zh) 2022-04-25 2024-12-03 千纸鹤治疗公司 具有alk5抑制活性和cdk8/19抑制活性的促熟剂
WO2023210713A1 (ja) 2022-04-27 2023-11-02 国立大学法人京都大学 心外膜細胞再生促進剤および心外膜細胞の再生促進方法
WO2023215455A1 (en) 2022-05-05 2023-11-09 University Of Rochester Dual macroglial-microglial approach towards therapeutic cell replacement in neurodegenerative and neuropsychiatric disease
WO2023228908A1 (ja) 2022-05-23 2023-11-30 国立大学法人京都大学 腎集合管細胞および腎盂上皮細胞の製造方法
KR20250022020A (ko) 2022-06-10 2025-02-14 바이엘 악티엔게젤샤프트 신규 소형 유형 v rna 프로그램가능한 엔도뉴클레아제 시스템
WO2023238932A1 (ja) 2022-06-10 2023-12-14 国立大学法人京都大学 未分化多能性幹細胞の検出方法および検出試薬
JPWO2023243627A1 (ru) 2022-06-17 2023-12-21
WO2023247532A1 (en) 2022-06-21 2023-12-28 Institut National de la Santé et de la Recherche Médicale A method for producing a bioengineered mammal induced pluripotent stem cell-derived cardiac organoid
AU2023298141A1 (en) 2022-06-29 2024-12-05 FUJIFILM Cellular Dynamics, Inc. Ipsc-derived astrocytes and methods of use thereof
WO2024010085A1 (ja) 2022-07-07 2024-01-11 国立研究開発法人理化学研究所 変異型oct3/4タンパク質、及び誘導多能性幹細胞の製造方法
JPWO2024014497A1 (ru) 2022-07-14 2024-01-18
CN119698464A (zh) 2022-07-25 2025-03-25 国立大学法人京都大学 从灵长类的胚胎卵巢细胞诱导卵泡的体外培养法
WO2024024551A1 (ja) 2022-07-26 2024-02-01 国立大学法人京都大学 シェディング構造を有する人工受容体
WO2024029617A1 (ja) 2022-08-05 2024-02-08 国立大学法人京都大学 心筋の製造方法
TW202413630A (zh) 2022-08-08 2024-04-01 日商希里歐斯股份有限公司 細胞凝集塊之製造方法
EP4338745A1 (en) 2022-09-14 2024-03-20 Technische Universität Dresden Allogeneic human macrophages for cell therapy
US20240139256A1 (en) 2022-09-30 2024-05-02 FUJIFILM Cellular Dynamics, Inc. Methods for the production of cardiac fibroblasts
WO2024129743A2 (en) 2022-12-13 2024-06-20 Bluerock Therapeutics Lp Engineered type v rna programmable endonucleases and their uses
WO2024163747A2 (en) 2023-02-02 2024-08-08 University Of Rochester Competitive replacement of glial cells
WO2024167814A1 (en) 2023-02-06 2024-08-15 Bluerock Therapeutics Lp Degron fusion proteins and methods of production and use thereof
WO2024192329A1 (en) 2023-03-16 2024-09-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods for producing stable human chondroctyes and their use for promoting cartillage growth and repair
WO2024256530A1 (en) 2023-06-13 2024-12-19 Universiteit Maastricht Improved method for generating kidney organoids
WO2025008763A1 (en) 2023-07-06 2025-01-09 Astrazeneca Ab Modified cell
WO2025038494A1 (en) 2023-08-11 2025-02-20 Tune Therapeutics, Inc. Compositions, systems, and methods for lymphoid cell differentiation using targeted gene activation
WO2025059073A1 (en) 2023-09-11 2025-03-20 Tune Therapeutics, Inc. Epigenetic editing methods and systems for differentiating stem cells
CN118497110A (zh) * 2024-06-11 2024-08-16 广东横琴联合生命科学有限责任公司 一种诱导衰老皮肤成纤维细胞分化为胚胎干细胞的方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097090A1 (en) * 2001-05-31 2002-12-05 Sumitomo Pharmaceuticals Co., Ltd. Genes with es cell-specific expression
JP2004161682A (ja) * 2002-11-13 2004-06-10 Univ Kinki 体細胞核初期化因子
WO2005080598A1 (ja) * 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US70292A (en) * 1867-10-29 Petess
US4650761A (en) * 1981-11-27 1987-03-17 Eli Lilly And Company Method for stabilizing and selecting recombinant DNA containing host cell
US4650764A (en) 1983-04-12 1987-03-17 Wisconsin Alumni Research Foundation Helper cell
US4861719A (en) 1986-04-25 1989-08-29 Fred Hutchinson Cancer Research Center DNA constructs for retrovirus packaging cell lines
US4937190A (en) 1987-10-15 1990-06-26 Wisconsin Alumni Research Foundation Translation enhancer
US5192553A (en) 1987-11-12 1993-03-09 Biocyte Corporation Isolation and preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood and methods of therapeutic use
US6140111A (en) 1987-12-11 2000-10-31 Whitehead Institute For Biomedical Research Retroviral gene therapy vectors and therapeutic methods based thereon
US7070994B2 (en) 1988-03-21 2006-07-04 Oxford Biomedica (Uk) Ltd. Packaging cells
US5591624A (en) 1988-03-21 1997-01-07 Chiron Viagene, Inc. Retroviral packaging cell lines
JP2886547B2 (ja) 1988-07-26 1999-04-26 協和醗酵工業株式会社 ノイラミニダーゼの製造法
JP3082204B2 (ja) 1988-09-01 2000-08-28 ホワイトヘッド・インスティチュート・フォー・バイオメディカル・リサーチ 両栄養性および環境栄養性宿主域を持つ組換え体レトロウイルス
US5266491A (en) 1989-03-14 1993-11-30 Mochida Pharmaceutical Co., Ltd. DNA fragment and expression plasmid containing the DNA fragment
JP3051411B2 (ja) 1989-03-14 2000-06-12 持田製薬株式会社 新規dnaならびにそれを含有する発現プラスミド
JP2897295B2 (ja) 1989-12-14 1999-05-31 味の素株式会社 レトロウィルス高生産用dna構築物及びレトロウィルス高生産用細胞株
US5674980A (en) 1989-12-21 1997-10-07 Biogen Inc Fusion protein comprising tat-derived transport moiety
US5817491A (en) 1990-09-21 1998-10-06 The Regents Of The University Of California VSV G pseusdotyped retroviral vectors
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5834256A (en) 1993-06-11 1998-11-10 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
FR2707091B1 (fr) 1993-06-30 1997-04-04 Cohen Haguenauer Odile Vecteur rétroviral pour le transfert et l'expression de gènes dans des cellules eucaryotes.
US5534423A (en) 1993-10-08 1996-07-09 Regents Of The University Of Michigan Methods of increasing rates of infection by directing motion of vectors
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US6013517A (en) 1994-05-09 2000-01-11 Chiron Corporation Crossless retroviral vectors
US5525735A (en) 1994-06-22 1996-06-11 Affymax Technologies Nv Methods for synthesizing diverse collections of pyrrolidine compounds
US5549974A (en) 1994-06-23 1996-08-27 Affymax Technologies Nv Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof
ES2240980T3 (es) 1994-10-28 2005-10-16 The Trustees Of The University Of Pennsylvania Adenovirus mejorado y metodos de utilizacion del mismo.
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5637456A (en) 1995-02-17 1997-06-10 The University Of Texas, Board Of Regents Rapid test for determining the amount of functionally inactive gene in a gene therapy vector preparation
US5707618A (en) 1995-03-24 1998-01-13 Genzyme Corporation Adenovirus vectors for gene therapy
US5830725A (en) 1995-04-28 1998-11-03 The Board Of Trustees For The Leland Stanford Junior University Rapid, stable high-titre production of recombing retrovirus
US5744320A (en) 1995-06-07 1998-04-28 Promega Corporation Quenching reagents and assays for enzyme-mediated luminescence
DE69637147T2 (de) 1995-07-28 2008-03-06 Marie Curie Cancer Care Transportproteine und deren verwendungen
JP4053595B2 (ja) 1995-09-22 2008-02-27 メディカル・リサーチ・カウンシル 核酸の突然変異誘発におけるまたはそれに関する改良
US5910434A (en) 1995-12-15 1999-06-08 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
FR2751345B1 (fr) 1996-07-16 1998-09-18 Univ Paris Curie Lignees d'encapsidation hautement productrices
US6255071B1 (en) 1996-09-20 2001-07-03 Cold Spring Harbor Laboratory Mammalian viral vectors and their uses
US6025192A (en) 1996-09-20 2000-02-15 Cold Spring Harbor Laboratory Modified retroviral vectors
US6017735A (en) 1997-01-23 2000-01-25 Marie Curie Cancer Care Materials and methods for intracellular transport and their uses
US6416959B1 (en) 1997-02-27 2002-07-09 Kenneth Giuliano System for cell-based screening
WO1999010536A1 (en) 1997-08-22 1999-03-04 Yale University A process to study changes in gene expression in granulocytic cells
JPH11115328A (ja) * 1997-10-16 1999-04-27 Dainippon Printing Co Ltd 熱転写受像シート及びその製造方法
US6835567B1 (en) * 1998-04-14 2004-12-28 Signal Pharmaceuticals, Inc. PNS cell lines and methods of use therefor
US20020174013A1 (en) 1998-04-17 2002-11-21 Viztec Inc., A Florida Corporation Chip card advertising method and system
US6146874A (en) 1998-05-27 2000-11-14 University Of Florida Method of preparing recombinant adeno-associated virus compositions
KR20000006334A (ko) 1998-06-26 2000-01-25 이선경 바이러스코딩염기서열이전혀없는고효율레트로바이러스벡터
US6485959B1 (en) 1998-10-07 2002-11-26 Cedars Sinai Medical Center Cell preconditioning and cryopresevation medium
JP2002527101A (ja) 1998-10-16 2002-08-27 ノバルティス アクチエンゲゼルシャフト ヒストンデアセチラーゼ阻害剤による造血幹細胞への遺伝子形質導入の改良及び自己再生の促進
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US6875607B1 (en) * 1998-11-09 2005-04-05 Es Cell International Pte Ltd Embryonic stem cells
US6376246B1 (en) 1999-02-05 2002-04-23 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
US6153432A (en) 1999-01-29 2000-11-28 Zen-Bio, Inc Methods for the differentiation of human preadipocytes into adipocytes
US6312949B1 (en) 1999-03-26 2001-11-06 The Salk Institute For Biological Studies Regulation of tyrosine hydroxylase expression
US6773920B1 (en) 1999-03-31 2004-08-10 Invitrogen Corporation Delivery of functional protein sequences by translocating polypeptides
AU4952500A (en) 1999-06-01 2000-12-18 Chugai Seiyaku Kabushiki Kaisha Packaging cell
US7015037B1 (en) 1999-08-05 2006-03-21 Regents Of The University Of Minnesota Multiponent adult stem cells and methods for isolation
WO2001015511A2 (en) 1999-09-01 2001-03-08 University Of Pittsburgh Of The Commonwealth System Of Higher Education Identification of peptides that facilitate uptake and cytoplasmic and/or nuclear transport of proteins, dna and viruses
EP1218489B1 (en) 1999-09-24 2009-03-18 Cybios LLC Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US20030161817A1 (en) 2001-03-28 2003-08-28 Young Henry E. Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US6280718B1 (en) 1999-11-08 2001-08-28 Wisconsin Alumni Reasearch Foundation Hematopoietic differentiation of human pluripotent embryonic stem cells
US7544509B2 (en) 2000-01-24 2009-06-09 Mcgill University Method for preparing stem cell preparations
US6395546B1 (en) 2000-02-01 2002-05-28 Neurogeneration, Inc. Generation of dopaminergic neurons from human nervous system stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
IL152741A0 (en) 2000-05-17 2003-06-24 Geron Corp Neural progenitor cell populations
WO2001096532A2 (en) 2000-06-15 2001-12-20 Tanja Dominko Method of generating pluripotent mammalian cells by fusion of a cytoplast fragment with a karyoplast
DE10031179A1 (de) 2000-06-27 2002-01-31 Amaxa Gmbh Verfahren zur Einbringung von Nukleinsäuren und anderen biologisch aktiven Molekülen in den Kern höherer eukaryontischer Zellen mit Hilfe elektrischen Stroms
AU2001280767A1 (en) 2000-07-31 2002-02-13 Active Motif Peptide-mediated delivery of molecules into cells
JP2002065261A (ja) 2000-08-30 2002-03-05 Mitsubishi Kasei Institute Of Life Sciences 生殖細胞の取得方法
ATE324321T1 (de) 2000-08-31 2006-05-15 Edwin Lundgren Steuervorrichtung für einen lenkdrachen an einem boot
EP1379624A2 (en) 2000-11-27 2004-01-14 Yissum Research Development Company Of The Hebrew University Of Jerusalem Transfection of human embryonic stem cells
US20080268054A1 (en) 2000-12-04 2008-10-30 Eugene Bell Dermal derived human stem cells and compositions and methods thereof
KR20030088023A (ko) 2001-01-02 2003-11-15 스템론 인크. 미리 선별된 면역형 및(또는) 유전자형을 갖는 동형접합성간세포 군집의 제조 방법, 그로부터 유래된 이식에 적합한세포, 및 이들을 사용하는 재료 및 방법
CZ20032082A3 (cs) * 2001-01-31 2003-11-12 Interface Biotech A/S Zlepšený způsob kultivace savčích buněk in vitro pro autologní způsoby implantace a transplantace
JP2003009854A (ja) 2001-04-09 2003-01-14 Kyowa Hakko Kogyo Co Ltd エンブリオイドボディ形成方法及びその用途
DE10119901A1 (de) 2001-04-23 2002-10-24 Amaxa Gmbh Schaltungsanordnung zur Einbringung von Nukleinsäuren und anderen biologisch aktiven Molekülen in den Kern höherer eukaryontischer Zellen mit Hilfe elektrischen Stroms
JP4070611B2 (ja) 2001-04-23 2008-04-02 アマクサ アーゲー 電気穿孔法用の緩衝溶液およびその使用を含む方法
WO2003018780A1 (en) 2001-08-27 2003-03-06 Advanced Cell Technology, Inc. De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
WO2003027281A2 (fr) 2001-09-20 2003-04-03 Kyowa Hakko Kogyo Kk Cellules souches totipotentes provenant des tissus intestinaux de muscle squelettique
WO2003027277A1 (fr) 2001-09-21 2003-04-03 Japan Science And Technology Corporation Procede de criblage de facteur de reprogrammation, facteur de reprogrammation crible au moyen de ce procede, procede d'utilisation du facteur de reprogrammation, procede de differenciation de cellules fusionnees non differenciees et procede de construction de cellules, de tissus et d'organes
JP2004248505A (ja) * 2001-09-21 2004-09-09 Norio Nakatsuji 移植抗原の一部または全てを欠除したes細胞由来の未分化な体細胞融合細胞およびその製造
US7588937B2 (en) 2001-10-03 2009-09-15 Wisconsin Alumni Research Foundation Method of in vitro differentiation of neural stem cells, motor neurons and dopamine neurons from primate embryonic stem cells
DE10162080A1 (de) 2001-12-10 2003-06-26 Albrecht Mueller Verfahren zur Herstellung von Stammzellen mit erhöhtem Entwicklungspotential
WO2003055989A2 (en) * 2001-12-21 2003-07-10 Mount Sinai Hospital Cellular compositions and methods of making and using them
EP1471140A4 (en) 2002-01-31 2005-02-16 Asahi Techno Glass Cosporation LIQUID FOR FROZEN STORAGE OF PRIMATE EMBRYONIC STEM CELLS AND FREEZING STORAGE METHOD
KR101176146B1 (ko) * 2002-02-13 2012-08-22 안트로제네시스 코포레이션 산후 포유류 태반으로부터 유래한 배아-유사 줄기 세포와그 세포를 사용한 용도 및 치료방법
ES2198216B1 (es) * 2002-07-02 2005-04-16 Juan Carlos Instituto Cientifico Y Tecnologico De Navarra, S.A.(67%). Medio de cultivo de celulas madre-progenitoras autologas humanas y sus aplicaciones.
US7422736B2 (en) 2002-07-26 2008-09-09 Food Industry Research And Development Institute Somatic pluripotent cells
US20040048297A1 (en) 2002-07-30 2004-03-11 Gene Logic, Inc. Nucleic acid detection assay control genes
AU2003901099A0 (en) 2003-03-11 2003-03-27 Es Cell International Pte Ltd. Methods of inducing differentiation of stem cells
KR100975254B1 (ko) * 2003-03-25 2010-08-11 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 줄기 세포의 분화 유도 및 분화능의 제어
CN1536076A (zh) * 2003-04-09 2004-10-13 中国人民解放军军事医学科学院野战输 成年人骨髓间充质干细胞体外扩增和定向诱导分化为心肌样细胞的方法
US9567591B2 (en) 2003-05-15 2017-02-14 Mello Biotechnology, Inc. Generation of human embryonic stem-like cells using intronic RNA
JPWO2004101775A1 (ja) 2003-05-16 2006-07-13 協和醗酵工業株式会社 新規な成体組織由来の幹細胞およびその用途
WO2005010524A1 (en) 2003-06-04 2005-02-03 Curis, Inc. Stem cell-based methods for identifying and characterizing agents
FR2859219B1 (fr) * 2003-09-02 2005-10-14 Alain Privat Procede de production de neurones a partir de cellules d'une lignee cellulaire
JP2005095027A (ja) 2003-09-22 2005-04-14 Reprocell Inc 細胞の未分化状態マーカープロモーターおよびその利用
AU2004280066A1 (en) 2003-10-09 2005-04-21 Kyowa Hakko Kirin Co., Ltd. Genomically modified cell
US7592177B2 (en) 2003-11-10 2009-09-22 The Scripps Research Institute Compositions and methods for inducing cell dedifferentiation
US7682828B2 (en) 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US20070269790A1 (en) 2003-12-01 2007-11-22 Technion Research & Development Methods of Generating Stem Cells and Embryonic Bodies Carrying Disease-Causing Mutations and Methods of Using same for Studying Genetic Disorders
US20050233446A1 (en) * 2003-12-31 2005-10-20 Parsons Xuejun H Defined media for stem cell culture
EP1734112B1 (en) 2004-03-23 2017-08-23 Toshihiro Akaike Method of proliferating pluripotent stem cell
JP4314372B2 (ja) * 2004-03-30 2009-08-12 国立大学法人京都大学 精巣細胞由来多能性幹細胞の製造方法
US8012747B2 (en) 2004-06-01 2011-09-06 San Diego State University Foundation Expression system
JPWO2006006692A1 (ja) 2004-07-08 2008-05-01 独立行政法人科学技術振興機構 低血清培養で選択的に増殖する動物組織遍在性の分化多能性細胞
WO2006084229A2 (en) 2004-07-15 2006-08-10 Primegen Biotech, Llc Use of nuclear material to therapeutically reprogram differentiated cells
WO2006017476A2 (en) 2004-08-02 2006-02-16 The Research Foundation Of State University Of New York Amino functionalized ormosil nanoparticles as delivery vehicles
JPWO2006035741A1 (ja) 2004-09-29 2008-05-15 伸弥 山中 Es細胞特異的発現遺伝子及びその利用
US20060095319A1 (en) 2004-10-29 2006-05-04 Cardwell Carlzo B Marketing and compensation method
US20060182724A1 (en) 2005-02-15 2006-08-17 Riordan Neil H Method for expansion of stem cells
US20080085555A1 (en) 2005-02-28 2008-04-10 Takayuki Asahara Method For In Vitro Amplification Of Adult Stem Cells
US20070033061A1 (en) 2005-04-05 2007-02-08 Achaogen, Inc. Business methods for commercializing antimicrobial and cytotoxic compounds
WO2007026255A2 (en) 2005-06-22 2007-03-08 Universitetet I Oslo Dedifferentiated cells and methods of making and using dedifferentiated cells
WO2007016566A2 (en) * 2005-08-01 2007-02-08 Nupotential, Llc Production of reprogrammed cells with restored potential
JP2009515515A (ja) 2005-11-11 2009-04-16 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・エディンバラ 細胞の再プログラム化および遺伝子改変
US20090227032A1 (en) 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
BRPI0619794B8 (pt) 2005-12-13 2022-06-14 Univ Kyoto Uso de um fator de reprogramação, agente para a preparação de uma célula-tronco pluripotente induzida a partir de uma célula somática e métodos para preparar uma célula- tronco pluripotente induzida método e para preparar uma célula somática e uso de células-tronco pluripotentes induzidas
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
CN101389761A (zh) 2006-02-27 2009-03-18 银怎株式会社 使用bmi-1使星形胶质细胞去分化成为神经干细胞
WO2008038148A2 (en) 2006-05-11 2008-04-03 Andrew Craig Boquest Stem cells and methods of making and using stem cells
US20090028835A1 (en) 2006-09-08 2009-01-29 Michigan State University Human transcriptome corresponding to human oocytes and use of said genes or the corresponding polypeptides to trans-differentiate somatic cells
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
US20080132803A1 (en) 2006-11-30 2008-06-05 Hyman Friedlander Method and system for doing business by mining the placental-chord complex
US7892830B2 (en) 2007-01-17 2011-02-22 Wisconsin Alumni Research Foundation Clonal culture of human pluripotent stem cells
US8158415B2 (en) 2007-02-27 2012-04-17 Procell Therapeutics Inc. Combined use of cell permeable Nanog and Oct4 for increasing self-renewal and suppressing differentiation of stem cells
WO2008105566A1 (en) 2007-02-27 2008-09-04 Korea Stem Cell Bank System for providing stem cell services using internet and method thereof
EP3399025A1 (en) 2007-03-23 2018-11-07 Wisconsin Alumini Research Foundation Somatic cell reprogramming
RU2502799C2 (ru) 2007-04-07 2013-12-27 Уайтхед Инститьют Фор Биомедикал Рисёч Способ перепрограммирования соматических клеток
JP2010528613A (ja) 2007-05-29 2010-08-26 クリストファー ビー. リード, 多能細胞集団を産生する方法およびその使用
WO2008151058A2 (en) 2007-05-30 2008-12-11 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
US20120282229A1 (en) 2007-08-01 2012-11-08 Christian Kannemeier Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
EP2190976A4 (en) 2007-08-10 2010-10-20 Univ Dayton METHOD FOR PRODUCING PLURIPOTENTAL STEM CELL LENGTH CELLS
US9102919B2 (en) 2007-08-31 2015-08-11 Whitehead Institute For Biomedical Research WNT pathway stimulation in reprogramming somatic cells with nuclear reprogramming factors
EP2096169B1 (en) 2007-10-31 2020-11-18 Kyoto University Nuclear reprogramming method
US20110151447A1 (en) 2007-11-06 2011-06-23 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells
WO2009067563A1 (en) 2007-11-19 2009-05-28 The Regents Of The University Of California Generation of pluripotent cells from fibroblasts
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
KR101532442B1 (ko) 2007-12-10 2015-06-29 고쿠리츠 다이가쿠 호진 교토 다이가쿠 효율적인 핵 초기화 방법
US20090191171A1 (en) 2008-01-18 2009-07-30 Yupo Ma Reprogramming of Differentiated Progenitor or Somatic Cells Using Homologous Recombination
KR101481164B1 (ko) 2008-01-30 2015-01-09 주식회사 미래셀바이오 체세포 유래 다능성 줄기세포의 제조 방법
WO2009102983A2 (en) 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
EP2268796A1 (en) 2008-03-17 2011-01-05 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Vectors and methods for generating vector-free induced pluripotent stem (ips) cells using site-specific recombination
US9534205B2 (en) 2008-03-17 2017-01-03 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
CN101250502A (zh) 2008-04-01 2008-08-27 中国科学院上海生命科学研究院 一种诱导的多潜能干细胞的制备方法
CN101550406B (zh) 2008-04-03 2016-02-10 北京大学 制备多潜能干细胞的方法,试剂盒及用途
US20100021437A1 (en) 2008-04-07 2010-01-28 The McLean Hospital Corporation Whitehead Institute for Biomedical Research Neural stem cells derived from induced pluripotent stem cells
JP5346925B2 (ja) 2008-05-02 2013-11-20 国立大学法人京都大学 核初期化方法
EP2128245A1 (en) 2008-05-27 2009-12-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Generation of induced pluripotent stem (iPS) cells
AU2009256202B2 (en) 2008-06-04 2014-07-03 FUJIFILM Cellular Dynamics, Inc. Methods for the production of IPS cells using non-viral approach
AU2008360135A1 (en) 2008-07-31 2010-02-04 Gifu University Efficient method for establishing induced pluripotent stem cells
US20100062534A1 (en) 2008-09-09 2010-03-11 The General Hospital Corporation Inducible lentiviral vectors for reprogramming somatic cells
WO2010048567A1 (en) 2008-10-24 2010-04-29 Wisconsin Alumni Research Foundation Pluripotent stem cells obtained by non-viral reprogramming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097090A1 (en) * 2001-05-31 2002-12-05 Sumitomo Pharmaceuticals Co., Ltd. Genes with es cell-specific expression
JP2004161682A (ja) * 2002-11-13 2004-06-10 Univ Kinki 体細胞核初期化因子
WO2005080598A1 (ja) * 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Shin'ya YAMANAKA et al., "Mouse Sen'i Gasaibo Kara Yudo Tanosei Kansaibo о Tsukuru Tanpakushitsu Kakusan Koso", 01 December, 2006 (01.12.06), vol. 51, No.15, pages 2346 to 2351 *
TAKAHASHI, K. et al., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, No. 4, p. 663-76 *
TOKUZAWA,Y. et al., Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development, Mol. Cell Biol, 2003, vol. 23, No. 8, p. 2699-708 *

Also Published As

Publication number Publication date
JP5603282B2 (ja) 2014-10-08
PT1970446E (pt) 2011-09-01
EP1970446B1 (en) 2011-08-03
EP2206778A1 (en) 2010-07-14
JP2011188860A (ja) 2011-09-29
MX352337B (es) 2017-11-21
JP5248371B2 (ja) 2013-07-31
DK1970446T3 (da) 2011-10-24
JP4411362B2 (ja) 2010-02-10
CN101864392B (zh) 2016-03-23
JP2009165479A (ja) 2009-07-30
HK1125131A1 (en) 2009-07-31
EP3418297A1 (en) 2018-12-26
CN103773804A (zh) 2014-05-07
NZ569530A (en) 2011-07-29
JP4411363B2 (ja) 2010-02-10
JP5943324B2 (ja) 2016-07-05
EP1970446A4 (en) 2009-04-08
EP3418297B1 (en) 2023-04-05
CN103113463B (zh) 2015-02-18
CA2632142A1 (en) 2007-06-21
US20090068742A1 (en) 2009-03-12
EA014166B1 (ru) 2010-10-29
EP2206778B1 (en) 2018-08-01
EP4223769A2 (en) 2023-08-09
CN101356270B (zh) 2014-02-12
EA200870046A1 (ru) 2009-12-30
EP1970446A1 (en) 2008-09-17
KR20080095852A (ko) 2008-10-29
JP2009165481A (ja) 2009-07-30
JP2009165478A (ja) 2009-07-30
CN101864392A (zh) 2010-10-20
US8048999B2 (en) 2011-11-01
IL191903A0 (en) 2008-12-29
WO2007069666A1 (ja) 2007-06-21
EP4223769A3 (en) 2023-11-01
JP5467223B2 (ja) 2014-04-09
EP2206724A1 (en) 2010-07-14
JP2009165480A (ja) 2009-07-30
AU2006325975A1 (en) 2007-06-21
CN103113463A (zh) 2013-05-22
JPWO2007069666A1 (ja) 2009-05-21
BRPI0619794B1 (pt) 2020-09-15
CN101356270A (zh) 2009-01-28
EA201000858A1 (ru) 2011-02-28
IL191903A (en) 2011-11-30
EP2208786A1 (en) 2010-07-21
JP5098028B2 (ja) 2012-12-12
BRPI0619794B8 (pt) 2022-06-14
EP2208786B1 (en) 2018-08-01
MX2008007654A (es) 2008-09-26
ES2367525T3 (es) 2011-11-04
ZA200804673B (en) 2009-11-25
JP4183742B1 (ja) 2008-11-19
KR101420740B1 (ko) 2014-07-17
JP2008283972A (ja) 2008-11-27
CA2632142C (en) 2013-08-06
AU2006325975B2 (en) 2011-12-08
BRPI0619794A2 (pt) 2011-10-18
JP2014000083A (ja) 2014-01-09
HK1125967A1 (en) 2009-08-21

Similar Documents

Publication Publication Date Title
EA018039B1 (ru) Ядерный фактор перепрограммирования
JP7078673B2 (ja) 条件的に不死化された長期幹細胞ならびにそのような細胞を作製する方法および使用する方法。
JP6934501B2 (ja) 体細胞の再プログラミング
WO2009096049A1 (ja) 人工多能性幹細胞由来分化細胞
US20220143102A1 (en) Methods for enhancing lifespan and/or treating cellular proliferative disorders by transplantation
KR102117894B1 (ko) 교차분화세포의 만능성 상태 경유 확인방법

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KG MD TJ TM