WO2018235583A1 - 多能性幹細胞の分化能の予測方法及びそのための試薬 - Google Patents
多能性幹細胞の分化能の予測方法及びそのための試薬 Download PDFInfo
- Publication number
- WO2018235583A1 WO2018235583A1 PCT/JP2018/021430 JP2018021430W WO2018235583A1 WO 2018235583 A1 WO2018235583 A1 WO 2018235583A1 JP 2018021430 W JP2018021430 W JP 2018021430W WO 2018235583 A1 WO2018235583 A1 WO 2018235583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chd7
- cells
- pluripotent stem
- differentiation
- stem cells
- Prior art date
Links
- 210000001778 pluripotent stem cell Anatomy 0.000 title claims abstract description 242
- 230000004069 differentiation Effects 0.000 title claims abstract description 226
- 238000000034 method Methods 0.000 title claims abstract description 90
- 239000003153 chemical reaction reagent Substances 0.000 title claims description 19
- 102100038215 Chromodomain-helicase-DNA-binding protein 7 Human genes 0.000 claims abstract description 250
- 230000014509 gene expression Effects 0.000 claims abstract description 174
- 101000883739 Homo sapiens Chromodomain-helicase-DNA-binding protein 7 Proteins 0.000 claims abstract description 24
- 210000004027 cell Anatomy 0.000 claims description 272
- 239000002609 medium Substances 0.000 claims description 109
- 210000001671 embryonic stem cell Anatomy 0.000 claims description 40
- 108090000623 proteins and genes Proteins 0.000 claims description 40
- 230000000638 stimulation Effects 0.000 claims description 35
- 230000004044 response Effects 0.000 claims description 31
- 230000001747 exhibiting effect Effects 0.000 claims description 27
- 102000004169 proteins and genes Human genes 0.000 claims description 22
- 210000004263 induced pluripotent stem cell Anatomy 0.000 claims description 21
- 108020004707 nucleic acids Proteins 0.000 claims description 20
- 102000039446 nucleic acids Human genes 0.000 claims description 20
- 150000007523 nucleic acids Chemical class 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 11
- 239000006143 cell culture medium Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 5
- 239000001963 growth medium Substances 0.000 abstract description 12
- 239000003550 marker Substances 0.000 abstract description 12
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 101710170304 Chromodomain-helicase-DNA-binding protein 7 Proteins 0.000 description 237
- 108020004999 messenger RNA Proteins 0.000 description 76
- 102000001708 Protein Isoforms Human genes 0.000 description 74
- 108010029485 Protein Isoforms Proteins 0.000 description 74
- 210000002242 embryoid body Anatomy 0.000 description 43
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 34
- 238000012258 culturing Methods 0.000 description 28
- 230000015572 biosynthetic process Effects 0.000 description 24
- 108020004459 Small interfering RNA Proteins 0.000 description 22
- 239000000523 sample Substances 0.000 description 21
- 101150004430 CHD7 gene Proteins 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 238000003556 assay Methods 0.000 description 19
- 230000011987 methylation Effects 0.000 description 19
- 238000007069 methylation reaction Methods 0.000 description 19
- 238000007847 digital PCR Methods 0.000 description 18
- 210000000130 stem cell Anatomy 0.000 description 18
- 238000001890 transfection Methods 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 17
- 108020004414 DNA Proteins 0.000 description 16
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 15
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 15
- 210000002744 extracellular matrix Anatomy 0.000 description 15
- 239000006166 lysate Substances 0.000 description 12
- 238000012423 maintenance Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- 102000047939 human CHD7 Human genes 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 210000004748 cultured cell Anatomy 0.000 description 10
- 238000001262 western blot Methods 0.000 description 10
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 9
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 9
- 230000003321 amplification Effects 0.000 description 8
- 239000002299 complementary DNA Substances 0.000 description 8
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 230000003828 downregulation Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000003118 sandwich ELISA Methods 0.000 description 8
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 230000035755 proliferation Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000003757 reverse transcription PCR Methods 0.000 description 7
- 230000005748 tumor development Effects 0.000 description 7
- 102000017589 Chromo domains Human genes 0.000 description 6
- 108050005811 Chromo domains Proteins 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 239000006285 cell suspension Substances 0.000 description 6
- 230000002354 daily effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000003018 immunoassay Methods 0.000 description 6
- 230000000984 immunochemical effect Effects 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 210000004602 germ cell Anatomy 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 108091006112 ATPases Proteins 0.000 description 4
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 239000012124 Opti-MEM Substances 0.000 description 4
- 239000013614 RNA sample Substances 0.000 description 4
- 238000004115 adherent culture Methods 0.000 description 4
- 210000002459 blastocyst Anatomy 0.000 description 4
- 239000013592 cell lysate Substances 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 210000001654 germ layer Anatomy 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 238000000513 principal component analysis Methods 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 230000007651 self-proliferation Effects 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 3
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000011304 droplet digital PCR Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000003716 mesoderm Anatomy 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 230000008672 reprogramming Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- -1 small molecule compounds Chemical class 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102100038885 Histone acetyltransferase p300 Human genes 0.000 description 2
- 101000882390 Homo sapiens Histone acetyltransferase p300 Proteins 0.000 description 2
- 101001094700 Homo sapiens POU domain, class 5, transcription factor 1 Proteins 0.000 description 2
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108060004795 Methyltransferase Proteins 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 101150012532 NANOG gene Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 208000012868 Overgrowth Diseases 0.000 description 2
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 2
- 108010031318 Vitronectin Proteins 0.000 description 2
- 102100035140 Vitronectin Human genes 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000007640 basal medium Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000002659 cell therapy Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 230000013020 embryo development Effects 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000020619 endoderm development Effects 0.000 description 2
- 230000001973 epigenetic effect Effects 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- WCKQPPQRFNHPRJ-UHFFFAOYSA-N 4-[[4-(dimethylamino)phenyl]diazenyl]benzoic acid Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=C(C(O)=O)C=C1 WCKQPPQRFNHPRJ-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 239000012583 B-27 Supplement Substances 0.000 description 1
- 102100022480 Cadherin-20 Human genes 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 102100031235 Chromodomain-helicase-DNA-binding protein 1 Human genes 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 102000003844 DNA helicases Human genes 0.000 description 1
- 108090000133 DNA helicases Proteins 0.000 description 1
- 101710188220 DNA-binding protein 7 Proteins 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 240000008168 Ficus benjamina Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000899410 Homo sapiens Cadherin-19 Proteins 0.000 description 1
- 101000899459 Homo sapiens Cadherin-20 Proteins 0.000 description 1
- 101000935111 Homo sapiens Cadherin-7 Proteins 0.000 description 1
- 101000777047 Homo sapiens Chromodomain-helicase-DNA-binding protein 1 Proteins 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 239000012098 Lipofectamine RNAiMAX Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 101150033052 MAS5 gene Proteins 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 239000012580 N-2 Supplement Substances 0.000 description 1
- 102100037369 Nidogen-1 Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- CGNLCCVKSWNSDG-UHFFFAOYSA-N SYBR Green I Chemical compound CN(C)CCCN(CCC)C1=CC(C=C2N(C3=CC=CC=C3S2)C)=C2C=CC=CC2=[N+]1C1=CC=CC=C1 CGNLCCVKSWNSDG-UHFFFAOYSA-N 0.000 description 1
- 101100344462 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) YDJ1 gene Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102000007000 Tenascin Human genes 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 108010076089 accutase Proteins 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000006995 beta-Glucosidase Human genes 0.000 description 1
- 108010047754 beta-Glucosidase Proteins 0.000 description 1
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000003516 cell number determination Methods 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000008143 early embryonic development Effects 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 108060002895 fibrillin Proteins 0.000 description 1
- 102000013370 fibrillin Human genes 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 238000003633 gene expression assay Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000006607 hypermethylation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- KNJDBYZZKAZQNG-UHFFFAOYSA-N lucigenin Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.C12=CC=CC=C2[N+](C)=C(C=CC=C2)C2=C1C1=C(C=CC=C2)C2=[N+](C)C2=CC=CC=C12 KNJDBYZZKAZQNG-UHFFFAOYSA-N 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000003847 mesoderm development Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 108010008217 nidogen Proteins 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 210000004681 ovum Anatomy 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6881—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0607—Non-embryonic pluripotent stem cells, e.g. MASC
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0696—Artificially induced pluripotent stem cells, e.g. iPS
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5073—Stem cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6875—Nucleoproteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
Definitions
- the present invention relates to a method of predicting the differentiation ability of pluripotent stem cells, and a reagent and a kit therefor.
- the present invention also relates to a method of evaluating a pluripotent stem cell culture medium, and a reagent and a kit therefor.
- the invention further relates to methods of reducing or eliminating differentiation resistance of pluripotent stem cells.
- Embryonic stem cells and induced pluripotent stem cells (iPSCs) have two features: the ability to proliferate in an undifferentiated state (the ability to grow autologous) and the ability to differentiate into three germ layers in response to differentiation stimuli ( And pluripotent stem cells (PSCs).
- differentiation ability can not be verified until differentiation stimulus is externally applied.
- the mechanism by which PSC arrests self-proliferation and switches to differentiation initiation and the series of processes are extremely important for understanding PSC biology, but has not been fully elucidated yet. .
- the group of Okano and Yamanaka et al. Disclosed a method for selecting iPSC-derived differentiated cells with reduced tumor development risk, using secondary neurosphere (SNS) derived from iPSC and using the expression of the Nanog gene in the SNS as an indicator (see Patent Document 1). Furthermore, the same group considered that differentiation resistance of iPSCs is more specific to iPSC clones than by differentiation induction conditions, and differentiation resistance of the original iPSCs using the expression of the Nanog gene in iPSC-derived SNS as an index Disclosed is a method of evaluating the sex (Patent Document 2).
- PSCs show differentiation resistance when cells acquire genetic abnormalities during long-term culture or during the reprogramming process in the case of iPSCs. Genetic abnormalities can be timely tested using modern sequencing techniques, and PSCs and PSC derivatives used for cell therapy frequently undergo genetic testing to eliminate genetically abnormal cells. Can. However, even PSCs with normal karyotypes may show differentiation resistance due to epigenetic modification under culture conditions, and periodic PSCs may be obtained by embryoid body (EB) formation assay or cytokine-induced differentiation assay. It is necessary to test the differentiation ability of to check the quality of PSC.
- EB embryoid body
- PSC can be obtained from commercially available Essential 8 medium (Thermo Fisher Scientific, hereinafter referred to as "Es8") or Stem-Partner (registered trademark) Human iPS / ES cells medium (hereinafter referred to as "SPM" from Far East Pharmaceutical Industry)
- Es8 Essential 8 medium
- SPM Stem-Partner
- SPM Human iPS / ES cells medium
- EB is formed, but the PSC is transferred to a commercially available ReproFF2 medium (Reprocell, hereinafter also referred to as "RFF2") and cultured for 5 passages or more , Lost the ability to differentiate, did not form EB.
- RFF2 ReproFF2 medium
- the present inventors analyzed Chromodomain Helicacase DNA binding Protein 7 as one of the candidate genes related to the reversible change in differentiation ability of this PSC by analysis by principal component analysis (hereinafter also referred to as PCA) and GeneChip analysis. (Hereafter, it is also called "CHD7.”).
- PCA principal component analysis
- CHD7 GeneChip analysis
- PSC can proliferate in an undifferentiated state if CHD7 expression does not exceed a certain upper limit, but will not respond to differentiation stimulation if expression decreases below the threshold level, and CHD7 between the upper limit and the threshold It was found that PSCs having an expression range maintain the properties that can respond to differentiation stimulation. From the above results, the present inventors have confirmed that the differentiation ability / differentiation resistance of PSC can be predicted using the expression level of CHD7 of PSC in an undifferentiated state as an indicator, and the present invention has been accomplished.
- the present invention is as follows. [1] A method for predicting the differentiation ability of pluripotent stem cells, which comprises measuring the expression level of CHD7 in human pluripotent stem cells. [2] The human pluripotent stem cell having an expression level of CHD7 of at least 1,500 copies in 5 ng of total RNA is predicted to exhibit differentiation ability in response to differentiation stimulation, according to [1]. Method. [3] The method according to [2], wherein the expression level of CHD7 is 2710 copies or more in 5 ng of total RNA.
- the expression level of the CHD7 is the expression level in human pluripotent stem cells cultured for 5 or more passages using Essential 8 medium or Stem-Partner® Human iPS / ES cells medium, [2] or The method described in [3].
- [5] The method according to any one of [1] to [4], wherein the human pluripotent stem cell is an embryonic stem cell or an induced pluripotent stem cell.
- [6] A method for evaluating a pluripotent stem cell culture medium, comprising measuring the expression level of CHD7 in human pluripotent stem cells.
- the method according to [6] wherein the human pluripotent stem cells are human pluripotent stem cells cultured for 5 or more passages in a test medium.
- the test medium is evaluated to be capable of maintaining human pluripotent stem cells to exhibit differentiation ability in response to differentiation stimulation
- the method according to [6] or [7] characterized in that [9]
- the method according to [8], wherein the expression level of CHD7 is 2710 copies or more in 5 ng of total RNA.
- the method according to any one of [6] to [9], wherein the human pluripotent stem cells are embryonic stem cells or artificial pluripotent stem cells.
- a reagent or kit for predicting the differentiation ability of human pluripotent stem cells and / or evaluating a medium for human pluripotent stem cells which comprises a substance capable of detecting CHD7 expression.
- a differentiation inducer of human pluripotent stem cells which comprises a nucleic acid encoding CHD7.
- Differentiation of human pluripotent stem cells whose expression level of CHD7 is at a protein level more than twice that of CHD7 protein in human pluripotent stem cells showing differentiation resistance in response to differentiation stimulation The method according to [1], wherein the method is predicted to show an ability.
- the expression level of CHD7 is the expression level in human pluripotent stem cells cultured for at least 5 passages using Essential 8 medium or Stem-Partner® Human iPS / ES cells medium, [13] Method described. [15] The method according to [13] or [14], wherein the human pluripotent stem cells exhibiting differentiation resistance is a human pluripotent stem cell cultured for 5 or more passages in ReproFF2 medium.
- whether or not human pluripotent stem cells (PSCs) exhibit differentiation ability in response to differentiation stimulation can be predicted in an undifferentiated state before adding differentiation stimulation.
- culture conditions suitable for maintaining human pluripotent stem cells in the state of retaining the ability to differentiate in response to differentiation stimulation can be found.
- by measuring the expression level of CHD7 in human pluripotent stem cells it is possible to evaluate a medium suitable for culturing human pluripotent stem cells.
- differentiation resistance can be reduced or eliminated by raising the expression level of CHD7 in human pluripotent stem cells, particularly in the iPSC population (selecting cells with high expression).
- FIG. 1 is a view showing that the differentiation ability of PSC was changed by culture conditions.
- the KhES-1 cells in a single cell suspension are seeded on a dish coated with rhVitronectin-N (Thermo Fisher Scientific, hereinafter also referred to as "VNT-N"), and Essential 8 medium (hereinafter "Es8").
- the cells were cultured for 5 passages (upper left photo). Cells were then harvested for embryoid body (EB) formation (lower left picture) or transferred to ReproFF2 medium (RFF2) (middle upper picture).
- the KhES-1 cells were subcultured for 5 passages, and the cells were collected for EB formation assay (middle lower photograph) or transferred to Es8 again (upper right photograph).
- FIG. 2 shows that the potential of iPSCs for EB formation changes depending on culture conditions. IPSCs (PFX # 9) in single cell suspension were seeded on VNT-N coated dishes and subcultured with Es8 for 5 passages (upper left photograph).
- PFX # 9 cells were subcultured for 5 passages and recovered for EB formation assay (middle lower picture) or transferred to Es8 again (upper right picture). After 5 passages of PFX # 9 cells, EB formation assay was performed (lower right picture).
- the photograph (top) of the PFX # 9 culture using either Es8 or RFF2 at day 1 of culture and the photograph of EB at day 14 in the EB formation assay (bottom) are shown, respectively.
- the gene expression profile of the cells in the above-mentioned culture conditions was determined by qRT-PCR scorecard panel and shown below the photograph (scale bar: 1.0 mm).
- FIG. 3 is a diagram comparing methylation of PSC cultured under various conditions.
- A The methylation status of cells was determined with the Illumina Human Methylation Bead Chip.
- Lanes # 1 to 3 iPSCs cultured in RFF2 medium (PFX # 9), lanes # 4 to 6: ESCs cultured with RFF2 from six independent experiments (KhES-1), lanes # 7 : PFX # 9 cells using SPM, lane # 8: KhES-1 cells using SPM, lane # 9: H9 ESC using SPM, lane # 10: PFX # 9 cells using Es8, lane # 11 12: Shows the results of H9 with Es8 from 6 independent experiments.
- FIG. 4 shows qRT-PCR gene expression of CHD7 and self-growth factors POU5F1, SOX2, NANOG and EP300 in KhES-1 culture using Es8 (P5 and P15) or RFF2 medium (P9 and P18) It is the figure determined by. The relative amount was shown in the bar graph by setting the expression amount of P5 using Es8 to 1. Passage (P) number added to the bar.
- FIG. 5 is a schematic representation of CHD7 isoform 1, isoform 2 and isoform X4 and mRNA transcripts.
- B The positions of CHD7 isoform 1 having functional domain, isoform 2 and isoform X4 and the primer set of PCR are shown.
- FIG. 6 is a diagram in which CHD7 isoform is detected by western blotting.
- Whole cell lysate 5.3 ⁇ g from KhES-1 cells cultured with Es8 (P11) or RFF2 (P21) was applied to each lane.
- An antibody to human CHD7 was used to detect CHD7 isoform 1 (expected mass 336 kDa), isoform 2 (110 kDa) and isoform X4 (183 kDa). The signal was visualized by horseradish peroxidase.
- FIG. 7 shows downregulation of CHD7 by transfection of siCHD7. A.
- VTN-N rhVitronectin-N (recombinant human vitronectin-N) (hereinafter also referred to as “VTN-N”), and on day ⁇ 1 Culture was performed using Es8. Cells were transfected with small double stranded interfering RNA (siCHD7) or nonspecific control siRNA (mock) for CHD7 (day 0).
- siCHD7 small double stranded interfering RNA
- mock nonspecific control siRNA
- cells were transfected with siCHD7 or control siRNA (mock) after medium (Es8) exchange.
- Medium was changed every 2 days (days 2 and 4).
- Cells were harvested 42 hours (day 2), 72 hours and 96 hours after transfection of siRNA for cell counting and determination of gene expression by qRT-PCR.
- ESC was cultured using Es8. Medium change was performed daily, and passaging was performed every three days to maintain the undifferentiated state.
- FIG. 10 shows non-transfected normal culture KhES-1 cells (upper panel, changing the medium daily), siCHD7 transfected KhES-1 cells (day 2, 3 and 4). Middle panel, change media every 2 days) and control siRNAs into KhES-1 cells (mock) (lower panel, change media every 2 days).
- the gene expression profile determined by the qRT-PCR scorecard panel of KhES-1 is shown below each picture (scale bar: 1 mm).
- FIG. 6 shows that upregulation of CHD7 isoform 2 induces “spontaneous” differentiation in ESCs cultured with RFF2.
- A. Illustrates the protocol for cell culture and transfection of mCHD7.
- mCHD7 or control mRNA was transfected into KhES-1 cells (total 2 times). The cells were passaged on the second day, replated at 6 ⁇ 10 5 cells / well in 6-well plates and cultured for another 24 hours.
- FIG. 12 shows untransfected KhES-1 cells (upper panel) and mCHD7 transfected KhES-1 cells cultured with RFF2 medium on days 1, 2 and 3 (upper panel). Middle panel), a photograph of KhES-1 cells (lower panel, mock) transfected with control mRNA. The gene expression profile determined by qRT-PCR scorecard panel is shown below the photograph.
- FIG. 13 shows that transfection of CHD7 dominant negative (DN) mRNA transcripts inhibits or reduces differentiation ability and cell proliferation in ESCs.
- A. Illustrates the protocol for transfection of the CHD7 DN mRNA transcript and EB formation assay.
- CHD7 DN1 is a transcript of chromodomain mRNA
- CHD7 DN2 is a transcript of SANT-SLIDE domain mRNA (FIG. 5B).
- Transcripts were transfected into KhES-1 cells on day 0, and after 24 hours, cells were transferred to low adhesion plates and subsequently cultured for 24 hours for EB formation in Es6 medium containing ROCK Inhibitor (RI).
- CHD7 DN1 and CHD7 DN2 expression levels were determined by qRT-PCR.
- C Untransfected KhES-1 cells, CHD7 DN1-transfected KhES-1 cells, CHD7 DN2-transfected KhES-1 cells, CHD7 DN1 and CHD7 DN2-transfected KhES-1 cells, and mock It is a photograph on the 3rd day of EB from the khES-1 cell which transfected with mRNA.
- FIG. 14 shows that in culture using Es8, ESCs overexpressing CHD7 could not be generated.
- CHD7 Illustrates the protocol for cell culture and transfection of CHD7 isoform 2.
- FIG. 15 shows that downregulation of CHD7 disrupted the growth of ESCs cultured with Es8.
- A. Illustrates the protocol for siCHD7 transfection.
- FIG. 16 is a gene expression profile of human CHD7 based on GeneChip data, and shows that CHD7 levels mediate differentiation ability of PSC.
- FIG. 17 shows the copy number of CHD7 in PSCs before EB formation and the gene expression profile of EB at day 14.
- FIG. 18 shows the copy number of CHD7 mRNA and the gene expression profile of EB on day 14 in iPSCs in which the copy number of CHD7 mRNA is lowered.
- 201B7 or PFX # 9 cells were cultured in single cells without feeder cells. The overgrowth condition was deliberately used to lower the copy number of CHD7 mRNA.
- the culture medium used Es8.
- the copy number of CHD7 mRNA before EB formation was detected by digital PCR.
- the gene expression profile of day 14 EB derived from each cell was determined by qRT-PCR scorecard panel and shown as a bar graph (P: passage number).
- FIG. 19 shows the expression level of CDH7 protein in PSC cultured under various culture conditions.
- P1 represents H9 passaged with Es8 for 17 passages
- P2 represents KhES-1 passaged with Es8 for 10 passages
- N represents KhES-1 passaged with RFF2 for 11 passages.
- N2 (negative control) is an enrichment of Lysate of H9 cells passaged 17 times with RFF2. Lysate is prepared after culturing single cells in feeder-free cells in a dish coated with VTN-N and prepared for all cells, and Lysate of H9 cells cultured for 17 passages with Es8 is enriched. The concentration of primary antibody and secondary antibody was changed as 1000 units / mL), and it was shown as a bar graph as a relative value.
- FIG. 20 is an asymptote determined from protein concentration and mRNA copy number.
- the present invention provides a method for predicting the differentiation ability of pluripotent stem cells (hereinafter also referred to as “the prediction method of the present invention”), which comprises measuring the expression level of CHD7 in human pluripotent stem cells (hPSCs).
- the "differentiation ability" of pluripotent stem cells means the ability of pluripotent stem cells to differentiate into tridermal lineages or specific cell lineages spontaneously or in response to specific differentiation stimuli.
- human pluripotent stem cells having the ability to differentiate into cell lineages corresponding to a specific differentiation stimulus are predicted and selected in response to a specific differentiation stimulus.
- Such differentiation stimulation is not particularly limited as long as PSC is capable of inducing an undifferentiated state to induce any differentiated cells, and the directionality of the differentiation is known. Examples include culture conditions used for EB formation assay and cytokine-induced differentiation assay in the examples.
- expression level of CHD7 may mean either the expression level of the CHD7 gene or the expression level of the CHD protein, unless otherwise specified.
- the present invention is based, at least in part, on the discovery that there is an upper limit, but no lower limit, on CHD7 expression levels required for maintenance of undifferentiated hPSCs, and that the upper limit is different depending on culture conditions.
- the expression level of CHD7 in hPSCs exceeds the upper limit, hPSCs also spontaneously start differentiation in PSC maintenance medium, and the culture system can no longer support the proliferation of differentiated cells.
- the expression level of CHD7 in hPSCs falls below the threshold, hPSCs can not show sufficient differentiation ability in response to differentiation stimulation, and can be maintained in an undifferentiated state. Therefore, in order for hPSCs to show differentiation ability in response to differentiation stimulation, it is necessary that the expression level of CHD7 in the PSCs be moderate (that is, below the upper limit but above the above threshold). .
- the upper limit of the CHD7 expression level necessary for maintenance of undifferentiated hPSCs is considered to be different depending on the culture conditions, but under each culture condition, if the CHD7 expression level exceeds the upper limit, hPSCs spontaneously Since differentiation is initiated and maintenance and amplification of the PSC becomes impossible under the culture conditions, hPSCs do not spontaneously differentiate unless the upper limit of the culture conditions is exceeded. Therefore, the upper limit of the CHD7 expression level required for maintenance of undifferentiated hPSCs under various culture conditions need not be determined here.
- a threshold of the CHD7 expression level necessary for hPSCs to show differentiation ability in response to differentiation stimulation for example, when measuring the expression level of CHD7 gene by quantitative digital PCR analysis, for example, total RNA In 5 ng, it is 2710 copies or more.
- feeder cells free on a dish coated with extracellular matrix for example, 1502 copies or more and 1,500 copies or more in 5 ng of total RNA.
- hPSCs are ESCs and are cultured with Small Cell Clumps with feeder cells, for example, dishes coated with at least 2710 copies and at least 2120 copies of extracellular matrix, feeder cells free, and single cells
- hPSCs are iPSCs
- feeder cells by Small Cell Clumps method, for example, 3080 copies or more, 2280 copies or more, in dishes coated with extracellular matrix
- feeder cells are free and are cultured in single cells, for example, 1502 copies or more and 1500 copies or more can be mentioned, but the invention is not limited thereto.
- the threshold value is, for example, 2.0 times or more, 3.0 times or more, 4.0 times or more as compared to the CHD7 protein concentration in human pluripotent stem cells showing differentiation resistance.
- Examples of human pluripotent stem cells exhibiting differentiation resistance include human pluripotent stem cells cultured for 5 or more passages in ReproFF2 medium.
- the threshold value is, for example, 90.3% or less, 90.2% or less, 90% or less, 99.1% or less as compared to the CHD7 protein concentration in human pluripotent stem cells exhibiting normal differentiation ability. %, 88.3% or less, 87.0% or less, 85.8% or less, 85% or less, 83.4% or less, 80.2% or less, 80% or less, 75% or less, 70% or less, 50% or less.
- human pluripotent stem cells exhibiting normal differentiation ability include human pluripotent stem cells cultured for 5 or more passages in Es8 or SPM medium.
- the threshold may be determined in consideration of, for example, the expression level of the CHD7 gene measured by quantitative digital PCR analysis.
- the threshold value in consideration of the expression level of the CHD7 gene is, for example, two times or more, three times or more, four times or more, five times or more, compared to the CHD7 protein concentration in human pluripotent stem cells showing differentiation resistance. 10 times or more is mentioned.
- Examples of human pluripotent stem cells exhibiting differentiation resistance include human pluripotent stem cells cultured for 5 or more passages in ReproFF2 medium.
- the threshold value in the case similar to the above, for example, 50% or less, 70% or less, 75% or less, 80% or less as compared to the CHD7 protein concentration in human pluripotent stem cells exhibiting normal differentiation ability , 90% or less.
- human pluripotent stem cells exhibiting normal differentiation ability include human pluripotent stem cells cultured for 5 or more passages in Es8 or SPM medium.
- the CHD7 protein concentration may be a value obtained by directly measuring the CHD7 protein concentration in Lysate of cultured cells, or may be a relative value to a standard by using Lysate of cultured cells as a standard.
- the cultured cells may be stem cells exhibiting differentiation resistance, or may be stem cells exhibiting normal differentiation ability, and the Lysate may be concentrated or not concentrated. It is also good.
- human pluripotent stem cells capable of predicting differentiation ability have “self-proliferation ability” capable of proliferating while maintaining an undifferentiated state and “differentiation ability” capable of differentiating into all three germ lines. It is not particularly limited as long as it is an undifferentiated cell, for example, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ cells derived from primordial germ cells (EG cells), testicular tissue And multipotent germline stem (mGS) cells isolated in the culture process of GS cells from The ES cells may be ES cells (nt ES cells) generated by nuclear reprogramming from somatic cells. Preferably, they are ES cells or iPS cells.
- the prediction method of the present invention is preferably used particularly in human pluripotent stem cells, but is also applicable to any mammals in which pluripotent stem cells have been established or can be established, for example, non-human mammals.
- Animals include mice, monkeys, pigs, rats, dogs and the like.
- Generation of pluripotent stem cells can be performed by a method known per se.
- iPS cells WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, WO2009 / 057831, WO2009 / 075119, WO2009 / 079007, WO2009 / 091659, WO2009 / 101084, WO2009 / 101407.
- WO 2009/102983 WO 2009/114949, WO 2009/126250, WO 2009/126250, WO 2009/126251, WO 2009/126655, WO 2009/157593, WO 2010/009015, WO 2010/033906, WO 2010/033920, WO 2010/042800, WO 2010/050626, WO 2010/056831, WO 2010/068955, WO 2010/098419, WO 2010/022267, WO 2010/111409, WO 2010/111422, WO 2010/115050, WO 2010/124290, WO 2010/147395, WO 2010/147612, Huangfu D, et al. (2008) ), Nat.
- the inner cell mass can be obtained from blastocysts of fertilized eggs of the target animal, and the inner cell mass can be established by culturing on fibroblast feeder cells.
- maintenance of the cells by subculture is carried out using a culture solution to which a substance such as leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) or the like is added. It can be carried out.
- LIF leukemia inhibitory factor
- bFGF basic fibroblast growth factor
- human ES cell lines for example, WA01 (H1) and WA09 (H9) are from WiCell Research Institute, KhES-1, KhES-2 and KhES-3 are from Kyoto University, Research Institute for Regenerative Medicine (Kyoto, Japan) Available from EG cells can be established by culturing primordial germ cells in the presence of substances such as LIF, bFGF, stem cell factor (Y. Matsui et al. (1992), Cell, 70: 841-). 847; JL Resnick et al. (1992), Nature, 359: 550-551). To generate nt ES cells, a combination of nuclear transfer technology (JB Cibelli et al.
- nucleus of a somatic cell can be injected into an enucleated unfertilized egg of a mammal, and reprogramming can be performed by culturing for several hours.
- mGS cells can be generated from testis cells according to the method described in WO 2005/100548.
- the PSC preferably hPSC, prepared as described above may include the step of maintaining and culturing PSC prior to measurement of the expression level of CHD7.
- the culture may be suspension culture or adherent culture using a coated culture dish. In this step, preferably, adherent culture is used.
- PSCs may be separated mechanically, or using separation solutions having protease activity and collagenase activity (such as Accutase (TM) and Accumax (TM)) or separation solutions having only collagenase activity, or Trypsin / It can be dissociated using EDTA.
- TM Accutase
- TM Accumax
- EDTA a method of dissociating cells using Trypsin / EDTA is used.
- Rho-associated protein kinase (ROCK) inhibitor When separating PSCs, it is preferable to include a Rho-associated protein kinase (ROCK) inhibitor in the medium.
- the ROCK inhibitor is not particularly limited as long as it can suppress the function of ROCK, and for example, Y-27632 can be suitably used in the present invention.
- the concentration of Y-27632 in the medium is not particularly limited, but is preferably 1 ⁇ M to 50 ⁇ M, for example, 1 ⁇ M, 2 ⁇ M, 3 ⁇ M, 4 ⁇ M, 5 ⁇ M, 6 ⁇ M, 7 ⁇ M, 8 ⁇ M, 9 ⁇ M, 10 ⁇ M, 11 ⁇ M, 12 ⁇ M, 13 ⁇ M, 14 ⁇ M 15 ⁇ M, 16 ⁇ M, 17 ⁇ M, 18 ⁇ M, 19 ⁇ M, 20 ⁇ M, 25 ⁇ M, 35 ⁇ M, 40 ⁇ M, 45 ⁇ M, 50 ⁇ M, but not limited thereto.
- the period during which the ROCK inhibitor is added to the medium may be the culture period of the step of culturing PSC, and it may be a period for suppressing cell death at the time of single dispersion, for example, at least one day. .
- suspension culture is to form embryoid bodies by culturing cells in a culture dish in a non-adherent state, and is not particularly limited, but for the purpose of improving adhesion to cells.
- Culture dishes that have not been artificially treated for example, coated with extracellular matrix etc.
- cultures that have been artificially treated to suppress adhesion for example, coated with polyhydroxyethyl methacrylate (poly-HEMA)
- poly-HEMA polyhydroxyethyl methacrylate
- adherent culture can be performed by culturing on feeder cells or using a culture vessel coated with an extracellular matrix.
- the coating treatment may be carried out by appropriately removing the solution after the solution containing the extracellular matrix is put in the culture vessel.
- feeder cells mean other cells that play an auxiliary role in order to adjust the culture conditions of the cells of interest.
- the extracellular matrix is a supramolecular structure existing outside the cell, and may be naturally occurring or artificial (recombinant).
- substances such as vitronectin, collagen, proteoglycan, fibronectin, hyaluronic acid, tenascin, entactin, elastin, fibrillin, laminin or fragments thereof are mentioned, and vitronectin or a fragment thereof is preferable.
- the PSCs, preferably hPSCs, produced as described above can be maintained, for example, by adherent culture using a culture vessel coated with extracellular matrix.
- the culture solution used in the step of culturing PSC can be prepared using a culture medium used for culturing animal cells as a basal medium.
- a basal medium for example, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium and a mixed medium thereof Etc. are included.
- PSC maintenance medium for example, the above-mentioned Essential 8 medium (Es8, Thermo Fisher Scientific), SPM (Stem-Partner (registered trademark) Human iPS / ES cells medium, Far East Pharmaceutical Industries), ReproFF2 medium (RFF2, In addition to reprocel), StemPro34 (invitrogen), RPMI-base medium, mTeSR1 (STEMCELL Technologies), etc. can also be used.
- Es8, SPM or the like is used as a maintenance medium.
- PSC When cultured in a culture medium that imparts differentiation resistance to PSC, such as RFF medium, PSC loses the ability to differentiate in response to differentiation stimulation, but such differentiation resistance is not an inherent property of PSC clones, and culture conditions In some cases, it is possible to reversibly restore differentiation ability by changing the concentration of PSC, and it is better to culture PSC in a medium such as Es8 and SPM, which has been confirmed to maintain differentiation ability of PSC in the present invention. It is efficient in verifying the quality of clones (whether differentiation resistance is clone-specific or reversible depending on culture conditions).
- the medium may contain serum or may be serum free.
- the medium does not affect the differentiation ability, for example, albumin, transferrin, Knockout Serum Replacement (KSR) (serum substitute for FBS in ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), one or more serum substitutes such as fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol (2ME), thiolglycerol etc., lipids, amino acids, L-glutamine, Glutamax ( Invitrogen), one or more substances such as non-essential amino acids, vitamins, growth factors, small molecule compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts and the like.
- KSR Knockout Serum Replacement
- PSCs may be cultured in single cells.
- PSCs can be made into single cells (also referred to as “single cell suspension”) by pipetting or trypsin treatment, and then inoculated on a VTN-N-coated dish and cultured without feeder cells. It can be cultured in one cell.
- PSC may be cultured in the form of a small cell mass. For example, by culturing PSCs on feeder cells, PSCs can be cultured in a small cell mass (also referred to as "Small Cell Clumps method").
- the culture temperature is not limited to the following, for example, about 30 to 40 ° C., preferably about 37 ° C., and the culture is performed under an atmosphere of CO 2 -containing air.
- the CO 2 concentration is about 2 to 10%, preferably 5%.
- medium exchange can be performed in the middle of the culture period.
- the medium used for medium exchange may be a medium having the same components as the medium before medium exchange, or a medium having different components. Preferably, media having the same components are used.
- the time of medium exchange is not particularly limited, and for example, once every two days, every two days, every three days, every four days, every five days after the culture with a fresh medium is started. In this step, medium exchange is preferably performed every day.
- the measurement of the expression level of CHD7 in hPSC can be performed using any RNA or protein measurement method known per se.
- a nucleic acid probe
- a nucleic acid probe
- the nucleic acid used as a probe may be DNA or RNA, or may be a DNA / RNA chimera.
- DNA is mentioned.
- the nucleic acid may be double stranded or single stranded.
- the length of the nucleic acid is not particularly limited as long as it can specifically hybridize with a target mRNA, and is, for example, about 15 bases or more, preferably about 20 bases or more.
- the nucleic acid is preferably labeled with a labeling agent to enable detection and quantification of target mRNA.
- a labeling agent for example, radioactive isotopes, enzymes, fluorescent substances, luminescent substances and the like are used.
- the radioactive isotope for example, [ 32 P], [ 3 H], [ 14 C] and the like are used.
- the enzyme a stable one having a large specific activity is preferable, and, for example, ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase, peroxidase, malate dehydrogenase and the like are used.
- the fluorescent substance for example, fluorescamine, fluorescein isothiocyanate and the like are used.
- the light-emitting substance for example, luminol, luminol derivatives, luciferin, lucigenin and the like are used.
- biotin- (strept) avidin can also be used to bind the probe to the labeling agent.
- oligonucleotides used as a primer it can be specifically annealed to a base sequence (sense strand) of mRNA encoding CHD7 and a base sequence (antisense strand) complementary thereto, respectively, and they are sandwiched between them
- a DNA fragment for example, a DNA fragment of about 100 bp to several kbp, each having a length of about 15 to about 100 bases, preferably about 15 to about 50 bases each.
- a set of oligonucleotides designed to amplify may be mentioned.
- CHD7 isoform 1 also referred to as CHD7L, accession number NM_017780.3 of NCBI database (GenBank)
- base sequence is represented by SEQ ID NO: 1
- amino acid sequence is represented by SEQ ID NO: 2
- a nucleotide sequence of an mRNA encoding amino acids 672 to 2620 of CHD7 isoform 1 and a primer set capable of annealing to a nucleotide sequence complementary thereto can be suitably used.
- RNA sample In order to analyze gene expression of CHD7 quantitatively using a trace RNA sample, it is preferable to use competitive RT-PCR, real-time RT-PCR or digital PCR analysis.
- competitive RT-PCR an amplification product amplified by the primer set in addition to the above primer set and capable of being distinguished from the target DNA (for example, an amplification product different in size from the target DNA, by restriction enzyme treatment It can further contain a nucleic acid which produces an amplification product etc. which show different migration patterns.
- the competitor nucleic acid may be DNA or RNA.
- cDNA may be synthesized from the RNA sample by reverse transcription reaction and then a competitor may be added to perform PCR, and in the case of RNA, RT-PCR can be performed by adding to the RNA sample from the beginning. In the latter case, the efficiency of the reverse transcription reaction is also taken into consideration, so the absolute amount of the original mRNA can be estimated.
- real-time RT-PCR can monitor the amplification amount of PCR in real time, so electrophoresis is not necessary and CHD7 gene expression can be analyzed more rapidly. Usually, monitoring is performed using various fluorescent reagents.
- nucleic acids that can be used as the above-mentioned probes (wherein the nucleic acid is an amplification region)
- fluorescent substances eg, FAM, HEX, TET, FITC etc.
- quenchers eg, TAMRA, DABCYL etc.
- cDNA is synthesized from the extracted mRNA, and diluted and dispersed so that the cDNA becomes 1 or 0 in the ultrafine compartments or the water droplets of the water-in-oil (W / O type) emulsion. It is an analysis method that absolutely measures the expression level of the target gene in the sample by performing amplification and directly counting the number of minute sections and water droplets where the amplification signal is positive, and can be particularly preferably used. .
- digital PCR analysis For digital PCR analysis, commercially available digital PCR analyzers can be used, and Bio-Rad using QuantStudio 3D digital PCR system (trade name of Thermo Fisher Scientific), BioMark HD (trade name of Fluidigm), and Droplet Digital PCR method. Products of Laboratories, etc. can be used, and analysis can be performed according to the instruction manual or protocol of each device.
- QuantStudio 3D digital PCR system trade name of Thermo Fisher Scientific
- BioMark HD trade name of Fluidigm
- Droplet Digital PCR method Products of Laboratories, etc.
- the nucleic acid used as the above probe may be cDNA encoding CHD7 or a fragment thereof, or the base sequence information thereof (for example, in the case of human CHD7, accession number NM_017780.3 (SEQ ID NO: 1) in NCBI database (GenBank)
- the DNA may be obtained by chemical synthesis using a commercially available DNA / RNA automatic synthesizer or the like based on the nucleotide sequence registered as
- a set of oligonucleotides used as the above-mentioned primers may be chemically synthesized based on the above-mentioned base sequence information, using a commercially available DNA / RNA automatic synthesizer etc., the base sequence and a part of its complementary strand sequence.
- CHD7 when the expression of CHD7 is measured at the protein level, for example, it can be performed by various immunological techniques, for example, various immunoassays such as Western blotting, ELISA, RIA, FIA and the like using an anti-CHD7 antibody.
- the anti-CHD7 antibody to be used may be either a polyclonal antibody or a monoclonal antibody, may be prepared by well-known immunological techniques, or a commercially available antibody may be used.
- the antibody encompasses not only a complete antibody molecule but also a fragment thereof, and examples include Fab, F (ab ') 2, ScFv, minibody and the like.
- the selection of the combination of the capture antibody and the detection antibody is not particularly limited as long as CHD7 can be detected, but specifically, for example, human CHD7 as a capture antibody (SEQ ID NO: 2)
- human CHD7 as a capture antibody
- human CHD7 sequence Gly 25-Met 200 of No. 2 can be expressed in E. coli to immunize rabbits, and antigen-purified anti-human CHD7 rabbit IgG can be used.
- CHD7 expression levels can measure CHD7 isoform expression levels.
- isoform 1 Accession No. NM_017780.3 (a base sequence is represented by SEQ ID NO: 1 and an amino acid sequence is represented by SEQ ID NO: 2) of NCBI database (GenBank)
- isoform 2 (same as accession) No. NM_001316690.1 (the base sequence is represented by SEQ ID NO: 3 and the amino acid sequence is represented by SEQ ID NO: 4)
- Isoform X4 (the same, accession number XM_011517560.2 (the base sequence is SEQ ID NO: 5; the amino acid sequence is SEQ ID NO: 6) And the like.
- it is isoform 1.
- the expression level of CHD7 in PSC is measured using any of the above or other methods known per se, and the measured value is used to express the CHD7 expression level necessary for PSC to exhibit differentiation ability in response to differentiation stimulation. Compare to threshold.
- the threshold varies depending on the measurement method of CHD7 expression level used, and is, for example, 2710 copies or more in 5 ng of total RNA, for example, when the expression level of CHD7 gene is measured by quantitative digital PCR analysis.
- feeder cells free on a dish coated with extracellular matrix for example, 1502 copies or more and 1500 copies or more in 5 ng of total RNA.
- hPSCs are ESCs and are cultured with Small Cell Clumps with feeder cells, for example, dishes coated with at least 2710 copies and at least 2120 copies of extracellular matrix, feeder cells free, and single cells
- hPSCs are iPSCs
- feeder cells by Small Cell Clumps method for example, 3080 copies or more, 2280 copies or more, dishes coated with extracellular matrix
- feeder cells free for example, 1502 copies or more and 1500 copies or more can be mentioned, but it is not limited thereto.
- the threshold value is, for example, 2.0 times or more, 3.0 times or more, 4.0 times or more as compared to the CHD7 protein concentration in human pluripotent stem cells showing differentiation resistance.
- Examples of human pluripotent stem cells exhibiting differentiation resistance include human pluripotent stem cells cultured for 5 or more passages in ReproFF2 medium.
- the threshold value is, for example, 90.3% or less, 90.2% or less, 90% or less, 99.1% or less as compared to the CHD7 protein concentration in human pluripotent stem cells exhibiting normal differentiation ability. %, 88.3% or less, 87.0% or less, 85.8% or less, 85% or less, 83.4% or less, 80.2% or less, 80% or less, 75% or less, 70% or less, 50% or less.
- human pluripotent stem cells exhibiting normal differentiation ability include human pluripotent stem cells cultured for 5 or more passages in Es8 or SPM medium.
- the threshold may be determined in consideration of, for example, the expression level of the CHD7 gene measured by quantitative digital PCR analysis.
- the threshold value in consideration of the expression level of the CHD7 gene is, for example, two times or more, three times or more, four times or more, five times or more, compared to the CHD7 protein concentration in human pluripotent stem cells showing differentiation resistance. 10 times or more is mentioned.
- Examples of human pluripotent stem cells exhibiting differentiation resistance include human pluripotent stem cells cultured for 5 or more passages in ReproFF2 medium.
- the threshold value in the case similar to the above, for example, 50% or less, 70% or less, 75% or less, 80% or less as compared to the CHD7 protein concentration in human pluripotent stem cells exhibiting normal differentiation ability , 90% or less.
- human pluripotent stem cells exhibiting normal differentiation ability include human pluripotent stem cells cultured for 5 or more passages in Es8 or SPM medium.
- the CHD7 protein concentration may be a value obtained by directly measuring the CHD7 protein concentration in Lysate of cultured cells, or may be a relative value to a standard by using Lysate of cultured cells as a standard.
- the cultured cells may be stem cells exhibiting differentiation resistance, or may be stem cells exhibiting normal differentiation ability, and the Lysate may be concentrated or not concentrated. It is also good.
- PSC clones for example, H1, H9, etc.
- hsES clones such as KhES1
- Es8 or SPM specifically, for example, when a single cell is cultured in a feeder-free dish in a dish coated with an extracellular matrix, preferably 5
- the expression level of CHD7 when cultured for more than passage can be measured by a plurality of experiments, and for example, the maximum value or the average value of the measured values can be set as a threshold.
- the expression level of CHD7 is equal to or higher than the threshold of the CHD7 expression level necessary for PSC to exhibit differentiation ability in response to differentiation stimulation, the PSC exhibits differentiation ability in response to differentiation stimulation . Therefore, it can be predicted that there is no or low risk of undifferentiated cells remaining (and consequent tumor development) when differentiation is induced. Conversely, if the expression level of CHD7 is below the threshold, the PSC shows differentiation resistance to differentiation stimulation. Therefore, when differentiation is induced, it can be predicted that undifferentiated cells are at risk (or, as a result, develop a tumor) or are high cells.
- CHD7-encoding nucleic acid is introduced, or replaced with a culture medium (eg, Es8, SPM) confirmed to be capable of maintaining PSC differentiation ability.
- a culture medium eg, Es8, SPM
- differentiation resistance can be reduced or eliminated.
- reducing differentiation resistance by culturing as feeder-free single cells or It can be eliminated.
- the present invention also provides a method of evaluating the pluripotent stem cell culture medium (hereinafter also referred to as “the evaluation method of the present invention”), which comprises measuring the expression level of CHD7 in PSC.
- Test media include various media which can be used for maintenance culture of PSC prior to the step of measuring the expression level of CHD7.
- evaluation of the present invention is preferred because 5 passages (about 15 days) are preferred to completely change the epigenetic status of the CHD7 gene in PSC by exchange for different types of media.
- PSCs are cultured in the test medium for at least 5 passages prior to the step of measuring the expression level of CHD7. Culturing of PSC in a test medium can be carried out in the same manner as the above-mentioned prediction method of the present invention.
- the measurement of the expression level of CHD7 in the above-mentioned evaluation method of the present invention can also be carried out by the same method as the above-mentioned prediction method of the present invention.
- the obtained measured values are compared with the threshold of the CHD7 expression level required for PSC to exhibit differentiation ability in response to differentiation stimulation in the above-mentioned prediction method of the present invention.
- the threshold value is, for example, 2710 copies or more in 5 ng of total RNA.
- feeder cells free on a dish coated with extracellular matrix for example, 1502 copies or more and 1500 copies or more in 5 ng of total RNA.
- hPSCs are ESCs and are cultured with Small Cell Clumps with feeder cells, for example, dishes coated with at least 2710 copies and at least 2120 copies of extracellular matrix, feeder cells free, and single cells
- hPSCs are iPSCs
- feeder cells by Small Cell Clumps method, for example, 3080 copies or more, 2280 copies or more, in dishes coated with extracellular matrix
- feeder cells are free and are cultured in single cells, for example, 1502 copies or more and 1500 copies or more can be mentioned, but the invention is not limited thereto.
- the threshold value is, for example, 2.0 times or more, 3.0 times or more, 4.0 times or more as compared to the CHD7 protein concentration in human pluripotent stem cells showing differentiation resistance.
- Examples of human pluripotent stem cells exhibiting differentiation resistance include human pluripotent stem cells cultured for 5 or more passages in ReproFF2 medium.
- the threshold value is, for example, 90.3% or less, 90.2% or less, 90% or less, 99.1% or less as compared to the CHD7 protein concentration in human pluripotent stem cells exhibiting normal differentiation ability. %, 88.3% or less, 87.0% or less, 85.8% or less, 85% or less, 83.4% or less, 80.2% or less, 80% or less, 75% or less, 70% or less, 50% or less.
- human pluripotent stem cells exhibiting normal differentiation ability include human pluripotent stem cells cultured for 5 or more passages in Es8 or SPM medium.
- the threshold may be determined in consideration of, for example, the expression level of the CHD7 gene measured by quantitative digital PCR analysis.
- the threshold value in consideration of the expression level of the CHD7 gene is, for example, two times or more, three times or more, four times or more, five times or more, compared to the CHD7 protein concentration in human pluripotent stem cells showing differentiation resistance. 10 times or more is mentioned.
- Examples of human pluripotent stem cells exhibiting differentiation resistance include human pluripotent stem cells cultured for 5 or more passages in ReproFF2 medium.
- the threshold value in the case similar to the above, for example, 50% or less, 70% or less, 75% or less, 80% or less as compared to the CHD7 protein concentration in human pluripotent stem cells exhibiting normal differentiation ability , 90% or less.
- human pluripotent stem cells exhibiting normal differentiation ability include human pluripotent stem cells cultured for 5 or more passages in Es8 or SPM medium.
- the CHD7 protein concentration may be a value obtained by directly measuring the CHD7 protein concentration in Lysate of cultured cells, or may be a relative value to a standard by using Lysate of cultured cells as a standard.
- the cultured cells may be stem cells exhibiting differentiation resistance, or may be stem cells exhibiting normal differentiation ability, and the Lysate may be concentrated or not concentrated. It is also good.
- the test medium is PSC capable of differentiation in response to differentiation stimulation.
- PSC can be maintained and cultured, and therefore, if differentiation is induced, it may be evaluated that there is no risk of remaining undifferentiated cells (as a result, tumor development) or a low culture medium. it can.
- the expression level of CHD7 is below the threshold value, the test medium maintains and culture PSCs so that PSCs show differentiation resistance to differentiation stimulation, and thus, undifferentiated cells when differentiation is induced. It can be evaluated that the medium is at risk for remaining (and as a result, a tumor develops), or a high culture medium.
- the culture medium is preferably cultured for 5 or more passages by culturing PSCs by changing to a medium evaluated to be able to culture and maintain PSCs so that PSCs show differentiation ability in response to differentiation stimulation.
- the PSC can be changed to exhibit differentiation ability in response to differentiation stimulation.
- a nucleic acid encoding CHD7 in PSC Can be induced spontaneously to the PSC without adding a differentiation stimulus.
- a nucleic acid such as mRNA or plasmid DNA
- a nucleic acid is injected at the transplantation site and the nucleic acid is By introducing into remaining undifferentiated cells, it is possible to cause spontaneous differentiation regardless of the environment at the transplantation site and reduce the tumor development risk.
- the present invention also relates to an agent for inducing differentiation of PSC, particularly hPSC, comprising a nucleic acid encoding CHD7, as well as introducing the nucleic acid into PSC exhibiting differentiation resistance, inducing differentiation of PSC.
- an agent for inducing differentiation of PSC particularly hPSC
- hPSC comprising a nucleic acid encoding CHD7
- the present invention also provides reagents for use in the prediction method of the present invention and the evaluation method of the present invention.
- the reagent contains a substance capable of detecting the expression of CHD7.
- a substance is not particularly limited, but, for example, in the case of detecting CHD7 expression at the RNA level, the nucleic acid etc. exemplified as the probe or the primer in the above-mentioned prediction method of the present invention is also CHD7
- anti-CHD7 antibodies and the like can be mentioned.
- the said reagent can also be provided as a kit further including various reagents required in order to implement the various methods of measuring the expression level of CHD7 mentioned above.
- SPM Stem-Partner (R) Human iPS / ES cells medium
- GCDR Gentle Cell Dissociation Reagent
- cells were passaged by seeding a single cell suspension with TrypLE Select (Life Technologies) (Takenaka et al., PLoS ONE 2015; 10 (6): e0129855).
- Cells in a single cell suspension were seeded in a 6-well plate at 3 ⁇ 10 5 cells per well when cultured with Es 8 and 1 ⁇ 10 5 cells when cultured in RFF 2 medium.
- the cells were cultured in an incubator (MCO-19AIC, Panasonic, Osaka, Japan) under conditions of 37 ° C., 5% CO 2 .
- the karyotype of KhES-1, H9 and PFX # 9 is examined by G-band every 10 passages by multicolor fluorescence in situ hybridization (mFISH) every 5 passages, and PSC with normal karyotype Was used in this study.
- mFISH multicolor fluorescence in situ hybridization
- siRNA reagent and transfection All reagents were obtained from Thermo Fisher Scientific unless otherwise specified.
- siCHD7 or control siRNA (mock) introduction experiments previously designed Silencer Select human CHD7 siRNA (Catalog No. 4329420; ID: s31142) and Silencer Select Negative Control No. 1 (Catalog No. 4404021) were used .
- the introduction of these reagents was performed as follows. VTN-N-coated 6-well plates were seeded with 2 ⁇ 10 5 ESCs per well and cultured with 4 mL of Es8, SPM or RFF2.
- siCHD7 transfection amount: 50 pmol, 30 pmol or 10 pmol
- control siRNA using Lipofectamine RNAiMAXin according to the manufacturer's instructions. Briefly, for cocktail of 50 pmol siCHD7, cocktail A (4 ⁇ L Lipofectamine RNAiMAX reagent and 150 ⁇ L Opti-MEM medium), cocktail B (1 ⁇ L 50 ⁇ M siCHD7 (50 pmol) or control siRNA (50 pmol) and 150 ⁇ L Opti-MEM Mixed with the medium and incubated for 5 minutes at room temperature.
- the mixed cocktail (240 ⁇ L) was used to transfect ES cells with siCHD7 (final concentration 10 nM) or control siRNA (final concentration 10 nM) and incubated for 48 hours.
- the transduction efficiency of the reagents was assessed by qRT-PCR detection of CHD7 mRNA in transfected cells at designated time points.
- the SANT-SLIDE domain region in CHD7 was determined based on the homology with the published CHD1 sequence (Ryan et al. Embo j 2011; 30 (13): 2596-2609), and a synthetic mRNA (CHD7 DN2) was obtained by the same method. Made. The amount of mRNA obtained was measured by ND-1000 (Nano Drop). High sensitivity green fluorescent protein (eGFP) mRNA obtained from the same vector backbone was used as a control (control mRNA, mock).
- eGFP High sensitivity green fluorescent protein
- RNA transfection Each well of the VTN-N coated 6-well plate was filled with RFF2 supplemented with 5 ng / mL fibroblast growth factor 2 (FGF2; Peprotech) and seeded with ESC (3 ⁇ 10 5 ). Cells were transfected with mCHD7 or control mRNA (mock) using Lipofectamine Messenger MAX according to the manufacturer's instructions. Briefly, Cocktail A (3.75 ⁇ L Lipofectamine Messenger MAX transfection reagent and 125 ⁇ L Opti-MEM medium) was incubated for 10 minutes at room temperature.
- Cocktail A (3.75 ⁇ L Lipofectamine Messenger MAX transfection reagent and 125 ⁇ L Opti-MEM medium) was incubated for 10 minutes at room temperature.
- cocktail B (2.5 ⁇ g of mCHD7 or control mRNA and 125 ⁇ L of Opti-MEM medium) was prepared, mixed with cocktail A, and then incubated at room temperature for 5 minutes.
- To the mixed cocktail (240 ⁇ L), 4 mL of RFF2 to which FGF2 was added to a final concentration of 5 ng / mL was added.
- the cells were incubated for 24 hours at 37 ° C. with this medium. Transduction efficiency of the reagents was assessed by determining CHD7 mRNA expression in transfected cells by qRT-PCR at designated time points.
- the methylation status of cultured ESCs or iPSCs was measured using Infinium Human Methylation 450 BeadChip (Illumina).
- the methylation pattern of the promoter region was hierarchically clustered using Cluster 3.0 and visualized in Java Tree View.
- the methylation status of each gene in the promoter region was evaluated by extracting candidate genes in comparison with gene expression signals obtained by GeneChip (Human Genome U133 Plus 2.0 Array, Affymetrix) array data.
- CHD7 The gene expression of CHD7 was determined by qRT-PCR, and the gene expression profile was determined by TaqMan® Scorecard Panel (A15870) using a qRT-PCR device (QuantStudio 12K Flex).
- the primer sequences of CHD7 are shown in Table 1.
- the number and morphology of EBs were observed using a microscope (Olympus IX71, Olympus).
- the gene expression of CHD7 was determined by qRT-PCR, and the gene expression profile was determined by TaqMan® Scorecard Panel (A15870) using a qRT-PCR device (QuantStudio 12K Flex).
- GPDH glyceraldehyde-3-phosphate dehydrogen
- the copy number of CHD7 transcripts was determined by Droplet Digital PCR system (Bio-Rad Laboratories). Specifically, cDNA was generated from 5 ng of total RNA extracted from KhES-1 cultured on Es8 or RFF2 using a probe of TaqMan® Gene Expression Assay (Hs00215010_m1, Thermo Fisher Scientific). The RT-PCR reaction mixture was used to form an emulsion using the QX100 system (Bio-Rad Laboratories) according to the manufacturer's instructions. Then, cDNA was amplified from Es8 culture and RFF2 culture, respectively, using Applied Biosystems GeneAmp 9700 Thermalcycler.
- Each reaction consisted of 10 ⁇ l of ddPCR probe Supermix, 1000 nM primer, 250 nM probe, and 20 ⁇ l solution containing template cDNA, and the reaction was treated at 95 ° C. for 10 minutes, then denatured at 94 ° C. for 30 seconds and 60 ° C. Second extension reaction was repeated for 40 cycles, and finally performed at 98 ° C. for 10 minutes. After the reaction, the raw fluorescence data of each well was analyzed with the software QuantaSoft ver. 1.2 (Bio-Rad Laboratories).
- the total protein concentration was 1.25 mg / mL for P1, 1.27 mg / mL for P2, and 0.84 mg / mL for N.
- H9 cells are cultured in Es8 or RFF2 and lysed according to the cOmplete Lysys-M protocol, then Amicon Ultra-4, PLTK Ultracell-PL membrane, 30 kDa (Amicon® Ultra-4 PLTK Ultracel-PL membrane) , 30 kDa, catalog numbers: UFC803024, Merck KGaA), concentrated at 4000 ⁇ g at 4 ° C., respectively, were used as a standard product and a negative control (N2).
- the capture (solid phase) antibody may be a monoclonal antibody (mouse IgG1) obtained by using a polypeptide obtained by expressing Ala 263-Gln 457 of human CHD7 (SEQ ID NO: 2) in E. coli as an antigen Protein G purified, Gly 25-Met 200 of human CHD7 (SEQ ID NO: 2) as a primary antibody is expressed in E. coli to immunize rabbits, and antigen purified with anti-human CHD7 rabbit IgG, secondary antibody Rabbit IgG-HRP (SouthernBiotech, 4090-05) was used respectively.
- a monoclonal antibody (mouse IgG1) obtained by using a polypeptide obtained by expressing Ala 263-Gln 457 of human CHD7 (SEQ ID NO: 2) in E. coli as an antigen Protein G purified, Gly 25-Met 200 of human CHD7 (SEQ ID NO: 2) as a primary antibody is expressed in E. coli to immunize rabbits,
- the sandwich ELISA was performed by the following method. In order to set the optimum conditions for sandwich ELISA, the concentrations of the primary antibody and the secondary antibody were examined under the conditions shown in the following table. Add 100 ⁇ L of a solution of capture antibody diluted to 3 ⁇ g / mL in D-PBS (-) to the wells of a 96-well plate (MaxiSorp®, Nunc, 44-2404-21), seal with a plate seal 4 Let stand overnight at ° C.
- washing fluid D-PBS (-) (hereinafter also referred to as "washing fluid") containing 0.05% Tween (registered trademark) 20 is added and gently stirred for 5 minutes. It was removed and washed and this was repeated 3 times.
- blocking solution in which 1% BSA was added to the washing solution was added and blocking was performed by incubation at room temperature for 1 hour. Then add 100 ⁇ l / well of the standard solution diluted with blocking solution, the target sample, and an equal volume of blocking solution to the wells for blanking, firmly attach the plate seal and prevent evaporation of the solution overnight at 4 ° C. Incubated.
- KhES-1 cells that show normal karyotype are cultured on a dish coated with hrVitronectin-N (VTN-N) using Essential 8 medium (Es 8), the KhES-1 cells have self-proliferative and differentiation ability Held both.
- KhES-1 cells lost differentiation ability after 5 passages in ReproFF2 (RFF2), but restored differentiation ability again after culture in Es8 (FIG. 1).
- KhES-1 cells cultured with SPM Takenaka et al., PLoS ONE 2015; 10 (6): e0129855
- retained differentiation ability differentiation ability was lost by 5 passages with RFF2.
- Quantitative reverse transcription polymerase chain reaction was used to determine the effect of culture of cells with RFF2 on the expression of self-growth related genes such as NANOG, POU5F1, SOX2 and EP300. As a result, the expression level of the self-proliferation related gene was not significantly affected. However, when primers are designed to target the 3 'untranslated region of CHD7 for detection of all CHD7 isoforms, culture of ESCs with RFF2 results in significant suppression of CHD7 gene expression was demonstrated by qRT-PCR ( Figure 4).
- CHD7 isoform 1 was not clearly detected in cell lysates from RFF2 cultures (FIG. 6).
- the signal intensity of CHD7 isoforms can not be compared and evaluated correctly by western blotting when the molecular size of the target protein is different.
- each isoform was quantified using digital PCR using isoform-specific TaqMan primers (FIG. 5A).
- the copy number of CHD7 isoform 1, isoform 2 or isoform X4 determined by digital PCR is shown (Table 5).
- total RNA (5 ng) obtained from KhES-1 cells cultured in Es8 or RFF2 medium was used as a template.
- Primer set 3 was used to calculate the copy number of isoform 1 in each RNA sample.
- the copy number of isoform X4 was determined by subtracting the copy number generated by primer set 3 from the copy number generated by primer set 1 (FIG. 5A).
- isoform 1 was found to be the major isoform and initial target affected by culture conditions.
- the copy number of isoform 2 was expected to be equal to or less than the copy number of isoform X4, based on the results of western blotting.
- Taq man primer set 2 sandwiching the spliced sequences did not function properly due to primer design issues.
- Structural analysis of the CHD7 isoforms showed that isoform 1 contains a regulatory region extending from 527 to 2576 amino acids in the middle of the protein.
- This region contained an ATPase / DNA helicase domain, a chromosome binding domain, a DNA binding domain, and a BRK domain (Allen et al, J Mol Biol 2007; 371 (5): 1135-1140, Colin et al, BMC Res Notes 2010; 3: 252, Ryan et al., Embo j 2011; 30 (13): 2596-2609).
- Isoform 2 lacks those regulatory regions of isoform 1.
- Another splicing variant of isoform 1, isoform X4 (FIG. 5A), also changed its gene expression depending on culture conditions.
- mRNA encoding a DNA binding domain (SANT-SLIDE domain) presumed to be a regulatory region and a chromatin interaction domain (chromodomain) and SNF2- mRNAs producing dominant negative proteins encoding like ATPase / helicase domain were respectively designed and introduced into Khs-1 cells cultured with Es8.
- PSCs can be cultured effectively with high glucose (3.1 g / L) Es8 on VTN-N coated dishes.
- high glucose 3.1 g / L
- Es8 omitting daily media changes
- differentiation of PSCs can be triggered (Vander Heiden et al., Science 2015; 324 (5930): 1029-1033, Yanes Et al, Nat Chem Biol 2010; 6 (6): 411-417, Moussaieff et al, Cell Metab 2015; 21 (3): 392-402).
- Mock-transfected KhES-1 cells cultured with nutrient-depleted Es8 were not differentiated and retained in Es8 on VNT-N-coated dishes.
- KhES-1 cells transfected with siCHD7 remained on VNT-N-coated dishes 4 days after introduction (FIG. 9C) and showed a relatively undifferentiated genetic profile (FIG. 10). Although cells did not proliferate in nutrient-depleted Es8, siCHD7-mediated downregulation of CHD7 blocked differentiation caused by nutrient depletion (FIG. 10). Non-transfected KhES-1 cells, with daily change of Es8, were used as normal culture controls.
- CHD7 mRNA induces tridermal differentiation: Introduction of CHD7 isoform 2 mRNA induced “spontaneous” differentiation in RFF2-cultured KhES-1 cells without any additional differentiation stimulation (FIG. 12).
- the KhD-1 cells cultured in the RFF2 medium were transfected with CHD7 isoform 2 and the expression levels of 94 genes in the KhES-1 cells after 1, 2 and 3 days were determined by qRT-PCR scorecard panel (Table 6) .
- fold change (fc) is 2.0 or more, it means upregulation, and when it is 0.1 or less, it means downregulation.
- PSC culture systems are designed to maintain undifferentiated cells but not differentiated cells.
- KhES-1 cells when differentiated, could not be cultured on VTN-N coated dishes and the number of KhES-1 cells in RFF2 cultures decreased as the cells differentiated (FIG. 11C and FIG. 12).
- overexpression of CHD7 isoform 2 simultaneously induced tridermal differentiation without following a continuous differentiation process.
- CHD7 isoform 2 mRNA also suggested that there may be an upper limit of CHD7 expression when ESCs are maintained in an undifferentiated state. Also, this upper limit may vary depending on the culture conditions. Indeed, introduction of CHD7 isoform 2 mRNA into Es8 cultured KhES-1 cells did not upregulate CHD7 isoform 2 in KhES-1 cells in Es8 cultures (FIG. 14). Introduction of CHD7 isoform 2 mRNA into KhES-1 cells induces "spontaneous" differentiation of KhES-1 cells at Es8, and it is believed that the Es8 culture system can not support differentiated cells.
- CHD7 expression levels control cell proliferation rate Another function of CHD7 is to support the growth of ESCs. 1 ⁇ 10 5 KhES-1 cells were seeded per well of a 6-well plate, the cells were cultured with Es8, and 8 ⁇ 10 5 cells were harvested 3 days later. The proliferation rate of KhES-1 cells in RFES2 medium was 1/3 of that when Es8 was used, but when Es8 was used, 8-fold expansion of KhES-1 cells was observed after 3 days of culture. In order to determine whether CHD7 expression level can regulate the growth rate of ESC in a concentration-dependent manner, CHD7 is downregulated by transfecting KhES-1 cells with siCHD7, and the cells are cultured with Es8 and cultured. Cell number was measured (FIG. 15A, B).
- CHD7 mediate differentiation potential of PSC The expression level of CHD7 mRNA in PSC cultured under various conditions was measured to determine whether CHD7 mRNA level was correlated with the differentiation ability of ESC.
- CHD7 mRNA corresponding to isoform 1 was expressed at relatively high levels in the 2-cell and 4-cell stages, and then at low levels in the embryonic and blastocyst stages (FIG. 16 “2 cells”) , "4 cell”, "morula” and “blastocyst”).
- the copy number of CHD7 isoform 1 mRNA in 5 ng of total RNA was quantified by digital PCR in different PSCs cultured under different conditions. Specifically, H9 or KhES-1 (respectively ESC) or PFX # 9, 201B7 or SHh # 2 (respectively iPSC) was used as the cells. The cells were cultured by the Small Cell Clumps method using hPSC medium on feeder cells. Alternatively, they were cultured in single cells using Es8, RFF2 or SPM on dishes coated with VTN-N. The copy number of CHD7 isoform 1 mRNA in 5 ng of total RNA extracted from cultured cells was determined by droplet digital PCR.
- PSCs cultured with RFF had low copy number of CHD7 isoform 1 in 5 ng of total RNA, and did not show differentiation ability, but differentiation ability was confirmed under other conditions.
- the copy numbers and their passage numbers (P) are shown in Table 7.
- the result of the differentiation ability specifically analyzed about some cells of the cells cultured under these culture conditions is shown in FIG.
- the threshold for the copy number of CHD7 isoform 1 mRNA was further examined for PSCs having differentiation ability. Specifically, the differentiation ability of cells (201B7 or PFX # 9) cultured under conditions of Overgrowth to reduce the copy number of CHD7 mRNA was analyzed. The results of copy number of CHD7 mRNA in digital PCR are shown in Table 8, and the results of differentiation ability are shown in FIG.
- the expression level of CHD7 protein is also a predictive marker of PSC differentiation ability: In order to examine the relationship between the expression level of CHD7 protein and the differentiation ability of PSC as well as the copy number of CHD7 mRNA, the expression level of CHD7 protein was tried to be measured.
- Table 9 shows the culture conditions of each cell, the copy number and differentiation ability of CHD7 isoform 1 mRNA, and the result of sandwich ELISA is shown in FIG.
- the graph shows the standard product (protein solution same as P1 concentrated with Amicon (registered trademark) Ultra-4, PLTK Ultracel-PL membrane, 30 kDa (Millipor, UFC 803024) to a concentration of 4.06 mg / mL)
- the CHD7 protein concentration was 1000 Units / mL, and it was shown as the relative value.
- the CHD7 protein concentrations of P1 and P2 were 9.2 times (N 10.9% of P1) and 7.0 times (N 14.2% of P2), respectively, compared to the protein concentration of N.
- Asymptotes were drawn from the mRNA copy number and the protein concentration (units / mL) obtained from the results of ELISA (FIG. 20).
- the concentration (x) was 56.6 units / mL when the copy number (y) in 5 ng of total RNA was 1500 copies, as calculated using asymptotic lines. This was 2.1 times the concentration of N (N is 52% of the determined concentration).
- the concentration (x) was 102.2 units / mL. This was 3.8 times the concentration of N (N is 74% of the concentration determined).
- using the asymptote can provide an appropriate threshold value required. It is understood.
- the present invention can be used to provide hPSCs with reduced risk of tumor development, which do not show differentiation resistance during differentiation induction, and are extremely useful in transplantation therapy with hiPSC-derived differentiated cells. .
- the present invention is also useful in the search for a medium and / or culture conditions suitable for maintaining and culturing PSCs so as not to show differentiation resistance during differentiation induction.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Developmental Biology & Embryology (AREA)
- Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Reproductive Health (AREA)
- Biophysics (AREA)
- Gynecology & Obstetrics (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Pathology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Transplantation (AREA)
- Virology (AREA)
- Toxicology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本発明の別の目的は、前記分化抵抗性予測マーカーの発現を指標として、多能性幹細胞の分化能の保持に適した培養条件を探索する手段を提供することである。
本発明のさらに別の目的は、前記分化抵抗性予測マーカーの発現を指標として、多能性幹細胞用培地を評価する方法を提供することである。
本発明の更なる目的は、多能性幹細胞の分化抵抗性を低下またはなくす方法を提供することである。
[1]ヒト多能性幹細胞におけるCHD7の発現レベルを測定することを含む、該多能性幹細胞の分化能の予測方法。
[2]前記CHD7の発現レベルがトータルRNA 5ng中1500コピー以上であるヒト多能性幹細胞を、分化刺激に応答して分化能を示すと予測することを特徴とする、[1]に記載の方法。
[3]前記CHD7の発現レベルがトータルRNA 5ng中2710コピー以上である、[2]に記載の方法。
[4]前記CHD7の発現レベルがEssential 8培地又はStem-Partner(登録商標) Human iPS/ES cells mediumを用いて5継代以上培養したヒト多能性幹細胞における発現レベルである、[2]または[3]に記載の方法。
[5]前記ヒト多能性幹細胞が胚性幹細胞又は人工多能性幹細胞である、[1]~[4]のいずれかに記載の方法。
[6]ヒト多能性幹細胞におけるCHD7の発現レベルを測定することを含む、該多能性幹細胞用培地の評価方法。
[7]前記ヒト多能性幹細胞が、被験培地で5継代以上培養したヒト多能性幹細胞である、[6]に記載の方法。
[8]前記CHD7の発現レベルがトータルRNA 5ng中1500コピー以上である場合に、該被験培地は、分化刺激に応答して分化能を示すようにヒト多能性幹細胞を維持し得ると評価することを特徴とする、[6]又は[7]に記載の方法。
[9]前記CHD7の発現レベルがトータルRNA 5ng中2710コピー以上である、[8]に記載の方法。
[10]前記ヒト多能性幹細胞が胚性幹細胞又は人工多能性幹細胞である、[6]~[9]のいずれかに記載の方法。
[11]CHD7の発現を検出し得る物質を含有してなる、ヒト多能性幹細胞の分化能を予測、及び/又はヒト多能性幹細胞用培地を評価するための試薬又はキット。
[12]CHD7をコードする核酸を含有してなる、ヒト多能性幹細胞の分化誘導剤。
[13]前記CHD7の発現レベルが、分化抵抗性を示すヒト多能性幹細胞におけるCHD7タンパク質レベルと比較して2倍以上のタンパク質レベルであるヒト多能性幹細胞を、分化刺激に応答して分化能を示すと予測することを特徴とする、[1]に記載の方法。
[14]前記CHD7の発現レベルがEssential 8培地又はStem-Partner(登録商標) Human iPS/ES cells mediumを用いて5継代以上培養したヒト多能性幹細胞における発現レベルである、[13]に記載の方法。
[15]前記分化抵抗性を示すヒト多能性幹細胞が、ReproFF2培地を用いて5継代以上培養したヒト多能性幹細胞である、[13]又は[14]に記載の方法。
本明細書において、多能性幹細胞の「分化能」とは、多能性幹細胞が自発的に、あるいは特定の分化刺激に応答して、三胚葉系列又は特定の細胞系列に分化する能力を意味する。本発明の好ましい実施態様においては、ある特定の分化刺激に応答して、その分化刺激に対応する細胞系列に分化する能力を有するヒト多能性幹細胞を予測し、選択する。そのような分化刺激としては、PSCが未分化状態を脱していずれかの分化細胞が誘導され得る刺激であって、その分化の方向性が既知である限り特に制限されないが、例えば、後述の実施例におけるEB形成アッセイやサイトカイン誘導性分化アッセイに使用される培養条件等が挙げられる。
本明細書において、「CHD7の発現レベル」とは、特に明記した場合を除き、CHD7遺伝子の発現レベル及びCHDタンパク質の発現レベルのいずれを意味してもよい。
CHD7タンパク質濃度は、培養した細胞のLysateにおけるCHD7タンパク質濃度を直接測定した値でもよいし、培養した細胞のLysateを標準品として、標準品に対する相対値であってもよい。該培養した細胞は、分化抵抗性を示す幹細胞であってもよく、正常な分化能を示す幹細胞であってもよく、該Lysateは、濃縮されたものであってもよく、濃縮されていなくてもよい。
ES細胞の場合、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー細胞上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor(LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor(bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al. (1998), Science. 282:1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222:273-279;H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al. (2006), Nature. 444:481-485などに記載されている。また、ヒトES細胞株は、例えばWA01(H1)およびWA09(H9)は、WiCell Research Instituteから、KhES-1、KhES-2およびKhES-3は、京都大学再生医科学研究所(京都、日本)から入手可能である。
EG細胞は、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)。
nt ES細胞の作製のためには、核移植技術(J.B. Cibelli et al. (1998), Nature Biotechnol., 16:642-646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
mGS細胞はWO 2005/100548に記載される方法に従って、精巣細胞から作製することができる。
一方、リアルタイムRT-PCRは、PCRの増幅量をリアルタイムでモニタリングできるので、電気泳動が不要で、より迅速にCHD7の遺伝子発現を解析可能である。通常、モニタリングは種々の蛍光試薬を用いて行われる。これらの中には、SYBR Green I、エチジウムブロマイド等の二本鎖DNAに結合することにより蛍光を発する試薬(インターカレーター)の他、上記プローブとして用いることができる核酸(但し、該核酸は増幅領域内で標的核酸にハイブリダイズする)の両端をそれぞれ蛍光物質(例:FAM、HEX、TET、FITC等)および消光物質(例:TAMRA、DABCYL等)で修飾したもの等が含まれる。
また、デジタルPCR分析は、抽出したmRNAからcDNAを合成し、超微小区画や油中水滴(W/O型)エマルションの水滴中にcDNAが1または0となるように希釈し分散させてPCR増幅を行い、増幅シグナルがポジティブの微小区画や水滴の数を直接カウントすることにより、サンプル中のターゲット遺伝子の発現量を絶対的に測定する分析手法のことであり、特に好適に用いることができる。デジタルPCR分析は、市販のデジタルPCR分析装置を用いることができ、QuantStudio 3D デジタル PCR システム(Thermo Fisher Scientificの商品名)、BioMark HD(Fluidigmの商品名)やDroplet Digital PCR方式を採用したBio-Rad Laboratoriesの製品等を用いることができ、各装置の取扱説明書やプロトコールに従って分析することができる。
CHD7タンパク質濃度は、培養した細胞のLysateにおけるCHD7タンパク質濃度を直接測定した値でもよいし、培養した細胞のLysateを標準品として、標準品に対する相対値であってもよい。該培養した細胞は、分化抵抗性を示す幹細胞であってもよく、正常な分化能を示す幹細胞であってもよく、該Lysateは、濃縮されたものであってもよく、濃縮されていなくてもよい。
従って、本発明はまた、PSCにおけるCHD7の発現レベルを測定することを含む、該多能性幹細胞用培地の評価方法(以下、「本発明の評価方法」ともいう)を提供する。被験培地としては、上記CHD7の発現レベルを測定する工程に先立ってPSCを維持培養するのに使用され得る各種培地が挙げられる。
CHD7タンパク質濃度は、培養した細胞のLysateにおけるCHD7タンパク質濃度を直接測定した値でもよいし、培養した細胞のLysateを標準品として、標準品に対する相対値であってもよい。該培養した細胞は、分化抵抗性を示す幹細胞であってもよく、正常な分化能を示す幹細胞であってもよく、該Lysateは、濃縮されたものであってもよく、濃縮されていなくてもよい。
従って、本発明はまた、CHD7をコードする核酸を含有してなる、PSC、特にhPSCの分化誘導剤、並びに該核酸を、分化抵抗性を示すPSCに導入することを含む、該PSCの分化誘導方法を提供する。
本明細書において、すべての実験はヒトESCおよびヒトiPSCを使用した。本研究は、先端医療振興財団/神戸医療産業都市推進機構(FBRI)の倫理委員会の承認を受けた。
ヒト胚性幹細胞(ESC)株 KhES-1(Riken BRC)(Navarro-Alvarezら, Cell Transplant2008; 17(1-2): 111-119)及びH9(WiCell Research Institute, Levensteinら, Stem Cell; 24(3):568-74, 2006 Mar.)、ならびにヒト人工多能性幹細胞(hiPSC)株 PFX#9 (Nishishitaら. PLoS One. 2012; 7(6): e38389)、201B7(Riken RBC)及びSHh#2(Nishishitaら, PLoS One. 2012; 7(6))のいずれかを、マイトマイシンC処理したSNL76/7細胞(SIM strain embryonic fibroblast, ECACC; European Collection of Authenticated Cell Culture)上で、hPSCs培地(Takenakaら, PLoS ONE 2015; 10(6): e0129855)を用いて、またはrhVitronectin-N(組換えヒトビトロネクチン-N)(VTN-N, Thermo Fisher Scientific)でコーティングしたディッシュ上で、Essential 8培地(Es8, Thermo Fisher Scientific)(Chen ら. Nat Methods 2011; 8(5): 424-429,)、SPM(Stem-Partner(登録商標) Human iPS/ES cells medium)(Takenakaら, PLoS ONE 2015;10(6): e0129855,)(Kyokuto Pharmaceutical Co. Ltd.)又はRiproFF2培地(RFF2, ReproCELL)を用いて培養した。細胞を、Gentle Cell Dissociation Reagent(GCDR; Stem Cell Technologies)を用いて凝集で継代し、iPSCの場合は1:3の比率で、hESCの場合は1:3.5の比率で分割した。あるいは、TrypLE Select(Life Technologies)(Takenakaら,PLoS ONE 2015; 10(6): e0129855)を用いて単一細胞懸濁液を播種することにより、細胞を継代した。単一細胞懸濁液中の細胞を、6ウェルプレートに1ウェルあたり、Es8で培養する場合は3×105個、RFF2培地で培養する場合は1×105 個播種した。インキュベーター(MCO-19AIC、Panasonic、Osaka、Japan)内で、37℃、5%CO 2の条件下で細胞を培養した。KhES-1、H9及びPFX#9の核型を、5回の継代毎にmulticolor fluorescence in situ hybridization(mFISH)により、10継代ごとにG-バンドにより検査し、正常な核型を有するPSCをこの研究で使用した。
指定のない限り、すべての試薬はThermo Fisher Scientificから調達した。siCHD7又はコントロールsiRNA(mock)導入実験のために、予め設計したサイレンサーセレクト(Silencer Select)ヒトCHD7 siRNA(カタログ番号4392420; ID:s31142)及びサイレンサーセレクトネガティブコントロールNo.1(カタログ番号4404021)を使用した。これらの試薬の導入は以下のように行った。
VTN-Nでコーティングした6ウェルプレートに、1ウェルあたり2×10 5個のESCを播種し、4mLのEs8、SPM又はRFF2を用いて培養した。翌日に培地を交換し、メーカーの説明書に従い、Lipofectamine RNAiMAXinを用いて細胞にsiCHD7(トランスフェクション量50pmol、30pmolもしくは10pmol)又はコントロールsiRNAをトランスフェクションした。50pmolのsiCHD7の導入について簡潔にいえば、カクテルA(4μL Lipofectamine RNAiMAX試薬及び150μL Opti-MEM培地)を、カクテルB(1μLの50μM siCHD7(50 pmol)又はコントロールsiRNA(50 pmol)及び150μL Opti-MEM培地)と混合し、室温で5分間インキュベートした。混合したカクテル(240μL)を用いてsiCHD7(最終濃度10nM)又はコントロールsiRNA(最終濃度10nM)をES細胞にトランスフェクションし、48時間インキュベートした。試薬の形質導入効率は、指定された時点で、トランスフェクションされた細胞中のCHD7 mRNAをqRT-PCRで検出することにより評価した。
T7プロモーター及びT7ターミネーターを、それぞれCHD7 アイソフォーム 2(NM_001316690.1(配列番号3))の5 'および3' コーディング配列に融合させ、pMXベクターにクローニングした。SfiIでpMXベクターを消化した後、mMESSAGE mMACHINE T7 ULTRA Transcription Kitを用いてCHD7 アイソフォーム 2の合成mRNAを作製した。同様の方法により、クロモドメインおよびSNF2-like ATPase/helicasドメインの両方をカバーする合成mRNA(CHD7 DN1)を作製した。公開されたCHD1配列(Ryanら. Embo j 2011; 30(13):2596-2609)とのホモロジーに基づいてCHD7におけるSANT-SLIDEドメイン領域を決定し、同様の方法により合成mRNA(CHD7 DN2)を作製した。得られたmRNA量をND-1000(Nano Drop)で測定した。同じベクターのバックボーンから得られた高感度緑色蛍光タンパク質(eGFP)のmRNAを、コントロール(コントロールmRNA、mock)として使用した。
VTN-Nでコーティングした6ウェルプレートの各ウェルに5ng / mLの線維芽細胞増殖因子2(FGF2; Peprotech)を添加したRFF2を充填し、ESC(3×10 5個)を播種した。メーカーの説明書に従い、Lipofectamine Messenger MAXを用いて細胞にmCHD7又はコントロールmRNA(mock)をトランスフェクションした。簡潔にいえば、カクテルA(3.75 μL Lipofectamine Messenger MAXトランスフェクション試薬及び125μL Opti-MEM培地)を室温で10分間インキュベートした。次いで、カクテルB(2.5μgのmCHD7又はコントロール mRNA、及び125μLのOpti-MEM培地)を調製し、カクテルAと混合した後、室温で5分間インキュベートした。混合したカクテル(240 μL)に、最終濃度として5ng/mLとなるように FGF2を添加した4 mLの RFF2を加えた。本培地を用いて37℃で24時間、細胞をインキュベートした。試薬の形質導入効率は、指定された時点で、トランスフェクションされた細胞中のCHD7 mRNA発現をqRT-PCRで決定することにより評価した。
Infinium Human Methylation 450 BeadChip(Illumina)を用いて、培養したESCまたはiPSCのメチル化状態を測定した。プロモーター領域のメチル化パターンは、Cluster 3.0を用いて階層的にクラスター化し、Java Tree Viewで可視化した。プロモーター領域の各遺伝子のメチル化状態は、GeneChip(Human Genome U133 Plus2.0 Array、Affymetrix)アレイデータにより得られた遺伝子発現シグナルと比較して候補遺伝子を抽出することにより評価した。
4mLのEs8を用いてVTN-Nでコーティングしたウェル上で培養した細胞を、siCHD7(50pmol)または対照siRNA(mock)をトランスフェクションした48時間後に、PBS(-)で1回洗浄した。次に、細胞をセルスクレーパー(Iwaki)で掻き取り、ピペッティングにより解離させ、低接着性6ウェルプレート(Corning)に移し、10mMのROCKインヒビター(Y-27632、和光)を含むEssential 6培地(Es6)を用いて1日間培養し、EB形成のためにEs6のみを用いて13日間培養した。培地を2日ごとに交換した。顕微鏡(Olympus IX71、Olympus)を用いてEBの数および形態を観察した。qRT-PCRによりCHD7の遺伝子発現を決定し、qRT-PCR device(QuantStudio 12K Flex)を用いてTaqMan(登録商標) Scorecard Panel(A15870)により遺伝子発現プロファイルを決定した。CHD7のプライマー配列を表1に示す。
最終濃度として5ng/mLになるようにFGF2を添加したRFF2を用いてVTN-Nでコーティングしたウェル上で培養した細胞を、mCHD7または対照mRNAを導入した24時間後にPBS(-)で1回洗浄した。次に、細胞をセルスクレーパー(Iwaki)で掻き取り、ピペッティングにより解離させ、低接着性6ウェルプレート(Corning)に移し、10mM ROCKインヒビター(Y-27632、和光)を含み且つFGF2を含まないRFF2を用いて1日間培養し、EB形成のためにFGF2を含まないRFF2を用いて培地を毎日交換しながら培養した。顕微鏡(Olympus IX71、Olympus)を用いてEBの数および形態を観察した。qRT-PCRによりCHD7の遺伝子発現を決定し、qRT-PCR device(QuantStudio 12K Flex)を用いてTaqMan(登録商標)Scorecard Panel(A15870)により遺伝子発現プロファイルを決定した。
メーカーの説明書に従い、RNeasyマイクロキット(74004、QIAGEN)を用いてトータルRNAを抽出した。QuantiTect Reverse Transcription Kit(205311、QIAGEN)を用いてcDNAを合成するために、1μgのトータルRNAを使用した。TaqMan(登録商標) hPSC Scorecard Panel(A15870)を用いて、三胚葉及び自己増殖に関連する遺伝子発現のプロファイリングのための定量的PCR(qPCR)を行った。SYBR(登録商標)Select Master Mix及びStepOnePlusを用いて、逆転写反応により500ngのトータルRNAからcDNAを合成した。反応は、95℃で10分間、及び95℃で15秒間、60℃で1分間及び72℃で15秒間を40サイクルという条件で行った。用いたプライマーを表1に列挙した。相対的な定量は、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(GAPDH)での標準化後に2-ΔΔCt法を用いて計算した。
CHD7転写物のコピー数は、Droplet Digital PCRシステム(Bio-Rad Laboratories)によって決定した。具体的には、TaqMan(登録商標)Gene Expression Assay(Hs00215010_m1、Thermo Fisher Scientific)のプローブを用いて、Es8またはRFF2で培養したKhES-1から抽出した5ngのトータルRNAからcDNAを生成した。RT-PCR反応混合物をQX100システム(Bio-Rad Laboratories)を用いて、取扱い説明書に従ってエマルションを生成した。その後、Applied Biosystems GeneAmp 9700 Thermalcyclerを用いて、Es8培養物およびRFF2培養物からcDNAをそれぞれ増幅した。各反応液は、10μLのddPCRプローブSupermix、1000nMプライマー、250nMプローブ、および鋳型cDNAを含む20μL溶液から成り、反応は、95℃で10分間処理後、94℃で30秒間の変性と53℃で60秒間の伸長反応を40サイクル繰り返し、最後に98℃で10分間という条件で行った。反応後、各ウェルの生の蛍光データをソフトウェアQuantaSoft ver. 1.2(Bio-Rad Laboratories)で分析した。
細胞を播種した72時間後、ウエスタンブロッティング用の細胞溶解物を調製した。プロテアーゼ阻害剤カクテル錠(Complete Mini、Roche)を添加したComplete Lysis-M(Roche)を用いてタンパク質を抽出した。1次抗体及び2次抗体としてそれぞれ、ポリクローナルヒツジIgG 抗Chd7 抗体(AF7350、R&D Systems)及びホースラディッシュペルオキシダーゼで標識されたウサギ抗ヒツジIgG(H + L)抗体を用いた。Chemi-Lumi One Super reagents(Nacalai Tesque)を用いてシグナルを検出した。レーンにアプライする前に、ビシンコニン酸総タンパク質アッセイキット(Nacalai Tesque)を用いて総タンパク質を測定した。
ESCを種々の条件で培養した。具体的には、H9をEs8で17継代培養(P1)、KhES-1をEs8で10継代培養(P2)、及びKhES-1をRFF2で11継代培養(N)した。いずれの細胞も、VTN-Nでコートしたディッシュで、フィーダー細胞フリーで、単一細胞で培養した。培養したESCをそれぞれ、cOmplete Lysys-M(Merck KGaA、製品番号:04719956001)のプロトコールにしたがって溶解し、タンパク濃度を測定した後、500μLずつ分注して液体窒素で急速に冷凍し、使用するまで-80℃で保存した。総タンパク濃度は、P1が、1.25mg/mL、P2が、1.27mg/mL、Nが、0.84mg/mLであった。H9細胞を、Es8又はRFF2で培養し、cOmplete Lysys-Mのプロトコールに従って溶解した後、アミコン ウルトラ-4, PLTK ウルトラセル-PL メンブレン, 30 kDa(Amicon(登録商標) Ultra-4 PLTK Ultracel-PL membrane, 30 kDa、カタログ番号:UFC803024、Merck KGaA)を使用し、4000 X g、4℃で濃縮したものをそれぞれ、標準品及びネガティブコントロール(N2)とした。標準品及びネガティブコントロール(N2)を500μLずつ分注して液体窒素で急速に冷凍し、使用するまで-80℃で保存した。標準品及びネガティブコントロール(N2)の総タンパク濃度は、それぞれ4.06mg/mL、10.23mg/mLであった。
サンドイッチELISAには、捕捉(固相)抗体は、ヒトCHD7(配列番号2)のAla 263-Gln 457を大腸菌で発現させたポリペプチドを抗原として得られたモノクローナル抗体(マウスIgG1)をProtein A又はProtein Gで精製したもの、一次抗体としてヒトCHD7(配列番号2)のGly 25-Met 200を大腸菌で発現させてウサギに免疫し、抗原でアフィニティー精製した抗ヒトCHD7ウサギIgG、二次抗体として抗ウサギIgG‐HRP(SouthernBiotech, 4090-05)をそれぞれ使用した。
サンドイッチELISAは、以下の方法で行った。サンドイッチELISAの最適な条件を設定するために、一次抗体と二次抗体の濃度については、以下の表に示す条件で検討した。D-PBS(-)で3μg/mLに希釈した捕捉抗体の溶液を96穴プレート(MaxiSorp(登録商標)、Nunc、44-2404-21)のウェルに100μLを加え、プレートシールで密閉して4℃で一晩静置した。その後、捕捉抗体の溶液をデカンテーションで除き、0.05%Tween(登録商標)20を含むD-PBS(-)(以下、「洗浄液」ともいう。)を200μL加えて軽く攪拌し5分静置後除去して洗浄しこれを3回繰り返した。洗浄液を除いたウェルに、洗浄液に1%BSAを加えたブロッキング溶液を加え、室温で1時間インキュベーションしてブロッキングを行った。次いで、ブロッキング溶液で希釈した標準品、目的サンプルを100 μL/ウェル、Blank用ウェルにはブロッキング溶液を同量添加して、プレートシールをしっかりと貼り液が蒸発しないようにして4℃で一晩インキュベーションした。その後、ウェルを洗浄液で3回洗浄し、ブロッキング溶液で1μg/mL又は3μg/mLに希釈した一次抗体を100μL加え、室温で1時間インキュベーションした。その後、一次抗体を除き、ウェルを洗浄液で3回洗浄した。次いで、5000倍又は10000倍に希釈した二次抗体をウェルに100μL添加し、室温で1時間インキュベーションした。その後、洗浄液で3回洗浄し、100μLの基質溶液(TMB、ScyTek Laboratories, TM4500)を添加して遮光して20~30分インキュベーションして100 μL/ウェルの0.5 M H2SO4を添加し反応を停止させ、マイクロプレートリーダーで450 nm(Abs450nm)および650 nm (リファレンス波長、Abs650nm)の吸光度を測定し、基準品の原液CHD7濃度を1000unitとして、500 U/mLから2倍希釈の希釈系列で8点以上、又は3倍希釈の希釈系列で6点以上を作成して測定した。
CHD7の濃度は、以下の工程により算出した。
1) 測定した吸光度から式1によりΔAbsを算出する。
1. ESCの分化能は培養条件を変えることにより変化する:
正常な核型を示すKhES-1細胞を、hrVitronectin-N(VTN-N)でコーティングしたディッシュ上でEssential 8培地(Es8)を用いて培養すると、KhES-1細胞は、自己増殖能および分化能の両方を保持した。KhES-1細胞は、ReproFF2(RFF2)で5回継代培養後に分化能を失ったが、Es8で培養後に再び分化能を回復した(図1)。また、SPM(Takenaka ら, PLoS ONE 2015; 10(6): e0129855)で培養したKhES-1細胞は分化能を保持したが、RFF2で5継代培養することによって分化能は失われた。さらに、正常な核型を示すPFX#9 iPSC(Nishishitaら, PLoS One 2012; 7(6): e38389)を、VTN-Nでコーティングしたディッシュ上でEs8を用いて培養した後にRFF2で培養したところ、同じ結果が得られた(図2)。これらの結果により、PSCの分化能が培養条件によって可逆的に変化し得ることが示された。そして、細胞のエピジェネティック状態における変化がこれらの応答に関連すると考えられた。
Es8を用いて培養したKhES-1細胞は、分化能を保持し、EBを形成する。まず、KhES-1細胞において、siCHD7をトランスフェクションした際に、CHD7のダウンレギュレーションが起こるかどうかを調べた。6ウェルディッシュの1ウェル当たり10pmol、30pmol又は50pmolのsiCHD7をトランスフェクションしCHD7の発現量を調べた。その結果、siCHD7の導入量の増加に従ってCHD7の発現量は減少し、導入量の依存性が見られた(図7B)。次に、siCHD7をトランスフェクションしたKhES-1細胞の三胚葉への分化を調べた。EBにおいて、5日目に中胚葉の分化の乱れが観察され、14日目に中胚葉および内胚葉の発達が中程度に抑制された(図8)。siCHD7の1回の導入によるCHD7 mRNAのダウンレギュレーションは、完全ではなかった。siCHD7の1回の導入は、外胚葉分化の開始を阻止できなかったが、14日間培養した後の中胚葉および内胚葉の発生を混乱させた。これらのデータにより、三胚葉発生を促進するために、CHD7の発現レベルがEBの分化を通じて一定のレベルで維持される必要があることが示唆された。
CHD7アイソフォーム2 mRNAの導入は、いかなる追加の分化刺激を伴わずに、RFF2で培養したKhES-1細胞における「自発的な」分化を誘導した(図12)。RFF2培地で培養したKhES-1細胞にCHD7アイソフォーム2をトランスフェクションし、1、2および3日後のKhES-1細胞における94の遺伝子の発現レベルをqRT-PCR scorecard panelにより決定した(表6)。表において、fold change(fc)が2.0以上の場合は、アップレギュレーションしていることを意味し、0.1以下の場合は、ダウンレギュレーションしていることを意味する。PSCの培養系は、分化細胞ではなく未分化細胞を維持するように設計されている。KhES-1細胞は、分化した場合、VTN-Nでコーティングしたディッシュ上で培養することができず、RFF2培養物中のKhES-1細胞数は、細胞が分化するにつれて減少した(図11C及び図12)。特に、CHD7アイソフォーム2の過剰発現は、連続した分化プロセスに従わずに、三胚葉分化を同時に誘導した。
CHD7の他の機能は、ESCの増殖を支持することである。6ウェルプレートの1ウェルあたり1×10 5個のKhES-1細胞を播種し、Es8で細胞を培養し、3日後に8×10 5個の細胞を採取した。RFES2培地中のKhES-1細胞の増殖率はEs8を用いた場合の1/3であったが、Es8を用いた場合、培養3日後にKhES-1細胞は8倍の拡大が観察された。CHD7発現レベルが濃度依存的にESCの増殖率を調節し得るか否かを調べるために、KhES-1細胞へのsiCHD7のトランスフェクションによりCHD7をダウンレギュレーションし、Es8で細胞を培養し、培養中の細胞数の測定を行った(図15 A、B)。その結果、KhES-1細胞の増殖率は、CHD7 mRNAの発現レベルによって調節された(図15 C、D)。さらに、クロモドメイン及び/又はSANT-SLIDEドメインを網羅するCHD7のドミナントネガティブタンパクを生成する mRNAのKhES-1細胞への導入は、細胞増殖率を劇的に低下させた(図13)。
様々な条件下で培養したPSCにおけるCHD7 mRNAの発現量を測定して、CHD7 mRNAレベルがESCの分化能と相関するか否かを調べた。まず、GeneChipデータベースを用いて、着床前の様々な胚形成期における胚のCHD7 mRNAの発現レベル、ならびにPSCおよびEBにおけるCHD7 mRNAの発現レベルを調べた(図16)。アイソフォーム1に対応するCHD7 mRNAは、2細胞期および4細胞期において比較的高レベルで発現し、その後、桑実胚期および胚盤胞期において低レベルで発現した(図16 「2 cell」、「4 cell」、「morula」及び「blastocyst」)。胚形成の間、受精卵は分化して増殖する。そして、胚は、内部細胞塊と呼ばれる、発達軸(developmental axis)のない同一の細胞塊を増殖させることからなる胚盤胞期に達する。GeneChip発現シグナルの測定において、PSCは、着床後のマウス エピブラストの遺伝子発現プロファイルと同様の遺伝子発現プロファイルを示し、培養条件に応じて様々なレベルのCHD7 mRNAを有していた。CHD7の発現が低いPSC(図16「KhES-1 RFF2/N」及び「PFX#9 RFF2/N」)は、未分化状態で増殖能を保持したが、分化能を失った。
CHD7のmRNAのコピー数だけではなく、CHD7タンパクの発現量とPSCの分化能との関係を検討するため、CHD7のタンパク質の発現量の測定を試みた。
CHD7タンパク質レベル及び遺伝子の発現レベルも考慮して、上記の結果を用いて閾値を求めた。
Claims (15)
- ヒト多能性幹細胞におけるCHD7の発現レベルを測定することを含む、該多能性幹細胞の分化能の予測方法。
- 前記CHD7の発現レベルがトータルRNA 5ng中1500コピー以上であるヒト多能性幹細胞を、分化刺激に応答して分化能を示すと予測することを特徴とする、請求項1に記載の方法。
- 前記CHD7の発現レベルがトータルRNA 5ng中2710コピー以上である、請求項2に記載の方法。
- 前記CHD7の発現レベルがEssential 8培地又はStem-Partner(登録商標) Human iPS/ES cells mediumを用いて5継代以上培養したヒト多能性幹細胞における発現レベルである、請求項2又は3に記載の方法。
- 前記ヒト多能性幹細胞が胚性幹細胞又は人工多能性幹細胞である、請求項1~4のいずれか一項に記載の方法。
- ヒト多能性幹細胞におけるCHD7の発現レベルを測定することを含む、該多能性幹細胞用培地の評価方法。
- 前記ヒト多能性幹細胞が、被験培地で5継代以上培養したヒト多能性幹細胞である、請求項6に記載の方法。
- 前記CHD7の発現レベルがトータルRNA 5ng中 1500コピー以上である場合に、該被験培地は、分化刺激に応答して分化能を示すようにヒト多能性幹細胞を維持し得ると評価することを特徴とする、請求項6又は7に記載の方法。
- 前記CHD7の発現レベルがトータルRNA 5ng中 2710コピー以上である、請求項8に記載の方法。
- 前記ヒト多能性幹細胞が胚性幹細胞又は人工多能性幹細胞である、請求項6~9のいずれか一項に記載の方法。
- CHD7の発現を検出し得る物質を含有してなる、ヒト多能性幹細胞の分化能を予測、及び/又はヒト多能性幹細胞用培地を評価するための試薬又はキット。
- CHD7をコードする核酸を含有してなる、ヒト多能性幹細胞の分化誘導剤。
- 前記CHD7の発現レベルが、分化抵抗性を示すヒト多能性幹細胞におけるCHD7タンパク質レベルと比較して2倍以上のタンパク質レベルであるヒト多能性幹細胞を、分化刺激に応答して分化能を示すと予測することを特徴とする、請求項1に記載の方法。
- 前記CHD7の発現レベルがEssential 8培地又はStem-Partner(登録商標) Human iPS/ES cells mediumを用いて5継代以上培養したヒト多能性幹細胞における発現レベルである、請求項13に記載の方法。
- 前記分化抵抗性を示すヒト多能性幹細胞が、ReproFF2培地を用いて5継代以上培養したヒト多能性幹細胞である、請求項13又は14に記載の方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18820091.9A EP3643780A4 (en) | 2017-06-19 | 2018-06-04 | METHOD FOR PREDICTING THE DIFFERENTIATION CAPACITY OF PLURIPOTENT STEM CELLS, AND ASSOCIATED REAGENT |
CN201880041090.5A CN111164209A (zh) | 2017-06-19 | 2018-06-04 | 多能干细胞的分化能力的预测方法和用于该预测方法的试剂 |
JP2019525331A JP6736772B2 (ja) | 2017-06-19 | 2018-06-04 | 多能性幹細胞の分化能の予測方法及びそのための試薬 |
US16/623,382 US20200172969A1 (en) | 2017-06-19 | 2018-06-04 | Method for predicting differentiation ability of pluripotent stem cell, and reagent for same |
SG11201912436PA SG11201912436PA (en) | 2017-06-19 | 2018-06-04 | Method for predicting differentiation ability of pluripotent stem cell, and reagent for same |
KR1020207000609A KR102422175B1 (ko) | 2017-06-19 | 2018-06-04 | 만능 줄기 세포의 분화능의 예측 방법 및 이를 위한 시약 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017120024 | 2017-06-19 | ||
JP2017-120024 | 2017-06-19 | ||
JP2017-237420 | 2017-12-12 | ||
JP2017237420 | 2017-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018235583A1 true WO2018235583A1 (ja) | 2018-12-27 |
Family
ID=64737514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/021430 WO2018235583A1 (ja) | 2017-06-19 | 2018-06-04 | 多能性幹細胞の分化能の予測方法及びそのための試薬 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200172969A1 (ja) |
EP (1) | EP3643780A4 (ja) |
JP (2) | JP6736772B2 (ja) |
KR (1) | KR102422175B1 (ja) |
CN (1) | CN111164209A (ja) |
SG (1) | SG11201912436PA (ja) |
WO (1) | WO2018235583A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020203538A1 (ja) | 2019-03-29 | 2020-10-08 | 株式会社カネカ | 多能性幹細胞を含む細胞集団及びその製造方法 |
JPWO2021095798A1 (ja) * | 2019-11-15 | 2021-11-25 | 公立大学法人横浜市立大学 | 未分化マーカー遺伝子高感度検出法 |
EP4043864A4 (en) * | 2019-10-28 | 2022-11-30 | FUJIFILM Corporation | METHOD FOR SORTING PLURIPOTENT STEM CELLS, METHOD FOR PREDICTING RESULTS OF INDUCTION OF DIFFERENTIATION, AND METHOD FOR MANUFACTURING CELLULAR PRODUCT |
WO2023223447A1 (ja) * | 2022-05-18 | 2023-11-23 | 株式会社日立製作所 | 予測装置、自動培養装置システム、予測方法およびキット |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200172969A1 (en) * | 2017-06-19 | 2020-06-04 | Foundation For Biomedical Research And Innovation At Kobe | Method for predicting differentiation ability of pluripotent stem cell, and reagent for same |
CN115885048A (zh) * | 2020-06-19 | 2023-03-31 | 富士胶片株式会社 | 生物标记确定方法及细胞的制造方法 |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5843780A (en) | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
WO2005100548A1 (ja) | 2004-03-30 | 2005-10-27 | Kyoto University | 精巣細胞由来多能性幹細胞の製造方法 |
WO2007069666A1 (ja) | 2005-12-13 | 2007-06-21 | Kyoto University | 核初期化因子 |
WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
WO2009007852A2 (en) | 2007-06-15 | 2009-01-15 | Izumi Bio, Inc | Multipotent/pluripotent cells and methods |
WO2009032194A1 (en) | 2007-08-31 | 2009-03-12 | Whitehead Institute For Biomedical Research | Wnt pathway stimulation in reprogramming somatic cells |
WO2009058413A1 (en) | 2007-10-29 | 2009-05-07 | Shi-Lung Lin | Generation of human embryonic stem-like cells using intronic rna |
WO2009057831A1 (ja) | 2007-10-31 | 2009-05-07 | Kyoto University | 核初期化方法 |
WO2009075119A1 (ja) | 2007-12-10 | 2009-06-18 | Kyoto University | 効率的な核初期化方法 |
WO2009079007A1 (en) | 2007-12-17 | 2009-06-25 | Gliamed, Inc. | Stem-like cells and method for reprogramming adult mammalian somatic cells |
WO2009091659A2 (en) | 2008-01-16 | 2009-07-23 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents |
WO2009101084A1 (en) | 2008-02-13 | 2009-08-20 | Fondazione Telethon | Method for reprogramming differentiated cells |
WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
WO2009102983A2 (en) | 2008-02-15 | 2009-08-20 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
WO2009117439A2 (en) | 2008-03-17 | 2009-09-24 | The Scripps Research Institute | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
WO2009114949A1 (en) | 2008-03-20 | 2009-09-24 | UNIVERSITé LAVAL | Methods for deprogramming somatic cells and uses thereof |
WO2009126251A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
WO2009157593A1 (en) | 2008-06-27 | 2009-12-30 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
WO2010009015A2 (en) | 2008-07-14 | 2010-01-21 | Oklahoma Medical Research Foundation | Production of pluripotent cells through inhibition of bright/arid3a function |
WO2010033906A2 (en) | 2008-09-19 | 2010-03-25 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
WO2010033920A2 (en) | 2008-09-19 | 2010-03-25 | Whitehead Institute For Biomedical Research | Compositions and methods for enhancing cell reprogramming |
WO2010042800A1 (en) | 2008-10-10 | 2010-04-15 | Nevada Cancer Institute | Methods of reprogramming somatic cells and methods of use for such cells |
WO2010050626A1 (en) | 2008-10-30 | 2010-05-06 | Kyoto University | Method for producing induced pluripotent stem cells |
WO2010056831A2 (en) | 2008-11-12 | 2010-05-20 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
WO2010068955A2 (en) | 2008-12-13 | 2010-06-17 | Dna Microarray | MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING |
WO2010098419A1 (en) | 2009-02-27 | 2010-09-02 | Kyoto University | Novel nuclear reprogramming substance |
WO2010102267A2 (en) | 2009-03-06 | 2010-09-10 | Ipierian, Inc. | Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells |
WO2010111409A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Pluripotent stem cells |
WO2010111422A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Induced pluripotent stem cell generation using two factors and p53 inactivation |
WO2010115050A2 (en) | 2009-04-01 | 2010-10-07 | The Regents Of The University Of California | Embryonic stem cell specific micrornas promote induced pluripotency |
WO2010124290A2 (en) | 2009-04-24 | 2010-10-28 | Whitehead Institute For Biomedical Research | Compositions and methods for deriving or culturing pluripotent cells |
WO2010147395A2 (en) | 2009-06-16 | 2010-12-23 | Korea Research Institute Of Bioscience And Biotechnology | Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same |
WO2010147612A1 (en) | 2009-06-18 | 2010-12-23 | Lixte Biotechnology, Inc. | Methods of modulating cell regulation by inhibiting p53 |
WO2012115270A1 (ja) * | 2011-02-25 | 2012-08-30 | 学校法人慶應義塾 | iPS細胞クローンの選択方法、及びその選択方法に用いる遺伝子の選択方法 |
JP2014523735A (ja) * | 2011-07-25 | 2014-09-18 | 国立大学法人京都大学 | 人工多能性幹細胞の選別方法 |
JP2017120024A (ja) | 2015-12-29 | 2017-07-06 | 肇 山口 | 道路上方設置型災害避難設備 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011027908A1 (en) * | 2009-09-02 | 2011-03-10 | Kyoto University | Method of selecting safe pluripotent stem cells |
US20140329704A1 (en) * | 2013-03-28 | 2014-11-06 | President And Fellows Of Harvard College | Markers for mature beta-cells and methods of using the same |
US20160264934A1 (en) * | 2015-03-11 | 2016-09-15 | The General Hospital Corporation | METHODS FOR MODULATING AND ASSAYING m6A IN STEM CELL POPULATIONS |
KR102142364B1 (ko) * | 2015-08-13 | 2020-08-07 | 베이하오 스템 셀 앤 리제너레이티브 메디슨 리서치 인스티 튜트 씨오.,엘티디. | 유도 연장 만능 줄기 세포, 이의 제조방법 및 사용 방법 |
KR20170050916A (ko) * | 2015-11-02 | 2017-05-11 | 연세대학교 산학협력단 | 유전자 구조 내 CpG 섬의 후성 유전학적 변형을 통한 줄기세포의 분화 조절 방법 |
US20200172969A1 (en) | 2017-06-19 | 2020-06-04 | Foundation For Biomedical Research And Innovation At Kobe | Method for predicting differentiation ability of pluripotent stem cell, and reagent for same |
-
2018
- 2018-06-04 US US16/623,382 patent/US20200172969A1/en not_active Abandoned
- 2018-06-04 EP EP18820091.9A patent/EP3643780A4/en active Pending
- 2018-06-04 CN CN201880041090.5A patent/CN111164209A/zh active Pending
- 2018-06-04 JP JP2019525331A patent/JP6736772B2/ja active Active
- 2018-06-04 KR KR1020207000609A patent/KR102422175B1/ko active Active
- 2018-06-04 WO PCT/JP2018/021430 patent/WO2018235583A1/ja unknown
- 2018-06-04 SG SG11201912436PA patent/SG11201912436PA/en unknown
-
2020
- 2020-07-15 JP JP2020121318A patent/JP7237890B2/ja active Active
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5843780A (en) | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
WO2005100548A1 (ja) | 2004-03-30 | 2005-10-27 | Kyoto University | 精巣細胞由来多能性幹細胞の製造方法 |
WO2007069666A1 (ja) | 2005-12-13 | 2007-06-21 | Kyoto University | 核初期化因子 |
WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
WO2009007852A2 (en) | 2007-06-15 | 2009-01-15 | Izumi Bio, Inc | Multipotent/pluripotent cells and methods |
WO2009032194A1 (en) | 2007-08-31 | 2009-03-12 | Whitehead Institute For Biomedical Research | Wnt pathway stimulation in reprogramming somatic cells |
WO2009058413A1 (en) | 2007-10-29 | 2009-05-07 | Shi-Lung Lin | Generation of human embryonic stem-like cells using intronic rna |
WO2009057831A1 (ja) | 2007-10-31 | 2009-05-07 | Kyoto University | 核初期化方法 |
WO2009075119A1 (ja) | 2007-12-10 | 2009-06-18 | Kyoto University | 効率的な核初期化方法 |
WO2009079007A1 (en) | 2007-12-17 | 2009-06-25 | Gliamed, Inc. | Stem-like cells and method for reprogramming adult mammalian somatic cells |
WO2009091659A2 (en) | 2008-01-16 | 2009-07-23 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents |
WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
WO2009101084A1 (en) | 2008-02-13 | 2009-08-20 | Fondazione Telethon | Method for reprogramming differentiated cells |
WO2009102983A2 (en) | 2008-02-15 | 2009-08-20 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
WO2009117439A2 (en) | 2008-03-17 | 2009-09-24 | The Scripps Research Institute | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
WO2009114949A1 (en) | 2008-03-20 | 2009-09-24 | UNIVERSITé LAVAL | Methods for deprogramming somatic cells and uses thereof |
WO2009126655A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of a small molecule modulator |
WO2009126250A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through rna interference |
WO2009126251A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
WO2009157593A1 (en) | 2008-06-27 | 2009-12-30 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
WO2010009015A2 (en) | 2008-07-14 | 2010-01-21 | Oklahoma Medical Research Foundation | Production of pluripotent cells through inhibition of bright/arid3a function |
WO2010033906A2 (en) | 2008-09-19 | 2010-03-25 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
WO2010033920A2 (en) | 2008-09-19 | 2010-03-25 | Whitehead Institute For Biomedical Research | Compositions and methods for enhancing cell reprogramming |
WO2010042800A1 (en) | 2008-10-10 | 2010-04-15 | Nevada Cancer Institute | Methods of reprogramming somatic cells and methods of use for such cells |
WO2010050626A1 (en) | 2008-10-30 | 2010-05-06 | Kyoto University | Method for producing induced pluripotent stem cells |
WO2010056831A2 (en) | 2008-11-12 | 2010-05-20 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
WO2010068955A2 (en) | 2008-12-13 | 2010-06-17 | Dna Microarray | MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING |
WO2010098419A1 (en) | 2009-02-27 | 2010-09-02 | Kyoto University | Novel nuclear reprogramming substance |
WO2010102267A2 (en) | 2009-03-06 | 2010-09-10 | Ipierian, Inc. | Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells |
WO2010111409A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Pluripotent stem cells |
WO2010111422A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Induced pluripotent stem cell generation using two factors and p53 inactivation |
WO2010115050A2 (en) | 2009-04-01 | 2010-10-07 | The Regents Of The University Of California | Embryonic stem cell specific micrornas promote induced pluripotency |
WO2010124290A2 (en) | 2009-04-24 | 2010-10-28 | Whitehead Institute For Biomedical Research | Compositions and methods for deriving or culturing pluripotent cells |
WO2010147395A2 (en) | 2009-06-16 | 2010-12-23 | Korea Research Institute Of Bioscience And Biotechnology | Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same |
WO2010147612A1 (en) | 2009-06-18 | 2010-12-23 | Lixte Biotechnology, Inc. | Methods of modulating cell regulation by inhibiting p53 |
WO2012115270A1 (ja) * | 2011-02-25 | 2012-08-30 | 学校法人慶應義塾 | iPS細胞クローンの選択方法、及びその選択方法に用いる遺伝子の選択方法 |
JP2014523735A (ja) * | 2011-07-25 | 2014-09-18 | 国立大学法人京都大学 | 人工多能性幹細胞の選別方法 |
JP2017120024A (ja) | 2015-12-29 | 2017-07-06 | 肇 山口 | 道路上方設置型災害避難設備 |
Non-Patent Citations (45)
Title |
---|
"enzyme immunoassay", 1987, IGAKU-SHOIN |
"GenBank", Database accession no. NM -017780.3 |
"Immunochemical Techniques", vol. 121, ACADEMIC PRESS, article "Part E: Monoclonal Antibodies and General Immunoassay Methods" |
"Radioimmunoassay", 1974, KODANSHA |
"Supplementary volume of Radioimmunoassay", 1979, IGAKU-SHOIN |
ALLEN ET AL., J MOL BIOL, vol. 371, no. 5, 2007, pages 1135 - 1140 |
CHEN ET AL., NAT METHODS, vol. 8, no. 5, 2011, pages 424 - 429 |
COLIN ET AL., BMC RES NOTES, vol. 3, 2010, pages 252 |
EMINLI S ET AL., STEM CELLS, vol. 26, 2008, pages 2467 - 2474 |
FENG B ET AL., NAT CELL BIOL., vol. 11, 2009, pages 197 - 203 |
H. KAWASAKI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 1580 - 1585 |
H. SUEMORI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 345, 2006, pages 926 - 932 |
H. SUEMORI ET AL., DEV. DYN., vol. 222, 2001, pages 273 - 279 |
HAN J ET AL., NATURE, vol. 463, 2010, pages 1096 - 100 |
HENG JC ET AL., CELL STEM CELL, vol. 6, 2010, pages 167 - 74 |
HUANGFU D ET AL., NAT BIOTECHNOL., vol. 26, 2008, pages 1269 - 1275 |
HUANGFU D ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 795 - 797 |
ICHIDA JK ET AL., CELL STEM CELL, vol. 5, 2009, pages 491 - 503 |
J. B. CIBELLI ET AL., NATURE BIOTECHNOL., vol. 16, 1998, pages 642 - 646 |
J. L. RESNICK ET AL., NATURE, vol. 359, 1992, pages 550 - 551 |
KIM JB ET AL., NATURE, vol. 461, 2009, pages 649 - 643 |
KIYOKA WAKAYAMA ET AL., EXPERIMENTAL MEDICINE, vol. 26, no. 5, 2008, pages 47 - 52 |
KLIMANSKAYA I ET AL., NATURE, vol. 444, 2006, pages 481 - 485 |
LEVENSTEIN ET AL.: "Stem Cell", vol. 24, March 2006, WICELL RESEARCH INSTITUTE, pages: 568 - 74 |
LYSSIOTIS CA ET AL., PROC NATL ACAD SCI U S A, vol. 106, 2009, pages 8912 - 8917 |
M. UENO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 9554 - 9559 |
MAEKAWA M ET AL., NATURE, vol. 474, 2011, pages 225 - 9 |
MALI P ET AL., STEM CELLS, vol. 28, 2010, pages 713 - 720 |
MOUSSAIEFF ET AL., CELL METAB, vol. 21, no. 3, 2015, pages 392 - 402 |
NAVARRO-ALVAREZ ET AL., CELL TRANSPLANT, vol. 17, no. 1-2, 2008, pages 111 - 119 |
NISHISHITA ET AL., PLOS ONE, vol. 7, no. 6, 2012, pages e38389 |
R.L. JUDSON ET AL., NAT. BIOTECH., vol. 27, 2009, pages 459 - 461 |
RYAN ET AL., EMBO J, vol. 30, no. 13, 2011, pages 2596 - 2609 |
SCHNETZ ET AL., GENOME RES, vol. 19, no. 4, 2009, pages 590 - 601 |
SCHNETZ, M.P. ET AL.: "CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression.", PLOS GENETICS, vol. 6, no. 7, e1001023, 15 July 2010 (2010-07-15), pages 1 - 15, XP055654958, DOI: 10.1371/journal.pgen.1001023 * |
See also references of EP3643780A4 |
TAKAKO YAMAMOTO, ET AL: "Differentiation potential of pluripotent stem cells correlates to the level of chd7", SCIENTIFIC REPORTS, vol. 8, 241, 10 January 2018 (2018-01-10), pages 1 - 12, XP055654964, DOI: 10.1038/s41598-017-18439-y * |
TAKENAKA ET AL., PLOS ONE, vol. 10, no. 6, 2015 |
TAKENAKA ET AL., PLOS ONE, vol. 10, no. 6, 2015, pages e0129855 |
THOMSON J A ET AL., PROC NATL. ACAD. SCI. USA., vol. 92, 1995, pages 7844 - 7848 |
THOMSON J A ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 1147 |
VANDER HEIDEN ET AL., SCIENCE, vol. 324, no. 5930, 2015, pages 1029 - 1033 |
Y. MATSUI ET AL., CELL, vol. 70, 1992, pages 841 - 847 |
YANES ET AL., NAT CHEM BIOL, vol. 6, no. 6, 2010, pages 411 - 417 |
ZHAO Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 132 - 135 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020203538A1 (ja) | 2019-03-29 | 2020-10-08 | 株式会社カネカ | 多能性幹細胞を含む細胞集団及びその製造方法 |
JPWO2020203538A1 (ja) * | 2019-03-29 | 2020-10-08 | ||
EP3950933A4 (en) * | 2019-03-29 | 2023-01-11 | Kaneka Corporation | CELL POPULATION COMPRISING PLURIPOTENT STEM CELLS AND METHOD FOR PRODUCING IT |
JP7489377B2 (ja) | 2019-03-29 | 2024-05-23 | 株式会社カネカ | 多能性幹細胞を含む細胞集団及びその製造方法 |
EP4043864A4 (en) * | 2019-10-28 | 2022-11-30 | FUJIFILM Corporation | METHOD FOR SORTING PLURIPOTENT STEM CELLS, METHOD FOR PREDICTING RESULTS OF INDUCTION OF DIFFERENTIATION, AND METHOD FOR MANUFACTURING CELLULAR PRODUCT |
JPWO2021095798A1 (ja) * | 2019-11-15 | 2021-11-25 | 公立大学法人横浜市立大学 | 未分化マーカー遺伝子高感度検出法 |
JP7138841B2 (ja) | 2019-11-15 | 2022-09-20 | 公立大学法人横浜市立大学 | 未分化マーカー遺伝子高感度検出法 |
WO2023223447A1 (ja) * | 2022-05-18 | 2023-11-23 | 株式会社日立製作所 | 予測装置、自動培養装置システム、予測方法およびキット |
Also Published As
Publication number | Publication date |
---|---|
KR102422175B1 (ko) | 2022-07-18 |
SG11201912436PA (en) | 2020-01-30 |
JP6736772B2 (ja) | 2020-08-05 |
JP7237890B2 (ja) | 2023-03-13 |
CN111164209A (zh) | 2020-05-15 |
US20200172969A1 (en) | 2020-06-04 |
JPWO2018235583A1 (ja) | 2020-04-16 |
KR20200015731A (ko) | 2020-02-12 |
EP3643780A4 (en) | 2021-04-07 |
EP3643780A1 (en) | 2020-04-29 |
JP2020185000A (ja) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7237890B2 (ja) | 多能性幹細胞の分化能の予測方法及びそのための試薬 | |
Marchand et al. | Transcriptomic signature of trophoblast differentiation in a human embryonic stem cell model | |
US7153650B2 (en) | Marker system for preparing and characterizing high-quality human embryonic stem cells | |
US9164093B2 (en) | Cardiomyocyte marker | |
US10538740B2 (en) | Method for sorting cardiomyocytes | |
US20170335285A1 (en) | Novel cardiomyocyte marker | |
Jang et al. | A novel Fbxo25 acts as an E3 ligase for destructing cardiac specific transcription factors | |
WO2021106765A1 (ja) | ナイーブ型多能性幹細胞からの栄養外胚葉誘導方法 | |
JP6780197B2 (ja) | 新規成熟心筋細胞マーカー | |
EP3299450A1 (en) | Induced syncytiotrophoblast and preparation method for progenitor cell thereof | |
Sugawara et al. | The hsa-miR-302 cluster controls ectodermal differentiation of human pluripotent stem cell via repression of DAZAP2 | |
WO2023192934A2 (en) | Methods and compositions for producing granulosa-like cells | |
US20220213445A1 (en) | Methods of culturing human pluripotent cells | |
JP7660899B2 (ja) | ナイーブ型多能性幹細胞からの栄養外胚葉誘導方法 | |
Garbutt et al. | Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains | |
Hernández-Díaz et al. | Transcriptional insights from the human embryo identify laminin-511 as a suitable matrix for human trophoblast stem cell culture | |
大橋文哉 | CXCL4/PF4 is a predictive biomarker of cardiac | |
KR20240085728A (ko) | 근육줄기세포의 분화능 예측을 위한 cd56의 용도 | |
GUOJI | Regulatory mechanisms defining the blastocyst cell lineages | |
Fong | The Role of SOX2 in Human Embryonic Stem Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18820091 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019525331 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207000609 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018820091 Country of ref document: EP Effective date: 20200120 |