KR20250030038A - 진공 격자 및 이의 제조 방법 - Google Patents
진공 격자 및 이의 제조 방법 Download PDFInfo
- Publication number
- KR20250030038A KR20250030038A KR1020257006495A KR20257006495A KR20250030038A KR 20250030038 A KR20250030038 A KR 20250030038A KR 1020257006495 A KR1020257006495 A KR 1020257006495A KR 20257006495 A KR20257006495 A KR 20257006495A KR 20250030038 A KR20250030038 A KR 20250030038A
- Authority
- KR
- South Korea
- Prior art keywords
- grating
- waveguide
- polymer
- waveguide device
- liquid crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1847—Manufacturing methods
- G02B5/1857—Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12023—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the polarisation dependence, e.g. reduced birefringence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29302—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means based on birefringence or polarisation, e.g. wavelength dependent birefringence, polarisation interferometers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/34—Optical coupling means utilising prism or grating
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1326—Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02066—Gratings having a surface relief structure, e.g. repetitive variation in diameter of core or cladding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02123—Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Liquid Crystal (AREA)
Abstract
도파관들에 사용하기 위한 격자들 및 그 생산 방법들에 대한 개선이 본원에서 설명된다. 깊은 표면 릴리프 격자(surface relief grating, SRG)들은 종래의 SRG들 및 브래그 격자들에 비해 많은 이점들을 제공할 수 있으며, 중요한 것은 더 높은 S-회절 효율이다. 일 실시예에서, 깊은 SRG들은 중합체 표면 릴리프 격자들 또는 진공 브래그 격자(evacuated Bragg grating, EBG)들로서 구현될 수 있다. EBG들은 먼저 홀로그래픽 중합체 분산 액정(holographic polymer dispersed liquid crystal, HPDLC) 격자를 기록함으로써 형성될 수 있다. 경화된 격자로부터 액정을 제거하는 것은 중합체 표면 릴리프 격자를 제공한다. 중합체 표면 릴리프 격자들은 도파관 기반 디스플레이들에서의 사용을 포함하는 많은 적용예들을 갖는다.
Description
출원 교차 참조
본 출원은 2019년 8월 29일에 출원된 미국 가 출원 제62/893,715호의 우선권을 주장하며, 이의 개시 내용은 전문이 참고로 본원에 포함된다.
기술분야
본 발명은 일반적으로 도파관들 및 도파관들을 제조하기 위한 방법들에 관한 것으로, 보다 구체적으로는 하나의 재료 성분 유형이 제거되는 다성분 혼합물로 형성된 격자들을 포함하는 도파관 디스플레이들 및 격자들을 제조하기 위한 방법들에 관한 것이다.
도파관들은 파들을 국한시키고(즉, 파들이 전파될 수 있는 공간 영역을 한정함) 유도하는 능력을 갖는 구조들로서 지칭될 수 있다. 하나의 하위 부류는 전자기파, 통상적으로 가시 스펙트럼 내의 전자기파를 유도할 수 있는 구조들인 광 도파관을 포함한다. 도파관 구조들은 다수의 상이한 메커니즘들을 사용하여 파의 전파 경로를 제어하도록 설계될 수 있다. 예를 들어, 평면형 도파관은 회절 격자들을 이용하여 입사광을 회절시키고 도파관 구조 내로 커플링시키도록 설계될 수 있어서, 인-커플링된 광은 평면형 구조 내에서 내부 전반사(total internal reflection, TIR)를 통해 진행될 수 있다.
도파관들의 제조는 도파관들 내의 또는 도파관들의 표면 상의 홀로그래픽 광학 소자들의 기록을 가능하게 하는 물질 시스템의 사용을 포함할 수 있다. 이러한 물질의 한 부류는 고분자 분산형 액정(polymer dispersed liquid crystal, PDLC) 혼합물 - 이는 광중합성 단량체 및 액정을 함유하는 혼합물임 - 을 포함한다. 이러한 혼합물의 보다 더 하위 부류는 홀로그래픽 고분자 분산형 액정(holographic polymer dispersed liquid crystal, HPDLC) 혼합물을 포함한다. 홀로그래픽 광학 소자들, 이를테면 체적 위상 격자(volume phase grating)들은 물질을 두 상호 간섭성 레이저 빔들로 조사함으로써 이러한 액체 혼합물에 기록될 수 있다. 기록 프로세스 동안, 단량체는 중합되고, 혼합물은 광중합 유도된 상 분리를 거쳐, 액정(liquid crystal, LC) 미세 액적들이 밀집된 영역들 사이사이에 투명한 중합체의 영역들을 생성한다. 교번하는 액정 풍부 영역들과 액정 격감 영역들은 격자의 프린지 면들을 형성한다.
상술된 것들과 같은 도파관 광학 장치는 다양한 디스플레이 및 센서 적용에 고려될 수 있다. 많은 적용예들에서, 다수의 광학 기능들을 인코딩하는 하나 이상의 격자층을 포함하는 도파관들은 다양한 도파관 아키텍처들 및 물질 시스템들을 사용하여 실현될 수 있어서, 항공 및 도로 교통 적용을 위한 증강 현실(Augmented Reality, AR) 및 가상 현실(Virtual Reality, VR)을 위한 근안 디스플레이들, 컴팩트 헤드업 디스플레이(Heads Up Display, HUD)들, 및 생체 인식 및 레이저 레이더(laser radar, LIDAR) 적용을 위한 센서들에서 새로운 혁신들을 가능하게 한다. 이들 적용예들 중 다수가 소비자 제품들에 관한 것임에 따라, 홀로그래픽 도파관들을 대량으로 제조하기 위한 효율적인 저비용 수단들에 대한 요구가 증가하고 있다.
많은 실시예들은 중합체 격자 구조체들, 이들의 설계, 제조 방법들, 및 재료들에 관한 것이다.
다양한 실시예들은 도파관 기반 디바이스에 관한 것으로서, 도파관 기반 디바이스는:
도파관에서 내부 전반사로 전파되는 광을 회절시키기 위한 중합체 격자 구조체를 지지하는 도파관을 포함하며,
중합체 격자 구조체는:
중합체 네트워크; 및
중합체 네트워크의 인접한 부분들 사이의 에어 갭들을 포함한다.
또 다른 다양한 실시예들에서, 중합체 격자 구조체는 중합체 네트워크의 인접한 부분들 사이의 등방성 재료를 더 포함할 수 있으며, 등방성 재료는 중합체 네트워크보다 높거나 낮은 굴절률을 갖는다.
또 다른 다양한 실시예들에서, 등방성 재료는 중합체 네트워크의 인접한 부분들 사이의 공간의 바닥 부분의 공간을 점유할 수 있고, 공기는 등방성 재료의 상부 표면 위로부터 변조 깊이까지의 공간을 점유할 수 있다.
또 다른 다양한 실시예들에서, 등방성 재료는 복굴절 결정 재료를 포함할 수 있다.
또 다른 다양한 실시예들에서, 복굴절 결정 재료는 액정 재료를 포함할 수 있다.
또 다른 다양한 실시예들에서, 복굴절 결정 재료는 중합체보다 높은 굴절률의 재료일 수 있다.
또 다른 다양한 실시예들에서, 중합체 격자 구조체는 가시광의 파장보다 큰 변조 깊이를 가질 수 있다.
또 다른 다양한 실시예들에서, 중합체 격자 구조체는 변조 깊이 및 격자 피치를 포함할 수 있으며, 변조 깊이는 격자 피치보다 크다.
또 다른 다양한 실시예들에서, 도파관은 두 개의 기판들을 포함할 수 있고, 중합체 격자 구조체는 두 개의 기판들 사이에 개재되거나 어느 하나의 기판의 외부 표면 상에 위치될 수 있다.
또 다른 다양한 실시예들에서, 중합체 네트워크의 브래그 프린지 간격은 0.35 ㎛ 내지 0.8 ㎛일 수 있고, 중합체 네트워크의 격자 깊이는 1 ㎛ 내지 3 ㎛일 수 있다.
또 다른 다양한 실시예들에서, 중합체 네트워크의 격자 깊이 대 브래그 프린지 간격의 비는 1:1 내지 5:1일 수 있다.
또 다른 다양한 실시예들에서, 도파관 디스플레이는 화상 생성 유닛을 더 포함할 수 있으며, 중합체 격자 구조체는 도파관 회절 격자를 포함할 수 있다.
또 다른 다양한 실시예들에서, 도파관 회절 격자는 멀티플렉싱 격자로서 구성될 수 있다.
또 다른 다양한 실시예들에서, 도파관 회절 격자는 다수의 이미지들을 포함하는 화상 생성 유닛으로부터의 광을 수용하도록 구성될 수 있다.
또 다른 다양한 실시예들에서, 도파관 회절 격자는 도파관으로부터 광을 아웃커플링하도록 구성될 수 있다.
또 다른 다양한 실시예들에서, 도파관 회절 격자는 빔 익스팬더로서 구성될 수 있다.
또 다른 다양한 실시예들에서, 도파관 회절 격자는 화상 생성 유닛으로부터 생성된 이미지 데이터를 포함하는 광을 인커플링하도록 구성될 수 있다.
또 다른 다양한 실시예들에서, 도파관 회절 격자는 또한, 고도의 효율로 S-편광된 광을 인커플링하도록 구성될 수 있다.
또 다른 다양한 실시예들에서, 회절 격자는 또한, 브래그 각도에서 70% 내지 95%의 효율로 S-편광된 광을 인커플링하도록 구성될 수 있다.
또 다른 다양한 실시예들에서, 회절 격자는 또한, 브래그 각도에서 25% 내지 50%의 효율로 P-편광된 광을 인커플링하도록 구성될 수 있다.
또 다른 다양한 실시예들에서, 중합체 네트워크와 에어 갭들 사이의 굴절률 차이는 0.25 내지 0.4일 수 있다.
또 다른 다양한 실시예들에서, 중합체 네트워크와 복굴절 결정 재료 사이의 굴절률 차이는 0.05 내지 0.2일 수 있다.
또 다른 다양한 실시예들에서, 중합체 격자 구조체는 2차원 격자 구조체 또는 3차원 격자 구조체를 포함할 수 있다.
또 다른 다양한 실시예들에서, 도파관 디스플레이는 또 다른 격자 구조체를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 중합체 격자 구조체는 인커플링 격자를 포함할 수 있고, 다른 격자 구조체는 빔 익스팬더 또는 아웃커플링 격자를 포함한다.
나아가, 다양한 실시예들은 도파관 디스플레이에 관한 것으로서, 도파관 디스플레이는:
도파관에서 내부 전반사로 전파되는 광을 회절시키기 위한 중합체 격자 구조체를 지지하는 도파관을 포함하며,
중합체 격자 구조체는:
중합체 네트워크; 및
중합체 네트워크의 인접한 부분들 사이의 복굴절 결정 재료를 포함하며, 복굴절 결정 재료는 중합체보다 높은 굴절률을 갖는다.
나아가, 다양한 실시예들은 깊은 표면 릴리프 격자(surface relief grating, SRG)를 제조하기 위한 방법에 관한 것으로서, 방법은:
단량체와 액정의 혼합물을 제공하는 단계;
기판을 제공하는 단계;
기판의 표면 상에 혼합물의 층을 코팅하는 단계;
층에 홀로그래픽 기록 빔들을 적용하여 교번하는 중합체 풍부 영역들 및 액정 풍부 영역들을 포함하는 홀로그래픽 중합체 분산 액정 격자를 형성하는 단계; 및
액정 풍부 영역들 내의 액정의 적어도 일부를 제거하여 중합체 표면 릴리프 격자를 형성하는 단계를 포함한다.
또 다른 다양한 실시예들에서, 단량체는 아크릴레이트, 메타크릴레이트, 비닐, 이소시네이트, 티올, 이소시아네이트-아크릴레이트, 및/또는 티오린을 포함한다.
또 다른 다양한 실시예들에서, 혼합물은 광개시제, 공개시제, 또는 추가적인 첨가제들 중 적어도 하나를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 티올은 티올-비닐-아크릴레이트를 포함할 수 있다.
또 다른 다양한 실시예들에서, 광개시제는 감광성 성분을 포함할 수 있다.
또 다른 다양한 실시예들에서, 감광성 성분은 염료 및/또는 라디칼 발생제를 포함할 수 있다.
또 다른 다양한 실시예들에서, 단량체와 액정의 혼합물을 제공하는 단계는:
단량체, 액정, 및 광개시제, 공개시제, 다작용성 티올, 또는 추가적인 첨가제들 중 적어도 하나를 혼합하는 단계;
혼합물을 22°C 이하의 온도의 광이 없는 위치에 저장하는 단계;
추가적인 단량체를 첨가하는 단계;
0.6 ㎛ 이하의 필터를 통해 혼합물을 여과하는 단계; 및
여과된 혼합물을 광이 없는 위치에 저장하는 단계를 포함할 수 있다.
또 다른 다양한 실시예들에서, 기판은 유리 기판 또는 플라스틱 기판을 포함할 수 있다.
또 다른 다양한 실시예들에서, 기판은 투명 기판을 포함할 수 있다.
또 다른 다양한 실시예들에서, 본 방법은 내부 치수들을 유지하기 위한 하나 이상의 스페이서로 기판과 또 다른 기판 사이에 혼합물을 개재시키는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 본 방법은 다른 기판의 하나의 표면 상에 비점착성 이형층을 적용하는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 비점착성 이형층은 불소중합체를 포함할 수 있다.
또 다른 다양한 실시예들에서, 본 방법은 액정 풍부 영역들을 액정 재료로 재충전하는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 액정 재료는 이전에 제거된 액정과 상이한 분자 구조체를 가질 수 있다.
또 다른 다양한 실시예들에서, 액정의 적어도 일부를 제거하는 단계는 액정 풍부 영역들에서 실질적으로 모든 액정을 제거하는 단계를 포함할 수 있다.
또 다른 다양한 실시예들에서, 액정의 적어도 일부를 제거하는 단계는 중합체 풍부 영역들에 액정 중 적어도 일부를 남기는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 본 방법은 깊은 SRG 위에 보호층을 적용하는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 보호층은 반사 방지층을 포함할 수 있다.
또 다른 다양한 실시예들에서, 보호층은 실리케이트 또는 실리콘 질화물을 포함할 수 있다.
또 다른 다양한 실시예들에서, 보호층을 적용하는 단계는 깊은 SRG 상에 보호층을 증착하는 단계를 포함할 수 있다.
또 다른 다양한 실시예들에서, 보호층을 증착하는 단계는 화학 기상 증착을 포함할 수 있다.
또 다른 다양한 실시예들에서, 화학 기상 증착은 나노코팅 공정일 수 있다.
또 다른 다양한 실시예들에서, 보호층은 파릴렌 코팅을 포함할 수 있다.
또 다른 다양한 실시예들에서, 액정 풍부 영역들은 액정 풍부 영역들 내의 액정의 적어도 일부를 제거한 후 에어 갭들을 포함할 수 있다.
또 다른 다양한 실시예들에서, 에어 갭들에 진공을 생성하거나 에어 갭들을 불활성 기체로 충전하는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 액정의 적어도 일부를 제거하는 단계는 홀로그래픽 중합체 분산 액정 격자를 용매로 세척하는 단계를 포함할 수 있다.
또 다른 다양한 실시예들에서, 홀로그래픽 중합체 분산 액정 격자를 세척하는 단계는 홀로그래픽 중합체 분산 액정 격자를 용매에 침지하는 단계를 포함할 수 있다.
또 다른 다양한 실시예들에서, 용매는 이소프로필 알콜을 포함할 수 있다.
또 다른 다양한 실시예들에서, 용매는 홀로그래픽 중합체 분산 액정 격자를 세척하는 동안 실온보다 낮은 온도로 유지될 수 있다.
또 다른 다양한 실시예들에서, 액정의 적어도 일부를 제거하는 단계는 홀로그래픽 중합체 분산 액정 격자를 고유량 공기원으로 건조시키는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 본 방법은 홀로그래픽 중합체 분산 액정 격자를 경화하는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 홀로그래픽 중합체 분산 액정 격자를 경화하는 단계는 홀로그래픽 중합체 분산 액정 격자를 약 1시간의 구간 동안 저강도 백색광에 노출시키는 단계를 포함할 수 있다.
또 다른 다양한 실시예들에서, 중합체 표면 릴리프 격자는 70% 내지 95%의 효율로 S-편광된 광을 인커플링하도록 구성될 수 있다.
또 다른 다양한 실시예들에서, 중합체 표면 릴리프 격자는 또한, 25% 내지 50%의 효율로 P-편광된 광을 인커플링하도록 구성될 수 있다.
또 다른 다양한 실시예들에서, 중합체 네트워크와 에어 갭들 사이의 굴절률 차이는 0.25 내지 0.4일 수 있다.
또 다른 다양한 실시예들에서, 중합체 네트워크와 액정 재료 사이의 굴절률 차이는 0.05 내지 0.2일 수 있다.
또 다른 다양한 실시예들에서, 중합체 표면 릴리프 격자는 0.35 ㎛ 내지 0.8 ㎛의 브래그 프린지 간격 및 1 ㎛ 내지 3 ㎛의 격자 깊이를 포함할 수 있다.
또 다른 다양한 실시예들에서, 중합체 표면 릴리프 격자는 1:1 내지 5:1의 브래그 프린지 간격 대 격자 깊이의 비를 포함할 수 있다.
또 다른 다양한 실시예들에서, 단량체와 액정의 혼합물 중의 액정의 함량은 대략 20% 내지 50%일 수 있다.
또 다른 다양한 실시예들에서, 단량체와 액정의 혼합물 중의 액정은 액정 단일물을 포함할 수 있다.
또 다른 다양한 실시예들에서, 액정 단일물은 시아노바이페닐 및/또는 펜틸사이노바이페닐을 포함할 수 있다.
나아가, 다양한 실시예들은 깊은 SRG를 제조하기 위한 방법에 관한 것으로서, 방법은:
단량체와 물질의 혼합물을 제공하는 단계;
기판을 제공하는 단계;
기판의 표면 상에 혼합물의 층을 코팅하는 단계;
층에 홀로그래픽 기록 빔들을 적용하여 교번하는 중합체 풍부 영역들 및 물질 풍부 영역들을 포함하는 홀로그래픽 중합체 분산 격자를 형성하는 단계; 및
물질 풍부 영역들 내의 물질의 적어도 일부를 제거하여 중합체 표면 릴리프 격자를 형성하는 단계를 포함할 수 있다.
또 다른 다양한 실시예들에서, 단량체는 홀로그래픽 기록 빔들에 반응성일 수 있고, 물질은 홀로그래픽 기록 빔들에 비반응성일 수 있다.
또 다른 다양한 실시예들에서, 상단량체 및 물질은 홀로그래픽 기록빔들을 적용하기 전에 혼화성 혼합물일 수 있고, 단량체 및 물질은 홀로그래픽 기록 빔들을 적용한 후에 비혼화성 혼합물이 된다.
또 다른 다양한 실시예들에서, 기판은 액정을 포함할 수 있다.
또 다른 다양한 실시예들에서, 물질은 액정 단일물을 포함할 수 있다.
또 다른 다양한 실시예들에서, 물질은 용매, 비반응성 단량체, 무기물, 및/또는 나노입자를 포함할 수 있다.
나아가, 다양한 실시예들은 도파관 디스플레이에 관한 것으로서, 도파관 디스플레이는:
제1 파장 대역 내의 광을 방사하는 방사 어레이;
방사 어레이로부터 시야에 걸쳐 이미지 변조 광을 투사하기 위한 시준 렌즈; 및
도파관으로서:
제1 파장 대역 내의 S-편광된 광에 대해 회절 효율이 높은 입출력 SBG들; 및
제1 파장 대역 내의 P-편광된 광에 대해 회절 효율이 높은 입출력 SBG들을 지지하는, 도파관을 포함할 수 있다.
또 다른 다양한 실시예들에서, 도파관은 또한, 방출 어레이에 의해 방출된 제2 파장 대역 내의 S-편광된 광 및 P-편광된 광을 회절시키기 위한 SBG들을 지지할 수 있다.
또 다른 다양한 실시예들에서, 방사 어레이는 OLED 어레이일 수 있다.
또 다른 다양한 실시예들에서, 도파관은 적어도 하나의 평면에서 만곡될 수 있다.
또 다른 다양한 실시예들에서, 도파관은 플라스틱으로 제조될 수 있다.
또 다른 다양한 실시예들에서, 방사 어레이는 도파관 내의 만곡된 표면들에 의해 생성되는 파면 왜곡을 사전 보상하기 위해 공간적으로 왜곡될 수 있다.
또 다른 다양한 실시예들에서, 방사 어레이는 도파관 내의 만곡된 표면들에 의해 생성되는 파면 왜곡을 사전 보상하기 위해 만곡된 기판 또는 가요성 기판 상에 형성될 수 있다.
또 다른 다양한 실시예들에서, 격자들 중 적어도 하나는 광중합체에 기록된 브래그 격자, 액정 및 단량체 혼합물에 기록된 브래그 격자, 깊은 표면 릴리프 격자, 하이브리드 표면 릴리프/브래그 격자 중 하나일 수 있다.
또 다른 다양한 실시예들에서, 도파관은 시력 규정(eye prescription) 광학 표면들을 지지할 수 있다.
또 다른 다양한 실시예들에서, 방사는 동일한 크기의 다각형들, 동일한 형상의 다각형들, 어레이에 걸쳐 크기가 변하는 다각형들, 어레이에 걸쳐 형상이 변하는 다각형들, 펜로스 타일들(Penrose tile) 및 비반복 패턴들을 형성하는 요소들의 군으로부터 선택되는 적어도 하나를 포함하는 다양한 요소들을 사용하여 패터닝된 픽셀 어레이를 가질 수 있다.
나아가, 다양한 실시예들은 도파관을 사용하여 이미지를 형성하기 위한 방법에 관한 것으로서, 방법은:
제1 파장 대역 내의 광을 방사하는 방사 어레이, 시준 렌즈 및 제1 파장 대역 내의 S-편광된 광에 대해 회절 효율이 높은 입출력 격자들 및 제1 파장 대역 내의 P-편광된 광에 대해 회절 효율이 높은 입출력 격자들을 지지하는 도파관을 제공하는 단계;
시준 렌즈를 사용하여 방사 어레이에 의해 방사된 이미지 광을 시준하는 단계;
S-회절 입력 격자를 사용하여 OLED 어레이로부터의 이미지 변조 S-편광된 광을 도파관 내의 내부 전반사 경로 내로 커플링하는 단계;
P-회절 입력 격자를 사용하여 OLED 어레이로부터의 이미지 변조 P-편광된 광을 도파관 내의 내부 전반사 경로 내로 커플링하는 단계;
관찰을 위해 도파관으로부터 S-편광된 광을 빔 확대 및 추출하는 단계; 및
관찰을 위해 도파관으로부터 P-편광된 광을 빔 확대 및 추출하는 단계를 포함한다.
또 다른 다양한 실시예들에서, 방사 어레이는 OLED 어레이일 수 있다.
또 다른 다양한 실시예들에서, 본 방법은 도파관에 의해 지지되는 만곡된 광학 표면을 제공하는 단계; 방사 어레이 상의 픽셀 패턴을 사전 왜곡시키는 단계, 시준 렌즈를 사용하여 사전 왜곡된 파면들을 형성하는 단계; 만곡된 광학 표면에서 사전 왜곡된 파면 광을 반사시키는 단계; 및 만곡된 광학 표면의 광출력을 사용하여 사전 왜곡된 파면으로부터 평면 파면을 형성하는 단계를 더 포함할 수 있다.
또 다른 다양한 실시예들에서, 만곡된 광학 표면은 규정 광학 표면일 수 있다.
본 설명은 본 발명의 하기의 도면들 및 데이터 그래프들 - 이들은 예시적인 실시예들로서 제시되고, 본 발명의 범위의 완전한 나열인 것으로서 간주되지 않아야 함 - 을 참조하여 보다 충분하게 이해될 것이다.
도 1a는 본 발명의 실시예에 따라 투명 기판 상에 증착된 단량체와 액정의 혼합물이 홀로그래픽 노출 빔들에 노출되는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 1b는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자로부터 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 1c는 본 발명의 실시예에 따라 HPDLC 브래그 격자로부터 액정이 제거되어 중합체 표면 릴리프 격자를 형성하는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 1d는 본 발명의 실시예에 따라 표면 릴리프 격자를 보호층으로 덮기 위한 방법의 단계를 개념적으로 도시한다.
도 2는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자로부터 중합체 표면 릴리프 격자를 형성하기 위한 방법을 개념적으로 도시하는 흐름도이다.
도 3은 중합체 표면 릴리프 격자 또는 진공 브래그 격자의 예시적인 구현이다.
도 4a는 본 발명의 실시예에 따라 투명 기판 상에 증착된 단량체와 액정의 혼합물이 홀로그래픽 노출 빔들에 노출되는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 4b는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자로부터 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 4c는 본 발명의 실시예에 따라 HPDLC 브래그 격자로부터 액정이 제거되어 중합체 표면 릴리프 격자를 형성하는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 4d는 본 발명의 실시예에 따라 표면 릴리프 격자가 액정으로 부분적으로 재충전되어 하이브리드 표면 릴리프 브래그 격자를 형성하는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 4e는 본 발명의 실시예에 따라 하이브리드 표면 릴리프 브래그 격자가 보호층으로 덮이는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 5는 본 발명의 실시예에 따라 하이브리드 표면 릴리프 브래그 격자를 형성하기 위한 방법을 개념적으로 도시하는 흐름도이다.
도 6은 본 발명의 실시예에 따라 1 마이크로미터 두께의 깊은 표면 릴리프 격자에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프이다.
도 7은 본 발명의 실시예에 따라 2 마이크로미터 두께의 깊은 표면 릴리프 격자에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프이다.
도 8은 본 발명의 실시예에 따라 3 마이크로미터 두께의 깊은 표면 릴리프 격자에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프이다.
도 9a 및 도 9b는 상이한 티올 농도들을 포함하는 다수의 실시예들의 주사 전자 현미경 이미지들을 예시한다.
도 10a 및 도 10b는 HPDLC 브래그 격자와 중합체 표면 릴리프 격자 또는 진공 브래그 격자를 비교한 이미지들이다.
도 11a 및 도 11b는 HPDLC 브래그 격자와 중합체 표면 릴리프 격자 또는 진공 브래그 격자를 비교한 두 개의 플롯들이다.
도 12a 및 도 12b는 상이한 깊이들을 갖는 두 개의 예시적인 중합체 표면 릴리프 격자들의 S-회절 효율 및 P-회절 효율의 두 개의 플롯들이다.
도 13a 및 도 13b는 상이한 초기 액정 농도들로 생성된 다양한 예시적인 중합체 표면 릴리프 격자들의 S-회절 효율 및 P-회절 효율의 두 개의 상이한 플롯들이다.
도 14a 및 도 14b는 상이한 초기 액정 농도들로 생성된 다양한 예시적인 중합체 표면 릴리프 격자들의 S-회절 효율 및 P-회절 효율의 두 개의 상이한 플롯들이다.
도 15는 본 발명의 실시예에 따른 도파관 디스플레이를 개념적으로 도시한다.
도 16은 본 발명의 실시예에 따른 두 개의 공기 이격된 도파관 층들을 갖는 도파관 디스플레이를 개념적으로 도시한다.
도 17은 본 발명의 실시예에 따른 도파관 디스플레이에 대한 통상적인 광선 경로들을 개념적으로 도시한다.
도 18은 본 발명의 실시예에 따라 도파관이 만곡된 광학 표면을 지지하는 도파관 디스플레이를 개념적으로 도시한다.
도 19는 본 발명의 실시예에 따라 도파관이 상부 및 하부 만곡된 광학 표면들을 지지하는 도파관 디스플레이를 개념적으로 도시한다.
도 20은 본 발명의 실시예에 따라 도파관이 만곡된 광학 표면을 지지하고 입력 이미지가 만곡된 광학 표면에 의해 도입된 수차를 보상하기 위해 사전 왜곡된 픽셀 어레이를 사용하여 제공되는 도파관 디스플레이를 개념적으로 도시한다.
도 21은 본 발명의 실시예에 따라 도파관이 만곡된 광학 표면을 지지하고 입력 이미지가 만곡된 광학 표면에 의해 도입된 수차를 보상하기 위해 만곡된 기판에 의해 지지되고 사전 왜곡된 픽셀 어레이를 사용하여 제공되는 도파관 디스플레이를 개념적으로 도시한다.
도 22는 본 발명의 실시예에 따라 S-회절 및 P-회절 격자들을 포함하는 도파관을 사용하여 관찰을 위한 이미지 광을 투사하기 위한 방법을 개념적으로 도시하는 흐름도이다.
도 23은 본 발명의 실시예에 따라 광학 규정 표면을 지지하고 S-회절 및 P-회절 격자들을 포함하는 도파관을 사용하여 관찰을 위한 이미지 광을 투사하기 위한 방법을 개념적으로 도시하는 흐름도이다.
도 24a는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 상이한 크기 및 종횡비의 직사각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24b는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 펜로스 타일들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24c는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 육각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24d는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 정사각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24e는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 다이아몬드형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24f는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 이등변 삼각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24g는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 수평 편향된 종횡비들을 갖는 육각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24h는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 수평 편향된 종횡비들을 갖는 직사각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24i는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 수평 편향된 종횡비들을 갖는 다이아몬드형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24j는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 수평 편향된 종횡비의 삼각형들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 25는 본 발명의 실시예에 따라 상이한 픽셀들이 상이한 방사 특성들을 가질 수 있는 다이아몬드형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 1a는 본 발명의 실시예에 따라 투명 기판 상에 증착된 단량체와 액정의 혼합물이 홀로그래픽 노출 빔들에 노출되는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 1b는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자로부터 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 1c는 본 발명의 실시예에 따라 HPDLC 브래그 격자로부터 액정이 제거되어 중합체 표면 릴리프 격자를 형성하는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 1d는 본 발명의 실시예에 따라 표면 릴리프 격자를 보호층으로 덮기 위한 방법의 단계를 개념적으로 도시한다.
도 2는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자로부터 중합체 표면 릴리프 격자를 형성하기 위한 방법을 개념적으로 도시하는 흐름도이다.
도 3은 중합체 표면 릴리프 격자 또는 진공 브래그 격자의 예시적인 구현이다.
도 4a는 본 발명의 실시예에 따라 투명 기판 상에 증착된 단량체와 액정의 혼합물이 홀로그래픽 노출 빔들에 노출되는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 4b는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자로부터 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 4c는 본 발명의 실시예에 따라 HPDLC 브래그 격자로부터 액정이 제거되어 중합체 표면 릴리프 격자를 형성하는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 4d는 본 발명의 실시예에 따라 표면 릴리프 격자가 액정으로 부분적으로 재충전되어 하이브리드 표면 릴리프 브래그 격자를 형성하는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 4e는 본 발명의 실시예에 따라 하이브리드 표면 릴리프 브래그 격자가 보호층으로 덮이는 표면 릴리프 격자를 제조하기 위한 방법의 단계를 개념적으로 도시한다.
도 5는 본 발명의 실시예에 따라 하이브리드 표면 릴리프 브래그 격자를 형성하기 위한 방법을 개념적으로 도시하는 흐름도이다.
도 6은 본 발명의 실시예에 따라 1 마이크로미터 두께의 깊은 표면 릴리프 격자에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프이다.
도 7은 본 발명의 실시예에 따라 2 마이크로미터 두께의 깊은 표면 릴리프 격자에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프이다.
도 8은 본 발명의 실시예에 따라 3 마이크로미터 두께의 깊은 표면 릴리프 격자에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프이다.
도 9a 및 도 9b는 상이한 티올 농도들을 포함하는 다수의 실시예들의 주사 전자 현미경 이미지들을 예시한다.
도 10a 및 도 10b는 HPDLC 브래그 격자와 중합체 표면 릴리프 격자 또는 진공 브래그 격자를 비교한 이미지들이다.
도 11a 및 도 11b는 HPDLC 브래그 격자와 중합체 표면 릴리프 격자 또는 진공 브래그 격자를 비교한 두 개의 플롯들이다.
도 12a 및 도 12b는 상이한 깊이들을 갖는 두 개의 예시적인 중합체 표면 릴리프 격자들의 S-회절 효율 및 P-회절 효율의 두 개의 플롯들이다.
도 13a 및 도 13b는 상이한 초기 액정 농도들로 생성된 다양한 예시적인 중합체 표면 릴리프 격자들의 S-회절 효율 및 P-회절 효율의 두 개의 상이한 플롯들이다.
도 14a 및 도 14b는 상이한 초기 액정 농도들로 생성된 다양한 예시적인 중합체 표면 릴리프 격자들의 S-회절 효율 및 P-회절 효율의 두 개의 상이한 플롯들이다.
도 15는 본 발명의 실시예에 따른 도파관 디스플레이를 개념적으로 도시한다.
도 16은 본 발명의 실시예에 따른 두 개의 공기 이격된 도파관 층들을 갖는 도파관 디스플레이를 개념적으로 도시한다.
도 17은 본 발명의 실시예에 따른 도파관 디스플레이에 대한 통상적인 광선 경로들을 개념적으로 도시한다.
도 18은 본 발명의 실시예에 따라 도파관이 만곡된 광학 표면을 지지하는 도파관 디스플레이를 개념적으로 도시한다.
도 19는 본 발명의 실시예에 따라 도파관이 상부 및 하부 만곡된 광학 표면들을 지지하는 도파관 디스플레이를 개념적으로 도시한다.
도 20은 본 발명의 실시예에 따라 도파관이 만곡된 광학 표면을 지지하고 입력 이미지가 만곡된 광학 표면에 의해 도입된 수차를 보상하기 위해 사전 왜곡된 픽셀 어레이를 사용하여 제공되는 도파관 디스플레이를 개념적으로 도시한다.
도 21은 본 발명의 실시예에 따라 도파관이 만곡된 광학 표면을 지지하고 입력 이미지가 만곡된 광학 표면에 의해 도입된 수차를 보상하기 위해 만곡된 기판에 의해 지지되고 사전 왜곡된 픽셀 어레이를 사용하여 제공되는 도파관 디스플레이를 개념적으로 도시한다.
도 22는 본 발명의 실시예에 따라 S-회절 및 P-회절 격자들을 포함하는 도파관을 사용하여 관찰을 위한 이미지 광을 투사하기 위한 방법을 개념적으로 도시하는 흐름도이다.
도 23은 본 발명의 실시예에 따라 광학 규정 표면을 지지하고 S-회절 및 P-회절 격자들을 포함하는 도파관을 사용하여 관찰을 위한 이미지 광을 투사하기 위한 방법을 개념적으로 도시하는 흐름도이다.
도 24a는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 상이한 크기 및 종횡비의 직사각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24b는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 펜로스 타일들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24c는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 육각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24d는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 정사각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24e는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 다이아몬드형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24f는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 이등변 삼각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24g는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 수평 편향된 종횡비들을 갖는 육각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24h는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 수평 편향된 종횡비들을 갖는 직사각형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24i는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 수평 편향된 종횡비들을 갖는 다이아몬드형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 24j는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 수평 편향된 종횡비의 삼각형들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
도 25는 본 발명의 실시예에 따라 상이한 픽셀들이 상이한 방사 특성들을 가질 수 있는 다이아몬드형 요소들을 갖는 픽셀 패턴의 일부를 개념적으로 도시한다.
다양한 기능들을 제공하기 위해 도파관들 상의 다양한 격자들의 사용에 대한 관심이 증가하고 있다. 이들 격자들은 각도 멀티플렉싱 격자, 컬러 멀티플렉싱 격자, 폴드 격자, 이중 상호 작용 격자, 롤링 K-벡터 격자, 교차 폴드 격자, 테셀레이트 격자(tessellated grating), 처프 격자(chirped grating), 공간적으로 변하는 굴절률 변조를 갖는 격자, 공간적으로 변하는 격자 두께를 갖는 격자, 공간적 변하는 평균 굴절률을 갖는 격자, 공간적으로 변하는 굴절률 변조 텐서를 갖는 격자, 및 공간적 변하는 평균 굴절률 텐서를 갖는 격자를 포함한다. 특정 예들에서, 광의 다양한 편광들(예를 들어, S-편광된 광 및 P-편광된 광)의 회절을 위한 격자들이 유익할 수 있다. S-편광된 광 또는 P-편광된 광 중 어느 하나를 회절시키는 격자를 갖는 것이 특히 바람직할 것이다. 이러한 기술에 대한 특정 적용예들은 증강 현실 디스플레이들 및 가상 현실 디스플레이들과 같은 도파관 기반 디스플레이들을 포함한다. 일 예는 S-편광된 광 또는 P-편광된 광 중 어느 하나 또는 양자를 도파관 내로 입력하기 위해 사용될 수 있는 입력 격자들이다. 그러나, 많은 경우에, S-편광된 광 또는 P-편광된 광 중 어느 하나를 회절시키는 격자를 갖는 것이 바람직할 것이다. 예를 들어, OLED 광원들과 같은 비편광된 광원들을 사용하는 도파관 디스플레이들은 S-편광된 광 및 P-편광된 광 양자를 생성하고, 이에 따라 S-편광된 광 및 P-편광된 광 양자를 회절시킬 수 있는 격자들을 갖는 것이 바람직할 것이다.
격자의 하나의 특정 부류는 P-편광된 광 또는 S-편광된 광을 회절시키기 위해 사용될 수 있는 표면 릴리프 격자(surface relief grating, SRG)들을 포함한다. 또 다른 부류의 격자들은 통상적으로 P-편광 선택적인 표면 릴리프 브래그 격자(surface relief Bragg grating, SBG)들이며, 이는 유기 발광 다이오드(organic light emitting diode, OLED)들 및 발광 다이오드(LED)들과 같은 비편광된 광원들로 50% 효율 손실을 초래한다. S-편광 회절 격자와 P-편광 회절 격자들의 혼합물을 조합하면, P-회절 격자만을 사용하는 도파관들에 비해 이론적인 2x 개선을 제공할 수 있게 된다. 이에 따라, 고효율 S-편광 회절 격자를 갖는 것이 바람직할 것이다. 많은 실시예들에서, S-편광 회절 격자는 홀로그래픽 광중합체로 형성된 브래그 격자에 의해 제공될 수 있다. 일부 실시예들에서, S-편광 회절 격자는 액정(LC) 방향자들을 재정렬하기 위한 정렬층 또는 다른 공정들을 사용하여 변경된 복굴절을 갖는 홀로그래픽 중합체 분산 액정(HPDLC)으로 형성된 브래그 격자에 의해 제공될 수 있다. 몇몇 실시예들에서, S-편광 회절 격자는 상분리 하에서 S-회절 격자들로 자연적으로 조직화되는 액정들, 단량체들 및 다른 첨가제들을 사용하여 형성될 수 있다. 일부 실시예들에서, 이들 HPDLC 격자들은 우수한 S-편광 회절 효율을 갖는 깊은 SRG들을 형성할 수 있다.
깊은 SRG들의 한 부류는 높은 S-회절 효율(99%까지) 및 낮은 P-회절 효율을 보일 수 있고 도파관들을 위한 입력 격자들로서 구현될 수 있는 중합체-공기 SRG들 또는 진공 브래그 격자(evacuated Bragg grating, EBG)들이다. 이들 격자들은 액정 및 단량체 혼합물의 홀로그래픽 상분리로부터 형성된 SBG들로부터 액정을 제거함으로써 형성될 수 있다. 이러한 공정에 의해 형성된 깊은 SRG들은 통상적으로 0.35 내지 0.80 마이크로미터의 브래그 프린지 간격을 갖는 1-3 마이크로미터 범위 내의 두께를 갖는다. 일부 실시예들에서, 격자 깊이 대 브래그 프린지 간격의 비는 1:1 내지 5:1일 수 있다. 쉽게 이해될 수 있는 바와 같이, 이러한 격자들은 소정의 적용예의 특정 요건들에 따라 상이한 치수들로 형성될 수 있다. SRG들의 두께가 어떻게 상이한 결과적인 회절 효율들을 내는지의 예들은 도 6 내지 도 8과 관련하여 설명된다.
많은 실시예에서, 깊은 SRG들에 대한 조건은 높은 격자 깊이 대 프린지 간격 비를 특징으로 한다. 일부 실시예들에서, 깊은 SRG들의 형성을 위한 조건은 격자 깊이가 격자 주기의 대략 2배라는 것이다. Kogelnik 이론을 사용하여 이러한 깊은 SRG들을 모델링하는 것은 회절 효율의 합리적으로 정확한 추정치들을 제공할 수 있고, 더 진보된 모델링에 대한 필요성을 회피하며, 이는 통상적으로 Maxwell 방정식들의 수치적 해를 수반한다. HPDLC 격자들로부터의 액정 제거를 사용하여 달성될 수 있는 격자 깊이들은 깊은 SRG들(통상적으로 격자 주기 350-460 nm에 대해 250-300 nm 깊이만을 제공함)에 대한 조건을 달성할 수 없는 종래의 나노임프린트 리소그래피 방법을 사용하여 가능한 것을 크게 능가한다. (Pekka Ayras, Pasi Saarikko, Tapani Levola,” Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID 17/8, (2009), pp 659-664). S-편광 회절 깊은 SRG들이 본 출원 내에서 강조되지만, 깊은 SRG들은 후술될 바와 같이, 격자 규정의 두께, 특히 격자 깊이에 따라 편광 응답 특성들의 범위를 제공할 수 있다는 것이 여기서 강조되어야 한다. 이에 따라, 깊은 SRG들은 다양한 상이한 적용예들에서 구현될 수 있다.
문헌은 깊은 SRG들 및 브래그 격자들의 등가성을 지지한다. 하나의 문헌(Kiyoshi Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency “Applied Optics; Vol. 23; Issue 14; (1984); pp. 2303-2310)은 Maxwell 방정식을 수치적으로 풀어서 유전체 표면 릴리프 격자들의 회절 속성들의 조사를 개시한다. 격자 주기의 약 2배 깊이의 그루브 깊이를 갖는 격자의 회절 효율은 체적 위상 격자의 효율에 필적하는 것으로 밝혀졌다. Yokomori에 의한 모델링은 포토레지스트에 간섭적으로 기록된 유전체 표면 릴리프 격자들이 94%까지의 높은 회절 효율(처리 효율 85%)을 가질 수 있다고 예측하였다. 깊은 SRG들 및 브래그 격자들의 등가성은 또한 Golub의 또 다른 논문(M.A. Golub, A.A. Friesem, L. Eisen “Bragg properties of efficient surface relief gratings in the resonance domain”, Optics Communications; 235; (2004); pp261-267)은 또한 포토레지스트에서 브래그 유사 SRG들의 형성을 논의한다. Gerritsen에 의한 추가 논문은 포토레지스트에서의 브래그 유사 SRG들의 형성을 논의한다(Gerritsen HJ, Thornton DK, Bolton SR; “Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings” Applied Optics; Vol. 30; Issue 7; (1991); pp 807-814).
본 개시의 많은 실시예들은 경사진 격자들을 위한 나노임프린트 리소그래피 공정 입자에 비해 매우 중요한 이점들을 제공할 수 있는 깊은 SRG들과 같은 SRG들의 제조 방법들을 제공한다. 임의의 복잡도의 브래그 격자들은 간섭 또는 마스터 및 접촉 복사 복제를 사용하여 만들어질 수 있다. 일부 실시예들에서, LC를 제거한 후에, SRG들은 LC와 상이한 속성들을 갖는 재료로 뒤채움될 수 있다. 이는 브래그 격자가 격자 형성에 필요한 격자 화학에 의해 제한되지 않는 변조 속성들을 갖도록 한다.
일부 실시예들에서, 뒤채움 재료는 LC 재료가 아닐 수 있다. 일부 실시예들에서, 뒤채움 재료는 도파관의 각도 대역폭을 증가시킬 수 있는 공기보다 더 높은 굴절률을 가질 수 있다. 몇몇 실시예들에서, 깊은 SRG들은 하이브리드 SRG/브래그 격자를 제공하기 위해 LC로 부분적으로 뒤채움될 수 있다. 대안적으로, 일부 실시예들에서, 뒤채움 단계는 하이브리드 SRG/브래그 격자를 제공하기 위해 HPDLC의 LC 풍부 영역들로부터 LC의 일부만을 제거함으로써 회피될 수 있다. 뒤채움 접근법은 상이한 LC가 하이브리드 격자를 형성하기 위해 사용될 수 있다는 이점을 갖는다. 재료들은 잉크젯 증착 공정을 사용하여 증착될 수 있다.
일부 실시예들에서, 본원에서 설명되는 방법들은 광결정들을 생성하기 위해 사용될 수 있다. 광결정들은 브래그 격자들을 포함하는 다양한 회절 구조체들을 생성하도록 구현될 수 있다. 브래그 격자들은 입력 격자들, 출력 격자들, 빔 확대 격자들, 하나 이상의 원색 회절을 포함하지만 이에 제한되지 않는 기능을 제공하는 회절 격자들로서 사용될 수 있다. 광결정은 기본 브래그 격자로 달성될 수 없는 회절 능력을 가질 수 있는 3차원 격자 구조체일 수 있다. 광결정들은 모든 2D 및 3D 브라바이스 격자들을 포함하는 많은 구조체들을 포함할 수 있다. 이러한 구조체들의 기록은 두 개 이상의 기록 빔들로부터 이익을 얻을 수 있다.
일부 실시예들에서, 광자 결정들을 통합하는 도파관들은 도파관들의 스택들로 배열될 수 있으며, 도파관들 각각은 고유한 스펙트럼 대역폭을 회절시키기 위한 격자 규정을 갖는다. 많은 실시예들에서, 액정 추출에 의해 형성되는 광결정은 깊은 SRG를 제공한다. 많은 실시예들에서, 액정 추출 공정을 사용하여 형성되는 깊은 SRG는 통상적으로 브래그 프린지 간격이 0.35 마이크로미터 내지 0.80 마이크로미터인 1-3 마이크로미터 범위 내의 두께를 가질 수 있다. 많은 실시예에서, 깊은 SRG에 대한 조건은 높은 격자 깊이 대 프린지 간격 비를 특징으로 한다. 일부 실시예들에서, 깊은 SRG의 형성을 위한 조건은 격자 깊이가 격자 주기의 대략 2배라는 것이다. S-편광 회절 깊은 SRG들이 본 출원 내에서 주요 관심사이지만, 깊은 SRG들은 후술될 바와 같이, 격자 규정의 두께, 특히 격자 깊이에 따라 편광 응답 특성들의 범위를 제공할 수 있다는 것이 여기서 강조되어야 한다. 깊은 SRG들은 또한 도파관 디스플레이들의 색상, 균일성, 및 다른 속성들을 향상시키기 위해 종래의 브래그 격자들과 함께 사용될 수 있다.
깊은 SRG들은 레이저 홀로그래픽 노출을 사용하여유리질 단량체 아조벤젠 재료들로 제조되었다 (O. Sakhno, L.M. Goldenberg, M. Wegener, J. Stumpe, “Deep surface relief grating in azobenzene-containing materials using a low intensity 532 nm laser”, Optical Materials: X, 1, (2019), 100006, pp 3-7). Sakhno 문헌은 또한 SRG들이 두 개의 선형으로 직교 편광된 레이저 빔들을 사용하여 홀로그래픽 광중합체에 어떻게 기록될 수 있는지를 개시한다.
본 발명은 특히 경사진 격자들에 대해 나노임프린트 리소그래피 공정에 비해 매우 중요한 이점을 제공할 수 있는 표면 릴리프 격자를 제조하는 방법을 제공한다. 임의의 복잡도의 브래그 격자들은 간섭 또는 마스터 및 접촉 복사 복제를 사용하여 만들어질 수 있다. 일부 실시예들에서, LC를 제거한 후에, SRG는 LC와 상이한 속성들을 갖는 재료로 뒤채움될 수 있다. 이는 브래그 격자가 격자 형성에 필요한 격자 화학에 의해 제한되지 않는 변조 속성들을 갖도록 한다. 일부 실시예들에서, 깊은 SRG는 하이브리드 SRG/브래그 격자를 제공하기 위해 LC로 부분적으로 뒤채움될 수 있다. 대안적으로, 일부 실시예들에서, 뒤채움 단계는 하이브리드 SRG/브래그 격자를 제공하기 위해 HPDLC의 LC 풍부 영역들로부터 LC의 일부만을 제거함으로써 회피될 수 있다. 뒤채움 접근법은 상이한 LC가 하이브리드 격자를 형성하기 위해 사용될 수 있다는 이점을 갖는다. 재료들은 본 발명자들에 의한 이전의 출원들에 개시된 바와 같이 잉크젯 공정을 사용하여 증착될 수 있다. 일부 실시예들에서, 뒤채움 재료는 격자의 회절 효율을 증가시킬 수 있는 공기보다 더 높은 굴절률을 가질 수 있다.
본 발명이 깊은 SRG들을 제조하는 것과 관련하여 이루어졌지만, 많은 다른 격자 구조체들이 본원에서 설명되는 기법들을 사용하여 생성될 수 있다는 것이 이해된다. 예를 들어, 격자 깊이가 격자 주파수보다 작은 SRG들(예를 들어, Raman-Nath 격자들)을 포함하는 임의의 유형의 SRG가 또한 제조될 수 있다.
도 1a 내지 도 1d는 실시예에 따른 깊은 SRG들 또는 EBG들을 제조하기 위한 방법에서 사용될 수 있는 처리 장치를 도시한다. 도 1a는 본 발명의 실시예에 따라 투명 기판(192) 상에 증착된 단량체와 액정의 혼합물(191)이 홀로그래픽 노출 빔들(193, 194)에 노출되는 표면 릴리프 격자를 제조하기 위한 방법의 단계에서 사용될 수 있는 장치(190A)를 개념적으로 도시한다. 일부 예들에서, 혼합물은 또한 광개시제, 공개시제, 다작용성 티올, 접착 촉진제, 계면활성제, 및/또는 추가적인 첨가제들 중 적어도 하나를 포함할 수 있다. 일부 실시예들에서, 단량체는 이소시아네이트-아크릴레이트계 또는 티올렌계일 수 있다. 일부 실시예들에서, 액정은 전체 액정 혼합물 또는 전체 액정 혼합물의 일부만을 포함하는 액정 단일물일 수 있다. 액정 단일물의 다양한 예들은 시아노비페닐 또는 펜틸시아노비페닐 중 하나 또는 양자를 포함한다. 일부 실시예들에서, 액정은 노출 동안 단량체와 상분리되어 중합체 풍부 영역들 및 물질 풍부 영역들을 생성하는 또 다른 물질로 대체될 수 있다. 바람직하게는, 물질 및 액정 단일물은 후술될 바와 같은 후속 단계에서 제거되는 전체 액정 혼합물들에 대한 비용 효율적인 대체물일 수 있다.
도 1b는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자(195)로부터 표면 릴리프 격자를 제조하기 위한 방법의 단계에서 사용될 수 있는 장치(190B)를 개념적으로 도시한다. 홀로그래픽 노출 빔들은 일부 영역들에서 단량체를 중합체로 변형시킬 수 있다. 홀로그래픽 노출 빔들은 교차하는 기록 빔들을 포함할 수 있고, 교번하는 밝은 조명 영역 및 어두운 조명 영역을 포함할 수 있다. 중합 구동 확산 공정은 단량체 및 LC를 반대 방향들로 확산시킬 수 있으며, 이때 단량체가 겔화되어 중합체 풍부 영역들을 형성하고(밝은 영역들에서), 액정이 중합체 기질에 포획되게 되어 액정 풍부 영역들을 형성한다(어두운 영역들에서).
도 1c는 본 발명의 실시예에 따라 도 1b의 HPDLC 브래그 격자로부터 액정이 제거되어 중합체 표면 릴리프 격자를 형성하는 깊은 중합체 표면 릴리프 격자(196)를 제조하기 위한 방법의 단계에서 사용될 수 있는 장치(190C)를 개념적으로 도시한다. 바람직하게는, 중합체 표면 릴리프 격자(196)는 깊은 SRG를 형성하기 위해 비교적 작은 격자 주기를 갖는 큰 깊이를 포함할 수 있다. 액정은 이소프로필 알코올(IPA)과 같은 용매로 세척함으로써 제거될 수 있다. 용매는 액정을 씻어내기에 충분히 강해야 하지만 중합체를 유지하기에 충분히 약해야 한다. 일부 실시예들에서, 용매는 격자를 세척하기 전에 실온 미만으로 냉각될 수 있다. 도 1d는 본 발명의 실시예에 따라 중합체 표면 릴리프 브래그 격자가 보호층(197)으로 덮이는 중합체 표면 릴리프 격자를 제조하기 위한 방법의 단계에서 사용될 수 있는 장치(190D)를 개념적으로 도시한다.
도 2는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자로부터 깊은 SRG들을 형성하기 위한 방법을 개념적으로 도시한다. 도시된 바와 같이, 깊은 SRG들 또는 EBG들을 형성하는 방법(200)이 제공된다. 흐름도를 참조하면, 방법(200)은 적어도 하나의 단량체와 적어도 하나의 액정의 혼합물을 제공하는 단계(201)를 포함한다. 적어도 하나의 단량체는 이소시아네이트-아크릴레이트 단량체 또는 티올렌을 포함할 수 있다. 일부 실시예들에서, 적어도 하나의 액정은 완전 액정 혼합물일 수 있거나, 액정 혼합물의 단일 성분과 같은 액정 혼합물의 일부만을 포함할 수 있는 액정 단일물일 수 있다. 일부 실시예들에서, 적어도 하나의 액정은 노출 동안 단량체와 상분리될 수 있는 용액을 대체할 수 있다. 이러한 용액에 대한 기준들은 노출 동안 단량체와 상분리되는 능력, 경화 후 및 세척 동안 제거의 용이성, 및 취급의 용이성을 포함할 수 있다. 대체 용액의 예는 용매, 비반응성 단량체, 무기물, 및 나노입자를 포함한다.
단량체와 액정의 혼합물을 제공하는 단계는 또한 개시제, 이를테면 광개시제 또는 공개시제, 다작용성 티올, 염료, 접착 촉진제, 계면활성제, 및/또는 추가적인 첨가제들, 이를테면 다른 가교결합제들 중 하나 이상을 적어도 하나의 단량체 및 액정과 혼합하는 단계를 포함할 수 있다. 이 혼합물은 공개시제가 단량체와 티올 사이의 반응을 촉매하도록 하기 위해 정치될 수 있다. 휴지 구간은 냉온(예를 들어, 20°C)에서 대략 8시간의 구간 동안 어두운 공간 또는 적색광(예를 들어, 적외선 광)을 갖는 공간에서 발생할 수 있다. 휴지 후, 추가적인 단량체들이 단량체 내로 혼합할 수 있다. 그 후, 이 혼합물은 작은 기공 크기(예를 들어, 0.45 ㎛ 기공 크기)를 갖는 필터를 통해 변형되거나 여과될 수 있다. 변형 후, 이 혼합물은 코팅 전에 실온에서 어두운 공간 또는 적색광을 갖는 공간 내에 저장될 수 있다.
다음으로, 투명 기판이 제공될 수 있다(202). 특정 실시예들에서, 투명 기판은 유리 기판 또는 플라스틱 기판일 수 있다. 혼합물의 층이 기판의 표면 상에 증착되거나 코팅될 수 있다(203). 일부 실시예들에서, 혼합물은 내부 치수들을 유지하기 위해 유리 스페이서들을 사용하여 투명 기판과 또 다른 기판 사이에 개재된다. 비점착성 코팅이 혼합물이 개재되기 전에 다른 기판에 적용될 수 있다. 비점착성 코팅은 불소 중합체, 이를테면 OPTOOL UD509(Daikin Chemicals 제조), Dow Corning 2634, Fluoropel(Cytonix 제조), 및 EC200(PPG Industries, Inc 제조)를 포함할 수 있다. 홀로그래픽 기록 빔들이 혼합층에 적용될 수 있다(204). 홀로그래픽 기록 빔은 LC와 중합체의 상분리를 야기할 수 있는 2 빔 간섭 패턴일 수 있다. 홀로그래픽 기록 빔에 반응하여, 액체 단량체는 고체 중합체로 변화되는 반면, 중성의 비반응성 재료(예를 들어, LC)은 중합에 의해 구동되는 화학적 전위의 변화에 반응하여 홀로그래픽 노출 동안 확산된다. LC는 중성의 비반응성 물질의 일 구현예일 수 있지만, 다른 물질들도 사용될 수 있다. 물질 및 단량체는 홀로그래픽 노출 전에 혼화성 혼합물을 형성할 수 있고, 홀로그래픽 노출 시 비혼화성이 될 수 있다.
홀로그래픽 기록 빔들을 적용한 후, 혼합물은 경화될 수 있다. 경화 공정은 혼합물이 완전히 경화될 때까지 일정 시구간 동안 혼합물을 저강도 백색광 하에 두는 것을 포함할 수 있다. 저강도 백색광은 또한 광표백 염료 공정이 일어나게도 할 수 있다. 이에 따라, 교번하는 중합체 풍부 및 액정 풍부 영역들을 갖는 HPDLC 격자가 형성될 수 있다(205). 일부 실시예들에서, 경화 공정은 2시간 이내에 일어날 수 있다. 경화 후에, 기판들 중 하나가 제거되어 HPDLC 격자를 노출시킬 수 있다. 바람직하게는, 비점착성 코팅은 HPDLC 격자가 남아 있는 채로 다른 기판이 제거되도록 할 수 있다.
HPDLC 격자는 액정 풍부 영역들 및 중합체 영역들의 교번하는 섹션들을 포함할 수 있다. 액정 풍부 영역들 내의 액정이 제거되어 깊은 SRG들로서 사용될 수 있는 중합체 표면 릴리프 격자들 또는 EBG들이 형성될 수 있다(206). 액정은 격자를 IPA와 같은 용매 내에 서서히 침지시킴으로써 제거될 수 있다. IPA는 냉각될 수 있고, 격자가 IPA 내에 침지되는 동안 실온보다 낮은 온도로 유지될 수 있다. 그 후, 격자는 용매로부터 제거되고 건조된다. 일부 실시예들에서, 격자는 압축 공기와 같은 고유량 공기원을 사용하여 건조된다. LC가 격자로부터 제거된 후, 중합체-공기 표면 릴리프 브래그 격자가 형성된다.
도 1a 내지 도 1d에 도시된 바와 같이, 형성된 표면 릴리프 격자는 또한 보호층으로 덮일 수 있다. 일부 경우에, 보호 층은 내긁기능을 갖는 수분 및 산소 장벽일 수 있다. 일부 경우에, 보호층은 제거된 LC가 존재했던 공극 영역들을 채우지 않는 코팅일 수 있다. 코팅은 저온 공정을 사용하여 증착될 수 있다. 일부 구현들에서, 보호층은 반사 방지(AR) 속성들을 가질 수 있다. 코팅은 실리케이트 또는 실리콘 질화물일 수 있다. 코팅 공정은 나노코팅 공정과 같은 플라즈마 보조 화학 기상 증착(CVD) 공정에 의해 수행될 수 있다. 코팅은 파릴렌 코팅일 수 있다. 보호층은 유리층일 수 있다. 진공 또는 불활성 가스는 보호층이 구현되기 전에 제거된 LC가 존재했던 갭들을 채울 수 있다. 일부 실시예들에서, 코팅 공정은 LC 제거 공정과 통합될 수 있다(206). 예를 들어, 코팅 재료는 격자로부터 LC를 세척하기 위해 사용되는 용매와 혼합될 수 있다.
도 3은 도파관(3002) 상에 구현된 중합체-공기 표면 릴리프 브래그 격자(3000)의 예시적인 실시예의 개략적인 단면도를 도시한다. 중합체-공기 표면 릴리프 브래그 격자(3000)는 주기적인 중합체 섹션들(3004a)을 포함한다. 인접한 중합체 섹션들은 공기 섹션들(3004b)을 개재한다. 공기 섹션들(3004b)은 중합체 섹션들(3004a)에 의해 개재된다. 공기 섹션들(3004b)과 중합체 섹션들(3004a)은 상이한 굴절률들을 갖는다. 바람직하게는 중합체-공기 표면 릴리프 브래그 격자(3000)는 깊은 SRG를 생성할 수 있는 높은 격자 깊이(3006a) 대 브래그 프린지 간격(3006b) 비로 형성될 수 있다. 전술한 바와 같이, 깊은 SRG들은 통상적인 SRG들 내에 존재하지 않을 수 있는 높은 S-회절 효율과 같은 많은 유익한 품질들을 보일 수 있다.
일 예에서, 중합체-공기 표면 릴리프 브래그 격자(3000)는 0.35 ㎛ 내지 0.8 ㎛의 브래그 프린지 간격(3006b) 및 1 ㎛ 내지 3 ㎛ 의 격자 깊이를 가질 수 있다. 일부 실시예들에서, 중합체 섹션들(3004a)은 도 2와 관련하여 설명된 단계(206) 동안 액정이 완전히 제거되지 않을 때 적어도 일부의 잔류 액정을 포함할 수 있다. 일부 실시예들에서, 중합체 풍부 영들역 내의 잔류 LC의 존재는 최종 중합체 SRG의 굴절률 변조를 증가시킬 수 있다. 일부 실시예들에서, 공기 섹션들(3004b)은 액정이 단계(206) 동안 이들 공기 섹션들(3004b)로부터 완전히 제거되지 않는 경우 일부 잔류 액정을 포함할 수 있다. 일부 실시예들에서, 공기 섹션들(3004b) 내에 일부 잔류 액정을 남겨둠으로써, 도 4 및 도 5와 관련하여 설명된 바와 같은 하이브리드 격자가 생성될 수 있다.
상술한 바와 같이, 많은 실시예들에서, 본 발명은 또한 하이브리드 표면 릴리프/브래그 격자를 제조하기 위한 방법을 제공한다. 도 4a는 본 발명의 실시예에 따라 투명 기판(212) 상에 증착된 단량체와 액정의 혼합물(211)이 홀로그래픽 노출 빔들(213, 214)에 노출되는 하이브리드 표면 릴리프 격자들(하이브리드 SRG들)을 제조하기 위한 방법의 단계에서 사용될 수 있는 장치(210A)를 개념적으로 도시한다. 도 4b는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자(215)로부터 하이브리드 SRG들을 제조하기 위한 방법의 단계에서 사용될 수 있는 장치(210B)를 개념적으로 도시한다. 도 4c는 본 발명의 실시예에 따라 HPDLC 브래그 격자로부터 액정이 제거되어 중합체-공기 SRG들(216)을 형성하는 표면 릴리프 격자를 제조하기 위한 방법의 단계에서 사용될 수 있는 장치(210C)를 개념적으로 도시한다. 이들 중합체-공기 SRG들(216) 또는 EBG들은 깊은 SRG들일 수 있다. 도 4a 내지 도 4c와 관련하여 도시되고 설명되는 단계들은 중합체-공기 SRG를 생성하기 위한 공정에서 도 2a 내지 도 2c와 관련되어 도시되고 설명된 단계들에 대략 대응하고, 이에 따라 이전의 설명이 도 4a 내지 도 4c에 적용가능할 것으로 이해된다.
추가적으로, 도 4d는 하이브리드 격자를 생성하기 위해 수행될 수 있는 추가적인 단계를 개념적으로 도시한다. 장치(210D)는 본 발명의 실시예에 따라, 표면 릴리프 격자가 액정으로 부분적으로 재충전되어 하이브리드 SRG들(217)을 형성하는 표면 릴리프 격자를 제조하기 위한 방법의 단계에서 사용될 수 있다. 재충전된 액정은 도 4c에서 이전에 제거되었던 이전에 제거된 액정과 상이한 일관성을 가질 수 있다. 나아가, 도 3c에서 제거된 액정은 하이브리드 SRG들(217)을 형성하는 대안적인 방법에서 단지 부분적으로 제거될 수 있는 것으로 이해된다. 추가적으로, 도 4e는 본 발명의 실시예에 따라 도 4d에 도시된 단계에서 형성된 SRG들(217)이 보호층(218)으로 덮이는 표면 릴리프 격자를 제조하기 위한 방법의 단계에서 사용될 수 있는 장치(210E)를 개념적으로 도시한다.
도 5는 본 발명의 실시예에 따라 투명 기판 상에 형성된 HPDLC 브래그 격자로부터 하이브라드 표면 릴리프 브래그 격자를 형성하기 위한 예시적인 방법을 도시하는 흐름도이다. 도시된 바와 같이, 하이브리드 표면 릴리프 브래그 격자를 형성하는 방법(220)이 제공된다. 흐름도를 참조하면, 방법(220)은 적어도 하나의 단량체와 적어도 하나의 액정의 혼합물을 제공하는 단계(221)를 포함한다. 적어도 하나의 단량체는 이소시아네이트-아크릴레이트 단량체을 포함할 수 있다. 단량체와 액정의 혼합물을 제공하는 단계는 또한 개시제, 공개시제, 다작용성 티올, 및/또는 추가적인 첨가제들 중 하나 이상을 적어도 하나의 단량체 및 액정과 혼합하는 단계를 포함할 수 있다. 이 혼합물은 공개시제가 단량체와 티올 사이의 반응을 촉매하도록 하기 위해 정치될 수 있다. 휴지 구간은 냉온(예를 들어, 20°C)에서 대략 8시간의 구간 동안 어두운 공간 또는 적색광(예를 들어, 적외선 광)을 갖는 공간에서 발생할 수 있다. 휴지 후, 추가적인 단량체들이 단량체 내로 혼합할 수 있다. 그 후, 이 혼합물은 작은 기공 크기(예를 들어, 0.45 ㎛ 기공 크기)를 갖는 필터를 통해 변형되거나 여과될 수 있다. 변형 후, 이 혼합물은 코팅 전에 실온에서 어두운 공간 또는 적색광을 갖는 공간 내에 저장될 수 있다.
다음으로, 투명 기판이 제공될 수 있다(222). 특정 실시예들에서, 투명 기판은 유리 기판 또는 플라스틱 기판일 수 있다. 비점착성 코팅이 혼합물이 기판 상에 코팅되기 전에 투명 기판에 적용될 수 있다. 혼합물의 층이 기판의 표면 상에 증착될 수 있다(223). 일부 실시예들에서, 혼합물은 내부 치수들을 유지하기 위해 유리 스페이서들을 사용하여 투명 기판과 또 다른 기판 사이에 개재된다. 홀로그래픽 기록 빔들이 혼합층에 적용될 수 있다(224). 홀로그래픽 기록 빔은 LC와 중합체의 상분리를 야기할 수 있는 2 빔 간섭 패턴일 수 있다. 홀로그래픽 기록 빔들을 적용한 후, 혼합물은 경화될 수 있다. 경화 공정은 혼합물이 완전히 경화되는 일정 시구간 동안 혼합물을 저강도 백색광 하에 두는 것을 포함할 수 있다. 저강도 백색광은 또한 광표백 염료 공정이 일어나게도 할 수 있다. 이에 따라, 교번하는 중합체 풍부 및 액정 풍부 영역들을 갖는 HPDLC 격자가 형성될 수 있다(225). 일부 실시예들에서, 경화 공정은 2시간 이내에 일어날 수 있다. 경화 후에, 기판들 중 하나가 제거되어 HPDLC 격자를 노출시킬 수 있다.
HPDLC 격자는 액정 풍부 영역들 및 중합체 영역들의 교번하는 섹션들을 포함할 수 있다. 액정 풍부 영역들 내의 액정이 제거되어 깊은 SRG들의 형태인 중합체 표면 릴리프 격자들 또는 EBG들이 형성될 수 있다(226). 액정은 격자를 이소프로필 알콜(IPA)과 같은 용매 내에 서서히 침지시킴으로써 제거될 수 있다. IPA는 격자가 IPA 내에 침지되는 동안 더 낮은 온도로 유지될 수 있다. 그 후, 격자는 용매로부터 제거되고 건조된다. 일부 실시예들에서, 격자는 압축 공기와 같은 고유량 공기원을 사용하여 건조된다. LC가 격자로부터 제거된 후, 중합체-공기 표면 릴리프 브래그 격자가 형성된다. 도 5의 단계들(221-226)은 중합체-공기 SRG를 생성하는 것에 있어서 도 2와 관련하여 설명된 단계들에 대략 대응하고, 이에 따라 이러한 설명들은 도 5에 적용가능하다.
나아가, 방법(220)은 제거된 액정 풍부 영역들을 액정으로 적어도 부분적으로 재충전(227)하여 하이브리드 SRG들을 형성하는 단계를 포함한다. 재충전된 액정은 단계(226)에서 이전에 제거되었던 이전에 제거된 액정과 상이한 일관성을 가질 수 있다. 나아가, 단계(226)에서 제거된 액정은 하이브리드 SRG을 형성하는 대안적인 방법에서 단지 부분적으로 제거될 수 있는 것으로 이해된다. 바람직하게는 하이브리드 SRG들은 SRG들의 유익한 특정 특성들을 조정하는 기능을 제공할 수 있다. SRG들 내의 적어도 일부의 액정의 포함에 의해 개선될 수 있는 하나의 특정 특성은 탁도(haze) 속성들의 감소이다.
도 4e에 도시된 바와 같이, 형성된 표면 릴리프 격자는 또한 보호층으로 덮일 수 있다. 일부 경우에, 보호 층은 내긁기능을 갖는 수분 및 산소 장벽일 수 있다. 일부 경우에, 보호층은 제거되었던 LC가 존재하는 공극 영역들을 충전하지 않는 코팅일 수 있다. 코팅은 저온 공정을 사용하여 증착될 수 있다. 일부 구현들에서, 보호층은 반사 방지(AR) 속성들을 가질 수 있다. 코팅은 실리케이트 또는 실리콘 질화물일 수 있다. 코팅 공정은 플라즈마처리 나노코팅 공정과 같은 플라즈마 보조 화학 기상 증착(CVD) 공정에 의해 수행될 수 있다. 코팅은 파릴렌 코팅일 수 있다. 보호층은 유리층일 수 있다. 진공 또는 불활성 가스는 보호층이 구현되기 전에 제거된 LC가 존재했던 갭들을 채울 수 있다. 일부 실시예들에서, 코팅 공정은 LC 제거 공정과 통합될 수 있다(226). 예를 들어, 코팅 재료는 격자로부터 LC를 세척하기 위해 사용되는 용매와 혼합될 수 있다. 일부 구현들에서, 코팅 재료는 중합체보다 낮거나 높은 굴절률을 갖고 인접한 중합체 부분들 사이의 공간들을 채우는 재료일 수 있다. 중합체와 코팅 재료 사이의 굴절률 차이는 중합체 SRG들이 계속해서 회절되도록 할 수 있다.
도 1 내지 도 5는 깊은 SRG들 및 하이브리드 표면 릴리프/브래그 격자들을 형성하기 위한 특정 방법들 및 장치를 도시하지만, 상이한 단계들 또는 이러한 단계들의 변형안들을 구현하는 다양한 제조 방법들이 이용될 수 있다. 쉽게 이해될 수 있는 바와 같이, 이용되는 특정 공정은 소정의 적용예의 특정 요건들에 따를 수 있다. 예를 들어, 많은 실시예들은 보호층으로서 또 다른 격자를 이용한다.
얕은 SRG 구조들을 갖는 하이브리드 SRG/브래그 격자들은 낮은 SRG 회절 효율을 초래할 수 있다. 본 발명에서 개시된 방법들은 브래그 격자가 효율적인 회절을 위해 충분히 두껍게 되도록 하면서 SRG들이 높은 깊이 대 격자 피치 비를 갖도록 액정 풍부 영역들 내의 액정의 깊이를 최적화함으로써 보다 효과적인 SRG 구조체들이 형성되도록 한다. 많은 실시예들에서, 하이브리드 격자의 브래그 격자 구성요소는 1-3 마이크로미터 범위 내의 두께를 가질 수 있다. 일부 실시예들에서, 하이브리드 격자의 SRG 구성요소는 0.25-3 마이크로미터 범위 내의 두께를 가질 수 있다. 초기 HPDLC 격자는 최종 SRG 및 브래그 격자 성분들의 합과 동일한 두께를 가질 것이다. 쉽게 이해될 수 있는 바와 같이, 두 개의 격자 구성요소들의 두께 비는 도파관 적용예에 따를 수 있다. 일부 실시예들에서, 격자 구조체의 각도 대역폭을 미세 조정하기 위해 SRG와 브래그 격자의 조합이 사용될 수 있다. 일부 경우에, SRG는 격자 구조체의 각도 대역폭을 증가시킬 수 있다.
많은 실시예들에서, 도 4a 내지 도 4e에 도시된 하이브리드 SRG들에서, 격자의 액정 영역들의 재충전 깊이는 격자에 걸쳐 변하여 공간적으로 변하는 상대적인 SRG/브래그 격자 강도들을 제공할 수 있다. 일부 실시예들에서, 단계들(206, 226, 및 227)에서 정의된 바와 같은 액정 제거 및 재충전 동안, 액정 풍부 격자 영역들 내의 액정은 전체적으로 또는 부분적으로 제거될 수 있다. 몇몇 실시예들에서, 액정 제거 영역들을 재충전하거나 부분적으로 재충전하기 위해 사용되는 액정은 초기 HPDLC 격자를 형성하기 위해 사용되는 액정과 상이한 화학 조성을 가질 수 있다. 다양한 실시예들에서, 단량체와 상용성인 상분리 속성들을 갖는 제1 액정은 최적의 변조 및 격자 정의를 갖는 HPDLC 격자를 제공하도록 지정될 수 있는 한편, 제2 재충전 액정은 최종 하이브리드 격자에서 요구되는 굴절률 변조 속성들을 제공하도록 지정될 수 있다. 다수의 실시예들에서, 하이브리드 격자의 브래그 부분은 기판 및 커버층의 표면들에 적용되는 전극들로 스위칭가능할 수 있다. 많은 실시예들에서, 재충전 액정은 스위칭 전압, 스위칭 시간, 편광, 투명도, 및 다른 파라미터들을 개선하는 특징들을 포함할 수 있지만 이에 제한되지 않는 첨가제들을 포함할 수 있다. 재충전 공정을 사용하여 형성된 하이브리드 격자는 LC가 (LC 액적의 조립체보다는) 연속체를 형성함으로써, 탁도를 감소시키는 추가의 이점들을 가질 것이다.
깊은 SRG들, EBG들, 및/또는 하이브리드 SRG들이 S-회절 격자들 및 P-회절 격자들과 관련하여 설명될 수 있지만, 이들 격자들은 많은 다른 격자 유형들에의 적용가능성을 갖는다. 이들은 각도 멀티플렉싱 격자, 컬러 멀티플렉싱 격자, 폴드 격자, 이중 상호 작용 격자, 롤링 K-벡터 격자, 교차 폴드 격자, 테셀레이트 격자(tessellated grating), 처프 격자(chirped grating), 공간적으로 변하는 굴절률 변조를 갖는 격자, 공간적으로 변하는 격자 두께를 갖는 격자, 공간적 변하는 평균 굴절률을 갖는 격자, 공간적으로 변하는 굴절률 변조 텐서를 갖는 격자, 및 공간적 변하는 평균 굴절률 텐서를 갖는 격자를 포함하지만, 이에 제한되지는 않는다. 나아가, 깊은 SRG들, EBG들, 및/또는 하이브리드 SRG들은 이들의 특정 구현에 따라 스위칭가능하거나 스위칭가능하지 않은 격자들일 수 있다. 깊은 SRG들, EBG들, 및/또는 하이브리드 SRG들은 플라스틱 기판 또는 유리 기판 상에 제조될 수 있다. 이들 격자들은 또한 하나의 기판 상에 제조되고 또 다른 기판으로 전사될 수 있다.
깊은 SRG들 또는 EBG들의 다양한 구현예들에 대한 논의
많은 실시예들에서, 깊은 SRG들은 도파관에서 편광을 제어하기 위한 수단을 제공할 수 있다. SBG들은 통상적으로 P-편광 선택적이어서, OLED들 및 LED들과 같은 비편광된 광원으로 50% 효율 손실을 초래한다. 이로 인해, S-편광 회절 격자와 P-편광 회절 격자를 조합하면, P-회절 격자만을 사용하는 도파관들에 비해 이론적인 2x 개선을 제공할 수 있게 된다. 일부 실시예들에서, S-편광 회절 격자는 종래의 홀로그래픽 광중합체로 형성된 브래그 격자에 의해 제공될 수 있다. 일부 실시예들에서, S-편광 회절 격자는 액정 방향자들을 재정렬하기 위한 정렬층 또는 다른 공정을 사용하여 변경된 복굴절을 갖는 HPDLC으로 형성된 브래그 격자에 의해 제공될 수 있다. 일부 실시예들에서, S-편광 회절 격자는 상분리 하에서 S-회절 격자들로 자연적으로 조직화되는 액정들, 단량체들 및 다른 첨가제들을 사용하여 형성될 수 있다. 많은 실시예들에서, S-편광 회절 격자는 SRG들에 의해 제공될 수 있다. 상술된 공정들을 사용하여, 높은 S-회절 효율(99%까지) 및 낮은 P-회절 효율을 보이는 깊은 SRG는 액정 및 단량체 혼합물의 홀로그래픽 상분리로부터 형성된 SBG들로부터 액정을 제거함으로써 형성될 수 있다.
깊은 SRG들은 또한 다른 편광 응답 특성들을 제공할 수 있다. Moharam의 논문(Moharam M. G. et al. “Diffraction characteristics of photoresist surface -relief gratings”, Applied Optics, Vol. 23, p. 3214, 1984. 9. 15.)은 S와 P 감도 양자를 가지며, S가 우세한 깊은 표면 릴리프 격자들을 암시한다. 일부 실시예들에서, 깊은 SRG들은 S-편광 응답을 제공하는 능력을 실증한다. 그러나, 깊은 SRG들은 또한 다른 편광 응답 특성들을 제공할 수 있다. 많은 실시예들에서, S와 P 감도 양자 가지며 S가 우세한 깊은 표면 릴리프 격자들이 구현된다. 일부 실시예들에서, SRG의 두께는 다양한 S 및 P 회절 특성들을 제공하도록 조정될 수 있다. 몇몇 실시예들에서, 회절 효율은 스펙트럼 대역폭과 각도 대역폭에 걸쳐 P에 대해 높고, 동일한 스펙트럼 대역폭과 각도 대역폭에 걸쳐 S에 대해 낮을 수 있다. 다수의 실시예들에서, 회절 효율은 스펙트럼 대역폭과 각도 대역폭에 걸쳐 S에 대해 높고, 동일한 스펙트럼 대역폭과 각도 대역폭에 걸쳐 P에 대해 낮을 수 있다. 일부 실시예들에서, S 및 P 편광된 광 양자에 대한 높은 효율이 제공될 수 있다. 0.532 마이크론의 파장에 대해 0도 입사각 및 45도 회절각으로, 주기 0.48 마이크론의 공기 중에 침지된(이로 인해 1.3의 평균 격자 지수를 제공함) 굴절률 1.6의 SRG의 이론적인 분석이 도 5 내지 도 7에 도시되어 있다. 도 5는 본 발명의 실시예에 따라 1 마이크로미터 두께의 깊은 표면 릴리프 격자에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프로서, 이 경우에 높은 S 및 P 응답이 달성될 수있음을 실증한다. 도 6은 본 발명의 실시예에 따라 2 마이크로미터 두께의 깊은 표면 릴리프 격자에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프로서, 이 경우에 격자의 각도 범위의 대부분에 걸쳐 S-편광 응답이 우세함을 실증한다. 도 7은 본 발명의 실시예에 따라 3 마이크로미터 두께에 대한 입사각에 대한 계산된 P-편광 및 S-편광 회절 효율을 도시하는 그래프로서, 이 경우에 격자의 각도 범위의 상당 부분에 걸쳐 P-편광 응답이 우세함을 실증한다.
많은 실시예들에서, 광자 결정은 LC 추출 공정에 의해 형성된 반사 브래그 격자 또는 깊은 SRG일 수 있다 LC 감산이 뒤따르는 상분리를 사용하여 만들어진 반사 깊은 SRG는 넓은 각도 및 스펙트럼 대역폭을 가능하게 할 수 있다. 많은 실시예들에서, 현재 입력 SBG를 반사 광자 결정으로 대체하는 것은 화상 생성 유닛(PGU)으로부터 도파관으로의 광 경로를 감소시키기 위해 사용될 수 있다. 일부 실시예들에서, PGU 퓨필 및 도파관은 접촉할 수 있다. 많은 실시예들에서, 반사 깊이 SRG는 두께가 대략 3 마이크론일 수 있다. LC 추출 브래그 격자의 회절 속성들은 (통상적인 SRG의 경우에서와 같이 격자의 깊이로부터가 아니라) 주로 중합체와 공기 사이의 굴절률 갭으로부터 발생한다.
초기 혼합물 내 티올 첨가제에 대한 논의
도 9a 및 도 9b는 중합체-공기 SRG들을 제조하기 위해 사용되는 예시적인 혼합물들의 비교 산란 전자 현미경(SEM) 이미지들을 도시한다. 전술한 바와 같이, 초기 혼합물 내의 단량체는 아크릴레이트 또는 티올렌계일 수 있다. 아크릴레이트계 단량체와 같은 일부 단량체들의 경우, 홀로그래픽 노출 후, 세척 동안, 용매는 액정 재료 뿐만 아니라 이상적이지 않은 중합체를 제거하는 것으로 밝혀졌다. 다작용성 티올 첨가제는 중합체를 강화시키고 이에 따라 용매 세척을 견디기에 충분히 강하게 함으로써 이러한 문제를 해결할 수 있는 것으로 밝혀졌다. 임의의 특정 이론에 제한됨이 없이, 티올 첨가제는 감소된 가교결합으로 인해 기계적으로 약한 중합체들을 형성하는 경향이 있는 저작용성 아크릴레이트 단량체로 이루어진 제형의 기계적 강도를 개선시킬 수 있다. 아크릴레이트 단량체 제형들은 이들이 낮은 탁도와 함께 높은 회절 효율을 나타낼 수 있기 때문에 바람직할 수 있다. 이에 따라, 티올을 첨가하는 것은 아크릴레이트 단량체 형성이 중합체 SRG들의 제조에서 실행가능한 옵션이 되도록 할 수 있다.
상이한 제형들 사이의 상분리, 격자 형성, 및 기계적 강도 사이에 트레이드-오프(trade-off)가 있을 수 있다. 격자 형성은 더 느리게 반응하고, 더 적은 가교를 형성하며, 홀로그래픽 노출 동안 비반응성 성분(예를 들어, LC)의 더 큰 확산을 허용하는 저작용성 단량체들을 함유하는 혼합물들로부터 이익을 얻을 수 있다. 반대로, 고작용성 단량체들로 이루어진 혼합물들은 더 큰 가교 결합으로 인해 더 양호한 상분리 및 중합체 기계적 강도를 보일 수 있지만, 비반응성 성분이 확산하기에 충분한 시간을 갖지 않아 결과적으로 더 낮은 회절 효율을 보일 수 있도록 빠르게 반응할 수 있다.
임의의 특정 이론에 제한됨이 없이, 티올 첨가제는 아크릴레이트 또는 이소시아네이트-아크릴레이트와 반응하여 홀로그래픽 노출 전에 느슨한 스캐폴딩을 형성함으로써 이러한 제한을 받을 수 있다. 이러한 스캐폴딩은 경화된 중합체의 기계적 강도 및 균일성을 개선시킬 수 있다. 이에 따라, 기계적 강도는 단량체 혼합물의 평균 작용성을 상당히 상승시키고 격자 형성을 방해하지 않으면서 티올 작용성 및 농도의 약간의 조절을 통해 조정될 수 있다.
도 9a는 초기 혼합물을 도시하고, 도 9b는 1.5 wt% 티올을 포함하는 비교 혼합물을 도시한다. 그러나, 티올 첨가제의 다른 중량 백분율이 고려되었다. 예를 들어, 티올 첨가제의 중량 백분율은 1% 내지 4% 또는 1.5% 내지 3%일 수 있다. 일부 실시예들에서, 다작용성 티올은 트라이메틸올프로판 트리스(3-머캅토프로피오네이트)일 수 있다. 도 9a 및 도 9b 양자는 중합체 조밀 영역들(902a/902b) 및 공기 영역들(904a/904b)을 포함한다. 도시된 바와 같이, 첨가된 티올은 도 9a의 중합체 조밀 영역들(902b)보다 도 9b의 중합체 조밀 영역들(902a) 내에서 더 조밀한 중합체 구조체를 생성할 수 있으며, 이는 격자 성능을 증가시킬 수 있다. 티올 첨가제의 중량 백분율은 용매 세척을 견디도록 중합체 구조체 내에 안정성을 제공하기 위해 균형이 맞춰져야 하지만, 용매 세척 동안 액정이 방출되지 않도록 하기 위해 강성이 아닌 것으로 밝혀졌다.
HPDLC 격자 성능과 중합체-공기 SRG 성능 간의 비교
도 10a 및 도 10b는 HPDLC 격자 및 중합체 SRG 또는 EBG의 비교예들의 이미지들을 도시한다. 도 10a는 액정이 제거되지 않은 예시적인 HPDLC 격자에 대한 성능을 도시한다. 도 10a의 격자는 공칭 또는 거의 0%의 S-회절 효율을 보이면서 20-30%의 P-회절 효율을 포함한다. 도 10b는 LC가 제거된 예시적인 중합체-공기 SRG의 성능을 도시한다. 도 10b의 격자는 51-77%의 S-회절 효율을 보이면서 18-28% P-회절 효율을 포함한다. 이에 따라, LC가 제거된 중합체-공기 SRG들은 필적할만한 P-회절 효율을 유지하면서 비교적 높은 S-회절 효율을 실증한다. 나아가, 도 10b의 격자는 0.11-0.15%의 P-회절 탁도 및 0.12-0.16%의 S-회절 탁도를 포함한다.
도 11a 및 도 11b는 액정이 제거되지 않은 HPDLC 격자 및 액정이 제거된 중합체 SRG 또는 EBG의 비교예들의 플롯들을 도시한다. 도 11a는 액정이 남아 있는 HPDLC 격자에 대한 P-회절 효율 및 S-회절 효율을 도시한다. 제1 라인(1102a)은 P-회절 효율에 대응하고, 제2 라인(1104a)은 S-회절 효율에 대응한다. 도 11b는 액정이 제거된 중합체 SRG 또는 EBG에 대한 P-회절 효율 및 S-회절 효율을 도시한다. 제1 라인(1102b)은 P-회절 효율에 대응하고, 제2 라인(1104b)은 S-회절 효율에 대응한다. 도시된 바와 같이, S-회절 효율은 액정이 제거된 후에 극적으로 증가하는 한편, P-회절 효율은 비교적 유사하게 유지된다.
일부 실시예들에서, S-회절 효율 대 P-회절 효율의 비는 상이한 격자 주기들, 격자 경사각들, 및 격자 두께들을 사용함으로써 조정될 수 있다.
다양한 예시적인 깊은 SRG 깊이들
도 12a 및 도 12b는 다양한 깊이들의 깊은 SRG들을 갖는 P-회절 및 S-회절 효율들의 다양한 비교예들을 도시한다. 이들 플롯들 각각은 회절 효율 대 각도를 나타낸다. 도 12a에서, 깊은 SRG는 대략 1.1 ㎛의 깊이를 갖는다. 제1 라인(1102a)은 S-회절 효율을 나타내고, 제2 라인(1104a)은 P-회절 효율을 나타낸다. 도시된 바와 같이, 피크 S-회절 효율은 대략 58%이고, 피크 P-회절 효율은 23%이다. 이 예에 대해, S-회절에 대한 탁도는 0.12%이고, P-회절에 대한 탁도는 0.11%임에 유의한다. 낮은 탁도를 갖는 이러한 높은 회절 효율은 멀티플렉싱된 격자들에 특히 적절한 대략 1.1 ㎛의 깊이를 갖는 깊은 SRG들을 만들 수 있다.
도 12b에서, 깊은 SRG는 대략 1.8 ㎛의 깊이를 갖는다. 제1 라인(1102b)은 S-회절 효율을 나타내고, 제2 라인(1104b)은 P-회절 효율을 나타낸다. 도시된 바와 같이, 피크 S-회절 효율은 대략 92%이고, 피크 P-회절 효율은 63%이다. 이 예에 대해, S-회절에 대한 탁도는 0.34%이고, P-회절에 대한 탁도는 0.40%임에 유의한다. 이에 따라, S-회절 및 P-회절 효율 양자는 격자 깊이가 증가함에 따라 극적으로 증가한다. 탁도는 증가된 격자 깊이에 따라 증가하는 것으로 보인다는 점에 유의한다.
혼합물에서의 다양한 예시적인 초기 LC 농도들
도 13a 및 도 13b는 초기 혼합물에서 다양한 초기 LC 농도들을 갖는 다양한 EBG들의 비교 연구의 결과들을 도시한다. 도 13a는 S-편광 효율 대 각도를 도시한다. 도 13b는 P-편광 효율 대 각도를 도시한다. 도 13a에서, 제1 라인(1202a)은 20% 초기 LC 함량에 대응하고, 제2 라인(1204a)은 30% 초기 LC 함량에 대응하며, 제3 라인(1206a)은 40% 초기 LC 함량에 대응한다. 도 13b에서, 제1 라인(1202b)은 20% 초기 LC 함량에 대응하고, 제2 라인(1204b)은 30% 초기 LC 함량에 대응하며, 제3 라인(1206b)은 40% 초기 LC 함량에 대응한다. 표 1은 비교 연구의 다양한 결과들의 요약을 예시한다.
혼합물 중 초기 LC 함량 | 최대 S-회절 효율 |
최대 P-회절 효율 |
S-회절 탁도 | P-회절 탁도 |
20% | 10% | 5% | 0.10% | 0.12% |
30% | ≥40% | 18% | 0.14% | 0.13% |
40% | ≥55% | 23% | 0.12% | 0.11% |
도 13a 및 도 13b에 도시되고 표 1에 표기된 바와 같이, 최대 S-회절 및 최대 P-회절 양자는 초기 LC 함량이 높을수록 증가하는 것으로 보이는 한편, S-회절 탁도 및 P-회절 탁도는 대략 일정하게 유지된다.도 14a 및 도 14b는 다양한 초기 LC 농도들에 대한 추가적인 예시적인 S-회절 및 P-회절 효율들을 도시한다. 도 14a는 다양한 초기 LC 함량들 포함하는 다양한 예시적인 EBG들에 대한 S-회절 효율을 도시한다. 도 14b는 다양한 LC 함량들 포함하는 다양한 예시적인 EBG들에 대한 P-회절 효율을 도시한다. 도 14a 및 도 14b 양자에 대해, 상단에서 하단으로 순차적으로, 라인들은: 32% LC 함량, 30% LC 함량, 28% LC 함량, 26% LC 함량, 24% LC 함량, 22% LC 함량, 및 20% LC 함량을 나타낸다. 도시된 바와 같이, S-회절 및 P-회절 효율들은 LC 함량의 양과 직접적인 관계가 있다(예를 들어, LC 함량이 높을수록 더 높은 S-회절 및 P -회절 효율들을 낸다).
임의의 특정 이론에 제한되지 않고, 초기 LC 함량은 홀로그래픽 노출 공정 및 중합 공정 동안 발생하는 LC와 단량체 간의 상분리의 양과 관련된다. 이에 따라, LC 함량이 높을수록 세척 후 더 많은 공기 영역들을 만들기 위해 제거되는 LC 풍부 영역들의 양이 증가될 것이다. 증가된 공기 영역들은 공기 영역들(이전에는 액정 풍부 영역들)과 중합체 풍부 영역들 사이의 굴절률 차이(Δn)를 더 크게 만들며, 이는 S-회절 및 P-회절 효율 양자를 증가시킨다. 일부 실시예들에서, 중합체 SRG들의 평균 굴절률은 초기 중성 물질(예를 들어, LC) 함량을 조정함으로써 조정될 수 있으며, 이에 의해 중성 물질의 제거 후 중합체의 부피를 증가시키거나 감소시킨다. 나아가, 초기 중성 물질 함량을 증가시키는 것은 기계적 강도에 영향을 줄 수 있다. 이에 따라, 티올 첨가제와 같은 기계적 강도 증강제의 증가 또는 감소가 기계적 강도의 증가 또는 감소의 균형을 맞추기 위해 사용될 수 있다.
이미지 생성기들로서 OLED 어레이들을 포함하는 실시예들
도파관 디스플레이들에서 이미지 생성기들로서 유기 발광 다이오드(OLED) 어레이들의 사용에 대한 관심이 증가하고 있다. OLED들은 도파관 디스플레이 적용예들에서 많은 이점들을 갖는다. 발광 기술로서, OLED들은 광원을 필요로 하지 않는다. OLED들은 대면적에 걸쳐 비용 효율적으로 인쇄될 수 있다. 비직사각형 픽셀 어레이 패턴들이 곡선형 또는 가요성 기판 상에 인쇄될 수 있다. 후술될 바와 같이, 픽셀 어레이를 사전 왜곡하고 곡선형 초점면을 생성하는 능력은 도파관에 의해 지지되는 곡선형 도파관들 및 처방 렌즈들에 의해 야기되는 가이드되는 빔 파면 왜곡들에 대한 보상을 가능하게 할 수 있는 새로운 설계 치수를 추가한다. 4Kx4K 픽셀들의 해상도들을 갖는 OLED들은 LCoS(Liquid Crystal on Silicon) 및 디지털 라이트 프로세싱(digital light processing, DLP) 디바이스들과 같은 미세 전자 기계 시스템(Micro Electro Mechanical Systems, MEMS) 디바이스들 같은 기술들에 의해 제공될 수 있는 것보다 높은 해상도, 넓은 FOV AR 디스플레이들에 대한 더 빠른 루트를 제공하여, 근거리에서 더 높은 해상도의 양호한 전망들과 현재 이용가능하다. LCoS에 비해 또 다른 중요한 이점은 OLED들이 (LC 디바이스들에 대한 밀리초와 비교하여) 마이크로초로 스위칭할 수 있다는 것이다.
OLED들은 특정 단점들을 갖는다. 이들의 기본 형태에서, OLED들은 램버시안 이미터(Lambertian emitter)들이며, 이는 효율적인 광 수집을 LCoS 및 DLP 마이크로 디스플레이들보다 훨씬 더 훨씬 더 어렵게 한다. OLED들의 적색, 녹색, 및 청색 스펙트럼 대역폭들은 발광 다이오드(LED)들의 스펙트럼 대역폭보다 더 넓어서, 홀로그래픽 도파관들에서의 추가의 광 관리 문제들을 제시한다. OLED들의 가장 중요한 단점은 P-편광 선택적 경향이 있는 스위칭가능한 브래그 격자(SBG)들과 같은 HPDLC 격자들을 사용하는 도파관들에서, OLED로부터 이용가능한 광의 절반이 낭비된다는 점이다. 이에 따라, 본 발명의 많은 실시예들은 비편광된 광에 대해 높은 광 효율을 제공할 수 있는 방사 비편광 이미지 소스들과 사용하기 위한 도파관 디스플레이들 및 이러한 도파관 디스플레이들을 제조하는 관련 방법들에 관한 것이다.
실시예들을 설명하기 위해, 광학적 설계 및 시각적 디스플레이들의 당업자들에게 알려져 있는 광학 기술의 일부 잘 알려져 있는 특징들은 본 발명의 기본 원리들을 모호하게 하지 않기 위해 생략되거나 간략화되었다. 달리 언급되지 않는 한, 광선 또는 빔 방향에 관한 용어 "축상(on-axis)"은 본 발명과 관련하여 설명되는 광학 구성요소들의 표면들에 수직인 축에 평행한 전파를 지칭한다. 하기의 설명에서, 용어 광, 광선, 빔, 및 방향은 직선 궤적들에 따른 전자기 방사선의 전파 방향을 나타내기 위해 서로 호환하여 그리고 연관되어 사용될 수 있다. 용어 광 및 조사는 전자기 스펙트럼의 가시 및 적외선 대역들과 관련하여 사용될 수 있다. 하기의 설명의 부분들은 광학 설계 분야의 당업자들에 의해 통용되는 용어를 사용하여 제시될 것이다. 본원에서 사용될 때, 용어 격자는 일부 실시예들에서 격자들의 세트로 구성되는 격자를 포괄할 수 있다. 예시를 위해, 도면들은 달리 언급되지 않는 한 일정한 축척으로 도시되지 않음을 이해해야 한다.
이제 도면들을 참조하면, 본 발명의 다양한 실시예들에 따라 발광 입력 이미지 패널들을 사용하여 도파관 디스플레이들을 제공하기 위한 방법들 및 장치가 도시된다. 도 15는 본 발명의 실시예에 따른 도파관 디스플레이를 개념적으로 도시한다. 도시된 바와 같이, 장치(100)는 제1 파장 대역 내의 P-편광된 광에 대해 회절 효율이 높은 입력(102) 및 출력(103) 격자들 및 제1 파장 대역 내의 S-편광된 광에 대해 회절 효율이 높은 입력(104) 및 출력(105) 격자들을 지지하는 도파관(101)을 포함한다.
장치(100)는 제1 파장 대역을 포함하는 방사 스펙트럼 대역폭을 갖는 비편광된 광을 방사하는 OLED 마이크로디스플레이(106), 및 OLED 마이크로 디스플레이로부터 시야 내로 광을 투사하기 위한 시준 렌즈(107)를 더 포함한다. 예시적인 실시예에서, S 및 P 회절 격자들(102-105)은 에어 갭이 요구되지 않고 적층될 수 있다. 다른 실시예들에서, 격자 층들은 에어 갭 또는 투명 층에 의해 분리될 수 있다. S 및 P 회절 격자들(102 내지 105)은 상술된 깊은 SRG들 또는 EBG들일 수 있다.
도 16은 P-회절 및 S-회절 격자들이 별도의 공기 이격된 도파관 층들에 배치된 본 발명의 실시예에 따른 도파관 디스플레이를 개념적으로 도시한다. 도시된 바와 같이, 장치(110)는 에어 갭(113)에 의해 분리된 (격자들(102, 103 및 104, 105)을 각각 지지하는) 상부(111) 및 하부(112) 도파관 층들을 포함한다. 격자들(102, 103 및 104, 105)은 상술한 깊은 SRG들 및 EBG들일 수 있다.
도 17은 본 발명의 실시예에 따른 도파관 디스플레이에서의 통상적인 광선 경로들을 개념적으로 도시한다. 도 17에 도시된 실시예(120)에서, 마이크로디스플레이(106)는 제1 파장 대역 내의 비편광된 광(121)을 방사하도록 구성되며, 이는 이는 시준기 렌즈(107)에 의해 시야 내로 시준되고 투사된다. 마이크로디스플레이(106)로부터의 S-편광된 방사는 S-회절 입력 격자(104)에 의해 도파관(101) 내의 내부 전반사 경로로 인커플링될 수 있고, S-회절 출력 격자(105)에 의해 도파관(101)으로부터 추출될 수 있다. 마이크로디스플레이(106)로부터의 P-편광된 광은 유사한 방식으로 P-회절 입력 및 출력 격자들(102, 103)을 사용하여 인커플링되고 추출될 수 있다. 분산은 입력 및 출력 격자 공간 주파수들이 정합된다면 S 및 P 광 양자에 대해 보정될 수 있다. 입력 및 출력 격자들(102, 103)은 상술한 깊은 SRG들 또는 EBG들일 수 있다.
도 15 내지 도 17은 특정 도파관 디스플레이 구성들을 도시하지만, 도시된 것들에 대한 수정을 포함하는 다양한 구성들이 구현될 수 있으며, 이의 특정 구현은 소정의 적용예의 특정 요건들에 따를 수 있다. 더 나아가, 이러한 디스플레이들은 다수의 상이한 방법들을 사용하여 제조될 수 있다. 예를 들어, 많은 실시예들에서, 두 개의 격자 층들이 잉크젯 인쇄 공정을 사용하여 형성된다.
많은 실시예들에서, 도파관은 단색 대역에서 동작한다. 일부 실시예들에서, 도파관은 녹색 대역에서 동작한다. 몇몇 실시예들에서, 적색, 녹색 및 청색(RGB)과 같은 상이한 스펙트럼 대역들에서 동작하는 도파관 층들이 3층 도파 구조체를 제공하기 위해 적층될 수 있다. 추가 실시예들에서, 층들에는 도파관 층들 사이에 에어 갭들이 적층된다. 다양한 실시예들에서, 도파관 층들은 두 개의 도파관 층 솔루션들을 제공하기 위해 청색-녹색 및 녹색-적색과 같은 더 넓은 대역들에서 동작한다. 다른 실시예들에서, 격자들은 격자층들의 수를 감소시키기 위해 컬러 멀티플렉싱된다. 다양한 타입들의 격자들이 구현될 수 있다. 일부 실시예들에서, 각 층 내의 적어도 하나의 격자는 스위칭 가능한 격자이다.
본 발명은 문헌에 개시된 것들을 포함하는 다양한 도파관 아키텍처들을 사용하여 적용될 수 있다. 많은 실시예들에서, 도파관은 각도 멀티플렉싱 격자, 컬러 멀티플렉싱 격자, 폴드 격자, 이중 상호 작용 격자, 롤링 K-벡터 격자, 교차 폴드 격자, 테셀레이트 격자(tessellated grating), 처프 격자(chirped grating), 공간적으로 변하는 굴절률 변조를 갖는 격자, 공간적으로 변하는 격자 두께를 갖는 격자, 공간적 변하는 평균 굴절률을 갖는 격자, 공간적으로 변하는 굴절률 변조 텐서를 갖는 격자, 및 공간적 변하는 평균 굴절률 텐서를 갖는 격자 중 적어도 하나를 통합할 수 있다. 일부 실시예들에서, 도파관은 반파장판, 1/4파장판, 반사 방지 코팅, 빔 스플리팅 층, 정렬 층, 섬광 감소를 위한 광색성 배면 층, 섬광 감소를 위한 루버 막 중 적어도 하나를 포함할 수 있다. 몇몇 실시예들에서, 도파관은 상이한 편광들에 대한 개별 광 경로들을 제공하는 격자들을 지지할 수 있다. 다양한 실시예들에서, 도파관은 상이한 스펙트럼 대역폭들에 대한 개별 광 경로들을 제공하는 격자들을 지지할 수 있다. 다수의 실시예들에서, 본 발명에서 사용하기 위한 격자들은 HPDLC 격자, HPDLC에 기록되는 스위칭 격자(상기한 스위칭 가능한 브래그 격자), 홀로그래픽 광중합체에 기록되는 브래그 격자, 또는 표면 릴리프 격자일 수 있다.
많은 실시예들에서, 도파관 디스플레이는 적어도 50° 대각선의 이미지 관찰 시야를 제공할 수 있다. 추가 실시예들에서, 도파관 디스플레이는 적어도 70° 대각선의 이미지 관찰 시야를 제공할 수 있다. 일부 실시예들에서, OLED 디스플레이는 4000 니트보다 큰 휘도 및 4kx4k 픽셀의 해상도를 가질 수 있다. 몇몇 실시예들에서, 도파관은 휘도 4000 니트의 OLED 디스플레이를 사용하여 400 니트보다 큰 이미지 휘도가 제공될 수 있도록 10%보다 큰 광학 효율을 가질 수 있다. P-회절 격자들을 구현하는 도파관 디스플레이들은 통상적으로 5% - 6.2%의 도파관 효율을 갖는다. 상술한 바와 같이 S-회절 격자들을 제공하는 것은 도파관의 효율을 2배 증가시킬 수 있다. 다양한 실시예들에서, 25 mm보다 큰 아이 릴리프(eye relief)를 갖는 10 mm보다 큰 아이 박스가 제공될 수 있다. 많은 실시예들에서, 도파관 두께는 2.0-5.0 mm 사이일 수 있다.
도 18은 도파관 광학 표면들 중 적어도 하나의 적어도 일부가 만곡되고 사이드 빔 파면들에 대한 만곡된 표면 부분의 효과가 있는 본 발명의 실시예에 따른 도파관 디스플레이를 개념적으로 도시한다. 도시된 바와 같이, 장치(130)는 곡면부(132)를 지지하는 도파관(131)을 포함한다. 예시적인 실시예에서, 도파관(131)은 제1 파장 대역 내의 P-편광된 광에 대해 회절 효율이 높은 입력(102) 및 출력(103) 격자들 및 제1 파장 대역 내의 S-편광된 광에 대해 회절 효율이 높은 입력(104) 및 출력(105) 격자들을 지지한다. 픽셀들(133)의 직사각형 어레이를 디스플레이하는 마이크로디스플레이(106)는 제1 파장 대역 내의 비편광된 광(134)을 방사하며, 이는 시준 렌즈(107)에 의해 시준되어 시야 내로 투사된다. 마이크로디스플레이(106)로부터의 P-편광된 방사는 P-회절 입력 격자(102)에 의해 도파관 내의 내부 전반사 경로로 인커플링될 수 있고, P-회절 출력 격자(103)에 의해 도파관으로부터 추출될 수 있다. 도파관 내의 임의의 비평면 표면의 존재는 아이박스로부터 볼 때 출력 광이 디포커스, 기하학적 왜곡, 및 다른 수차를 보이도록 가이드된 광의 파면들을 왜곡시킬 수 있다. 예를 들어, 도 18에서, 단일 픽셀로부터 시준기 렌즈(107)에 의해 투사된 광은 평면 파면들(135)을 가지며, 이는 TIR 경로(136)를 따라 도파관(131)을 통해 전파된 후, 만곡된 출력 파면(139A)에 수직인 비평행 출력 광선들(137-139)을 형성한다. 한편, 대신에 완벽한 평면 도파관은 평행 빔 확장 광을 제공할 것이다. 도 19는 도파관 기판(141)이 두 개의 중첩하는 상부(142) 및 하부(143) 곡면들을 지지하는 도파관의 버전(140)을 개념적으로 도시한다.
도 20은 곡면부에 의해 도입된 수차가 OLED 마이크로디스플레이의 픽셀 패턴을 사전 왜곡함으로써 보정될 수 있는 본 발명의 실시예에 따른 도파관 디스플레이를 개념적으로 도시한다. 예시적인 실시예에서, 도파관 장치(150)는 도 18에 도시된 것과 유사하다. 도시된 바와 같이, 장치(150)는 사전 왜곡된 픽셀 패턴(152)을 지지하는 마이크로디스플레이(151)를 포함한다. 마이크로디스플레이에 의해 방사되는 비편광된 제1 파장 광(153)은 렌즈(107)에 의해 포커싱되며, 이는 도파관에 진입하는 빔을 실질적으로 시준하면서 작은 양만큼 사전 왜곡된 파면들(154)을 형성한다. 도파관(131)을 통한 인커플링 및 전파(155) 후에, 사전 왜곡된 파면들은 곡면(132)에 의해 포커싱되어 평면 출력 파면(159)에 수직인 평행 출력 광선들(156-158)을 형성한다.
도 21은 곡면부에 의해 도입된 수차가 만곡된 기판 상에 형성된 OLED 마이크로디스플레이의 픽셀 패턴을 사전 왜곡함으로써 보정될 수 있는 본 발명의 실시예에 따른 도파관 디스플레이를 개념적으로 도시한다. 만곡된 마이크로디스플레이 기판들은 왜곡된 픽셀 패턴과 관련하여 초점 에러 상면 만곡 수차(field curvature), 왜곡, 및 다른 수차를 보정하는 것을 도울 수 있다. 예시적인 실시예에서, 도파관 장치(160)는 도 18에 도시된 것과 유사하다. 도시된 바와 같이, 만곡된 기판 마이크로디스플레이(161)는 사전 왜곡된 픽셀 패턴(164)을 지지한다. 마이크로디스플레이에 의해 방사되는 비편광된 제1 파장 광(163)은 렌즈(107)에 의해 포커싱되어 약간 사전 왜곡된 파면들(164)을 갖는 실질적으로 시준된 가이드된 빔들을 형성하며, 이는 도파관(131)을 통한 인커플링 및 전파(165) 후에, 평면 출력 파면(169)에 수직인 평행 출력 광선들(166-168)을 형성한다.
도 18 내지 도 21은 곡면들을 갖는 도파관들의 특정 구성들을 도시하지만, 많은 다른 상이한 구성들 및 변형들이 구현될 수 있다. 예를 들어, 이러한 실시예들에서 예시된 기법들 및 기초 이론은 또한 시력 규정 광학 표면을 지지하는 도파관들에 적용될 수 있다. 많은 실시예들에서, 규정 도파관 기판들은 시력 규정 안경의 제조에 사용되는 공정들과 유사한 공정들을 사용하여 맞춤 제작될 수 있으며, 표준 기준선 규정은 개별 사용자 요건들에 대해 미세 조정된다. 일부 실시예들에서, 도파관 격자들은 표준 기준선 규정으로 잉크젯 인쇄될 수 있다. 몇몇 실시예들에서, OLED 디스플레이는 맞춤 인쇄되며 사전 왜곡된 픽셀 패턴이 형성될 수 있다. 다양한 실시예들에서, OLED 디스플레이는 만곡된 백플레인 기판 상에 인쇄될 수 있다. 다수의 실시예들에서, 추가적인 굴절 또는 회절 사전 보상 요소들이 도파관에 의해 지지될 수 있다. 많은 실시예들에서, 추가적인 보정 함수들이 입력 및 출력 격자들 중 적어도 하나에 인코딩될 수 있다. 입력 및 출력 격자들은 상술된 깊은 SRG들 또는 EBG들 또는 하이브리드 격자들일 수 있고, 도 1 내지 도 5와 관련하여 설명된 방법들로 제조될 수 있다. 입력 및 출력 격자들은 또한 도 6 내지 도 8과 관련하여 설명된 두께들을 가질 수 있다.
도 22는 본 발명의 실시예에 따라 S-회절 및 P-회절 격자들을 포함하는 도파관을 사용하여 관찰을 위한 이미지 광을 투사하기 위한 방법을 개념적으로 도시하는 흐름도이다. 도시된 바와 같이, 이미지를 형성하는 방법(170)이 제공된다. 흐름도를 참조하면, 방법(170)은 제1 파장 범위 내의 광을 방사하는 OLED 어레이, 시준 렌즈 및 제1 파장 대역 내의 S-편광된 광에 대해 회절 효율이 높은 입출력 격자들 및 제1 파장 대역 내의 P-편광된 광에 대해 회절 효율이 높은 입출력 격자들을 지지하는 도파관을 제공하는 단계(171)를 포함한다. 일부 실시예들에서, 입출력 격자들은 전술된 깊은 SRG들, EBG들, 또는 하이브리드 격자들일 수 있다. 시준 렌즈를 사용하여 OLED 어레이에 의해 방사된 이미지 광이 시준될 수 있다(172). S-회절 입력 격자를 사용하여 S-편광된 광이 도파관 내의 내부 전반사 경로 내로 커플링될 수 있다(173). P-회절 입력 격자를 사용하여 P-편광된 광이 도파관 내의 내부 전반사 경로 내로 커플링될 수 있다(174). 관찰을 위해 도파관으로부터 S-편광된 광이 빔 확대 및 추출될 수 있다(175). 관찰을 위해 도파관으로부터 P-편광된 광이 빔 확대 및 추출될 수 있다(176).
도 23은 본 발명의 실시예에 따라 광학 규정 표면을 지지하고 S-회절 및 P-회절 격자들을 포함하는 도파관을 사용하여 관찰을 위한 이미지 광을 투사하기 위한 방법을 개념적으로 도시하는 흐름도이다. 도시된 바와 같이, 이미지를 형성하는 방법(180)이 제공된다. 흐름도를 참조하면, 방법(180)은 제1 파장 범위 내의 광을 방사하는 사전 왜곡된 픽셀 패턴을 갖는 OLED 어레이, 시준 렌즈 및 제1 파장 대역 내의 S-편광된 광에 대해 회절 효율이 높은 입출력 격자들 및 제1 파장 대역 내의 P-편광된 광에 대해 회절 효율이 높은 입출력 격자들을 지지하는 도파관을 제공하는 단계(181) 및 또한 도파관에 의해 지지되는 규정 광학 표면을 제공하는 단계(182)를 포함한다. 일부 실시예들에서, 입출력 격자들은 전술된 깊은 SRG들, EBG들, 또는 하이브리드 격자들일 수 있다. 시준 렌즈를 사용하여 OLED 어레이에 의해 방사된 이미지 광이 시준될 수 있다(183). S-회절 입력 격자를 사용하여 S-편광된 광이 도파관 내의 내부 전반사 경로 내로 커플링될 수 있다(184). P-회절 입력 격자를 사용하여 P-편광된 광이 도파관 내의 내부 전반사 경로 내로 커플링될 수 있다(185). 규정 표면에 사전 왜곡된 파면이 반사될 수 있다(186). 규정 표면의 광출력을 사용하여 사전 왜곡된 파면으로부터 평면 파면이 형성될 수 있다(187). 관찰을 위해 도파관으로부터 S-편광된 광이 빔 확대 및 추출될 수 있다(188). 관찰을 위해 도파관으로부터 P-편광된 광이 빔 확대 및 추출될 수 있다(189).
다양한 픽셀 기하학적 구조체들을 포함하는 실시예들에 대한 논의
본 개시에서 논의된 다양한 장치는 기하학적 제약들 및 어레이들을 구현하는 데 있어서 실제적인 문제들에 의해서만 제한되는 많은 상이한 기하학적 구조체들의 입력 픽셀 어레이들을 갖는 방사 디스플레이들을 사용하여 적용될 수 있다. 많은 실시예들에서, 픽셀 어레이는 비주기적(비반복)인 픽셀들을 포함할 수 있다. 이러한 실시예들에서, 기하학적 구조체에서의 비대칭 및 픽셀들의 분포는 도파관으로부터의 출력 조명에서의 균일성을 생성하기 위해 사용될 수 있다. 최적 픽셀 크기들 및 기하학적 구조체들은 아이박스로부터 출력 및 입력 격자들(및 사용된다면 폴드 격자들)을 통해 픽셀 어레이 상으로의 역방향 벡터 광선 추적을 사용하여 결정될 수 있다. 다양한 비대칭 픽셀 패턴들이 본 발명에서 사용될 수 있다. 예를 들어, 도 24a는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 상이한 크기 및 종횡비들의 직사각형 요소들(230A-230F)을 포함하는 픽셀 패턴의 일부(230)를 개념적으로 도시한다. 일부 실시예들에서, 픽셀 어레이는 다각형 기본 요소들의 유한 세트에 기초한 비반복 패턴에 기초할 수 있다. 예를 들어, 도 24b는 본 발명의 실시예에 따른 방사 디스플레이 패널에 사용하기 위한 펜로스 타일들(240A-240J)을 갖는 픽셀 패턴의 일부(240)를 개념적으로 도시한다. 타일들은 "Set of tiles for covering a surface"라는 명칭의 펜로스(Penrose)의 미국 특허 제4,133,152호에 개시된 원리들에 기초할 수 있다. 허니콤이 잘 알려져 있는 예들인 자연에서 발생하는 패턴들이 또한 많은 실시예들에서 사용될 수 있다.
많은 실시예들에서, 픽셀들은 동일한 규칙적인 다각형들의 어레이들을 포함할 수 있다. 예를 들어, 도 24c는 본 발명의 실시예에 따른 육각형 요소들을 갖는 픽셀 패턴의 일부(250)를 개념적으로 도시한다. 도 24d는 본 발명의 실시예에 따른 정사각형 요소들(250A-250C)을 갖는 픽셀 패턴의 일부(260)를 개념적으로 도시한다. 도 24e는 본 발명의 실시예에 따른 다이아몬드형 요소들(270A-270D)을 갖는 픽셀 패턴의 일부(270)를 개념적으로 도시한다. 도 24f는 본 발명의 실시예에 따른 이등변 삼각형 요소들(280A-280H)을 갖는 픽셀 패턴의 일부(280)를 개념적으로 도시한다.
많은 실시예들에서, 픽셀들은 수직으로 또는 수평으로 바이어싱된 종횡비들을 갖는다. 도 24g는 수평 편향된 종횡비의 육각형 요소들(290A-290C)을 갖는 픽셀 패턴의 일부(290)를 개념적으로 도시한다. 도 24h는 수평 편향된 종횡비의 직사각형 요소들(300A-300D)을 갖는 픽셀 패턴의 일부(300)를 개념적으로 도시한다. 도 24i는 본 발명의 실시예에 따른 수평 편향된 종횡비의 다이아몬드형 요소들(310A-310D)을 갖는 픽셀 패턴의 일부(310)를 개념적으로 도시한다. 도 24j는 본 발명의 실시예에 따른 수평 편향된 종횡비의 삼각형 요소들(320A-320H)을 갖는 픽셀 패턴의 일부(320)를 개념적으로 도시한다.
많은 실시예들에서, OLED들은 OLED의 스펙트럼 방사 특성들을 성형하기 위해 공동 형상들 및 다층 구조체들로 제조될 수 있다. 일부 실시예들에서, 좁은 스펙트럼 대역폭들을 제공하도록 최적화된 마이크로공동 OLED들이 사용될 수 있다. 일부 실시예들에서, 스펙트럼 대역폭은 40 nm 미만일 수 있다. 일부 실시예들에서, 20 nm 이하의 스펙트럼 대역폭이 제공될 수 있다. 일부 실시예들에서, OLED들은 3원색 중 하나에 대응하는 선택된 스펙트럼 영역들 근처에 집중된 비교적 좁은 대역에서 전계 발광 방사를 제공하는 재료들로 제조될 수 있다. 도 25는 상이한 픽셀들이 상이한 방사 특성들을 가질 수 있는 픽셀 패턴을 개념적으로 도시한다. 일부 실시예들에서, 픽셀들은 픽셀 어레이 내의 이들의 위치에 따라 상이한 스펙트럼 방사 특성들을 가질 수 있다. 일부 실시예들에서, 픽셀들은 픽셀 어레이 내의 이들의 위치에 따라 상이한 각도 방사 특성들을 가질 수 있다. 일부 실시예들에서, 픽셀들은 픽셀 어레이에 걸쳐 공간적으로 변하는 스펙트럼 및 각도 방사 특성들 양자를 가질 수 있다. 픽셀 패턴은 도 24a 내지 도 24j에 도시된 패턴들 중 임의의 것에 기초할 수 있다. 많은 실시예들에서, 상이한 크기들 및 기하학적 구조체들의 픽셀들은 최종 이미지의 균일성을 제어하기 위한 공간 방사 변화를 제공하도록 배열될 수 있다.
많은 실시예들에서, OLED들은 소정의 광 분포를 맞춤 형태로 변형시키도록 설계된 공동 구조체들을 가질 수 있다. 이는 통상적으로 웨어러블 디스플레이 적용예를 위해 부피가 클 수 있는 2차 광학 요소들에 의해 달성된다. 이러한 설계들은 또한 최종 광원을 단일 영구 동작 모드로 제한하며, 이는 기계적으로 조정가능한 광학 요소들을 채용함으로써만 극복될 수 있다는 문제를 겪는다. 일부 실시예들에서, OLED들은 이차 광학 요소들에 의존하지 않고 임의의 기계적 조정을 사용하지 않고 빔 성형의 실시간 조절을 가능하게 할 수 있다. 일부 실시예들에서, OLED는 Fries에 의한 논문(Fries F. et al, “Real-time beam shaping without additional optical elements”, Light Science & Applications, 7(1), 18, (2018))에 개시된 바와 같이 임의의 설정에서 높은 양자 효율을 유지하면서 전방 및 오프 축 주 방사 방향들 사이에서 연속적으로 조정될 수 있다.
중요한 OLED 개발, "마이크로공동 OLED"는 일부 실시예들에서 더 제어되는 스펙트럼 대역폭 및 방사 각도에 대한 잠재성을 제공할 수 있다. 그러나, 마이크로공동 OLED들은 아직 상업적 개발을 위한 준비가 되어 있지 않다. (굴절률 변조 0.1, 평균 굴절률 1.65 및 45도의 도파관 내의 입사각을 갖는 2 마이크론 격자에 대응하는) 일 실시예에서, SBG의 회절 효율은 OLED 방사 스펙트럼에 걸쳐(25% 피크 포인트들 사이에서) 75%보다 크다. 더 깊은 공동 구조체들을 사용하는 더 좁은 대역폭 OLED들은 40 nm 아래로 대역폭을 감소시킬 것이다.
바람직하게는, 본 발명은 460 nm에서 청색에 사용하기 위해 최적화된 OLED들을 사용할 수 있으며, 이는 더 통상적으로 사용되는 440 nm OLED보다 일광 AR 디스플레이 적용예들에서 더 양호한 청색 콘트라스트뿐만 아니라 더 양호한 신뢰성 및 수명을 제공한다.
일부 실시예들에서, 발광 디스플레이는 Kopin Corporation (Westborough, MA)에 의해 개발된 것과 유사한 OLED 풀 컬러 실리콘 백플레인 마이크로디스플레이일 수 있다. Kopin 마이크로디스플레이는 0.99 인치의 이미지 대각선 및 인치당 2490 픽셀의 픽셀 밀도를 제공한다. 마이크로디스플레이는 컴팩트한 폼 팩터를 가능하게 하기 위해 Kopin의 특허받은 Pantile™ 확대 렌즈를 사용한다.
본 발명이 입력 이미지원으로서 OLED 마이크로디스플레이를 사용하는 실시예들의 관점에서 설명되었지만, 많은 다른 실시예들에서, 본 발명은 임의의 다른 유형의 방사 마이크로디스플레이 기술에 적용될 수 있다. 일부 실시예들에서, 발광 마이크로디스플레이는 마이크로 LED일 수 있다. 마이크로 LED들은 감소된 전력 소비로부터 이익을 얻고 OLED 디스플레이의 것보다 더 높은 휘도에서 효율적으로 동작할 수 있다. 그러나, 마이크로 LED들은 본질적으로 LED들에서 색상을 변환하기 위해 통상적으로 사용되는 단색 인광체들이며, 작은 크기로 잘 스케일링되지 않아, 마이크로디스플레이 적용예들로 스케일링 다운하기 어려운 더 복잡한 디바이스 아키텍처를 초래한다.
중합체 격자 구조체가 OLED 어레이 기반 도파관 디스플레이 내에서의 사용 측면에서 논의되었지만, 중합체 격자 구조체들은 다른 부류의 디스플레이들과의 유리한 상승작용적 적용예들을 갖는다. 이들 디스플레이들의 예들은 LCoS 및 MEMS 기반 디스플레이들과 같은 비발광 디스플레이 기술을 사용하는 이미지 생성기들을 포함한다. LCoS 기반 디스플레이들은 통상적으로 편광을 방사하여 중합체 격자 구조체의 편광 기반 이점을 덜 적용 가능하게 할 수 있지만, 중합체 격자 구조체들은 종래의 임프린트된 격자들에 비해 유리한 효율 및 제조 비용 절감을 제공할 수 있다. 또한, 중합체 격자 구조체들은 도파관 센서들 및/또는 도파관 조명 디바이스들과 같은 다양한 다른 비디스플레이 도파관 기반 구현들에서 적용가능할 수 있다.
균등론
상기한 설명은 본 발명의 많은 특정 실시예들을 포함하지만, 이들은 본 발명의 범위를 제한하는 것으로 간주되어서는 안 되며, 오히려 본 발명의 일 실시예의 예로서 간주되어야 한다. 따라서, 본 발명은 본 발명의 범주 및 사상으로부터 벗어나지 않고 구체적으로 설명된 것 이외의 방식으로 실시될 수 있다는 것을 이해해야 한다. 이에 따라, 본 발명의 실시예들은 모든 점에서 예시적인 것으로 간주되어야 하고 제한적인 것으로 간주되어서는 안 된다. 따라서, 본 발명의 범주는 예시된 실시예들에 의해서가 아니라, 첨부된 청구항들 및 이들의 균등물들에 의해서 결정되어야 한다.
Claims (29)
- 도파관 디바이스로서,
도파관에서 내부 전반사로 전파되는 광을 회절시키기 위한 중합체 격자 구조체를 지지하는 도파관을 포함하되, 도파관은 기판을 포함하고, 중합체 격자 구조체는 기다란 주 연장 방향을 가지고,
중합체 격자 구조체는:
기판까지 계속 연장되는 중합체 네트워크; 및
중합체 네트워크의 인접한 부분들 사이의 에어 갭들
을 포함하고, 중합체 네트워크는 기다란 주 연장 방향을 따라 에어 갭들과 교번하는, 도파관 디바이스. - 제1항에 있어서,
중합체 격자 구조체는 중합체 네트워크의 인접한 부분들 사이의 등방성 재료를 더 포함하되, 등방성 재료는 중합체 네트워크보다 높거나 낮은 굴절률을 갖는 것인, 도파관 디바이스. - 제2항에 있어서,
등방성 재료는 중합체 네트워크의 인접한 부분들 사이의 공간의 바닥 부분에서 에어 갭들을 점유하고, 에어는 등방성 재료의 상부 표면 위로부터 변조 깊이로 중합체 네트워크의 인접한 부분들의 상부 표면까지 공간을 점유하는 것인, 도파관 디바이스. - 제2항에 있어서,
등방성 재료는 복굴절 결정 재료를 포함하는 것인, 도파관 디바이스. - 제4항에 있어서,
복굴절 결정 재료는 액정 재료를 포함하는 것인, 도파관 디바이스. - 제1항에 있어서,
중합체 격자 구조체는 가시광의 파장보다 큰 변조 깊이를 갖는 것인, 도파관 디바이스. - 제1항에 있어서,
중합체 격자 구조체는 변조 깊이 및 격자 피치를 포함하고, 변조 깊이는 격자 피치보다 큰 것인, 도파관 디바이스. - 제1항에 있어서,
도파관은 두 개의 기판들을 포함하고, 중합체 격자 구조체는 두 개의 기판들 사이에 개재되거나 어느 하나의 기판의 외부 표면 상에 위치되는 것인, 도파관 디바이스. - 제1항에 있어서,
도파관 디바이스는 화상 생성 유닛을 더 포함하고, 중합체 격자 구조체는 도파관 회절 격자를 포함하는 것인, 도파관 디바이스. - 제9항에 있어서,
도파관 회절 격자는 멀티플렉싱 격자로서 구성된 것인, 도파관 디바이스. - 제10항에 있어서,
도파관 회절 격자는 다수의 이미지들을 포함하는 화상 생성 유닛으로부터의 광을 수용하도록 구성된 것인, 도파관 디바이스. - 제9항에 있어서,
도파관 회절 격자는 도파관으로부터 광을 아웃커플링하도록 구성된 것인, 도파관 디바이스. - 제9항에 있어서,
도파관 회절 격자는 빔 익스팬더로서 구성된 것인, 도파관 디바이스. - 제9항에 있어서,
도파관 회절 격자는 화상 생성 유닛으로부터 생성된 이미지 데이터를 포함하는 광을 인커플링하도록 구성된 것인, 도파관 디바이스. - 제14항에 있어서,
도파관 회절 격자는 또한 고도의 효율로 S-편광된 광을 인커플링하도록 구성된 것인, 도파관 디바이스. - 제1항에 있어서,
중합체 격자 구조체는 2차원 격자 구조체 또는 3차원 격자 구조체를 포함하는 것인, 도파관 디바이스. - 제1항에 있어서,
또 다른 격자 구조체를 더 포함하는, 도파관 디바이스. - 제17항에 있어서,
중합체 격자 구조체는 인커플링 격자를 포함하고, 상기 또 다른 격자 구조체는 빔 익스팬더 또는 아웃커플링 격자를 포함하는 것인, 도파관 디바이스. - 제1항에 있어서,
중합체 격자 구조체는 기판과 직접 접촉하는, 도파관 디바이스. - 제19항에 있어서,
에어 갭들은 기판과 직접 접촉하는, 도파관 디바이스. - 도파관 디바이스로서,
도파관에서 내부 전반사로 전파되는 광을 회절시키기 위한 중합체 격자 구조체를 지지하는 도파관을 포함하되, 도파관은 기판을 포함하고, 중합체 격자 구조체는 기다란 주 연장 방향을 가지고,
중합체 격자 구조체는:
기판까지 계속 연장되는 중합체 네트워크; 및
중합체 네트워크의 인접한 부분들 사이의 뒤채움 재료
를 포함하고, 중합체 네트워크는 기다란 주 연장 방향을 따라 뒤채움 재료와 교번하는, 도파관 디바이스. - 제21항에 있어서,
뒤채움 재료는 복굴절인, 도파관 디바이스. - 제22항에 있어서,
뒤채움 재료는 액정인, 도파관 디바이스. - 제21항에 있어서,
뒤채움 재료는 중합체 네트워크보다 높은 굴절률을 갖는 것인, 도파관 디바이스. - 제21항에 있어서,
뒤채움 재료는 중합체 네트워크보다 낮은 굴절률을 갖는 것인, 도파관 디바이스. - 제21항에 있어서,
뒤채움 재료는 중합체 격자 구조체의 각도 대역폭 및 회절 효율 중 적어도 하나를 증가시키기 위한 굴절률을 갖는 것인, 도파관 디바이스. - 제21항에 있어서,
중합체 격자 구조체는 단량체 및 제1 액정의 혼합물의 상분리에 의해 형성되고, 중합체 격자 구조체는 제1 액정과 상이한 광학적 속성들을 갖는 제2 액정을 포함하는 뒤채움 재료로 뒤채움되는, 도파관 디바이스. - 제21항에 있어서,
도파관은 기판을 포함하고, 중합체 격자 구조체는 기판까지 계속 연장되어 기판과 직접 접촉하는, 도파관 디바이스. - 제28항에 있어서,
뒤채움 재료는 기판과 직접 접촉하는, 도파관 디바이스.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962893715P | 2019-08-29 | 2019-08-29 | |
US62/893,715 | 2019-08-29 | ||
KR1020227010444A KR102775783B1 (ko) | 2019-08-29 | 2020-08-28 | 진공 격자 및 이의 제조 방법 |
PCT/US2020/048590 WO2021041949A1 (en) | 2019-08-29 | 2020-08-28 | Evacuating bragg gratings and methods of manufacturing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227010444A Division KR102775783B1 (ko) | 2019-08-29 | 2020-08-28 | 진공 격자 및 이의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20250030038A true KR20250030038A (ko) | 2025-03-05 |
Family
ID=74679652
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020257006495A Pending KR20250030038A (ko) | 2019-08-29 | 2020-08-28 | 진공 격자 및 이의 제조 방법 |
KR1020227010444A Active KR102775783B1 (ko) | 2019-08-29 | 2020-08-28 | 진공 격자 및 이의 제조 방법 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227010444A Active KR102775783B1 (ko) | 2019-08-29 | 2020-08-28 | 진공 격자 및 이의 제조 방법 |
Country Status (6)
Country | Link |
---|---|
US (4) | US11442222B2 (ko) |
EP (1) | EP4022370A4 (ko) |
JP (1) | JP2022546413A (ko) |
KR (2) | KR20250030038A (ko) |
CN (1) | CN114450608A (ko) |
WO (1) | WO2021041949A1 (ko) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
US20150010265A1 (en) | 2012-01-06 | 2015-01-08 | Milan, Momcilo POPOVICH | Contact image sensor using switchable bragg gratings |
US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
WO2016042283A1 (en) | 2014-09-19 | 2016-03-24 | Milan Momcilo Popovich | Method and apparatus for generating input images for holographic waveguide displays |
CN111323867A (zh) | 2015-01-12 | 2020-06-23 | 迪吉伦斯公司 | 环境隔离的波导显示器 |
US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
EP3359999A1 (en) | 2015-10-05 | 2018-08-15 | Popovich, Milan Momcilo | Waveguide display |
EP3548939A4 (en) | 2016-12-02 | 2020-11-25 | DigiLens Inc. | UNIFORM OUTPUT LIGHTING WAVEGUIDE DEVICE |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
US11307420B2 (en) * | 2017-07-03 | 2022-04-19 | Holovisions LLC | Augmented reality eyewear with “ghost buster” technology |
KR102745805B1 (ko) | 2018-01-08 | 2024-12-20 | 디지렌즈 인코포레이티드. | 광 도파관의 제조 방법 |
WO2020149956A1 (en) | 2019-01-14 | 2020-07-23 | Digilens Inc. | Holographic waveguide display with light control layer |
US20220283377A1 (en) | 2019-02-15 | 2022-09-08 | Digilens Inc. | Wide Angle Waveguide Display |
KR20210138609A (ko) | 2019-02-15 | 2021-11-19 | 디지렌즈 인코포레이티드. | 일체형 격자를 이용하여 홀로그래픽 도파관 디스플레이를 제공하기 위한 방법 및 장치 |
US20200386947A1 (en) | 2019-06-07 | 2020-12-10 | Digilens Inc. | Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing |
KR20250030038A (ko) | 2019-08-29 | 2025-03-05 | 디지렌즈 인코포레이티드. | 진공 격자 및 이의 제조 방법 |
US12222499B2 (en) * | 2020-12-21 | 2025-02-11 | Digilens Inc. | Eye glow suppression in waveguide based displays |
WO2022187870A1 (en) * | 2021-03-05 | 2022-09-09 | Digilens Inc. | Evacuated periotic structures and methods of manufacturing |
US20230273432A1 (en) * | 2022-02-03 | 2023-08-31 | Microsoft Technology Licensing, Llc | Slanted surface relief grating replication by optical proximity recording |
US12259554B2 (en) | 2022-05-26 | 2025-03-25 | Adeia Guides Inc. | Superimposed diffractive gratings for optical elements of augmented reality and virtual reality displays |
WO2023183506A1 (en) * | 2022-03-23 | 2023-09-28 | Rovi Guides, Inc. | Diffractive gratings for optical elements of augmented reality and virtual reality head-mounted displays |
CN115047683B (zh) * | 2022-08-15 | 2023-01-20 | 歌尔光学科技有限公司 | 一种液晶光栅的制备方法、光波导结构及其制备方法 |
WO2024102766A1 (en) * | 2022-11-07 | 2024-05-16 | Magic Leap, Inc. | Polarization insensitive diffraction grating and display including the same |
WO2024115967A1 (en) * | 2022-12-02 | 2024-06-06 | Digilens Inc. | Backfilled evacuated periodic structures and methods of manufacture |
WO2025029761A1 (en) * | 2023-07-28 | 2025-02-06 | Digilens Inc. | Waveguide structures incorporating multiple grating types and methods of manufacture |
CN116699747B (zh) * | 2023-08-07 | 2023-12-12 | 南昌虚拟现实研究院股份有限公司 | 一种体光栅的制备方法及体光栅 |
Family Cites Families (1689)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001242411A (ja) | 1999-05-10 | 2001-09-07 | Asahi Glass Co Ltd | ホログラム表示装置 |
US1043938A (en) | 1911-08-17 | 1912-11-12 | Friedrich Huttenlocher | Safety device for gas-lamps. |
US2141884A (en) | 1936-11-12 | 1938-12-27 | Zeiss Carl Fa | Photographic objective |
US3482498A (en) | 1967-05-09 | 1969-12-09 | Trw Inc | Ridge pattern recording apparatus |
GB1332433A (en) | 1969-10-24 | 1973-10-03 | Smiths Industries Ltd | Head-up display apparatus |
DE2115312C3 (de) | 1971-03-30 | 1975-06-26 | Hoechst Ag, 6000 Frankfurt | Beheizbarer Spinnschacht |
US3843231A (en) | 1971-04-22 | 1974-10-22 | Commissariat Energie Atomique | Liquid crystal diffraction grating |
US3851303A (en) | 1972-11-17 | 1974-11-26 | Sundstrand Data Control | Head up display and pitch generator |
US3804496A (en) | 1972-12-11 | 1974-04-16 | Stanford Research Inst | Two dimensional eye tracker and method for tracking an eye |
US3885095A (en) | 1973-04-30 | 1975-05-20 | Hughes Aircraft Co | Combined head-up multisensor display |
US3965029A (en) | 1974-02-04 | 1976-06-22 | Kent State University | Liquid crystal materials |
US4038110A (en) | 1974-06-17 | 1977-07-26 | Ibm Corporation | Planarization of integrated circuit surfaces through selective photoresist masking |
US3975711A (en) | 1974-08-30 | 1976-08-17 | Sperry Rand Corporation | Real time fingerprint recording terminal |
US4066334A (en) | 1975-01-06 | 1978-01-03 | National Research Development Corporation | Liquid crystal light deflector |
US4082432A (en) | 1975-01-09 | 1978-04-04 | Sundstrand Data Control, Inc. | Head-up visual display system using on-axis optics with image window at the focal plane of the collimating mirror |
US3940204A (en) | 1975-01-23 | 1976-02-24 | Hughes Aircraft Company | Optical display systems utilizing holographic lenses |
GB1548164A (en) | 1975-06-25 | 1979-07-04 | Penrose R | Set of tiles for covering a surface |
US4035068A (en) | 1975-06-25 | 1977-07-12 | Xerox Corporation | Speckle minimization in projection displays by reducing spatial coherence of the image light |
GB1525573A (en) | 1975-09-13 | 1978-09-20 | Pilkington Perkin Elmer Ltd | Lenses |
US4028725A (en) | 1976-04-21 | 1977-06-07 | Grumman Aerospace Corporation | High-resolution vision system |
US4099841A (en) | 1976-06-30 | 1978-07-11 | Elliott Brothers (London) Limited | Head up displays using optical combiner with three or more partially reflective films |
GB1584268A (en) | 1977-03-28 | 1981-02-11 | Elliott Brothers London Ltd | Head-up displays |
US4251137A (en) | 1977-09-28 | 1981-02-17 | Rca Corporation | Tunable diffractive subtractive filter |
US4322163A (en) | 1977-10-25 | 1982-03-30 | Fingermatrix Inc. | Finger identification |
US4218111A (en) | 1978-07-10 | 1980-08-19 | Hughes Aircraft Company | Holographic head-up displays |
GB2041562B (en) | 1978-12-21 | 1983-09-01 | Redifon Simulation Ltd | Visual display apparatus |
DE3000402A1 (de) | 1979-01-19 | 1980-07-31 | Smiths Industries Ltd | Anzeigevorrichtung |
US4248093A (en) | 1979-04-13 | 1981-02-03 | The Boeing Company | Holographic resolution of complex sound fields |
US4389612A (en) | 1980-06-17 | 1983-06-21 | S.H.E. Corporation | Apparatus for reducing low frequency noise in dc biased SQUIDS |
GB2182159B (en) | 1980-08-21 | 1987-10-14 | Secr Defence | Head-up displays |
US4403189A (en) | 1980-08-25 | 1983-09-06 | S.H.E. Corporation | Superconducting quantum interference device having thin film Josephson junctions |
US4403827A (en) | 1980-09-12 | 1983-09-13 | Mcdonnell Douglas Corporation | Process for producing a diffraction grating |
US4386361A (en) | 1980-09-26 | 1983-05-31 | S.H.E. Corporation | Thin film SQUID with low inductance |
JPS5789722A (en) | 1980-11-25 | 1982-06-04 | Sharp Corp | Manufacture of display cell |
US4544267A (en) | 1980-11-25 | 1985-10-01 | Fingermatrix, Inc. | Finger identification |
IL62627A (en) | 1981-04-10 | 1984-09-30 | Yissum Res Dev Co | Eye testing system |
US4418993A (en) | 1981-05-07 | 1983-12-06 | Stereographics Corp. | Stereoscopic zoom lens system for three-dimensional motion pictures and television |
US4562463A (en) | 1981-05-15 | 1985-12-31 | Stereographics Corp. | Stereoscopic television system with field storage for sequential display of right and left images |
US4472037A (en) | 1981-08-24 | 1984-09-18 | Stereographics Corporation | Additive color means for the calibration of stereoscopic projection |
US4523226A (en) | 1982-01-27 | 1985-06-11 | Stereographics Corporation | Stereoscopic television system |
US4566758A (en) | 1983-05-09 | 1986-01-28 | Tektronix, Inc. | Rapid starting, high-speed liquid crystal variable optical retarder |
DE3332995A1 (de) | 1983-07-14 | 1985-01-24 | Nippon Sheet Glass Co. Ltd., Osaka | Verfahren zum herstellen einer siliciumdioxidbeschichtung |
US4884876A (en) | 1983-10-30 | 1989-12-05 | Stereographics Corporation | Achromatic liquid crystal shutter for stereoscopic and other applications |
AU4117585A (en) | 1984-03-19 | 1985-10-11 | Kent State University | Light modulating material comprising a liquid crystal dispersion in a synthetic resin matrix |
US4583117A (en) | 1984-07-17 | 1986-04-15 | Stereographics Corporation | Stereoscopic video camera |
US4729640A (en) | 1984-10-03 | 1988-03-08 | Canon Kabushiki Kaisha | Liquid crystal light modulation device |
US4643515A (en) | 1985-04-01 | 1987-02-17 | Environmental Research Institute Of Michigan | Method and apparatus for recording and displaying edge-illuminated holograms |
US4728547A (en) | 1985-06-10 | 1988-03-01 | General Motors Corporation | Liquid crystal droplets dispersed in thin films of UV-curable polymers |
US4711512A (en) | 1985-07-12 | 1987-12-08 | Environmental Research Institute Of Michigan | Compact head-up display |
JPS6232425A (ja) | 1985-08-05 | 1987-02-12 | Brother Ind Ltd | 光偏向器 |
US4890902A (en) | 1985-09-17 | 1990-01-02 | Kent State University | Liquid crystal light modulating materials with selectable viewing angles |
US4741926A (en) | 1985-10-29 | 1988-05-03 | Rca Corporation | Spin-coating procedure |
US4743083A (en) | 1985-12-30 | 1988-05-10 | Schimpe Robert M | Cylindrical diffraction grating couplers and distributed feedback resonators for guided wave devices |
US4647967A (en) | 1986-01-28 | 1987-03-03 | Sundstrand Data Control, Inc. | Head-up display independent test site |
US4799765A (en) | 1986-03-31 | 1989-01-24 | Hughes Aircraft Company | Integrated head-up and panel display unit |
US5148302A (en) | 1986-04-10 | 1992-09-15 | Akihiko Nagano | Optical modulation element having two-dimensional phase type diffraction grating |
WO1987006195A1 (en) | 1986-04-11 | 1987-10-22 | Dai Nippon Insatsu Kabushiki Kaisha | Image formation on object |
US5707925A (en) | 1986-04-11 | 1998-01-13 | Dai Nippon Insatsu Kabushiki Kaisha | Image formation on objective bodies |
US4794021A (en) | 1986-11-13 | 1988-12-27 | Microelectronics And Computer Technology Corporation | Method of providing a planarized polymer coating on a substrate wafer |
US4970129A (en) | 1986-12-19 | 1990-11-13 | Polaroid Corporation | Holograms |
US4749256A (en) | 1987-02-13 | 1988-06-07 | Gec Avionics, Inc. | Mounting apparatus for head-up display |
US5736424A (en) | 1987-02-27 | 1998-04-07 | Lucent Technologies Inc. | Device fabrication involving planarization |
US4811414A (en) | 1987-02-27 | 1989-03-07 | C.F.A. Technologies, Inc. | Methods for digitally noise averaging and illumination equalizing fingerprint images |
DE3881252D1 (de) | 1987-03-30 | 1993-07-01 | Siemens Ag | Integriert-optische anordnung fuer die bidirektionale optische nachrichten- oder signaluebertragung. |
FR2613497B1 (fr) | 1987-03-31 | 1991-08-16 | Thomson Csf | Viseur binoculaire, holographique et a grand champ, utilisable sur casque |
US4775218A (en) | 1987-04-17 | 1988-10-04 | Flight Dynamics, Inc. | Combiner alignment detector for head up display system |
US4791788A (en) | 1987-08-24 | 1988-12-20 | Quantum Design, Inc. | Method for obtaining improved temperature regulation when using liquid helium cooling |
US4848093A (en) | 1987-08-24 | 1989-07-18 | Quantum Design | Apparatus and method for regulating temperature in a cryogenic test chamber |
US20050259302A9 (en) | 1987-09-11 | 2005-11-24 | Metz Michael H | Holographic light panels and flat panel display systems and method and apparatus for making same |
US5822089A (en) | 1993-01-29 | 1998-10-13 | Imedge Technology Inc. | Grazing incidence holograms and system and method for producing the same |
US5710645A (en) | 1993-01-29 | 1998-01-20 | Imedge Technology, Inc. | Grazing incidence holograms and system and method for producing the same |
GB8723050D0 (en) | 1987-10-01 | 1987-11-04 | British Telecomm | Optical filters |
IL88178A0 (en) | 1987-10-27 | 1989-06-30 | Filipovich Danny | Night vision goggles |
US4792850A (en) | 1987-11-25 | 1988-12-20 | Sterographics Corporation | Method and system employing a push-pull liquid crystal modulator |
WO1989006371A2 (en) | 1987-12-30 | 1989-07-13 | Hughes Aircraft Company | Acrylate polymer-dispersed liquid crystal material and devices made therefrom |
US4938568A (en) | 1988-01-05 | 1990-07-03 | Hughes Aircraft Company | Polymer dispersed liquid crystal film devices, and method of forming the same |
US5096282A (en) | 1988-01-05 | 1992-03-17 | Hughes Aircraft Co. | Polymer dispersed liquid crystal film devices |
US4933976A (en) | 1988-01-25 | 1990-06-12 | C.F.A. Technologies, Inc. | System for generating rolled fingerprint images |
US5240636A (en) | 1988-04-11 | 1993-08-31 | Kent State University | Light modulating materials comprising a liquid crystal microdroplets dispersed in a birefringent polymeric matri method of making light modulating materials |
US4994204A (en) | 1988-11-04 | 1991-02-19 | Kent State University | Light modulating materials comprising a liquid crystal phase dispersed in a birefringent polymeric phase |
US4854688A (en) | 1988-04-14 | 1989-08-08 | Honeywell Inc. | Optical arrangement |
US5119454A (en) | 1988-05-23 | 1992-06-02 | Polaroid Corporation | Bulk optic wavelength division multiplexer |
JPH01306886A (ja) | 1988-06-03 | 1989-12-11 | Canon Inc | 体積位相型回折格子 |
US5150234A (en) | 1988-08-08 | 1992-09-22 | Olympus Optical Co., Ltd. | Imaging apparatus having electrooptic devices comprising a variable focal length lens |
US5004323A (en) | 1988-08-30 | 1991-04-02 | Kent State University | Extended temperature range polymer dispersed liquid crystal light shutters |
US4852988A (en) | 1988-09-12 | 1989-08-01 | Applied Science Laboratories | Visor and camera providing a parallax-free field-of-view image for a head-mounted eye movement measurement system |
US4964701A (en) | 1988-10-04 | 1990-10-23 | Raytheon Company | Deflector for an optical beam |
US5007711A (en) | 1988-11-30 | 1991-04-16 | Flight Dynamics, Inc. | Compact arrangement for head-up display components |
US4928301A (en) | 1988-12-30 | 1990-05-22 | Bell Communications Research, Inc. | Teleconferencing terminal with camera behind display screen |
JPH02186319A (ja) | 1989-01-13 | 1990-07-20 | Fujitsu Ltd | 表示システム |
US5033814A (en) | 1989-04-10 | 1991-07-23 | Nilford Laboratories, Inc. | Line light source |
US5009483A (en) | 1989-04-12 | 1991-04-23 | Rockwell Iii Marshall A | Optical waveguide display system |
US5106181A (en) | 1989-04-12 | 1992-04-21 | Rockwell Iii Marshall A | Optical waveguide display system |
FI82989C (fi) | 1989-04-13 | 1991-05-10 | Nokia Oy Ab | Foerfarande foer framstaellning av en ljusvaogledare. |
US5183545A (en) | 1989-04-28 | 1993-02-02 | Branca Phillip A | Electrolytic cell with composite, porous diaphragm |
FR2647556B1 (fr) | 1989-05-23 | 1993-10-29 | Thomson Csf | Dispositif optique pour l'introduction d'une image collimatee dans le champ visuel d'un observateur et casque comportant au moins un tel dispositif |
US5099343A (en) | 1989-05-25 | 1992-03-24 | Hughes Aircraft Company | Edge-illuminated liquid crystal display devices |
US4967268A (en) | 1989-07-31 | 1990-10-30 | Stereographics | Liquid crystal shutter system for stereoscopic and other applications |
US5369511A (en) | 1989-08-21 | 1994-11-29 | Amos; Carl R. | Methods of and apparatus for manipulating electromagnetic phenomenon |
US4960311A (en) | 1989-08-31 | 1990-10-02 | Hughes Aircraft Company | Holographic exposure system for computer generated holograms |
US5016953A (en) | 1989-08-31 | 1991-05-21 | Hughes Aircraft Company | Reduction of noise in computer generated holograms |
US4963007A (en) | 1989-09-05 | 1990-10-16 | U.S. Precision Lens, Inc. | Color corrected projection lens |
US5210624A (en) | 1989-09-19 | 1993-05-11 | Fujitsu Limited | Heads-up display |
US4971719A (en) | 1989-09-22 | 1990-11-20 | General Motors Corporation | Polymer dispersed liquid crystal films formed by electron beam curing |
US5138687A (en) | 1989-09-26 | 1992-08-11 | Omron Corporation | Rib optical waveguide and method of manufacturing the same |
US5198912A (en) | 1990-01-12 | 1993-03-30 | Polaroid Corporation | Volume phase hologram with liquid crystal in microvoids between fringes |
US5109465A (en) | 1990-01-16 | 1992-04-28 | Summit Technology, Inc. | Beam homogenizer |
JPH03239384A (ja) | 1990-02-16 | 1991-10-24 | Fujitsu Ltd | 半導体レーザ保護回路 |
FR2660440B1 (fr) | 1990-04-03 | 1992-10-16 | Commissariat Energie Atomique | Composant optique integre protege contre l'environnement et son procede de fabrication. |
US5416616A (en) | 1990-04-06 | 1995-05-16 | University Of Southern California | Incoherent/coherent readout of double angularly multiplexed volume holographic optical elements |
US5117302A (en) | 1990-04-13 | 1992-05-26 | Stereographics Corporation | High dynamic range electro-optical shutter for steroscopic and other applications |
US5153751A (en) | 1990-04-27 | 1992-10-06 | Central Glass Company, Limited | Holographic display element |
CA2044932C (en) | 1990-06-29 | 1996-03-26 | Masayuki Kato | Display unit |
FI86226C (fi) | 1990-07-10 | 1992-07-27 | Nokia Oy Ab | Foerfarande foer framstaellning av ljusvaogsledare medelst jonbytesteknik pao ett glassubstrat. |
US5225918A (en) | 1990-07-18 | 1993-07-06 | Sony Magnescale, Inc. | Hologram scale, apparatus for making hologram scale, moving member having hologram scale assembled hologram scale and apparatus for making assembled hologram scale |
FI86225C (fi) | 1990-08-23 | 1992-07-27 | Nokia Oy Ab | Anpassningselement foer sammankoppling av olika ljusvaogsledare och framstaellningsfoerfarande foer detsamma. |
US5139192A (en) | 1990-08-30 | 1992-08-18 | Quantum Magnetics, Inc. | Superconducting bonds for thin film devices |
US5110034A (en) | 1990-08-30 | 1992-05-05 | Quantum Magnetics, Inc. | Superconducting bonds for thin film devices |
US5053834A (en) | 1990-08-31 | 1991-10-01 | Quantum Magnetics, Inc. | High symmetry dc SQUID system |
DE4028275A1 (de) | 1990-09-06 | 1992-03-12 | Kabelmetal Electro Gmbh | Verfahren zur herstellung von glasfaser-lichtwellenleitern mit erhoehter zugfestigkeit |
US5063441A (en) | 1990-10-11 | 1991-11-05 | Stereographics Corporation | Stereoscopic video cameras with image sensors having variable effective position |
US5142357A (en) | 1990-10-11 | 1992-08-25 | Stereographics Corp. | Stereoscopic video camera with image sensors having variable effective position |
US10593092B2 (en) | 1990-12-07 | 2020-03-17 | Dennis J Solomon | Integrated 3D-D2 visual effects display |
US5619586A (en) | 1990-12-20 | 1997-04-08 | Thorn Emi Plc | Method and apparatus for producing a directly viewable image of a fingerprint |
US5416514A (en) | 1990-12-27 | 1995-05-16 | North American Philips Corporation | Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve |
US5410370A (en) | 1990-12-27 | 1995-04-25 | North American Philips Corporation | Single panel color projection video display improved scanning |
US5159445A (en) | 1990-12-31 | 1992-10-27 | At&T Bell Laboratories | Teleconferencing video display system for improving eye contact |
US5867238A (en) | 1991-01-11 | 1999-02-02 | Minnesota Mining And Manufacturing Company | Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same |
US5117285A (en) | 1991-01-15 | 1992-05-26 | Bell Communications Research | Eye contact apparatus for video conferencing |
US5481321A (en) | 1991-01-29 | 1996-01-02 | Stereographics Corp. | Stereoscopic motion picture projection system |
US5093747A (en) | 1991-02-28 | 1992-03-03 | Raytheon Company | Method for providing beam steering in a subaperture-addressed optical beam steerer |
US5317405A (en) | 1991-03-08 | 1994-05-31 | Nippon Telegraph And Telephone Corporation | Display and image capture apparatus which enables eye contact |
US5142644A (en) | 1991-03-08 | 1992-08-25 | General Motors Corporation | Electrical contacts for polymer dispersed liquid crystal films |
JP2873126B2 (ja) | 1991-04-17 | 1999-03-24 | 日本ペイント株式会社 | 体積ホログラム記録用感光性組成物 |
US5453863A (en) | 1991-05-02 | 1995-09-26 | Kent State University | Multistable chiral nematic displays |
US6104448A (en) | 1991-05-02 | 2000-08-15 | Kent State University | Pressure sensitive liquid crystalline light modulating device and material |
US5695682A (en) | 1991-05-02 | 1997-12-09 | Kent State University | Liquid crystalline light modulating device and material |
US5241337A (en) | 1991-05-13 | 1993-08-31 | Eastman Kodak Company | Real image viewfinder requiring no field lens |
DE69220942T2 (de) | 1991-05-15 | 1998-03-05 | Minnesota Mining And Mfg. Co., Saint Paul, Minn. | Blau-gruen diodenlaser |
US5181133A (en) | 1991-05-15 | 1993-01-19 | Stereographics Corporation | Drive method for twisted nematic liquid crystal shutters for stereoscopic and other applications |
US5268792A (en) | 1991-05-20 | 1993-12-07 | Eastman Kodak Company | Zoom lens |
US5218360A (en) | 1991-05-23 | 1993-06-08 | Trw Inc. | Millimeter-wave aircraft landing and taxing system |
JPH0728999Y2 (ja) | 1991-05-29 | 1995-07-05 | セントラル硝子株式会社 | 多色表示ヘッドアップディスプレイ用ガラス |
FR2677463B1 (fr) | 1991-06-04 | 1994-06-17 | Thomson Csf | Visuel collimate a grands champs horizontal et vertical, en particulier pour simulateurs. |
US5299289A (en) | 1991-06-11 | 1994-03-29 | Matsushita Electric Industrial Co., Ltd. | Polymer dispersed liquid crystal panel with diffraction grating |
JPH05224018A (ja) | 1991-07-30 | 1993-09-03 | Nippondenso Co Ltd | 導光装置 |
US5764414A (en) | 1991-08-19 | 1998-06-09 | Hughes Aircraft Company | Biocular display system using binary optics |
US5416510A (en) | 1991-08-28 | 1995-05-16 | Stereographics Corporation | Camera controller for stereoscopic video system |
US5193000A (en) | 1991-08-28 | 1993-03-09 | Stereographics Corporation | Multiplexing technique for stereoscopic video system |
WO1993005436A1 (en) | 1991-08-29 | 1993-03-18 | Merk Patent Gesellschaft Mit Beschränkter Haftung | Electrooptical liquid crystal system |
US5200861A (en) | 1991-09-27 | 1993-04-06 | U.S. Precision Lens Incorporated | Lens systems |
US5224198A (en) | 1991-09-30 | 1993-06-29 | Motorola, Inc. | Waveguide virtual image display |
US5726782A (en) | 1991-10-09 | 1998-03-10 | Nippondenso Co., Ltd. | Hologram and method of fabricating |
EP0536763B1 (en) | 1991-10-09 | 1999-03-17 | Denso Corporation | Hologram |
US5315440A (en) | 1991-11-04 | 1994-05-24 | Eastman Kodak Company | Zoom lens having weak front lens group |
US5515184A (en) | 1991-11-12 | 1996-05-07 | The University Of Alabama In Huntsville | Waveguide hologram illuminators |
US5198914A (en) | 1991-11-26 | 1993-03-30 | Hughes Aircraft Company | Automatic constant wavelength holographic exposure system |
US5633100A (en) | 1991-11-27 | 1997-05-27 | E. I. Du Pont De Nemours And Company | Holographic imaging using filters |
US5218480A (en) | 1991-12-03 | 1993-06-08 | U.S. Precision Lens Incorporated | Retrofocus wide angle lens |
FR2684805B1 (fr) | 1991-12-04 | 1998-08-14 | France Telecom | Dispositif optoelectronique a tres faible resistance serie. |
US5239372A (en) | 1991-12-31 | 1993-08-24 | Stereographics Corporation | Stereoscopic video projection system |
US5264950A (en) | 1992-01-06 | 1993-11-23 | Kent State University | Light modulating device with polarizer and liquid crystal interspersed as spherical or randomly distorted droplets in isotropic polymer |
US5303085A (en) | 1992-02-07 | 1994-04-12 | Rallison Richard D | Optically corrected helmet mounted display |
US5295208A (en) | 1992-02-26 | 1994-03-15 | The University Of Alabama In Huntsville | Multimode waveguide holograms capable of using non-coherent light |
US5296967A (en) | 1992-03-02 | 1994-03-22 | U.S. Precision Lens Incorporated | High speed wide angle projection TV lens system |
US5528720A (en) | 1992-03-23 | 1996-06-18 | Minnesota Mining And Manufacturing Co. | Tapered multilayer luminaire devices |
EP0564869A1 (en) | 1992-03-31 | 1993-10-13 | MERCK PATENT GmbH | Electrooptical liquid crystal systems |
US5871665A (en) | 1992-04-27 | 1999-02-16 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Electrooptical liquid crystal system |
US5284499A (en) | 1992-05-01 | 1994-02-08 | Corning Incorporated | Method and apparatus for drawing optical fibers |
US5327269A (en) | 1992-05-13 | 1994-07-05 | Standish Industries, Inc. | Fast switching 270° twisted nematic liquid crystal device and eyewear incorporating the device |
US5251048A (en) | 1992-05-18 | 1993-10-05 | Kent State University | Method and apparatus for electronic switching of a reflective color display |
KR100320567B1 (ko) | 1992-05-18 | 2002-06-20 | 액정광변조장치및재료 | |
ATE179259T1 (de) | 1992-05-18 | 1999-05-15 | Univ Kent State Ohio | Flüssigkristalline, lichtmodulierende vorrichtung und material |
US5315419A (en) | 1992-05-19 | 1994-05-24 | Kent State University | Method of producing a homogeneously aligned chiral smectic C liquid crystal having homeotropic alignment layers |
US5368770A (en) | 1992-06-01 | 1994-11-29 | Kent State University | Method of preparing thin liquid crystal films |
DE69310442T2 (de) | 1992-06-10 | 1997-11-06 | Merck Patent Gmbh | Flüssigkristallverbundschicht vom Dispersions-typ, deren Herstellungsverfahren sowie in ihr zu verwendendes Flüssigkristallmaterial |
US6479193B1 (en) | 1992-06-30 | 2002-11-12 | Nippon Sheet Glass Co., Ltd. | Optical recording film and process for production thereof |
JP2958418B2 (ja) | 1992-07-23 | 1999-10-06 | セントラル硝子株式会社 | 表示装置 |
JP3027065B2 (ja) | 1992-07-31 | 2000-03-27 | 日本電信電話株式会社 | 表示・撮像装置 |
US5313330A (en) | 1992-08-31 | 1994-05-17 | U.S. Precision Lens Incorporated | Zoom projection lens systems |
US5243413A (en) | 1992-09-02 | 1993-09-07 | At&T Bell Laboratories | Color parallax-free camera and display |
EP0585941A3 (en) | 1992-09-03 | 1994-09-21 | Nippon Denso Co | Process for making holograms and holography device |
US5343147A (en) | 1992-09-08 | 1994-08-30 | Quantum Magnetics, Inc. | Method and apparatus for using stochastic excitation and a superconducting quantum interference device (SAUID) to perform wideband frequency response measurements |
US6052540A (en) | 1992-09-11 | 2000-04-18 | Canon Kabushiki Kaisha | Viewfinder device for displaying photographic information relating to operation of a camera |
US5455693A (en) | 1992-09-24 | 1995-10-03 | Hughes Aircraft Company | Display hologram |
US5321533A (en) | 1992-09-24 | 1994-06-14 | Kent State Universtiy | Polymer dispersed ferroelectric smectic liquid crystal |
US7132200B1 (en) | 1992-11-27 | 2006-11-07 | Dai Nippon Printing Co., Ltd. | Hologram recording sheet, holographic optical element using said sheet, and its production process |
US5315324A (en) | 1992-12-09 | 1994-05-24 | Delphax Systems | High precision charge imaging cartridge |
WO1994014098A1 (en) | 1992-12-14 | 1994-06-23 | Nippondenso Co., Ltd. | Image display |
US5341230A (en) | 1992-12-22 | 1994-08-23 | Hughes Aircraft Company | Waveguide holographic telltale display |
US5418584A (en) | 1992-12-31 | 1995-05-23 | Honeywell Inc. | Retroreflective array virtual image projection screen |
US6151142A (en) | 1993-01-29 | 2000-11-21 | Imedge Technology, Inc. | Grazing incidence holograms and system and method for producing the same |
US5351151A (en) | 1993-02-01 | 1994-09-27 | Levy George S | Optical filter using microlens arrays |
US5428480A (en) | 1993-02-16 | 1995-06-27 | Eastman Kodak Company | Zoom lens having weak plastic element |
US5371817A (en) | 1993-02-16 | 1994-12-06 | Eastman Kodak Company | Multichannel optical waveguide page scanner with individually addressable electro-optic modulators |
US5751452A (en) | 1993-02-22 | 1998-05-12 | Nippon Telegraph And Telephone Corporation | Optical devices with high polymer material and method of forming the same |
US5682255A (en) | 1993-02-26 | 1997-10-28 | Yeda Research & Development Co. Ltd. | Holographic optical devices for the transmission of optical signals of a plurality of channels |
WO1994019712A1 (en) | 1993-02-26 | 1994-09-01 | Yeda Research & Development Co., Ltd. | Holographic optical devices |
JP2823470B2 (ja) | 1993-03-09 | 1998-11-11 | シャープ株式会社 | 光走査装置及びそれを用いた表示装置並びに画像情報入出力装置 |
US5371626A (en) | 1993-03-09 | 1994-12-06 | Benopcon, Inc. | Wide angle binocular system with variable power capability |
US5309283A (en) | 1993-03-30 | 1994-05-03 | U.S. Precision Lens Incorporated | Hybrid, color-corrected, projection TV lens system |
US5359362A (en) | 1993-03-30 | 1994-10-25 | Nec Usa, Inc. | Videoconference system using a virtual camera image |
JP3202831B2 (ja) | 1993-04-09 | 2001-08-27 | 日本電信電話株式会社 | 反射形カラー液晶ディスプレイの製造方法 |
EP0620469B1 (en) | 1993-04-16 | 1997-10-01 | Central Glass Company, Limited | Glass pane with reflectance reducing coating and combiner of head-up display system |
CA2160245C (en) | 1993-04-28 | 2005-09-20 | R. Douglas Mcpheters | Holographic operator interface |
US5471326A (en) | 1993-04-30 | 1995-11-28 | Northrop Grumman Corporation | Holographic laser scanner and rangefinder |
CA2139124A1 (en) | 1993-05-03 | 1994-11-10 | Anthony F. Jacobine | Polymer dispersed liquid crystals in electron-rich alkene-thiol polymers |
US5579026A (en) | 1993-05-14 | 1996-11-26 | Olympus Optical Co., Ltd. | Image display apparatus of head mounted type |
JP2689851B2 (ja) | 1993-05-28 | 1997-12-10 | 株式会社島津製作所 | ホログラフィック・グレーティングの製造方法 |
FR2706079B1 (fr) | 1993-06-02 | 1995-07-21 | France Telecom | Composant intégré monolithique laser-modulateur à structure multi-puits quantiques. |
US5329363A (en) | 1993-06-15 | 1994-07-12 | U. S. Precision Lens Incorporated | Projection lens systems having reduced spherochromatism |
US5400069A (en) | 1993-06-16 | 1995-03-21 | Bell Communications Research, Inc. | Eye contact video-conferencing system and screen |
JP3623250B2 (ja) | 1993-06-23 | 2005-02-23 | オリンパス株式会社 | 映像表示装置 |
US5455713A (en) | 1993-06-23 | 1995-10-03 | Kreitzer; Melvyn H. | High performance, thermally-stabilized projection television lens systems |
US5481385A (en) | 1993-07-01 | 1996-01-02 | Alliedsignal Inc. | Direct view display device with array of tapered waveguide on viewer side |
US5585035A (en) | 1993-08-06 | 1996-12-17 | Minnesota Mining And Manufacturing Company | Light modulating device having a silicon-containing matrix |
JPH0766383A (ja) | 1993-08-30 | 1995-03-10 | Nissan Motor Co Ltd | 半導体レーザ装置 |
JPH0798439A (ja) | 1993-09-29 | 1995-04-11 | Nippon Telegr & Teleph Corp <Ntt> | 3次元立体表示装置 |
US5537232A (en) | 1993-10-05 | 1996-07-16 | In Focus Systems, Inc. | Reflection hologram multiple-color filter array formed by sequential exposure to a light source |
US5686975A (en) | 1993-10-18 | 1997-11-11 | Stereographics Corporation | Polarel panel for stereoscopic displays |
US5408346A (en) | 1993-10-20 | 1995-04-18 | Kaiser Electro-Optics, Inc. | Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector |
US5485313A (en) | 1993-10-27 | 1996-01-16 | Polaroid Corporation | Zoom lens systems |
IL107502A (en) | 1993-11-04 | 1999-12-31 | Elbit Systems Ltd | Helmet display mounting system |
US5462700A (en) | 1993-11-08 | 1995-10-31 | Alliedsignal Inc. | Process for making an array of tapered photopolymerized waveguides |
US5991087A (en) | 1993-11-12 | 1999-11-23 | I-O Display System Llc | Non-orthogonal plate in a virtual reality or heads up display |
US5438357A (en) | 1993-11-23 | 1995-08-01 | Mcnelley; Steve H. | Image manipulating teleconferencing system |
US5757546A (en) | 1993-12-03 | 1998-05-26 | Stereographics Corporation | Electronic stereoscopic viewer |
US5524272A (en) | 1993-12-22 | 1996-06-04 | Gte Airfone Incorporated | Method and apparatus for distributing program material |
GB2286057A (en) | 1994-01-21 | 1995-08-02 | Sharp Kk | Electrically controllable grating |
US5559637A (en) | 1994-02-04 | 1996-09-24 | Corning Incorporated | Field curvature corrector |
US5677797A (en) | 1994-02-04 | 1997-10-14 | U.S. Precision Lens Inc. | Method for correcting field curvature |
US5410376A (en) | 1994-02-04 | 1995-04-25 | Pulse Medical Instruments | Eye tracking method and apparatus |
US5463428A (en) | 1994-02-08 | 1995-10-31 | Stereographics Corporation | Wireless active eyewear for stereoscopic applications |
US5631107A (en) | 1994-02-18 | 1997-05-20 | Nippondenso Co., Ltd. | Method for producing optical member |
JP3453836B2 (ja) | 1994-02-18 | 2003-10-06 | 株式会社デンソー | ホログラムの製造方法 |
US5986746A (en) | 1994-02-18 | 1999-11-16 | Imedge Technology Inc. | Topographical object detection system |
AU1925595A (en) | 1994-02-18 | 1995-09-04 | Imedge Technology, Inc. | Method of producing and detecting high-contrast images of the surface topography of objects and a compact system for carrying out the same |
JPH07239412A (ja) * | 1994-03-02 | 1995-09-12 | Dainippon Printing Co Ltd | 赤外線反射体 |
JPH07270615A (ja) | 1994-03-31 | 1995-10-20 | Central Glass Co Ltd | ホログラフィック積層体 |
JPH10502500A (ja) | 1994-04-15 | 1998-03-03 | アイトゲネーシッシェ テヒニッシェ ホッホシューレ チューリッヒ | 通信用の高い伝送容量を有する伝送ネットワーク・システム |
CA2187889A1 (en) | 1994-04-29 | 1995-11-09 | Bruce A. Nerad | Light modulating device having a matrix prepared from acid reactants |
US7126583B1 (en) | 1999-12-15 | 2006-10-24 | Automotive Technologies International, Inc. | Interactive vehicle display system |
US5473222A (en) | 1994-07-05 | 1995-12-05 | Delco Electronics Corporation | Active matrix vacuum fluorescent display with microprocessor integration |
DE69512914T2 (de) | 1994-07-08 | 2000-04-20 | Forskningscenter Riso | Optisches messgerat und verfahren |
KR960705248A (ko) | 1994-07-15 | 1996-10-09 | 모리시다 요이치 | 헤드업 디스플레이 장치, 액정 디스플레이 패널 및 그 제조방법 |
US5612733A (en) | 1994-07-18 | 1997-03-18 | C-Phone Corporation | Optics orienting arrangement for videoconferencing system |
US5493430A (en) | 1994-08-03 | 1996-02-20 | Kent Display Systems, L.P. | Color, reflective liquid crystal displays |
US5903395A (en) | 1994-08-31 | 1999-05-11 | I-O Display Systems Llc | Personal visual display system |
US5606433A (en) | 1994-08-31 | 1997-02-25 | Hughes Electronics | Lamination of multilayer photopolymer holograms |
JPH08129146A (ja) | 1994-09-05 | 1996-05-21 | Olympus Optical Co Ltd | 映像表示装置 |
US5727098A (en) | 1994-09-07 | 1998-03-10 | Jacobson; Joseph M. | Oscillating fiber optic display and imager |
US6167169A (en) | 1994-09-09 | 2000-12-26 | Gemfire Corporation | Scanning method and architecture for display |
US5544268A (en) | 1994-09-09 | 1996-08-06 | Deacon Research | Display panel with electrically-controlled waveguide-routing |
US5647036A (en) | 1994-09-09 | 1997-07-08 | Deacon Research | Projection display with electrically-controlled waveguide routing |
FI98871C (fi) | 1994-09-15 | 1997-08-25 | Nokia Telecommunications Oy | Menetelmä tukiaseman summausverkon virittämiseksi sekä kaistanpäästösuodatin |
US5572248A (en) | 1994-09-19 | 1996-11-05 | Teleport Corporation | Teleconferencing method and system for providing face-to-face, non-animated teleconference environment |
US5506929A (en) | 1994-10-19 | 1996-04-09 | Clio Technologies, Inc. | Light expanding system for producing a linear or planar light beam from a point-like light source |
US5572250A (en) | 1994-10-20 | 1996-11-05 | Stereographics Corporation | Universal electronic stereoscopic display |
US5500671A (en) | 1994-10-25 | 1996-03-19 | At&T Corp. | Video conference system and method of providing parallax correction and a sense of presence |
SG47360A1 (en) | 1994-11-14 | 1998-04-17 | Hoffmann La Roche | Colour display with serially-connected lc filters |
US5625495A (en) | 1994-12-07 | 1997-04-29 | U.S. Precision Lens Inc. | Telecentric lens systems for forming an image of an object composed of pixels |
US5745301A (en) | 1994-12-19 | 1998-04-28 | Benopcon, Inc. | Variable power lens systems for producing small images |
US6154190A (en) | 1995-02-17 | 2000-11-28 | Kent State University | Dynamic drive methods and apparatus for a bistable liquid crystal display |
US5748277A (en) | 1995-02-17 | 1998-05-05 | Kent State University | Dynamic drive method and apparatus for a bistable liquid crystal display |
US6061463A (en) | 1995-02-21 | 2000-05-09 | Imedge Technology, Inc. | Holographic fingerprint device |
TW334520B (en) | 1995-02-24 | 1998-06-21 | Matsushita Electric Ind Co Ltd | Display device Liquid crystal display |
JP3658034B2 (ja) | 1995-02-28 | 2005-06-08 | キヤノン株式会社 | 画像観察光学系及び撮像光学系 |
US5583795A (en) | 1995-03-17 | 1996-12-10 | The United States Of America As Represented By The Secretary Of The Army | Apparatus for measuring eye gaze and fixation duration, and method therefor |
US6259559B1 (en) | 1995-03-28 | 2001-07-10 | Central Glass Company, Limited | Glass arrangement including an outside glass plate, a polarization direction changing film and an adhesive layer therebetween, and an inside glass layer |
US5621529A (en) | 1995-04-05 | 1997-04-15 | Intelligent Automation Systems, Inc. | Apparatus and method for projecting laser pattern with reduced speckle noise |
US5764619A (en) | 1995-04-07 | 1998-06-09 | Matsushita Electric Industrial Co., Ltd. | Optical recording medium having two separate recording layers |
US5619254A (en) | 1995-04-11 | 1997-04-08 | Mcnelley; Steve H. | Compact teleconferencing eye contact terminal |
US5668614A (en) | 1995-05-01 | 1997-09-16 | Kent State University | Pixelized liquid crystal display materials including chiral material adopted to change its chirality upon photo-irradiation |
US5543950A (en) | 1995-05-04 | 1996-08-06 | Kent State University | Liquid crystalline electrooptical device |
FI98584C (fi) | 1995-05-05 | 1997-07-10 | Nokia Technology Gmbh | Menetelmä ja piirijärjestely vastaanotetun signaalin käsittelemiseksi |
KR100277557B1 (ko) | 1995-05-15 | 2001-01-15 | 글렌 에이치. 렌젠, 주니어 | 낮은 관성 모멘트와 낮은 무게 중심을 가진 저가, 저중량 헤드장착 허상 투영 디스플레이 |
WO1996036892A1 (en) | 1995-05-19 | 1996-11-21 | Cornell Research Foundation, Inc. | Cascaded self-induced holography |
US5825448A (en) | 1995-05-19 | 1998-10-20 | Kent State University | Reflective optically active diffractive device |
US5831700A (en) | 1995-05-19 | 1998-11-03 | Kent State University | Polymer stabilized four domain twisted nematic liquid crystal display |
US5929946A (en) | 1995-05-23 | 1999-07-27 | Colorlink, Inc. | Retarder stack for preconditioning light for a modulator having modulation and isotropic states of polarization |
US5680231A (en) | 1995-06-06 | 1997-10-21 | Hughes Aircraft Company | Holographic lenses with wide angular and spectral bandwidths for use in a color display device |
US5694230A (en) | 1995-06-07 | 1997-12-02 | Digital Optics Corp. | Diffractive optical elements as combiners |
US5671035A (en) | 1995-06-07 | 1997-09-23 | Barnes; Elwood E. | Light intensity reduction apparatus and method |
AU6334296A (en) | 1995-06-23 | 1997-01-22 | Holoplex | Multiplexed hologram copying system and method |
US5629764A (en) | 1995-07-07 | 1997-05-13 | Advanced Precision Technology, Inc. | Prism fingerprint sensor using a holographic optical element |
JPH0933853A (ja) | 1995-07-20 | 1997-02-07 | Denso Corp | ホログラム表示装置 |
FI99221C (fi) | 1995-08-25 | 1997-10-27 | Nokia Telecommunications Oy | Planaarinen antennirakenne |
ES2199266T3 (es) | 1995-09-21 | 2004-02-16 | 3M Innovative Properties Company | Sistema de lentes de proyeccion para television. |
JPH0990312A (ja) | 1995-09-27 | 1997-04-04 | Olympus Optical Co Ltd | 光学装置 |
US5907436A (en) | 1995-09-29 | 1999-05-25 | The Regents Of The University Of California | Multilayer dielectric diffraction gratings |
US5999282A (en) | 1995-11-08 | 1999-12-07 | Victor Company Of Japan, Ltd. | Color filter and color image display apparatus employing the filter |
US5612734A (en) | 1995-11-13 | 1997-03-18 | Bell Communications Research, Inc. | Eye contact apparatus employing a directionally transmissive layer for video conferencing |
US5724189A (en) | 1995-12-15 | 1998-03-03 | Mcdonnell Douglas Corporation | Methods and apparatus for creating an aspheric optical element and the aspheric optical elements formed thereby |
JP3250782B2 (ja) | 1995-12-25 | 2002-01-28 | セントラル硝子株式会社 | 積層体 |
US5668907A (en) | 1996-01-11 | 1997-09-16 | Associated Universities, Inc. | Thin optical display panel |
EP1798592A3 (en) | 1996-01-17 | 2007-09-19 | Nippon Telegraph And Telephone Corporation | Optical device and three-dimensional display device |
WO1997027519A1 (en) | 1996-01-29 | 1997-07-31 | Foster-Miller, Inc. | Optical components containing complex diffraction gratings and methods for the fabrication thereof |
US5963375A (en) | 1996-01-31 | 1999-10-05 | U.S. Precision Lens Inc. | Athermal LCD projection lens |
US6166834A (en) | 1996-03-15 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Display apparatus and method for forming hologram suitable for the display apparatus |
JP2000506998A (ja) | 1996-03-15 | 2000-06-06 | レティナル ディスプレイ ケイマン リミティッド | 画像を見るための方法及び装置 |
US5701132A (en) | 1996-03-29 | 1997-12-23 | University Of Washington | Virtual retinal display with expanded exit pupil |
GB2312110B (en) | 1996-03-29 | 2000-07-05 | Advanced Saw Prod Sa | Acoustic wave filter |
GB2312109B (en) | 1996-03-29 | 2000-08-02 | Advanced Saw Prod Sa | Acoustic wave filter |
JP2000509515A (ja) | 1996-04-29 | 2000-07-25 | ユーエス プレシジョン レンズ インコーポレイテッド | Lcd投影レンズ |
US5841587A (en) | 1996-04-29 | 1998-11-24 | U.S. Precision Lens Inc. | LCD projection lens |
DE69724602T2 (de) | 1996-04-29 | 2004-08-05 | 3M Innovative Properties Co., St. Paul | Linsensystem für projektionsfernsehen |
US5771320A (en) | 1996-04-30 | 1998-06-23 | Wavefront Research, Inc. | Optical switching and routing system |
US5729242A (en) | 1996-05-08 | 1998-03-17 | Hughes Electronics | Dual PDLC-projection head-up display |
US6583838B1 (en) | 1996-05-10 | 2003-06-24 | Kent State University | Bistable liquid crystal display device using polymer stabilization |
US6133975A (en) | 1996-05-10 | 2000-10-17 | Kent State University | Bistable liquid crystal display device using polymer stabilization |
US6061107A (en) | 1996-05-10 | 2000-05-09 | Kent State University | Bistable polymer dispersed cholesteric liquid crystal displays |
US5870228A (en) | 1996-05-24 | 1999-02-09 | U.S. Precision Lens Inc. | Projection lenses having larger back focal length to focal length ratios |
US5969874A (en) | 1996-05-30 | 1999-10-19 | U.S. Precision Lens Incorporated | Long focal length projection lenses |
CA2207226C (en) | 1996-06-10 | 2005-06-21 | Sumitomo Electric Industries, Ltd. | Optical fiber grating and method of manufacturing the same |
US6550949B1 (en) | 1996-06-13 | 2003-04-22 | Gentex Corporation | Systems and components for enhancing rear vision from a vehicle |
US6821457B1 (en) | 1998-07-29 | 2004-11-23 | Science Applications International Corporation | Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects |
US5942157A (en) | 1996-07-12 | 1999-08-24 | Science Applications International Corporation | Switchable volume hologram materials and devices |
US7077984B1 (en) * | 1996-07-12 | 2006-07-18 | Science Applications International Corporation | Electrically switchable polymer-dispersed liquid crystal materials |
US7312906B2 (en) | 1996-07-12 | 2007-12-25 | Science Applications International Corporation | Switchable polymer-dispersed liquid crystal optical elements |
US6867888B2 (en) | 1996-07-12 | 2005-03-15 | Science Applications International Corporation | Switchable polymer-dispersed liquid crystal optical elements |
US6323989B1 (en) | 1996-07-19 | 2001-11-27 | E Ink Corporation | Electrophoretic displays using nanoparticles |
GB2315902A (en) | 1996-08-01 | 1998-02-11 | Sharp Kk | LIquid crystal device |
US5847787A (en) | 1996-08-05 | 1998-12-08 | Motorola, Inc. | Low driving voltage polymer dispersed liquid crystal display device with conductive nanoparticles |
DE19632111C1 (de) | 1996-08-08 | 1998-02-12 | Pelikan Produktions Ag | Thermotransferfarbband für lumineszierende Schriftzeichen |
US5857043A (en) | 1996-08-12 | 1999-01-05 | Corning Incorporated | Variable period amplitude grating mask and method for use |
US5874187A (en) * | 1996-08-15 | 1999-02-23 | Lucent Technologies Incorporated | Photo recording medium |
EP0825474B1 (en) | 1996-08-16 | 2003-11-26 | 3M Innovative Properties Company | Mini-zoom projection lenses for use with pixelized panels |
US5856842A (en) | 1996-08-26 | 1999-01-05 | Kaiser Optical Systems Corporation | Apparatus facilitating eye-contact video communications |
KR100206688B1 (ko) | 1996-09-07 | 1999-07-01 | 박원훈 | 천연색 홀로그래픽 헤드 업 표시 장치 |
JPH1096903A (ja) | 1996-09-25 | 1998-04-14 | Sumitomo Bakelite Co Ltd | 液晶表示素子およびその製造方法 |
US5936776A (en) | 1996-09-27 | 1999-08-10 | U.S. Precision Lens Inc. | Focusable front projection lens systems for use with large screen formats |
US5745266A (en) | 1996-10-02 | 1998-04-28 | Raytheon Company | Quarter-wave film for brightness enhancement of holographic thin taillamp |
US5886822A (en) | 1996-10-08 | 1999-03-23 | The Microoptical Corporation | Image combining system for eyeglasses and face masks |
JP4007633B2 (ja) | 1996-10-09 | 2007-11-14 | 株式会社島津製作所 | ヘッドアップディスプレイ |
FR2755530B1 (fr) | 1996-11-05 | 1999-01-22 | Thomson Csf | Dispositif de visualisation et ecran plat de television utilisant ce dispositif |
US6577411B1 (en) | 1996-11-12 | 2003-06-10 | Planop-Planar Optics Ltd. | Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer |
JPH10148787A (ja) | 1996-11-20 | 1998-06-02 | Central Glass Co Ltd | 表示装置 |
US5962147A (en) | 1996-11-26 | 1999-10-05 | General Latex And Chemical Corporation | Method of bonding with a natural rubber latex and laminate produced |
DE69735215T2 (de) | 1996-11-29 | 2006-08-24 | 3M Innovative Properties Co., St. Paul | Linsen für ein elektronischen Abbildungssystem |
AU5896498A (en) | 1996-12-06 | 1998-07-15 | Stereographics Corporation | Synthetic panoramagram |
US6864927B1 (en) | 1996-12-31 | 2005-03-08 | Micron Technology, Inc. | Head up display with adjustable transparency screen |
US5907416A (en) | 1997-01-27 | 1999-05-25 | Raytheon Company | Wide FOV simulator heads-up display with selective holographic reflector combined |
US5956113A (en) | 1997-01-31 | 1999-09-21 | Xerox Corporation | Bistable reflective display and methods of forming the same |
US6133971A (en) | 1997-01-31 | 2000-10-17 | Xerox Corporation | Holographically formed reflective display, liquid crystal display and projection system and methods of forming the same |
US6172792B1 (en) | 1997-01-31 | 2001-01-09 | Mary Lou Jepsen | Method and apparatus for forming optical gratings |
US5875012A (en) | 1997-01-31 | 1999-02-23 | Xerox Corporation | Broadband reflective display, and methods of forming the same |
US5790314A (en) | 1997-01-31 | 1998-08-04 | Jds Fitel Inc. | Grin lensed optical device |
US5877826A (en) | 1997-02-06 | 1999-03-02 | Kent State University | Dual frequency switchable cholesteric liquid crystal light shutter and driving waveform |
US6567573B1 (en) | 1997-02-12 | 2003-05-20 | Digilens, Inc. | Switchable optical components |
US7003181B2 (en) | 1997-02-12 | 2006-02-21 | Domash Lawrence H | Switchable optical components |
US5937115A (en) | 1997-02-12 | 1999-08-10 | Foster-Miller, Inc. | Switchable optical components/structures and methods for the fabrication thereof |
US5900987A (en) | 1997-02-13 | 1999-05-04 | U.S. Precision Lens Inc | Zoom projection lenses for use with pixelized panels |
CA2197706A1 (en) | 1997-02-14 | 1998-08-14 | Peter Ehbets | Method of fabricating apodized phase mask |
US5798641A (en) | 1997-03-17 | 1998-08-25 | Quantum Design, Inc. | Torque magnetometer utilizing integrated piezoresistive levers |
US6034752A (en) | 1997-03-22 | 2000-03-07 | Kent Displays Incorporated | Display device reflecting visible and infrared radiation |
US6156243A (en) | 1997-04-25 | 2000-12-05 | Hoya Corporation | Mold and method of producing the same |
FI971850A7 (fi) | 1997-04-30 | 1998-10-31 | Nokia Corp | Järjestely radiotaajuisten signaalien keskeishäiriöiden vähentämiseksi |
US6351273B1 (en) | 1997-04-30 | 2002-02-26 | Jerome H. Lemelson | System and methods for controlling automatic scrolling of information on a display or screen |
US5868951A (en) | 1997-05-09 | 1999-02-09 | University Technology Corporation | Electro-optical device and method |
US5999089A (en) | 1997-05-13 | 1999-12-07 | Carlson; Lance K. | Alarm system |
US5973727A (en) | 1997-05-13 | 1999-10-26 | New Light Industries, Ltd. | Video image viewing device and method |
GB2325530A (en) | 1997-05-22 | 1998-11-25 | Sharp Kk | Liquid crystal device |
FI103619B1 (fi) | 1997-05-26 | 1999-07-30 | Nokia Telecommunications Oy | Optinen multipleksointi ja demultipleksointi |
US6608720B1 (en) | 1997-06-02 | 2003-08-19 | Robin John Freeman | Optical instrument and optical element thereof |
IL121067A0 (en) | 1997-06-12 | 1997-11-20 | Yeda Res & Dev | Compact planar optical correlator |
JPH1115358A (ja) | 1997-06-25 | 1999-01-22 | Denso Corp | ホログラム |
KR20010021697A (ko) | 1997-07-11 | 2001-03-15 | 존 디. 루돌프 | 고성능 투사 텔레비젼 렌즈 시스템 |
US7164818B2 (en) | 2001-05-03 | 2007-01-16 | Neophontonics Corporation | Integrated gradient index lenses |
US5930433A (en) | 1997-07-23 | 1999-07-27 | Hewlett-Packard Company | Waveguide array document scanner |
US6417971B1 (en) | 1997-08-05 | 2002-07-09 | U.S. Precision Lens Incorporated | Zoom projection lens having a lens correction unit |
JPH1164636A (ja) * | 1997-08-12 | 1999-03-05 | Fuji Xerox Co Ltd | 反射板、反射板製造方法および反射型カラー表示装置 |
EP1023621A4 (en) | 1997-08-13 | 2001-08-08 | Foster Miller Inc | SWITCHABLE OPTICAL COMPONENTS |
US6141154A (en) | 1997-08-22 | 2000-10-31 | U.S. Precision Lens Inc. | Focusable, color corrected, high performance projection lens systems |
JPH1167448A (ja) | 1997-08-26 | 1999-03-09 | Toyota Central Res & Dev Lab Inc | ディスプレイ装置 |
JP3472103B2 (ja) | 1997-09-10 | 2003-12-02 | キヤノン株式会社 | 回折光学素子及びそれを用いた光学系 |
US7028899B2 (en) | 1999-06-07 | 2006-04-18 | Metrologic Instruments, Inc. | Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target |
JP3535710B2 (ja) | 1997-09-16 | 2004-06-07 | キヤノン株式会社 | 光学素子及びそれを用いた光学系 |
JP2953444B2 (ja) | 1997-10-01 | 1999-09-27 | 日本電気株式会社 | 液晶表示装置およびその製造方法 |
US6285813B1 (en) | 1997-10-03 | 2001-09-04 | Georgia Tech Research Corporation | Diffractive grating coupler and method |
US5929960A (en) | 1997-10-17 | 1999-07-27 | Kent State University | Method for forming liquid crystal display cell walls using a patterned electric field |
US5903396A (en) | 1997-10-17 | 1999-05-11 | I/O Display Systems, Llc | Intensified visual display |
US6486997B1 (en) | 1997-10-28 | 2002-11-26 | 3M Innovative Properties Company | Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter |
USRE39911E1 (en) | 1997-11-13 | 2007-11-06 | 3M Innovative Properties Company | Wide field of view projection lenses for compact projection lens systems employing pixelized panels |
JP3331559B2 (ja) | 1997-11-13 | 2002-10-07 | 日本電信電話株式会社 | 光学装置 |
DE19751190A1 (de) | 1997-11-19 | 1999-05-20 | Bosch Gmbh Robert | Laseranzeigevorrichtung |
US6046585A (en) | 1997-11-21 | 2000-04-04 | Quantum Design, Inc. | Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto |
US6437563B1 (en) | 1997-11-21 | 2002-08-20 | Quantum Design, Inc. | Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes |
US5949508A (en) | 1997-12-10 | 1999-09-07 | Kent State University | Phase separated composite organic film and methods for the manufacture thereof |
WO1999031658A1 (en) | 1997-12-16 | 1999-06-24 | Daewoo Electronics Co., Ltd. | Integrated optical pickup system for use with optical disks of different thicknesses |
US6864861B2 (en) | 1997-12-31 | 2005-03-08 | Brillian Corporation | Image generator having a miniature display device |
US6195206B1 (en) | 1998-01-13 | 2001-02-27 | Elbit Systems Ltd. | Optical system for day and night use |
US6560019B2 (en) | 1998-02-05 | 2003-05-06 | Canon Kabushiki Kaisha | Diffractive optical element and optical system having the same |
US6975345B1 (en) | 1998-03-27 | 2005-12-13 | Stereographics Corporation | Polarizing modulator for an electronic stereoscopic display |
EP1068548B1 (en) | 1998-04-02 | 2003-11-12 | Elop Electro-Optics Industries Ltd. | Holographic optical devices |
US20040108971A1 (en) | 1998-04-09 | 2004-06-10 | Digilens, Inc. | Method of and apparatus for viewing an image |
US6176837B1 (en) | 1998-04-17 | 2001-01-23 | Massachusetts Institute Of Technology | Motion tracking system |
US6204835B1 (en) | 1998-05-12 | 2001-03-20 | Kent State University | Cumulative two phase drive scheme for bistable cholesteric reflective displays |
US6268839B1 (en) | 1998-05-12 | 2001-07-31 | Kent State University | Drive schemes for gray scale bistable cholesteric reflective displays |
JPH11326617A (ja) | 1998-05-13 | 1999-11-26 | Olympus Optical Co Ltd | 回折光学素子を含む光学系及びその設計方法 |
EP0957477A3 (en) | 1998-05-15 | 2003-11-05 | Matsushita Electric Industrial Co., Ltd. | Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus |
GB2337859B (en) | 1998-05-29 | 2002-12-11 | Nokia Mobile Phones Ltd | Antenna |
US6388797B1 (en) | 1998-05-29 | 2002-05-14 | Stereographics Corporation | Electrostereoscopic eyewear |
US6341118B1 (en) | 1998-06-02 | 2002-01-22 | Science Applications International Corporation | Multiple channel scanning device using oversampling and image processing to increase throughput |
JP2002519707A (ja) | 1998-06-24 | 2002-07-02 | ユーエス プレシジョン レンズ インコーポレイテッド | 改良された変調伝達関数を備えた投映テレビジョンレンズ系 |
US6215579B1 (en) | 1998-06-24 | 2001-04-10 | Silicon Light Machines | Method and apparatus for modulating an incident light beam for forming a two-dimensional image |
US6411444B1 (en) | 1998-06-30 | 2002-06-25 | Corning Precision Lens, Incorporated | Lenses for electronic imaging systems having long wavelength filtering properties |
US6064354A (en) | 1998-07-01 | 2000-05-16 | Deluca; Michael Joseph | Stereoscopic user interface method and apparatus |
US20030202228A1 (en) | 1998-07-07 | 2003-10-30 | Kenichiro Takada | Hologram screen and a method of producing the same |
CA2336850A1 (en) * | 1998-07-08 | 2000-01-20 | Jonathan D. Waldern | Switchable holographic optical system |
US6137630A (en) | 1998-07-13 | 2000-10-24 | Industrial Technology Research Institute | Thin-film multilayer systems for use in a head-up display |
US6222971B1 (en) | 1998-07-17 | 2001-04-24 | David Slobodin | Small inlet optical panel and a method of making a small inlet optical panel |
US6618104B1 (en) | 1998-07-28 | 2003-09-09 | Nippon Telegraph And Telephone Corporation | Optical device having reverse mode holographic PDLC and front light guide |
IL125558A (en) | 1998-07-28 | 2003-06-24 | Elbit Systems Ltd | Non-adjustable helmet mounted optical systems |
US6124954A (en) | 1998-07-29 | 2000-09-26 | Digilens, Inc. | Projection screen based on reconfigurable holographic optics for implementation in head-mounted displays |
WO2000007066A1 (en) * | 1998-07-29 | 2000-02-10 | Digilens, Inc. | In-line infinity display system employing one or more switchable holographic optical elements |
JP3643486B2 (ja) | 1998-08-04 | 2005-04-27 | 株式会社東芝 | 光機能素子及び光通信システム |
US6396461B1 (en) | 1998-08-05 | 2002-05-28 | Microvision, Inc. | Personal display with vision tracking |
JP2000056259A (ja) | 1998-08-10 | 2000-02-25 | Fuji Xerox Co Ltd | 画像表示装置 |
US6169594B1 (en) | 1998-08-24 | 2001-01-02 | Physical Optics Corporation | Beam deflector and scanner |
US6266476B1 (en) | 1998-08-25 | 2001-07-24 | Physical Optics Corporation | Optical element having an integral surface diffuser |
CN100340136C (zh) | 1998-09-02 | 2007-09-26 | 精工爱普生株式会社 | 显示装置 |
US6188462B1 (en) | 1998-09-02 | 2001-02-13 | Kent State University | Diffraction grating with electrically controlled periodicity |
US20020127497A1 (en) | 1998-09-10 | 2002-09-12 | Brown Daniel J. W. | Large diffraction grating for gas discharge laser |
US6278429B1 (en) | 1998-09-11 | 2001-08-21 | Kent State University | Bistable reflective cholesteric liquid crystal displays utilizing super twisted nematic driver chips |
AU6143199A (en) | 1998-09-14 | 2000-04-03 | Digilens Inc. | Holographic illumination system and holographic projection system |
US20020126332A1 (en) * | 1998-09-14 | 2002-09-12 | Popovich Milan M. | System and method for modulating light intesity |
JP4052741B2 (ja) | 1998-09-30 | 2008-02-27 | セントラル硝子株式会社 | 反射型ディスプレイ用積層ガラス |
US6082862A (en) | 1998-10-16 | 2000-07-04 | Digilens, Inc. | Image tiling technique based on electrically switchable holograms |
AU6428199A (en) | 1998-10-16 | 2000-05-08 | Digilens Inc. | Holographic display system |
WO2000024204A1 (en) * | 1998-10-16 | 2000-04-27 | Digilens, Inc. | Method and system for display resolution multiplication |
WO2000062104A1 (en) | 1998-10-16 | 2000-10-19 | Digilens, Inc. | System and method for modulating light intensity |
AU4976099A (en) | 1998-10-16 | 2000-05-08 | Digilens Inc. | Autostereoscopic display based on electrically switchable holograms |
WO2000023835A1 (en) * | 1998-10-16 | 2000-04-27 | Digilens, Inc. | Holographic technique for illumination of image displays using ambient illumination |
FI105856B (fi) | 1998-10-21 | 2000-10-13 | Nokia Networks Oy | Optisen WDM-signaalin vahvistus |
CA2360606A1 (en) | 1998-10-21 | 2000-04-27 | Carvel E. Holton | Methods and apparatus for optically measuring polarization rotation of optical wave fronts using rare earth iron garnets |
US6218316B1 (en) | 1998-10-22 | 2001-04-17 | Micron Technology, Inc. | Planarization of non-planar surfaces in device fabrication |
US6414760B1 (en) | 1998-10-29 | 2002-07-02 | Hewlett-Packard Company | Image scanner with optical waveguide and enhanced optical sampling rate |
US6567014B1 (en) | 1998-11-05 | 2003-05-20 | Rockwell Collins, Inc. | Aircraft head up display system |
US6850210B1 (en) | 1998-11-12 | 2005-02-01 | Stereographics Corporation | Parallax panoramagram having improved depth and sharpness |
WO2000028369A2 (en) | 1998-11-12 | 2000-05-18 | Digilens, Inc. | Head mounted apparatus for viewing an image |
HK1041925B (zh) | 1998-11-12 | 2005-02-04 | 3M创新有限公司 | 使用衍射光學表面的彩色校正投影透鏡 |
US6222675B1 (en) | 1998-12-01 | 2001-04-24 | Kaiser Electro-Optics, Inc. | Area of interest head-mounted display using low resolution, wide angle; high resolution, narrow angle; and see-through views |
US6078427A (en) | 1998-12-01 | 2000-06-20 | Kaiser Electro-Optics, Inc. | Smooth transition device for area of interest head-mounted display |
US6744478B1 (en) | 1998-12-28 | 2004-06-01 | Central Glass Company, Limited | Heads-up display system with optical rotation layers |
US6084998A (en) | 1998-12-30 | 2000-07-04 | Alpha And Omega Imaging, Llc | System and method for fabricating distributed Bragg reflectors with preferred properties |
US6185016B1 (en) | 1999-01-19 | 2001-02-06 | Digilens, Inc. | System for generating an image |
US6191887B1 (en) | 1999-01-20 | 2001-02-20 | Tropel Corporation | Laser illumination with speckle reduction |
US6320563B1 (en) | 1999-01-21 | 2001-11-20 | Kent State University | Dual frequency cholesteric display and drive scheme |
US6301057B1 (en) | 1999-02-02 | 2001-10-09 | Corning Precision Lens | Long focal length projection lenses |
US6864931B1 (en) | 1999-02-17 | 2005-03-08 | Kent State University | Electrically controllable liquid crystal microstructures |
JP4089071B2 (ja) | 1999-03-10 | 2008-05-21 | ブラザー工業株式会社 | ヘッドマウントカメラ |
US6266166B1 (en) | 1999-03-08 | 2001-07-24 | Dai Nippon Printing Co., Ltd. | Self-adhesive film for hologram formation, dry plate for photographing hologram, and method for image formation using the same |
JP2000267042A (ja) | 1999-03-17 | 2000-09-29 | Fuji Xerox Co Ltd | 頭部搭載型映像表示装置 |
US6269203B1 (en) | 1999-03-17 | 2001-07-31 | Radiant Photonics | Holographic optical devices for transmission of optical signals |
JP2000267552A (ja) | 1999-03-19 | 2000-09-29 | Sony Corp | 画像記録装置及び画像記録方法並びに記録媒体 |
US6504629B1 (en) | 1999-03-23 | 2003-01-07 | Digilens, Inc. | Method and apparatus for illuminating a display |
US6909443B1 (en) | 1999-04-06 | 2005-06-21 | Microsoft Corporation | Method and apparatus for providing a three-dimensional task gallery computer interface |
JP4548680B2 (ja) | 1999-04-12 | 2010-09-22 | 大日本印刷株式会社 | カラーホログラム表示体及びその作成方法 |
US6121899A (en) | 1999-04-16 | 2000-09-19 | Rockwell Collins, Inc. | Impending aircraft tail strike warning display symbology |
US6107943A (en) | 1999-04-16 | 2000-08-22 | Rockwell Collins, Inc. | Display symbology indicating aircraft ground motion deceleration |
DE19917751C2 (de) | 1999-04-20 | 2001-05-31 | Nokia Networks Oy | Verfahren und Überwachungsvorrichtung zur Überwachung der Qualität der Datenübertragung über analoge Leitungen |
US20020071472A1 (en) | 1999-04-30 | 2002-06-13 | Metrologic Instruments, Inc. | DOE-based systems and devices for producing laser beams having modified beam characteristics |
US6195209B1 (en) | 1999-05-04 | 2001-02-27 | U.S. Precision Lens Incorporated | Projection lenses having reduced lateral color for use with pixelized panels |
SE516715C2 (sv) | 1999-05-26 | 2002-02-19 | Ericsson Telefon Ab L M | Display för huvudmontering |
FR2796184B1 (fr) | 1999-07-09 | 2001-11-02 | Thomson Csf | Document securise, systeme de fabrication et systeme de lecture de ce document |
FI113581B (fi) | 1999-07-09 | 2004-05-14 | Nokia Corp | Menetelmä aaltojohdon toteuttamiseksi monikerroskeramiikkarakenteissa ja aaltojohto |
JP4341108B2 (ja) | 1999-07-14 | 2009-10-07 | ソニー株式会社 | 虚像観察光学装置 |
US20030063042A1 (en) | 1999-07-29 | 2003-04-03 | Asher A. Friesem | Electronic utility devices incorporating a compact virtual image display |
US6473209B1 (en) | 1999-08-04 | 2002-10-29 | Digilens, Inc. | Apparatus for producing a three-dimensional image |
GB2353144A (en) | 1999-08-11 | 2001-02-14 | Nokia Telecommunications Oy | Combline filter |
US6317528B1 (en) | 1999-08-23 | 2001-11-13 | Corning Incorporated | Temperature compensated integrated planar bragg grating, and method of formation |
US6646772B1 (en) | 1999-09-14 | 2003-11-11 | Digilens, Inc. | Holographic illumination system |
US6317228B2 (en) | 1999-09-14 | 2001-11-13 | Digilens, Inc. | Holographic illumination system |
JP2001093179A (ja) | 1999-09-21 | 2001-04-06 | Pioneer Electronic Corp | 光ピックアップ |
US6222297B1 (en) | 1999-09-24 | 2001-04-24 | Litton Systems, Inc. | Pressed V-groove pancake slip ring |
JP2001091715A (ja) | 1999-09-27 | 2001-04-06 | Nippon Mitsubishi Oil Corp | 複合回折素子 |
US6323970B1 (en) | 1999-09-29 | 2001-11-27 | Digilents, Inc. | Method of producing switchable holograms |
GB2354835A (en) | 1999-09-29 | 2001-04-04 | Marconi Electronic Syst Ltd | Head up displays |
US6741189B1 (en) | 1999-10-06 | 2004-05-25 | Microsoft Corporation | Keypad having optical waveguides |
US6301056B1 (en) | 1999-11-08 | 2001-10-09 | Corning Precision Lens | High speed retrofocus projection television lens systems |
US20020009299A1 (en) | 1999-12-04 | 2002-01-24 | Lenny Lipton | System for the display of stereoscopic photographs |
US20010024177A1 (en) | 1999-12-07 | 2001-09-27 | Popovich Milan M. | Holographic display system |
AU5515201A (en) | 1999-12-22 | 2001-07-16 | Science Applications International Corp. | Switchable polymer-dispersed liquid crystal optical elements |
US6356172B1 (en) | 1999-12-29 | 2002-03-12 | Nokia Networks Oy | Resonator structure embedded in mechanical structure |
US7502003B2 (en) | 2000-01-20 | 2009-03-10 | Real D | Method for eliminating pi-cell artifacts |
US6519088B1 (en) | 2000-01-21 | 2003-02-11 | Stereographics Corporation | Method and apparatus for maximizing the viewing zone of a lenticular stereogram |
US6510263B1 (en) | 2000-01-27 | 2003-01-21 | Unaxis Balzers Aktiengesellschaft | Waveguide plate and process for its production and microtitre plate |
JP4921634B2 (ja) | 2000-01-31 | 2012-04-25 | グーグル インコーポレイテッド | 表示装置 |
GB2372929B (en) | 2000-03-03 | 2003-03-12 | Tera View Ltd | Apparatus and method for investigating a sample |
US6987911B2 (en) | 2000-03-16 | 2006-01-17 | Lightsmyth Technologies, Inc. | Multimode planar waveguide spectral filter |
US6993223B2 (en) | 2000-03-16 | 2006-01-31 | Lightsmyth Technologies, Inc. | Multiple distributed optical structures in a single optical element |
US7245325B2 (en) | 2000-03-17 | 2007-07-17 | Fujifilm Corporation | Photographing device with light quantity adjustment |
US6919003B2 (en) | 2000-03-23 | 2005-07-19 | Canon Kabushiki Kaisha | Apparatus and process for producing electrophoretic device |
JP2001296503A (ja) | 2000-04-13 | 2001-10-26 | Mitsubishi Heavy Ind Ltd | スペックル低減装置 |
JP2003532918A (ja) | 2000-05-04 | 2003-11-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 反射式多色液晶ディスプレイを有する装置に対する照明ユニット |
US6335224B1 (en) * | 2000-05-16 | 2002-01-01 | Sandia Corporation | Protection of microelectronic devices during packaging |
US6522795B1 (en) | 2000-05-17 | 2003-02-18 | Rebecca Jordan | Tunable etched grating for WDM optical communication systems |
US6730442B1 (en) | 2000-05-24 | 2004-05-04 | Science Applications International Corporation | System and method for replicating volume holograms |
JP4433355B2 (ja) | 2000-05-25 | 2010-03-17 | 大日本印刷株式会社 | 透過型ホログラムの作製方法 |
KR100865598B1 (ko) | 2000-05-29 | 2008-10-27 | 브이케이비 인코포레이티드 | 수문자 조합 및 다른 데이터의 입력을 위한 가상 데이터입력 장치 및 방법 |
US20120105740A1 (en) | 2000-06-02 | 2012-05-03 | Oakley, Inc. | Eyewear with detachable adjustable electronics module |
ATE473464T1 (de) | 2000-06-05 | 2010-07-15 | Lumus Ltd | Optischer strahlaufweiter mit substratlichtwellenleitung |
US7671889B2 (en) | 2000-06-07 | 2010-03-02 | Real D | Autostereoscopic pixel arrangement techniques |
US20010050756A1 (en) | 2000-06-07 | 2001-12-13 | Lenny Lipton | Software generated color organ for stereoscopic and planar applications |
WO2001096494A1 (en) | 2000-06-09 | 2001-12-20 | Kent Displays, Inc. | Chiral additives for cholesteric displays |
FI114585B (fi) | 2000-06-09 | 2004-11-15 | Nokia Corp | Siirtojohdin monikerrosrakenteissa |
US6598987B1 (en) | 2000-06-15 | 2003-07-29 | Nokia Mobile Phones Limited | Method and apparatus for distributing light to the user interface of an electronic device |
US20080024598A1 (en) | 2000-07-21 | 2008-01-31 | New York University | Autostereoscopic display |
US6359737B1 (en) | 2000-07-28 | 2002-03-19 | Generals Motors Corporation | Combined head-up display |
US20020021407A1 (en) | 2000-08-01 | 2002-02-21 | Scott Elliott | Eye-wear video game |
US7660024B2 (en) | 2000-08-07 | 2010-02-09 | Physical Optics Corporation | 3-D HLCD system and method of making |
US7003187B2 (en) | 2000-08-07 | 2006-02-21 | Rosemount Inc. | Optical switch with moveable holographic optical element |
US7376068B1 (en) | 2000-08-19 | 2008-05-20 | Jehad Khoury | Nano-scale resolution holographic lens and pickup device |
US7099080B2 (en) | 2000-08-30 | 2006-08-29 | Stereo Graphics Corporation | Autostereoscopic lenticular screen |
US6470132B1 (en) | 2000-09-05 | 2002-10-22 | Nokia Mobile Phones Ltd. | Optical hinge apparatus |
US6611253B1 (en) | 2000-09-19 | 2003-08-26 | Harel Cohen | Virtual input environment |
JP2002090858A (ja) | 2000-09-20 | 2002-03-27 | Olympus Optical Co Ltd | ファインダ内表示装置 |
US6583873B1 (en) | 2000-09-25 | 2003-06-24 | The Carnegie Institution Of Washington | Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating |
FI111457B (fi) | 2000-10-02 | 2003-07-31 | Nokia Corp | Mikromekaaninen rakenne |
US6750968B2 (en) | 2000-10-03 | 2004-06-15 | Accent Optical Technologies, Inc. | Differential numerical aperture methods and device |
AU2000279154A1 (en) | 2000-10-06 | 2002-04-15 | Nokia Corporation | Self-aligned transition between a transmission line and a module |
DE10051186B4 (de) | 2000-10-16 | 2005-04-07 | Fibermark Gessner Gmbh & Co. Ohg | Staubfilterbeutel mit hochporöser Trägermateriallage |
JP2002122906A (ja) | 2000-10-17 | 2002-04-26 | Olympus Optical Co Ltd | ファインダ内表示装置 |
WO2002033782A1 (en) | 2000-10-18 | 2002-04-25 | Nokia Corporation | Waveguide to stripline transition |
US6563648B2 (en) | 2000-10-20 | 2003-05-13 | Three-Five Systems, Inc. | Compact wide field of view imaging system |
US6710900B1 (en) | 2000-10-23 | 2004-03-23 | Zebra Imaging, Inc. | Holograms exposed and processed on plastic substrates |
JP2002202192A (ja) | 2000-10-24 | 2002-07-19 | Tokyo Electron Ltd | 温度測定方法、熱処理装置及び方法、コンピュータプログラム、並びに、放射温度計 |
US6738105B1 (en) | 2000-11-02 | 2004-05-18 | Intel Corporation | Coherent light despeckling |
US6791629B2 (en) | 2000-11-09 | 2004-09-14 | 3M Innovative Properties Company | Lens systems for projection televisions |
JP2002156617A (ja) | 2000-11-20 | 2002-05-31 | Ricoh Co Ltd | 画像表示装置 |
US6552789B1 (en) | 2000-11-22 | 2003-04-22 | Rockwell Collins, Inc. | Alignment detector |
US6822713B1 (en) | 2000-11-27 | 2004-11-23 | Kent State University | Optical compensation film for liquid crystal display |
JP4727034B2 (ja) | 2000-11-28 | 2011-07-20 | オリンパス株式会社 | 観察光学系および撮像光学系 |
GB0029340D0 (en) | 2000-11-30 | 2001-01-17 | Cambridge 3D Display Ltd | Flat panel camera |
US7123319B2 (en) | 2000-12-14 | 2006-10-17 | Koninklijke Philips Electronics N.V. | Liquid crystal display laminate and method of manufacturing such comprising a stratified-phase-separated composite |
US20020093701A1 (en) | 2000-12-29 | 2002-07-18 | Xiaoxiao Zhang | Holographic multifocal lens |
US7042631B2 (en) | 2001-01-04 | 2006-05-09 | Coherent Technologies, Inc. | Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams |
US6560020B1 (en) * | 2001-01-16 | 2003-05-06 | Holotek, Llc | Surface-relief diffraction grating |
US20020120916A1 (en) | 2001-01-16 | 2002-08-29 | Snider Albert Monroe | Head-up display system utilizing fluorescent material |
US6563650B2 (en) | 2001-01-17 | 2003-05-13 | 3M Innovative Properties Company | Compact, telecentric projection lenses for use with pixelized panels |
EP2328026B1 (en) | 2001-02-09 | 2014-04-09 | Dai Nippon Printing Co., Ltd. | Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording |
US6518747B2 (en) | 2001-02-16 | 2003-02-11 | Quantum Design, Inc. | Method and apparatus for quantitative determination of accumulations of magnetic particles |
US6625381B2 (en) | 2001-02-20 | 2003-09-23 | Eastman Kodak Company | Speckle suppressed laser projection system with partial beam reflection |
US6600590B2 (en) | 2001-02-20 | 2003-07-29 | Eastman Kodak Company | Speckle suppressed laser projection system using RF injection |
US6476974B1 (en) | 2001-02-28 | 2002-11-05 | Corning Precision Lens Incorporated | Projection lenses for use with reflective pixelized panels |
EP1374354B1 (en) | 2001-03-02 | 2008-12-31 | Innovative Solutions & Support, Inc. | Image display generator for a head-up display |
JP2002277732A (ja) | 2001-03-14 | 2002-09-25 | Fuji Photo Optical Co Ltd | 回折型光ピックアップレンズおよびこれを用いた光ピックアップ装置 |
US6678093B1 (en) | 2001-03-15 | 2004-01-13 | Cierra Photonics, Inc. | Optically coupled etalons and methods of making and using same |
JP2002277816A (ja) | 2001-03-21 | 2002-09-25 | Minolta Co Ltd | 映像表示装置 |
US7184002B2 (en) | 2001-03-29 | 2007-02-27 | Stereographics Corporation | Above-and-below stereoscopic format with signifier |
GB0108838D0 (en) | 2001-04-07 | 2001-05-30 | Cambridge 3D Display Ltd | Far field display |
US6781701B1 (en) | 2001-04-10 | 2004-08-24 | Intel Corporation | Method and apparatus for measuring optical phase and amplitude |
JP2003057469A (ja) | 2001-04-11 | 2003-02-26 | Makoto Fujimaki | 光導波路グレーティング、その形成方法、およびその形成用マスク |
US6788864B2 (en) | 2001-04-12 | 2004-09-07 | Omniguide Communications | High index-contrast fiber waveguides and applications |
FI20010778L (fi) | 2001-04-12 | 2002-10-13 | Nokia Corp | Optinen kytkentäjärjestely |
JP4772204B2 (ja) | 2001-04-13 | 2011-09-14 | オリンパス株式会社 | 観察光学系 |
US6844980B2 (en) | 2001-04-23 | 2005-01-18 | Reveo, Inc. | Image display system and electrically actuatable image combiner therefor |
FI20010917L (fi) | 2001-05-03 | 2002-11-04 | Nokia Corp | Sähköisesti uudelleen konfigurotuvia optisia laitteita ja menetelmä niiden muodostamiseksi |
FI111357B (fi) | 2001-05-03 | 2003-07-15 | Nokia Corp | Sähköisesti ohjattava, paksuudeltaan muunneltava levy ja menetelmä sen muodostamiseksi |
US6771423B2 (en) | 2001-05-07 | 2004-08-03 | Richard Geist | Head-mounted virtual display apparatus with a near-eye light deflecting element in the peripheral field of view |
AU2002305612A1 (en) | 2001-05-17 | 2002-11-25 | Optronx, Inc. | Electronic semiconductor control of light in optical waveguide |
US7009773B2 (en) | 2001-05-23 | 2006-03-07 | Research Foundation Of The University Of Central Florida, Inc. | Compact microlenslet arrays imager |
US6963454B1 (en) | 2002-03-01 | 2005-11-08 | Research Foundation Of The University Of Central Florida | Head-mounted display by integration of phase-conjugate material |
US6731434B1 (en) | 2001-05-23 | 2004-05-04 | University Of Central Florida | Compact lens assembly for the teleportal augmented reality system |
US6999239B1 (en) | 2001-05-23 | 2006-02-14 | Research Foundation Of The University Of Central Florida, Inc | Head-mounted display by integration of phase-conjugate material |
JP4414612B2 (ja) | 2001-05-31 | 2010-02-10 | 矢崎総業株式会社 | 車両用表示装置 |
US7002618B2 (en) | 2001-06-01 | 2006-02-21 | Stereographics Corporation | Plano-stereoscopic DVD movie |
US7500104B2 (en) | 2001-06-15 | 2009-03-03 | Microsoft Corporation | Networked device branding for secure interaction in trust webs on open networks |
US6747781B2 (en) | 2001-06-25 | 2004-06-08 | Silicon Light Machines, Inc. | Method, apparatus, and diffuser for reducing laser speckle |
US7356224B2 (en) | 2001-07-03 | 2008-04-08 | Brown University Research Foundation | Method and apparatus for detecting multiple optical wave lengths |
US7151246B2 (en) | 2001-07-06 | 2006-12-19 | Palantyr Research, Llc | Imaging system and methodology |
US6750995B2 (en) | 2001-07-09 | 2004-06-15 | Dickson Leroy David | Enhanced volume phase grating with high dispersion, high diffraction efficiency and low polarization sensitivity |
KR100782806B1 (ko) | 2001-07-26 | 2007-12-06 | 삼성전자주식회사 | 단판식 컬러 화상 표시 장치 |
JP2003114347A (ja) | 2001-07-30 | 2003-04-18 | Furukawa Electric Co Ltd:The | シングルモード光ファイバ、その製造方法および製造装置 |
GB0118866D0 (en) | 2001-08-02 | 2001-09-26 | Cambridge 3D Display Ltd | Shaped taper flat panel display |
EP1412409A1 (en) | 2001-08-03 | 2004-04-28 | Dsm N.V. | Curable compositions for display devices |
US6791739B2 (en) | 2001-08-08 | 2004-09-14 | Eastman Kodak Company | Electro-optic despeckling modulator and method of use |
US6927694B1 (en) | 2001-08-20 | 2005-08-09 | Research Foundation Of The University Of Central Florida | Algorithm for monitoring head/eye motion for driver alertness with one camera |
JP2003066428A (ja) | 2001-08-23 | 2003-03-05 | Toppan Printing Co Ltd | ホログラフィック高分子分散液晶を用いたプロジェクター |
US6987908B2 (en) | 2001-08-24 | 2006-01-17 | T-Networks, Inc. | Grating dispersion compensator and method of manufacture |
US6594090B2 (en) | 2001-08-27 | 2003-07-15 | Eastman Kodak Company | Laser projection display system |
JP4155771B2 (ja) | 2001-08-27 | 2008-09-24 | 大日本印刷株式会社 | 体積型ホログラム記録用感光性組成物及びそれを用いた体積型ホログラム記録用感光性媒体 |
US6876791B2 (en) | 2001-09-03 | 2005-04-05 | Sumitomo Electric Industries, Ltd. | Diffraction grating device |
US6646810B2 (en) | 2001-09-04 | 2003-11-11 | Delphi Technologies, Inc. | Display backlighting apparatus |
US7447967B2 (en) | 2001-09-13 | 2008-11-04 | Texas Instruments Incorporated | MIMO hybrid-ARQ using basis hopping |
EP1430351B1 (en) | 2001-09-25 | 2006-11-29 | Cambridge Flat Projection Displays Limited | Flat-panel projection display |
CN1559000A (zh) | 2001-09-26 | 2004-12-29 | 皇家飞利浦电子股份有限公司 | 波导、边缘发光照明装置和包含这种装置的显示器 |
US6833955B2 (en) | 2001-10-09 | 2004-12-21 | Planop Planar Optics Ltd. | Compact two-plane optical device |
KR100416548B1 (ko) | 2001-10-10 | 2004-02-05 | 삼성전자주식회사 | 3차원 영상 표시장치 |
US7020279B2 (en) * | 2001-10-19 | 2006-03-28 | Quartics, Inc. | Method and system for filtering a signal and for providing echo cancellation |
US6842563B2 (en) | 2001-10-22 | 2005-01-11 | Oplux, Inc. | Waveguide grating-based wavelength selective switch actuated by micro-electromechanical system |
JP2003139958A (ja) | 2001-10-31 | 2003-05-14 | Sony Corp | 透過型積層ホログラム光学素子、画像表示素子及び画像表示装置 |
US6716767B2 (en) | 2001-10-31 | 2004-04-06 | Brewer Science, Inc. | Contact planarization materials that generate no volatile byproducts or residue during curing |
US6806982B2 (en) | 2001-11-30 | 2004-10-19 | Zebra Imaging, Inc. | Pulsed-laser systems and methods for producing holographic stereograms |
US6816309B2 (en) | 2001-11-30 | 2004-11-09 | Colorlink, Inc. | Compensated color management systems and methods |
US6773114B2 (en) | 2001-12-07 | 2004-08-10 | Nokia Corporation | Portable multimode display device |
WO2003050203A1 (en) | 2001-12-13 | 2003-06-19 | Sony International (Europe) Gmbh | A method of forming a composite |
DE60319338T2 (de) | 2002-01-10 | 2009-02-19 | Kent State University, Kent | Material für eine flüssigkristallzelle |
US6577429B1 (en) | 2002-01-15 | 2003-06-10 | Eastman Kodak Company | Laser projection display system |
US6972788B1 (en) | 2002-01-28 | 2005-12-06 | Rockwell Collins | Projection display for a aircraft cockpit environment |
US6926429B2 (en) | 2002-01-30 | 2005-08-09 | Delphi Technologies, Inc. | Eye tracking/HUD system |
US6952435B2 (en) | 2002-02-11 | 2005-10-04 | Ming Lai | Speckle free laser probe beam |
AU2003208584A1 (en) | 2002-02-15 | 2003-09-04 | Elop Electro-Optics Industries Ltd. | Device and method for varying the reflectance or transmittance of light |
CN1646613A (zh) | 2002-02-19 | 2005-07-27 | 光子-X有限公司 | 应用于光学的聚合物纳米复合材料 |
US6836369B2 (en) | 2002-03-08 | 2004-12-28 | Denso Corporation | Head-up display |
ATE354834T1 (de) | 2002-03-15 | 2007-03-15 | Computer Sciences Corp | Verfahren und vorrichtungen zur analyse von schrift in dokumenten |
US7528385B2 (en) | 2002-03-15 | 2009-05-05 | Pd-Ld, Inc. | Fiber optic devices having volume Bragg grating elements |
JP2003270419A (ja) | 2002-03-18 | 2003-09-25 | Sony Corp | 回折光学素子及び画像表示装置 |
US7027671B2 (en) | 2002-03-18 | 2006-04-11 | Koninklijke Philips Electronics N.V. | Polarized-light-emitting waveguide, illumination arrangement and display device comprising such |
EP1347641A1 (de) | 2002-03-19 | 2003-09-24 | Siemens Aktiengesellschaft | Projektionsfreie Anzeigevorrichtung |
IL148804A (en) | 2002-03-21 | 2007-02-11 | Yaacov Amitai | Optical device |
WO2003083523A2 (en) | 2002-03-27 | 2003-10-09 | Avery Dennison Corporation | Switchable electro-optical laminates |
DE10216279A1 (de) | 2002-04-12 | 2003-10-30 | Siemens Ag | Verfahren zur Detektion eines Kontrollsignals in einem optischen Übertragungssystem |
DE10312405B4 (de) | 2002-04-16 | 2011-12-01 | Merck Patent Gmbh | Flüssigkristallines Medium mit hoher Doppelbrechung und Lichtstabilität und seine Verwendung |
JP2003315540A (ja) | 2002-04-19 | 2003-11-06 | Ricoh Co Ltd | 偏光回折素子及びその作製方法 |
JP3460716B1 (ja) | 2002-04-25 | 2003-10-27 | ソニー株式会社 | 画像表示装置 |
US6757105B2 (en) | 2002-04-25 | 2004-06-29 | Planop Planar Optics Ltd. | Optical device having a wide field-of-view for multicolor images |
FI113719B (fi) | 2002-04-26 | 2004-05-31 | Nokia Corp | Modulaattori |
KR20030088217A (ko) | 2002-05-13 | 2003-11-19 | 삼성전자주식회사 | 배율 조정이 가능한 착용형 디스플레이 시스템 |
DE10221837B4 (de) | 2002-05-16 | 2005-10-20 | Bat Cigarettenfab Gmbh | Vorrichtung und Verfahren zum Kennzeichnen von Zigarettenpackungen |
US20030228019A1 (en) | 2002-06-11 | 2003-12-11 | Elbit Systems Ltd. | Method and system for reducing noise |
ATE406599T1 (de) | 2002-06-13 | 2008-09-15 | Nokia Corp | Erweiterungselektrodenkonfiguration für elektrisch gesteuerte lichtmodulatoren |
JP2004021071A (ja) * | 2002-06-19 | 2004-01-22 | Sharp Corp | 体積ホログラム光学素子及びその製造方法 |
US7804995B2 (en) | 2002-07-02 | 2010-09-28 | Reald Inc. | Stereoscopic format converter |
EP1378557B1 (de) | 2002-07-06 | 2007-02-21 | MERCK PATENT GmbH | Flüssigkristallines Medium |
JP3958134B2 (ja) | 2002-07-12 | 2007-08-15 | キヤノン株式会社 | 測定装置 |
ITTO20020625A1 (it) | 2002-07-17 | 2004-01-19 | Fiat Ricerche | Guida di luce per dispositivi di visualizzazione di tipo "head-mounted" o "head-up" |
JP3867634B2 (ja) | 2002-07-26 | 2007-01-10 | 株式会社ニコン | イメージコンバイナ及び画像表示装置 |
US6951393B2 (en) | 2002-07-31 | 2005-10-04 | Canon Kabushiki Kaisha | Projection type image display apparatus and image display system |
ATE386951T1 (de) | 2002-08-05 | 2008-03-15 | Elbit Systems Ltd | Nachtsichtabbildungssystem und -verfahren zur montage in einem fahrzeug |
US7872804B2 (en) | 2002-08-20 | 2011-01-18 | Illumina, Inc. | Encoded particle having a grating with variations in the refractive index |
US8538208B2 (en) | 2002-08-28 | 2013-09-17 | Seng-Tiong Ho | Apparatus for coupling light between input and output waveguides |
US7619739B1 (en) | 2002-08-29 | 2009-11-17 | Science Applications International Corporation | Detection and identification of biological agents using Bragg filters |
WO2004023200A1 (en) | 2002-09-03 | 2004-03-18 | Optrex Corporation | Image display system |
US7259906B1 (en) | 2002-09-03 | 2007-08-21 | Cheetah Omni, Llc | System and method for voice control of medical devices |
EP2399970A3 (en) | 2002-09-05 | 2012-04-18 | Nanosys, Inc. | Nanocomposites |
GB0220856D0 (en) | 2002-09-07 | 2002-10-16 | Univ Manchester | Photorefractive devices |
FI114945B (fi) | 2002-09-19 | 2005-01-31 | Nokia Corp | Sähköisesti säädettävä diffraktiivinen hilaelementti |
JP3994896B2 (ja) | 2002-09-25 | 2007-10-24 | コニカミノルタホールディングス株式会社 | 映像表示装置 |
JP4502323B2 (ja) | 2002-09-25 | 2010-07-14 | ホーヤ コーポレイション ユーエスエイ | 光学装置 |
US6776339B2 (en) | 2002-09-27 | 2004-08-17 | Nokia Corporation | Wireless communication device providing a contactless interface for a smart card reader |
US9134585B2 (en) | 2002-09-30 | 2015-09-15 | Gentex Corporation | Automotive rearview mirror with capacitive switches |
US6805490B2 (en) | 2002-09-30 | 2004-10-19 | Nokia Corporation | Method and system for beam expansion in a display device |
JP3851253B2 (ja) * | 2002-10-09 | 2006-11-29 | 株式会社リコー | 回折格子及び光ピックアップ |
US7110180B2 (en) * | 2002-10-09 | 2006-09-19 | Ricoh Company, Ltd. | Diffraction grating, method of fabricating diffraction optical element, optical pickup device, and optical disk drive |
EP1413972B1 (de) | 2002-10-24 | 2008-10-22 | L-1 Identity Solutions AG | Prüfung von Bildaufnahmen von Personen |
JP4242138B2 (ja) | 2002-11-05 | 2009-03-18 | 日本電信電話株式会社 | ホログラム描画方法及びホログラム |
US7095026B2 (en) | 2002-11-08 | 2006-08-22 | L-3 Communications Cincinnati Electronics Corporation | Methods and apparatuses for selectively limiting undesired radiation |
KR100895148B1 (ko) | 2002-11-20 | 2009-05-04 | 엘지전자 주식회사 | 고분자 광도파관 그레이팅 제조방법 |
US8786923B2 (en) | 2002-11-22 | 2014-07-22 | Akonia Holographics, Llc | Methods and systems for recording to holographic storage media |
US20040263969A1 (en) | 2002-11-25 | 2004-12-30 | Lenny Lipton | Lenticular antireflection display |
US7018563B1 (en) | 2002-11-26 | 2006-03-28 | Science Applications International Corporation | Tailoring material composition for optimization of application-specific switchable holograms |
US6853491B1 (en) | 2003-11-26 | 2005-02-08 | Frank Ruhle | Collimating optical member for real world simulation |
US7480215B2 (en) | 2002-11-27 | 2009-01-20 | Nokia Corporation | Read write device for optical memory and method therefore |
EP1575452A2 (en) | 2002-12-09 | 2005-09-21 | Oree, Advanced Illumination Solutions Inc. | Flexible optical device |
US20040112862A1 (en) | 2002-12-12 | 2004-06-17 | Molecular Imprints, Inc. | Planarization composition and method of patterning a substrate using the same |
FI114946B (fi) | 2002-12-16 | 2005-01-31 | Nokia Corp | Diffraktiivinen hilaelementti diffraktiohyötysuhteen tasapainottamiseksi |
WO2004062090A2 (en) | 2002-12-18 | 2004-07-22 | Powerwave Technologies, Inc. | Delay mismatched feed forward amplifier system using penalties and floors for control |
US7046888B2 (en) | 2002-12-18 | 2006-05-16 | The Regents Of The University Of Michigan | Enhancing fiber-optic sensing technique using a dual-core fiber |
GB2396484A (en) | 2002-12-19 | 2004-06-23 | Nokia Corp | Reducing coupling between different antennas |
US6952312B2 (en) | 2002-12-31 | 2005-10-04 | 3M Innovative Properties Company | Head-up display with polarized light source and wide-angle p-polarization reflective polarizer |
US6853493B2 (en) | 2003-01-07 | 2005-02-08 | 3M Innovative Properties Company | Folded, telecentric projection lenses for use with pixelized panels |
JP3873892B2 (ja) | 2003-01-22 | 2007-01-31 | コニカミノルタホールディングス株式会社 | 映像表示装置 |
US7349612B2 (en) | 2003-01-28 | 2008-03-25 | Nippon Sheet Glass Company, Limited | Optical element, optical circuit provided with the optical element, and method for producing the optical element |
JP2006517307A (ja) | 2003-02-10 | 2006-07-20 | ナノオプト コーポレーション | 汎用広帯域偏光器、それを含むデバイスおよびその製造方法 |
US20040263971A1 (en) | 2003-02-12 | 2004-12-30 | Lenny Lipton | Dual mode autosteroscopic lens sheet |
US7088515B2 (en) | 2003-02-12 | 2006-08-08 | Stereographics Corporation | Autostereoscopic lens sheet with planar areas |
US7205960B2 (en) | 2003-02-19 | 2007-04-17 | Mirage Innovations Ltd. | Chromatic planar optic display system |
US7119965B1 (en) | 2003-02-24 | 2006-10-10 | University Of Central Florida Research Foundation, Inc. | Head mounted projection display with a wide field of view |
US8230359B2 (en) | 2003-02-25 | 2012-07-24 | Microsoft Corporation | System and method that facilitates computer desktop use via scaling of displayed objects with shifts to the periphery |
JP2006519421A (ja) | 2003-03-05 | 2006-08-24 | スリーエム イノベイティブ プロパティズ カンパニー | 回折レンズ |
US7092133B2 (en) | 2003-03-10 | 2006-08-15 | Inphase Technologies, Inc. | Polytopic multiplex holography |
US20040179764A1 (en) | 2003-03-14 | 2004-09-16 | Noureddine Melikechi | Interferometric analog optical modulator for single mode fibers |
KR20060015476A (ko) | 2003-03-16 | 2006-02-17 | 익스플레이 엘티디. | 투사 시스템 및 방법 |
JP4340086B2 (ja) | 2003-03-20 | 2009-10-07 | 株式会社日立製作所 | ナノプリント用スタンパ、及び微細構造転写方法 |
US7006732B2 (en) | 2003-03-21 | 2006-02-28 | Luxtera, Inc. | Polarization splitting grating couplers |
US7181105B2 (en) | 2003-03-25 | 2007-02-20 | Fuji Photo Film Co., Ltd. | Method for adjusting alignment of laser beams in combined-laser-light source where the laser beams are incident on restricted area of light-emission end face of optical fiber |
US7539330B2 (en) | 2004-06-01 | 2009-05-26 | Lumidigm, Inc. | Multispectral liveness determination |
US7460696B2 (en) | 2004-06-01 | 2008-12-02 | Lumidigm, Inc. | Multispectral imaging biometrics |
US6950173B1 (en) | 2003-04-08 | 2005-09-27 | Science Applications International Corporation | Optimizing performance parameters for switchable polymer dispersed liquid crystal optical elements |
AU2003901797A0 (en) | 2003-04-14 | 2003-05-01 | Agresearch Limited | Manipulation of condensed tannin biosynthesis |
US6985296B2 (en) | 2003-04-15 | 2006-01-10 | Stereographics Corporation | Neutralizing device for autostereoscopic lens sheet |
US20070041684A1 (en) | 2003-05-09 | 2007-02-22 | Sbg Labs Inc. A Delaware Corporation | Switchable viewfinder display |
WO2004099851A2 (en) | 2003-05-12 | 2004-11-18 | Elbit Systems Ltd. | Method and system for audiovisual communication |
FI115169B (fi) | 2003-05-13 | 2005-03-15 | Nokia Corp | Menetelmä ja optinen järjestelmä valon kytkemiseksi aaltojohteeseen |
US7401920B1 (en) | 2003-05-20 | 2008-07-22 | Elbit Systems Ltd. | Head mounted eye tracking and display system |
US7046439B2 (en) | 2003-05-22 | 2006-05-16 | Eastman Kodak Company | Optical element with nanoparticles |
US7218817B2 (en) | 2003-06-02 | 2007-05-15 | Board Of Regents, The University Of Texas System | Nonlinear optical guided mode resonance filter |
GB0313044D0 (en) | 2003-06-06 | 2003-07-09 | Cambridge Flat Projection | Flat panel scanning illuminator |
US20060132914A1 (en) | 2003-06-10 | 2006-06-22 | Victor Weiss | Method and system for displaying an informative image against a background image |
JP2005011387A (ja) | 2003-06-16 | 2005-01-13 | Hitachi Global Storage Technologies Inc | 磁気ディスク装置 |
JPWO2004113971A1 (ja) | 2003-06-19 | 2006-08-03 | 株式会社ニコン | 光学素子 |
CA2529033A1 (en) | 2003-06-21 | 2005-01-06 | Aprilis, Inc. | Method and apparatus for processing biometric images |
US7394865B2 (en) | 2003-06-25 | 2008-07-01 | Nokia Corporation | Signal constellations for multi-carrier systems |
JP4741488B2 (ja) | 2003-07-03 | 2011-08-03 | ホロタッチ, インコーポレイテッド | ホログラフィックヒューマンマシンインタフェース |
ITTO20030530A1 (it) | 2003-07-09 | 2005-01-10 | Infm Istituto Naz Per La Fisi Ca Della Mater | Reticolo olografico di diffrazione, procedimento per la |
GB2403814A (en) | 2003-07-10 | 2005-01-12 | Ocuity Ltd | Directional display apparatus with birefringent lens structure |
US7158095B2 (en) | 2003-07-17 | 2007-01-02 | Big Buddy Performance, Inc. | Visual display system for displaying virtual images onto a field of vision |
EP1651999B1 (en) | 2003-08-08 | 2018-11-28 | Merck Patent GmbH | Alignment layer with reactive mesogens for aligning liquid crystal molecules |
KR100516601B1 (ko) | 2003-08-13 | 2005-09-22 | 삼성전기주식회사 | 휴대용 단말기에 장착되는 렌즈 시스템 |
EP1510862A3 (en) | 2003-08-25 | 2006-08-09 | Fuji Photo Film Co., Ltd. | Hologram recording method and hologram recording material |
AU2003258743A1 (en) | 2003-08-29 | 2005-03-16 | Nokia Corporation | Electrical device utilizing charge recycling within a cell |
GB2405519A (en) | 2003-08-30 | 2005-03-02 | Sharp Kk | A multiple-view directional display |
IL157836A (en) | 2003-09-10 | 2009-08-03 | Yaakov Amitai | Optical devices particularly for remote viewing applications |
IL157837A (en) | 2003-09-10 | 2012-12-31 | Yaakov Amitai | Substrate-guided optical device particularly for three-dimensional displays |
IL157838A (en) | 2003-09-10 | 2013-05-30 | Yaakov Amitai | High-brightness optical device |
US7212175B1 (en) | 2003-09-19 | 2007-05-01 | Rockwell Collins, Inc. | Symbol position monitoring for pixelated heads-up display method and apparatus |
US7088457B1 (en) | 2003-10-01 | 2006-08-08 | University Of Central Florida Research Foundation, Inc. | Iterative least-squares wavefront estimation for general pupil shapes |
US7616228B2 (en) | 2003-10-02 | 2009-11-10 | Real D | Hardware based interdigitation |
US7616227B2 (en) | 2003-10-02 | 2009-11-10 | Real D | Hardware based interdigitation |
JP4266770B2 (ja) | 2003-10-22 | 2009-05-20 | アルプス電気株式会社 | 光学式画像読み取り装置 |
US7277640B2 (en) | 2003-11-18 | 2007-10-02 | Avago Technologies Fiber Ip (Singapore) Pte Ltd | Optical add/drop multiplexing systems |
US7333685B2 (en) | 2003-11-24 | 2008-02-19 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Variable optical attenuator systems |
WO2005052660A1 (ja) | 2003-11-28 | 2005-06-09 | Nhk Spring Co., Ltd. | 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法 |
IL165376A0 (en) | 2003-12-02 | 2006-01-15 | Electro Optics Ind Ltd | Vehicle display system |
JP2005190647A (ja) | 2003-12-03 | 2005-07-14 | Ricoh Co Ltd | 相変化型光記録媒体 |
KR101196237B1 (ko) | 2003-12-04 | 2012-11-06 | 롤리크 아게 | 액정 재료용 부가 성분 |
US7034748B2 (en) | 2003-12-17 | 2006-04-25 | Microsoft Corporation | Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters |
US7273659B2 (en) | 2003-12-18 | 2007-09-25 | Lintec Corporation | Photochromic film material |
EP1939653B1 (en) | 2003-12-24 | 2009-10-07 | PGT Photonics S.p.A. | External cavity laser with tunable resonant grating filter |
TWI229751B (en) | 2003-12-26 | 2005-03-21 | Ind Tech Res Inst | Adjustable filter and manufacturing method thereof |
US7557154B2 (en) | 2004-12-23 | 2009-07-07 | Sabic Innovative Plastics Ip B.V. | Polymer compositions, method of manufacture, and articles formed therefrom |
US7496293B2 (en) | 2004-01-14 | 2009-02-24 | Elbit Systems Ltd. | Versatile camera for various visibility conditions |
WO2005089098A2 (en) * | 2004-01-14 | 2005-09-29 | The Regents Of The University Of California | Ultra broadband mirror using subwavelength grating |
JP4077484B2 (ja) | 2004-01-29 | 2008-04-16 | 松下電器産業株式会社 | 光源装置 |
JP4438436B2 (ja) | 2004-02-03 | 2010-03-24 | セイコーエプソン株式会社 | 表示装置 |
FI20040162A7 (fi) | 2004-02-03 | 2005-08-04 | Nokia Oyj | Viitevärähtelijän taajuuden vakauttaminen |
JP4682519B2 (ja) | 2004-02-03 | 2011-05-11 | セイコーエプソン株式会社 | 表示装置 |
US7317449B2 (en) | 2004-03-02 | 2008-01-08 | Microsoft Corporation | Key-based advanced navigation techniques |
US6958868B1 (en) | 2004-03-29 | 2005-10-25 | John George Pender | Motion-free tracking solar concentrator |
EP1731943B1 (en) | 2004-03-29 | 2019-02-13 | Sony Corporation | Optical device and virtual image display device |
US7119161B2 (en) | 2004-03-31 | 2006-10-10 | Solaris Nanosciences, Inc. | Anisotropic nanoparticles and anisotropic nanostructures and pixels, displays and inks using them |
US20050232530A1 (en) | 2004-04-01 | 2005-10-20 | Jason Kekas | Electronically controlled volume phase grating devices, systems and fabrication methods |
JP3952034B2 (ja) | 2004-04-14 | 2007-08-01 | 富士ゼロックス株式会社 | ホログラム記録方法、ホログラム記録装置、ホログラム再生方法、ホログラム再生装置、及び情報保持体 |
US7526103B2 (en) | 2004-04-15 | 2009-04-28 | Donnelly Corporation | Imaging system for vehicle |
US7375886B2 (en) | 2004-04-19 | 2008-05-20 | Stereographics Corporation | Method and apparatus for optimizing the viewing distance of a lenticular stereogram |
US6992830B1 (en) | 2004-04-22 | 2006-01-31 | Raytheon Company | Projection display having an angle-selective coating for enhanced image contrast, and method for enhancing image contrast |
US7339737B2 (en) | 2004-04-23 | 2008-03-04 | Microvision, Inc. | Beam multiplier that can be used as an exit-pupil expander and related system and method |
US7454103B2 (en) | 2004-04-23 | 2008-11-18 | Parriaux Olivier M | High efficiency optical diffraction device |
WO2005106571A1 (ja) | 2004-04-30 | 2005-11-10 | Asahi Glass Company, Limited | 液晶レンズ素子および光ヘッド装置 |
JP4373286B2 (ja) | 2004-05-06 | 2009-11-25 | オリンパス株式会社 | 頭部装着型表示装置 |
GB2414127A (en) | 2004-05-12 | 2005-11-16 | Sharp Kk | Time sequential colour projection |
WO2005111669A1 (ja) | 2004-05-17 | 2005-11-24 | Nikon Corporation | 光学素子、コンバイナ光学系、及び画像表示装置 |
US20080298740A1 (en) | 2004-05-18 | 2008-12-04 | Ciphergen Biosystems, Inc. | Integrated Optical Waveguide Sensors With Reduced Signal Modulation |
US7301601B2 (en) | 2004-05-20 | 2007-11-27 | Alps Electric (Usa) Inc. | Optical switching device using holographic polymer dispersed liquid crystals |
US7639208B1 (en) | 2004-05-21 | 2009-12-29 | University Of Central Florida Research Foundation, Inc. | Compact optical see-through head-mounted display with occlusion support |
US8229185B2 (en) | 2004-06-01 | 2012-07-24 | Lumidigm, Inc. | Hygienic biometric sensors |
US7002753B2 (en) | 2004-06-02 | 2006-02-21 | 3M Innovative Properties Company | Color-corrected projection lenses for use with pixelized panels |
IL162572A (en) | 2004-06-17 | 2013-02-28 | Lumus Ltd | High brightness optical device |
IL162573A (en) | 2004-06-17 | 2013-05-30 | Lumus Ltd | Optical component in a large key conductive substrate |
US7482996B2 (en) | 2004-06-28 | 2009-01-27 | Honeywell International Inc. | Head-up display |
EP1612596A1 (en) | 2004-06-29 | 2006-01-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production |
IL162779A (en) | 2004-06-29 | 2010-11-30 | Elbit Systems Ltd | Security systems and methods relating to travelling vehicles |
JP2006018864A (ja) | 2004-06-30 | 2006-01-19 | Sony Corp | ホログラム複製方法 |
US7617022B1 (en) | 2004-07-01 | 2009-11-10 | Rockwell Collins, Inc. | Dual wavelength enhanced vision system optimized for visual landing light alignment |
US7605774B1 (en) | 2004-07-02 | 2009-10-20 | Rockwell Collins, Inc. | Enhanced vision system (EVS) processing window tied to flight path |
US20060013977A1 (en) | 2004-07-13 | 2006-01-19 | Duke Leslie P | Polymeric ballistic material and method of making |
US7597447B2 (en) | 2004-07-14 | 2009-10-06 | Honeywell International Inc. | Color correcting contrast enhancement of displays |
US7285903B2 (en) | 2004-07-15 | 2007-10-23 | Honeywell International, Inc. | Display with bright backlight |
US7110184B1 (en) | 2004-07-19 | 2006-09-19 | Elbit Systems Ltd. | Method and apparatus for combining an induced image with a scene image |
JP4835437B2 (ja) | 2004-07-20 | 2011-12-14 | 旭硝子株式会社 | 液晶レンズ素子および光ヘッド装置 |
JP4841815B2 (ja) | 2004-07-23 | 2011-12-21 | 株式会社村上開明堂 | 表示装置 |
US7492512B2 (en) | 2004-07-23 | 2009-02-17 | Mirage International Ltd. | Wide field-of-view binocular device, system and kit |
JP2006039303A (ja) | 2004-07-28 | 2006-02-09 | Sumitomo Electric Ind Ltd | 光情報記録媒体およびその記録方法と製造方法 |
US7689086B2 (en) | 2004-07-30 | 2010-03-30 | University Of Connecticut | Resonant leaky-mode optical devices and associated methods |
US8938141B2 (en) | 2004-07-30 | 2015-01-20 | University Of Connecticut | Tunable resonant leaky-mode N/MEMS elements and uses in optical devices |
US7145729B2 (en) | 2004-08-04 | 2006-12-05 | 3M Innovative Properties Company | Foldable projection lenses |
US7230770B2 (en) | 2004-08-04 | 2007-06-12 | 3M Innovative Properties Company | Projection lenses having color-correcting rear lens units |
IL163361A (en) | 2004-08-05 | 2011-06-30 | Lumus Ltd | Optical device for light coupling into a guiding substrate |
EP1784988A1 (en) | 2004-08-06 | 2007-05-16 | University of Washington | Variable fixation viewing distance scanned light displays |
US7436568B1 (en) | 2004-08-17 | 2008-10-14 | Kuykendall Jr Jacob L | Head mountable video display |
US7233446B2 (en) | 2004-08-19 | 2007-06-19 | 3Dtl, Inc. | Transformable, applicable material and methods for using same for optical effects |
US7167616B2 (en) | 2004-08-20 | 2007-01-23 | Integrated Optics Communications Corp. | Grating-based wavelength selective switch |
US7075273B2 (en) | 2004-08-24 | 2006-07-11 | Motorola, Inc. | Automotive electrical system configuration using a two bus structure |
US8124929B2 (en) | 2004-08-25 | 2012-02-28 | Protarius Filo Ag, L.L.C. | Imager module optical focus and assembly method |
JP4297358B2 (ja) | 2004-08-30 | 2009-07-15 | 国立大学法人京都大学 | 2次元フォトニック結晶及びそれを用いた光デバイス |
EP1632520A1 (en) * | 2004-09-03 | 2006-03-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Film forming material and preparation of surface relief and optically anisotropic structures by irradiating a film of the said material |
TW200619235A (en) | 2004-09-03 | 2006-06-16 | Fraunhofer Ges Forschung | Film forming material and preparation of surface relief and optically anisotropic structures by irradiating a film of the said material |
JP2006318515A (ja) | 2004-09-10 | 2006-11-24 | Ricoh Co Ltd | ホログラム素子及びその製造方法及び光ヘッド装置 |
US7619825B1 (en) | 2004-09-27 | 2009-11-17 | Rockwell Collins, Inc. | Compact head up display with wide viewing angle |
WO2006035737A1 (ja) | 2004-09-29 | 2006-04-06 | Brother Kogyo Kabushiki Kaisha | 網膜走査型ディスプレイ |
JP4649158B2 (ja) | 2004-09-30 | 2011-03-09 | 富士フイルム株式会社 | ホログラム記録方法 |
WO2006040902A1 (ja) | 2004-10-08 | 2006-04-20 | Pioneer Corporation | 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置 |
WO2006041278A1 (en) * | 2004-10-15 | 2006-04-20 | Stichting Dutch Polymer Institute | Waveguide comprising an anisotropic diffracting layer |
US7787110B2 (en) | 2004-10-16 | 2010-08-31 | Aprilis, Inc. | Diffractive imaging system and method for the reading and analysis of skin topology |
JP4692489B2 (ja) | 2004-10-19 | 2011-06-01 | 旭硝子株式会社 | 液晶回折レンズ素子および光ヘッド装置 |
US7376307B2 (en) | 2004-10-29 | 2008-05-20 | Matsushita Electric Industrial Co., Ltd | Multimode long period fiber bragg grating machined by ultrafast laser direct writing |
IL165190A (en) | 2004-11-14 | 2012-05-31 | Elbit Systems Ltd | System and method for stabilizing an image |
CN101065713A (zh) | 2004-11-25 | 2007-10-31 | 皇家飞利浦电子股份有限公司 | 动态液晶凝胶全息图 |
JP4212547B2 (ja) | 2004-12-02 | 2009-01-21 | シャープ株式会社 | 可変分波器 |
JP5282358B2 (ja) | 2004-12-06 | 2013-09-04 | 株式会社ニコン | 画像表示光学系及び画像表示装置 |
US7206107B2 (en) | 2004-12-13 | 2007-04-17 | Nokia Corporation | Method and system for beam expansion in a display device |
WO2006064334A1 (en) | 2004-12-13 | 2006-06-22 | Nokia Corporation | General diffractive optics method for expanding an exit pupil |
US20060126181A1 (en) | 2004-12-13 | 2006-06-15 | Nokia Corporation | Method and system for beam expansion in a display device |
EP1825306B1 (en) | 2004-12-13 | 2012-04-04 | Nokia Corporation | System and method for beam expansion with near focus in a display device |
US7466994B2 (en) | 2004-12-31 | 2008-12-16 | Nokia Corporation | Sub-display of a mobile device |
US7289069B2 (en) | 2005-01-04 | 2007-10-30 | Nokia Corporation | Wireless device antenna |
WO2006077588A2 (en) | 2005-01-20 | 2006-07-27 | Elbit Systems Electro-Optics Elop Ltd. | Laser obstacle detection and display |
US8885139B2 (en) | 2005-01-21 | 2014-11-11 | Johnson & Johnson Vision Care | Adaptive electro-active lens with variable focal length |
WO2007097738A2 (en) | 2005-01-26 | 2007-08-30 | Wollf Robin Q | Eye tracker/head tracker/camera tracker controlled camera/weapon positioner control system |
ATE492080T1 (de) | 2005-01-26 | 2011-01-15 | Nokia Siemens Networks Gmbh | Verfahren zur optischen übertragung von polarisations-multiplexsignalen |
GB0502453D0 (en) | 2005-02-05 | 2005-03-16 | Cambridge Flat Projection | Flat panel lens |
US7751122B2 (en) | 2005-02-10 | 2010-07-06 | Lumus Ltd. | Substrate-guided optical device particularly for vision enhanced optical systems |
EP1849033B1 (en) | 2005-02-10 | 2019-06-19 | Lumus Ltd | Substrate-guided optical device utilizing thin transparent layer |
US10073264B2 (en) | 2007-08-03 | 2018-09-11 | Lumus Ltd. | Substrate-guide optical device |
IL166799A (en) | 2005-02-10 | 2014-09-30 | Lumus Ltd | Aluminum shale surfaces for use in a conductive substrate |
US7325928B2 (en) | 2005-02-14 | 2008-02-05 | Intel Corporation | Resolution multiplication technique for projection display systems |
GB2423517A (en) | 2005-02-28 | 2006-08-30 | Weatherford Lamb | Apparatus for drawing and annealing an optical fibre |
JPWO2006098334A1 (ja) | 2005-03-15 | 2008-08-21 | 富士フイルム株式会社 | 透光性電磁波シールド膜、光学フィルター、およびプラズマテレビ |
US7389023B2 (en) | 2005-03-15 | 2008-06-17 | Hewlett-Packard Development Company, L.P. | Method and apparatus for forming a photonic crystal |
WO2006102073A2 (en) | 2005-03-18 | 2006-09-28 | Sbg Labs, Inc. | Spatial light modulator |
US7587110B2 (en) | 2005-03-22 | 2009-09-08 | Panasonic Corporation | Multicore optical fiber with integral diffractive elements machined by ultrafast laser direct writing |
EP1861745A2 (en) | 2005-03-22 | 2007-12-05 | MYVU Corporation | Optical system using total internal reflection images |
JP4612853B2 (ja) | 2005-03-29 | 2011-01-12 | キヤノン株式会社 | 指示位置認識装置及びそれを有する情報入力装置 |
US7573640B2 (en) | 2005-04-04 | 2009-08-11 | Mirage Innovations Ltd. | Multi-plane optical apparatus |
JP5090337B2 (ja) | 2005-04-08 | 2012-12-05 | リアルディー インコーポレイテッド | 平面パススルーを有する自動立体ディスプレイ |
US7123421B1 (en) | 2005-04-22 | 2006-10-17 | Panavision International, L.P. | Compact high performance zoom lens system |
IL168581A (en) | 2005-05-15 | 2010-12-30 | Elbit Systems Electro Optics Elop Ltd | Head-up display system |
CN101617263A (zh) | 2005-05-18 | 2009-12-30 | 道格拉斯·S·霍布斯 | 用于偏振和波长滤波的微结构光学装置 |
US20060268104A1 (en) | 2005-05-26 | 2006-11-30 | Real D | Ghost-compensation for improved stereoscopic projection |
US20090017424A1 (en) | 2005-05-30 | 2009-01-15 | Elbit Systems Ltd. | Combined head up display |
KR100687742B1 (ko) | 2005-06-03 | 2007-02-27 | 한국전자통신연구원 | 온도 무관 폴리머 광도파로열격자 소자 및 제조 방법 |
US20090303599A1 (en) | 2005-06-03 | 2009-12-10 | Nokia Corporation | General diffractive optics method for expanding an exit pupil |
KR101265893B1 (ko) | 2005-06-07 | 2013-05-20 | 리얼디 인크. | 오토스테레오스코픽 조망 구역의 각도 범위를 제어하는방법 및 장치 |
JP4655771B2 (ja) | 2005-06-17 | 2011-03-23 | ソニー株式会社 | 光学装置及び虚像表示装置 |
JP5377960B2 (ja) | 2005-06-24 | 2013-12-25 | リアルディー インコーポレイテッド | オートステレオスコピックディスプレイシステム |
JP4862298B2 (ja) | 2005-06-30 | 2012-01-25 | ソニー株式会社 | 光学装置及び虚像表示装置 |
EP2037300A3 (en) | 2005-07-07 | 2009-04-08 | Nokia Corporation | Manufacturing of optical waveguides by embossing grooves by rolling |
EP1908271A2 (en) | 2005-07-19 | 2008-04-09 | Elbit Systems Electro-Optics Elop Ltd. | Method and system for visually presenting a high dynamic range image |
US7271960B2 (en) | 2005-07-25 | 2007-09-18 | Stewart Robert J | Universal vehicle head up display (HUD) device and method for using the same |
WO2007015141A2 (en) | 2005-08-04 | 2007-02-08 | Milan Momcilo Popovich | Laser illuminator |
US7397606B1 (en) | 2005-08-04 | 2008-07-08 | Rockwell Collins, Inc. | Meniscus head up display combiner |
US7513668B1 (en) | 2005-08-04 | 2009-04-07 | Rockwell Collins, Inc. | Illumination system for a head up display |
TWI362213B (en) | 2005-08-09 | 2012-04-11 | Contact image sensor module | |
US7864427B2 (en) | 2005-08-29 | 2011-01-04 | Panasonic Corporation | Diffractive optical element and method for manufacturing the same, and imaging apparatus using the diffractive optical element |
US7666331B2 (en) | 2005-08-31 | 2010-02-23 | Transitions Optical, Inc. | Photochromic article |
US7434940B2 (en) | 2005-09-06 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Light coupling system and method |
EP2128682A3 (en) | 2005-09-07 | 2011-11-30 | BAE Systems PLC | A projection display |
US9081178B2 (en) | 2005-09-07 | 2015-07-14 | Bae Systems Plc | Projection display for displaying an image to a viewer |
GB0518212D0 (en) | 2005-09-08 | 2005-10-19 | Popovich Milan M | Polarisation converter |
IL173361A (en) | 2005-09-12 | 2012-03-29 | Elbit Systems Ltd | Display system near the eye |
US20090128911A1 (en) | 2005-09-14 | 2009-05-21 | Moti Itzkovitch | Diffraction Grating With a Spatially Varying Duty-Cycle |
CN101263412A (zh) | 2005-09-14 | 2008-09-10 | 米拉茨创新有限公司 | 衍射光学装置和系统 |
US20080043334A1 (en) | 2006-08-18 | 2008-02-21 | Mirage Innovations Ltd. | Diffractive optical relay and method for manufacturing the same |
GB0518912D0 (en) | 2005-09-16 | 2005-10-26 | Light Blue Optics Ltd | Methods and apparatus for displaying images using holograms |
JP2007086145A (ja) | 2005-09-20 | 2007-04-05 | Sony Corp | 3次元表示装置 |
EP1938141A1 (en) | 2005-09-28 | 2008-07-02 | Mirage Innovations Ltd. | Stereoscopic binocular system, device and method |
JP4810949B2 (ja) | 2005-09-29 | 2011-11-09 | ソニー株式会社 | 光学装置及び画像表示装置 |
EP1938086A1 (en) | 2005-10-12 | 2008-07-02 | Koninklijke Philips Electronics N.V. | All polymer optical waveguide sensor |
US7394961B2 (en) | 2005-10-13 | 2008-07-01 | Pavel Kornilovich | Waveguide having low index substrate |
US20070089625A1 (en) | 2005-10-20 | 2007-04-26 | Elbit Vision Systems Ltd. | Method and system for detecting defects during the fabrication of a printing cylinder |
US8018579B1 (en) | 2005-10-21 | 2011-09-13 | Apple Inc. | Three-dimensional imaging and display system |
WO2007050973A2 (en) | 2005-10-27 | 2007-05-03 | Real D | Temperature compensation for the differential expansion of an autostereoscopic lenticular array and display screen |
JP2007121893A (ja) | 2005-10-31 | 2007-05-17 | Olympus Corp | 偏光スイッチング液晶素子、およびこれを備える画像表示装置 |
ATE422679T1 (de) | 2005-11-03 | 2009-02-15 | Mirage Innovations Ltd | Binokulare optische relaiseinrichtung |
IL171820A (en) | 2005-11-08 | 2014-04-30 | Lumus Ltd | A polarizing optical component for light coupling within a conductive substrate |
US10261321B2 (en) | 2005-11-08 | 2019-04-16 | Lumus Ltd. | Polarizing optical system |
IL179135A (en) | 2005-11-10 | 2010-11-30 | Elbit Systems Electro Optics Elop Ltd | Head up display mechanism |
US7777819B2 (en) | 2005-11-10 | 2010-08-17 | Bae Systems Plc | Display source |
GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
EP1949341A4 (en) | 2005-11-14 | 2011-09-28 | Real D | INTEGRATED INTERDIGITATION MONITOR |
CN101313359B (zh) | 2005-11-21 | 2011-10-05 | 松下电器产业株式会社 | 拾光器、光盘装置、计算机和光盘刻录机 |
US7477206B2 (en) | 2005-12-06 | 2009-01-13 | Real D | Enhanced ZScreen modulator techniques |
US7583437B2 (en) | 2005-12-08 | 2009-09-01 | Real D | Projection screen with virtual compound curvature |
US7639911B2 (en) | 2005-12-08 | 2009-12-29 | Electronics And Telecommunications Research Institute | Optical device having optical waveguide including organic Bragg grating sheet |
JP4668780B2 (ja) | 2005-12-08 | 2011-04-13 | 矢崎総業株式会社 | 発光表示装置 |
US7522344B1 (en) | 2005-12-14 | 2009-04-21 | University Of Central Florida Research Foundation, Inc. | Projection-based head-mounted display with eye-tracking capabilities |
US20070133983A1 (en) | 2005-12-14 | 2007-06-14 | Matilda Traff | Light-controlling element for a camera |
WO2007071794A2 (en) | 2005-12-22 | 2007-06-28 | Universite Jean-Monnet | Mirror structure and laser device comprising such a mirror structure |
US20070153354A1 (en) | 2005-12-22 | 2007-07-05 | Solbeam, Inc. | Minimizing lensing in electro-optic prisms |
US8233154B2 (en) | 2005-12-22 | 2012-07-31 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | High precision code plates and geophones |
IL172797A (en) | 2005-12-25 | 2012-09-24 | Elbit Systems Ltd | Real-time image scanning and processing |
US7953308B2 (en) | 2005-12-30 | 2011-05-31 | General Electric Company | System and method for fiber optic bundle-based illumination for imaging system |
US8384504B2 (en) | 2006-01-06 | 2013-02-26 | Quantum Design International, Inc. | Superconducting quick switch |
US20070160325A1 (en) | 2006-01-11 | 2007-07-12 | Hyungbin Son | Angle-tunable transmissive grating |
DE102006003785B4 (de) | 2006-01-25 | 2023-02-23 | Adc Automotive Distance Control Systems Gmbh | Sensor mit einer regelbaren Abblendvorrichtung |
ES2605367T3 (es) | 2006-01-26 | 2017-03-14 | Nokia Technologies Oy | Dispositivo de seguimiento ocular |
US7760429B2 (en) | 2006-01-27 | 2010-07-20 | Reald Inc. | Multiple mode display device |
US7928862B1 (en) | 2006-01-30 | 2011-04-19 | Rockwell Collins, Inc. | Display of hover and touchdown symbology on head-up display |
IL173715A0 (en) | 2006-02-14 | 2007-03-08 | Lumus Ltd | Substrate-guided imaging lens |
JP2007219106A (ja) | 2006-02-16 | 2007-08-30 | Konica Minolta Holdings Inc | 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ |
KR101241770B1 (ko) | 2006-02-17 | 2013-03-14 | 삼성디스플레이 주식회사 | 입체영상 변환패널 및 이를 갖는 입체영상 표시장치 |
JP4572342B2 (ja) | 2006-02-21 | 2010-11-04 | セイコーエプソン株式会社 | 電子機器 |
ITMI20060309A1 (it) | 2006-02-21 | 2007-08-22 | De Nora Elettrodi Spa | Testata per cella di elettrolisi a catodo di mercurio di soluzioni di cloruri alcalini |
EP2002302B1 (en) | 2006-02-27 | 2015-11-11 | Nokia Technologies Oy | Diffraction gratings with tunable efficiency |
US7499217B2 (en) | 2006-03-03 | 2009-03-03 | University Of Central Florida Research Foundation, Inc. | Imaging systems for eyeglass-based display devices |
US20070206155A1 (en) | 2006-03-03 | 2007-09-06 | Real D | Steady state surface mode device for stereoscopic projection |
IL174170A (en) | 2006-03-08 | 2015-02-26 | Abraham Aharoni | Device and method for two-eyed tuning |
GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
WO2007130130A2 (en) | 2006-04-06 | 2007-11-15 | Sbg Labs Inc. | Method and apparatus for providing a transparent display |
US7679641B2 (en) | 2006-04-07 | 2010-03-16 | Real D | Vertical surround parallax correction |
WO2007127758A2 (en) | 2006-04-24 | 2007-11-08 | Displaytech, Inc | Spatial light modulators with changeable phase masks for use in holographic data storage |
US7843642B2 (en) | 2006-05-04 | 2010-11-30 | University Of Central Florida Research Foundation | Systems and methods for providing compact illumination in head mounted displays |
US7524053B2 (en) | 2006-05-12 | 2009-04-28 | Real D | 3-D eyewear |
US7740387B2 (en) | 2006-05-24 | 2010-06-22 | 3M Innovative Properties Company | Backlight wedge with side mounted light source |
WO2007141588A1 (en) | 2006-06-02 | 2007-12-13 | Nokia Corporation | Split exit pupil expander |
WO2007141587A1 (en) | 2006-06-02 | 2007-12-13 | Nokia Corporation | Color distribution in exit pupil expanders |
WO2007141589A1 (en) | 2006-06-02 | 2007-12-13 | Nokia Corporation | Stereoscopic exit pupil expander display |
US20090128781A1 (en) | 2006-06-13 | 2009-05-21 | Kenneth Li | LED multiplexer and recycler and micro-projector incorporating the Same |
US7415173B2 (en) | 2006-06-13 | 2008-08-19 | Nokia Corporation | Position sensor |
DE102006027415B3 (de) | 2006-06-13 | 2007-10-11 | Siemens Ag | Verfahren und Anordnung zur Ein- und/oder Abschaltung eines Raman-Pumplasers |
US7542210B2 (en) | 2006-06-29 | 2009-06-02 | Chirieleison Sr Anthony | Eye tracking head mounted display |
EP2040099B1 (en) | 2006-06-30 | 2013-07-24 | Hoya Corporation | Photochromic film, photochromic lens comprising the same, and method of manufacturing photochromic lens |
KR101229019B1 (ko) | 2006-06-30 | 2013-02-15 | 엘지디스플레이 주식회사 | 액정표시장치 및 이의 구동회로 |
US8199803B2 (en) | 2006-07-14 | 2012-06-12 | Nokia Siemens Neworks GmbH & Co. KG | Receiver structure and method for the demodulation of a quadrature-modulated signal |
US8502643B2 (en) | 2006-07-18 | 2013-08-06 | L-I Identity Solutions Operating Company | Methods and apparatus for self check-in of items for transportation |
US7517081B2 (en) | 2006-07-20 | 2009-04-14 | Real D | Low-cost circular polarizing eyewear |
DE102006036831B9 (de) | 2006-08-07 | 2016-04-14 | Friedrich-Schiller-Universität Jena | Verschlossene, binäre Transmissionsgitter |
IL177618A (en) | 2006-08-22 | 2015-02-26 | Lumus Ltd | Optical component in conductive substrate |
WO2008023375A1 (en) | 2006-08-23 | 2008-02-28 | Mirage Innovations Ltd. | Diffractive optical relay device with improved color uniformity |
US8736672B2 (en) | 2006-08-24 | 2014-05-27 | Reald Inc. | Algorithmic interaxial reduction |
CN200944140Y (zh) | 2006-09-08 | 2007-09-05 | 李伯伦 | 一种平直波导显示器面板 |
US8493433B2 (en) | 2006-09-12 | 2013-07-23 | Reald Inc. | Shuttering eyewear for use with stereoscopic liquid crystal display |
US7525448B1 (en) | 2006-09-28 | 2009-04-28 | Rockwell Collins, Inc. | Enhanced vision system and method for an aircraft |
US8593734B2 (en) | 2006-09-28 | 2013-11-26 | Nokia Corporation | Beam expansion with three-dimensional diffractive elements |
US8830143B1 (en) | 2006-09-28 | 2014-09-09 | Rockwell Collins, Inc. | Enhanced vision system and method for an aircraft |
DE102006046555B4 (de) | 2006-09-28 | 2010-12-16 | Grintech Gmbh | Miniaturisiertes optisch abbildendes System mit hoher lateraler und axialer Auflösung |
GB0619226D0 (en) | 2006-09-29 | 2006-11-08 | Cambridge Flat Projection | Efficient wedge projection |
GB0619366D0 (en) | 2006-10-02 | 2006-11-08 | Cambridge Flat Projection | Distortionless wedge projection |
GB0620014D0 (en) | 2006-10-10 | 2006-11-22 | Cambridge Flat Projection | Prismatic film backlight |
US7857455B2 (en) | 2006-10-18 | 2010-12-28 | Reald Inc. | Combining P and S rays for bright stereoscopic projection |
US7670004B2 (en) | 2006-10-18 | 2010-03-02 | Real D | Dual ZScreen® projection |
US8000491B2 (en) | 2006-10-24 | 2011-08-16 | Nokia Corporation | Transducer device and assembly |
US8155489B2 (en) | 2006-11-02 | 2012-04-10 | Nokia Corporation | Method for coupling light into a thin planar waveguide |
US20080106779A1 (en) | 2006-11-02 | 2008-05-08 | Infocus Corporation | Laser Despeckle Device |
WO2008071830A1 (en) | 2006-12-14 | 2008-06-19 | Nokia Corporation | Display device having two operating modes |
KR100803288B1 (ko) | 2006-12-20 | 2008-02-13 | 인하대학교 산학협력단 | 폴리머 집광 도파로 격자 커플러 및 광 pcb |
US20080155426A1 (en) | 2006-12-21 | 2008-06-26 | Microsoft Corporation | Visualization and navigation of search results |
US7775387B2 (en) | 2006-12-21 | 2010-08-17 | Reald Inc. | Eyewear receptacle |
US20080151370A1 (en) | 2006-12-21 | 2008-06-26 | Real D | Method of recycling eyewear |
CN101583864A (zh) | 2006-12-21 | 2009-11-18 | 皇家飞利浦电子股份有限公司 | 线栅波导 |
JP5303928B2 (ja) | 2006-12-26 | 2013-10-02 | 東レ株式会社 | 反射型偏光板及びその製造方法、それを用いた液晶表示装置 |
JP2008164680A (ja) | 2006-12-27 | 2008-07-17 | Canon Inc | 光学波長板及び該波長板の製造方法 |
USD559250S1 (en) | 2006-12-28 | 2008-01-08 | Kopin Corporation | Viewing device |
CN101589326B (zh) | 2006-12-28 | 2011-06-29 | 诺基亚公司 | 用于在二维上扩展出射光瞳的设备 |
WO2008081071A1 (en) | 2006-12-28 | 2008-07-10 | Nokia Corporation | Light guide plate and a method of manufacturing thereof |
US8134434B2 (en) | 2007-01-05 | 2012-03-13 | Quantum Design, Inc. | Superconducting quick switch |
US7369911B1 (en) | 2007-01-10 | 2008-05-06 | International Business Machines Corporation | Methods, systems, and computer program products for managing movement of work-in-process materials in an automated manufacturing environment |
US20080172526A1 (en) | 2007-01-11 | 2008-07-17 | Akshat Verma | Method and System for Placement of Logical Data Stores to Minimize Request Response Time |
US8022942B2 (en) | 2007-01-25 | 2011-09-20 | Microsoft Corporation | Dynamic projected user interface |
US7808708B2 (en) | 2007-02-01 | 2010-10-05 | Reald Inc. | Aperture correction for lenticular screens |
US7508589B2 (en) | 2007-02-01 | 2009-03-24 | Real D | Soft aperture correction for lenticular screens |
WO2008100545A2 (en) | 2007-02-12 | 2008-08-21 | E. I. Du Pont De Nemours And Company | Production of arachidonic acid in oilseed plants |
US8432363B2 (en) | 2007-02-23 | 2013-04-30 | Nokia Corporation | Optical actuators in keypads |
WO2008106602A1 (en) | 2007-02-28 | 2008-09-04 | L-3 Communications Corporation | Systems and methods for aiding pilot situational awareness |
US20080273081A1 (en) | 2007-03-13 | 2008-11-06 | Lenny Lipton | Business system for two and three dimensional snapshots |
US20080226281A1 (en) | 2007-03-13 | 2008-09-18 | Real D | Business system for three-dimensional snapshots |
JP4783750B2 (ja) * | 2007-03-16 | 2011-09-28 | 株式会社リコー | 光束分割素子 |
JP4880746B2 (ja) | 2007-03-19 | 2012-02-22 | パナソニック株式会社 | レーザ照明装置及び画像表示装置 |
US20080239067A1 (en) | 2007-04-02 | 2008-10-02 | Real D | Optical concatenation for field sequential stereoscpoic displays |
US20080239068A1 (en) | 2007-04-02 | 2008-10-02 | Real D | Color and polarization timeplexed stereoscopic display apparatus |
US8014050B2 (en) | 2007-04-02 | 2011-09-06 | Vuzix Corporation | Agile holographic optical phased array device and applications |
ATE529769T1 (de) | 2007-04-16 | 2011-11-15 | Univ North Carolina State | Chirale flüssigkristallpolarisationsgitter mit leichter drehung und herstellungsverfahren dafür |
US8643948B2 (en) | 2007-04-22 | 2014-02-04 | Lumus Ltd. | Collimating optical device and system |
US7600893B2 (en) | 2007-05-01 | 2009-10-13 | Exalos Ag | Display apparatus, method and light source |
DE102007021036A1 (de) | 2007-05-04 | 2008-11-06 | Carl Zeiss Ag | Anzeigevorrichtung und Anzeigeverfahren zur binokularen Darstellung eines mehrfarbigen Bildes |
US8493630B2 (en) | 2007-05-10 | 2013-07-23 | L-I Indentity Solutions, Inc. | Identification reader |
TWI448643B (zh) | 2007-05-20 | 2014-08-11 | 3M Innovative Properties Co | 背光與利用背光之顯示系統 |
JP5003291B2 (ja) | 2007-05-31 | 2012-08-15 | コニカミノルタホールディングス株式会社 | 映像表示装置 |
US20080297731A1 (en) | 2007-06-01 | 2008-12-04 | Microvision, Inc. | Apparent speckle reduction apparatus and method for mems laser projection system |
IL183637A (en) | 2007-06-04 | 2013-06-27 | Zvi Lapidot | Head display system |
EP3667399A1 (en) | 2007-06-04 | 2020-06-17 | Magic Leap, Inc. | A diffractive beam expander |
US8487982B2 (en) | 2007-06-07 | 2013-07-16 | Reald Inc. | Stereoplexing for film and video applications |
US8373744B2 (en) | 2007-06-07 | 2013-02-12 | Reald Inc. | Stereoplexing for video and film applications |
US20080316303A1 (en) | 2007-06-08 | 2008-12-25 | Joseph Chiu | Display Device |
BRPI0721736B1 (pt) | 2007-06-11 | 2023-05-16 | Moog Limited | Transformador, controlador de motor, e, motor |
US20080309586A1 (en) | 2007-06-13 | 2008-12-18 | Anthony Vitale | Viewing System for Augmented Reality Head Mounted Display |
EP2485075B1 (en) | 2007-06-14 | 2014-07-16 | Nokia Corporation | Displays with integrated backlighting |
US7633666B2 (en) | 2007-06-20 | 2009-12-15 | Real D | ZScreen® modulator with wire grid polarizer for stereoscopic projection |
TW200903465A (en) | 2007-07-03 | 2009-01-16 | Ind Tech Res Inst | Difrraction grating recording medium |
US7675684B1 (en) | 2007-07-09 | 2010-03-09 | NVIS Inc. | Compact optical system |
US7589901B2 (en) | 2007-07-10 | 2009-09-15 | Microvision, Inc. | Substrate-guided relays for use with scanned beam light sources |
EP2167920B1 (en) | 2007-07-18 | 2013-09-18 | Elbit Systems Ltd. | Aircraft landing assistance |
US7733571B1 (en) | 2007-07-24 | 2010-06-08 | Rockwell Collins, Inc. | Phosphor screen and displays systems |
US7605719B1 (en) | 2007-07-25 | 2009-10-20 | Rockwell Collins, Inc. | System and methods for displaying a partial images and non-overlapping, shared-screen partial images acquired from vision systems |
JP5092609B2 (ja) | 2007-08-01 | 2012-12-05 | ソニー株式会社 | 画像表示装置及びその駆動方法 |
EP2174259A4 (en) | 2007-08-01 | 2013-03-13 | Silverbrook Res Pty Ltd | TWO-DIMENSIONAL CONTACT IMAGE SENSOR WITH BACKLIGHT |
IL185130A0 (en) | 2007-08-08 | 2008-01-06 | Semi Conductor Devices An Elbi | Thermal based system and method for detecting counterfeit drugs |
DE102007042385A1 (de) | 2007-09-04 | 2009-03-05 | Bundesdruckerei Gmbh | Verfahren und Vorrichtung zur individuellen holografischen Trommelbelichtung |
US7656585B1 (en) | 2008-08-19 | 2010-02-02 | Microvision, Inc. | Embedded relay lens for head-up displays or the like |
US7672549B2 (en) | 2007-09-10 | 2010-03-02 | Banyan Energy, Inc. | Solar energy concentrator |
WO2009034694A1 (ja) | 2007-09-14 | 2009-03-19 | Panasonic Corporation | プロジェクタ |
WO2009041055A1 (ja) | 2007-09-26 | 2009-04-02 | Panasonic Corporation | ビーム走査型表示装置、その表示方法、プログラム、及び集積回路 |
FR2922031B1 (fr) | 2007-10-03 | 2011-07-29 | Commissariat Energie Atomique | Dispositif optique a circuits photoniques superposes, pour couplage avec un ou plusieurs guides optiques. |
US8491121B2 (en) | 2007-10-09 | 2013-07-23 | Elbit Systems Of America, Llc | Pupil scan apparatus |
IL195389A (en) | 2008-11-19 | 2013-12-31 | Elbit Systems Ltd | Magnetic Field Mapping System and Method |
EP2215513B1 (en) | 2007-10-18 | 2015-05-20 | BAE Systems PLC | Improvements in or relating to head mounted display systems |
IL186884A (en) | 2007-10-24 | 2014-04-30 | Elta Systems Ltd | Object simulation system and method |
US7969657B2 (en) | 2007-10-25 | 2011-06-28 | University Of Central Florida Research Foundation, Inc. | Imaging systems for eyeglass-based display devices |
WO2009055070A2 (en) | 2007-10-26 | 2009-04-30 | Corporation For Laser Optics Research | Laser illuminated backlight for flat panel displays |
WO2009061861A2 (en) | 2007-11-05 | 2009-05-14 | Lightsmyth Technologies Inc. | Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers |
CN101431085A (zh) | 2007-11-09 | 2009-05-13 | 鸿富锦精密工业(深圳)有限公司 | 具有自动曝光功能的相机模组 |
US20090128495A1 (en) | 2007-11-20 | 2009-05-21 | Microsoft Corporation | Optical input device |
CN101589329B (zh) | 2007-11-21 | 2011-10-12 | 松下电器产业株式会社 | 显示装置 |
US20090136246A1 (en) | 2007-11-26 | 2009-05-28 | Kabushiki Kaisha Toshiba | Image forming apparatus having paper type detection section and paper type confirmation method of the same |
WO2009067788A1 (en) * | 2007-11-27 | 2009-06-04 | Southbourne Investments Ltd. | Holographic recording medium |
JP4450058B2 (ja) | 2007-11-29 | 2010-04-14 | ソニー株式会社 | 画像表示装置 |
JP4395802B2 (ja) | 2007-11-29 | 2010-01-13 | ソニー株式会社 | 画像表示装置 |
JP2009132221A (ja) | 2007-11-29 | 2009-06-18 | Nippon Seiki Co Ltd | ヘッドアップディスプレイ装置 |
US8432372B2 (en) | 2007-11-30 | 2013-04-30 | Microsoft Corporation | User input using proximity sensing |
US20110013423A1 (en) | 2007-12-03 | 2011-01-20 | Selbrede Martin G | Light injection system and method for uniform luminosity of waveguide-based displays |
US8783931B2 (en) | 2007-12-03 | 2014-07-22 | Rambus Delaware Llc | Light injection system and method for uniform luminosity of waveguide-based displays |
US8132976B2 (en) | 2007-12-05 | 2012-03-13 | Microsoft Corporation | Reduced impact keyboard with cushioned keys |
TWI362470B (en) | 2007-12-06 | 2012-04-21 | Sony Corp | Surface emission apparatus, light guide, and method of manufacturing light guide |
WO2009077803A1 (en) | 2007-12-17 | 2009-06-25 | Nokia Corporation | Exit pupil expanders with spherical and aspheric substrates |
AU2008337294A1 (en) | 2007-12-18 | 2009-06-25 | Bae Systems Plc | Improvements in or relating to projection displays |
WO2009077802A1 (en) | 2007-12-18 | 2009-06-25 | Nokia Corporation | Exit pupil expanders with wide field-of-view |
US8107780B2 (en) | 2007-12-18 | 2012-01-31 | Bae Systems Plc | Display projectors |
KR101330860B1 (ko) * | 2007-12-27 | 2013-11-18 | 아사히 가라스 가부시키가이샤 | 액정 소자 및 광 헤드 장치 및 가변 광 변조 소자 |
KR101409630B1 (ko) | 2008-01-08 | 2014-06-18 | 알카텔-루센트 유에스에이 인코포레이티드 | 접안 렌즈 및 이를 사용한 동조가능한 색분산 보상기 |
DE102008005817A1 (de) | 2008-01-24 | 2009-07-30 | Carl Zeiss Ag | Optisches Anzeigegerät |
US8721149B2 (en) | 2008-01-30 | 2014-05-13 | Qualcomm Mems Technologies, Inc. | Illumination device having a tapered light guide |
CN101945612B (zh) | 2008-02-14 | 2013-09-25 | 诺基亚公司 | 用于确定注视方向的设备和方法 |
US7742070B2 (en) | 2008-02-21 | 2010-06-22 | Otto Gregory Glatt | Panoramic camera |
US8786519B2 (en) | 2008-03-04 | 2014-07-22 | Elbit Systems Ltd. | Head up display utilizing an LCD and a diffuser |
US7589900B1 (en) | 2008-03-11 | 2009-09-15 | Microvision, Inc. | Eyebox shaping through virtual vignetting |
US7884593B2 (en) | 2008-03-26 | 2011-02-08 | Quantum Design, Inc. | Differential and symmetrical current source |
US20090242021A1 (en) | 2008-03-31 | 2009-10-01 | Noribachi Llc | Solar cell with colorization layer |
US8264498B1 (en) | 2008-04-01 | 2012-09-11 | Rockwell Collins, Inc. | System, apparatus, and method for presenting a monochrome image of terrain on a head-up display unit |
US20100149073A1 (en) | 2008-11-02 | 2010-06-17 | David Chaum | Near to Eye Display System and Appliance |
US9120854B2 (en) | 2008-04-11 | 2015-09-01 | Seattle Genetics, Inc. | Detection and treatment of pancreatic, ovarian and other cancers |
WO2009127856A1 (en) | 2008-04-14 | 2009-10-22 | Bae Systems Plc | Lamination of optical substrates |
ES2538731T3 (es) | 2008-04-14 | 2015-06-23 | Bae Systems Plc | Mejoras en guías de ondas o relativas a las mismas |
EP2110701A1 (en) | 2008-04-14 | 2009-10-21 | BAE Systems PLC | Improvements in or relating to waveguides |
WO2009128065A1 (en) | 2008-04-16 | 2009-10-22 | Elbit Systems Ltd. | Multispectral enhanced vision system and method for aircraft landing in inclement weather conditions |
JP2011523452A (ja) * | 2008-04-16 | 2011-08-11 | スマート ホログラムズ リミテッド | 光重合性組成物 |
ES2368043B1 (es) | 2008-04-29 | 2012-10-15 | Consejo Superior De Investigaciones Científicas | Acoplador de red de difracción y sistema y procedimiento para la caracterización de un especimen mediante su acoplamiento lumínico a éste. |
WO2009137331A2 (en) | 2008-05-05 | 2009-11-12 | 3M Innovative Properties Company | Light source module |
US8643691B2 (en) | 2008-05-12 | 2014-02-04 | Microsoft Corporation | Gaze accurate video conferencing |
JP2009281870A (ja) | 2008-05-22 | 2009-12-03 | Mitsutoyo Corp | 光学格子及びその製造方法、光学格子を備えたリニアエンコーダ及び光学顕微鏡 |
USD581447S1 (en) | 2008-05-24 | 2008-11-25 | Oakley, Inc. | Eyeglass |
US7733572B1 (en) | 2008-06-09 | 2010-06-08 | Rockwell Collins, Inc. | Catadioptric system, apparatus, and method for producing images on a universal, head-up display |
JP4518193B2 (ja) | 2008-06-10 | 2010-08-04 | ソニー株式会社 | 光学装置および虚像表示装置 |
US8087698B2 (en) | 2008-06-18 | 2012-01-03 | L-1 Secure Credentialing, Inc. | Personalizing ID document images |
EP2141833B1 (en) | 2008-07-04 | 2013-10-16 | Nokia Siemens Networks Oy | Optical I-Q-modulator |
US8167173B1 (en) | 2008-07-21 | 2012-05-01 | 3Habto, Llc | Multi-stream draught beer dispensing system |
IL193326A (en) | 2008-08-07 | 2013-03-24 | Elbit Systems Electro Optics Elop Ltd | Wide field of view coverage head-up display system |
US7984884B1 (en) | 2008-08-08 | 2011-07-26 | B.I.G. Ideas, LLC | Artificial christmas tree stand |
JP4706737B2 (ja) | 2008-08-18 | 2011-06-22 | ソニー株式会社 | 画像表示装置 |
JP4858512B2 (ja) | 2008-08-21 | 2012-01-18 | ソニー株式会社 | 頭部装着型ディスプレイ |
WO2010023444A1 (en) | 2008-08-27 | 2010-03-04 | Milan Momcilo Popovich | Laser display incorporating speckle reduction |
US7969644B2 (en) | 2008-09-02 | 2011-06-28 | Elbit Systems Of America, Llc | System and method for despeckling an image illuminated by a coherent light source |
US7660047B1 (en) | 2008-09-03 | 2010-02-09 | Microsoft Corporation | Flat panel lens |
US8482858B2 (en) | 2008-09-04 | 2013-07-09 | Innovega Inc. | System and apparatus for deflection optics |
US8520309B2 (en) | 2008-09-04 | 2013-08-27 | Innovega Inc. | Method and apparatus to process display and non-display information |
US8441731B2 (en) | 2008-09-04 | 2013-05-14 | Innovega, Inc. | System and apparatus for pixel matrix see-through display panels |
US8142016B2 (en) | 2008-09-04 | 2012-03-27 | Innovega, Inc. | Method and apparatus for constructing a contact lens with optics |
CA2974241C (en) | 2008-09-16 | 2020-01-07 | Pacific Biosciences Of California, Inc. | Substrates and optical systems and methods of use thereof |
US7961117B1 (en) | 2008-09-16 | 2011-06-14 | Rockwell Collins, Inc. | System, module, and method for creating a variable FOV image presented on a HUD combiner unit |
ES2758826T3 (es) | 2008-09-16 | 2020-05-06 | Bae Systems Plc | Mejoras en o relativas a guías de ondas |
US8552925B2 (en) | 2008-09-24 | 2013-10-08 | Kabushiki Kaisha Toshiba | Stereoscopic image display apparatus |
US7885506B2 (en) | 2008-09-26 | 2011-02-08 | Nokia Corporation | Device and a method for polarized illumination of a micro-display |
US8384730B1 (en) | 2008-09-26 | 2013-02-26 | Rockwell Collins, Inc. | System, module, and method for generating HUD image data from synthetic vision system image data |
US20100079865A1 (en) | 2008-09-26 | 2010-04-01 | Nokia Corporation | Near-to-eye scanning display with exit-pupil expansion |
FR2936613B1 (fr) | 2008-09-30 | 2011-03-18 | Commissariat Energie Atomique | Coupleur de lumiere entre une fibre optique et un guide d'onde realise sur un substrat soi. |
US20100084261A1 (en) | 2008-10-07 | 2010-04-08 | China Institute Of Technology | Method for fabricating polymeric wavelength filter |
US8132948B2 (en) | 2008-10-17 | 2012-03-13 | Microsoft Corporation | Method and apparatus for directing light around an obstacle using an optical waveguide for uniform lighting of a cylindrical cavity |
JP4636164B2 (ja) | 2008-10-23 | 2011-02-23 | ソニー株式会社 | 頭部装着型ディスプレイ |
US7949214B2 (en) | 2008-11-06 | 2011-05-24 | Microvision, Inc. | Substrate guided relay with pupil expanding input coupler |
US8188925B2 (en) | 2008-11-07 | 2012-05-29 | Microsoft Corporation | Bent monopole antenna with shared segments |
US10274660B2 (en) | 2008-11-17 | 2019-04-30 | Luminit, Llc | Holographic substrate-guided wave-based see-through display |
TWI379102B (en) | 2008-11-20 | 2012-12-11 | Largan Precision Co Ltd | Optical lens system for taking image |
JP2010132485A (ja) | 2008-12-03 | 2010-06-17 | Keio Gijuku | メソポーラスシリカ多孔質膜の形成方法、その多孔質膜、反射防止膜及び光学素子 |
US20100141905A1 (en) | 2008-12-05 | 2010-06-10 | Vuzix Corporation | Controllable light array for projection image display |
EP2351265B1 (en) | 2008-12-08 | 2013-02-27 | Nokia Siemens Networks OY | Coherent optical system comprising a tunable local oscillator |
EP2197018A1 (en) | 2008-12-12 | 2010-06-16 | FEI Company | Method for determining distortions in a particle-optical apparatus |
EP2196729A1 (en) | 2008-12-12 | 2010-06-16 | BAE Systems PLC | Improvements in or relating to waveguides |
EP2376971B1 (en) | 2008-12-12 | 2019-02-20 | BAE Systems PLC | Improvements in or relating to waveguides |
US9465213B2 (en) | 2008-12-12 | 2016-10-11 | Bae Systems Plc | Waveguides |
WO2010067114A1 (en) | 2008-12-12 | 2010-06-17 | Bae Systems Plc | Improvements in or relating to waveguides |
JP4674634B2 (ja) | 2008-12-19 | 2011-04-20 | ソニー株式会社 | 頭部装着型ディスプレイ |
CN102272800A (zh) | 2009-01-07 | 2011-12-07 | 磁性自动控制有限公司 | 用于人员通行控制的设备 |
US8380749B2 (en) | 2009-01-14 | 2013-02-19 | Bmc Software, Inc. | MDR federation facility for CMDBf |
CN101793555B (zh) | 2009-02-01 | 2012-10-24 | 复旦大学 | 电调谐全息聚合物分散液晶布拉格体光栅单色仪 |
IL196923A (en) | 2009-02-05 | 2014-01-30 | Elbit Systems Ltd | Driving an imaging device on a suspended communication channel |
EP2219073B1 (de) | 2009-02-17 | 2020-06-03 | Covestro Deutschland AG | Holografische Medien und Photopolymerzusammensetzungen |
FI20095197A0 (fi) | 2009-02-27 | 2009-02-27 | Epicrystals Oy | Kuvaprojektori ja kuvaprojektorissa käytettäväksi sopiva valaisuyksikkö |
IL197417A (en) | 2009-03-05 | 2014-01-30 | Elbit Sys Electro Optics Elop | Imaging device and method for correcting longitudinal and transverse chromatic aberrations |
WO2010102295A1 (en) | 2009-03-06 | 2010-09-10 | The Curators Of The University Of Missouri | Adaptive lens for vision correction |
KR20100102774A (ko) | 2009-03-12 | 2010-09-27 | 삼성전자주식회사 | 터치 감지 시스템 및 이를 채용한 디스플레이 장치 |
US20100232003A1 (en) | 2009-03-13 | 2010-09-16 | Transitions Optical, Inc. | Vision enhancing optical articles |
US20100231498A1 (en) | 2009-03-13 | 2010-09-16 | Microsoft Corporation | Image display via multiple light guide sections |
JP2010226660A (ja) | 2009-03-25 | 2010-10-07 | Olympus Corp | 眼鏡装着型画像表示装置 |
JP5389493B2 (ja) | 2009-03-25 | 2014-01-15 | オリンパス株式会社 | 眼鏡装着型画像表示装置 |
US8746008B1 (en) | 2009-03-29 | 2014-06-10 | Montana Instruments Corporation | Low vibration cryocooled system for low temperature microscopy and spectroscopy applications |
US8427439B2 (en) | 2009-04-13 | 2013-04-23 | Microsoft Corporation | Avoiding optical effects of touch on liquid crystal display |
ES2644595T3 (es) | 2009-04-14 | 2017-11-29 | Bae Systems Plc | Guía de ondas óptica y dispositivo de visualización |
US8136690B2 (en) | 2009-04-14 | 2012-03-20 | Microsoft Corporation | Sensing the amount of liquid in a vessel |
EP2244114A1 (en) | 2009-04-20 | 2010-10-27 | BAE Systems PLC | Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface |
AU2010240707B2 (en) | 2009-04-20 | 2014-01-30 | Snap Inc. | Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface |
WO2010122329A1 (en) | 2009-04-20 | 2010-10-28 | Bae Systems Plc | Improvements in optical waveguides |
US8323854B2 (en) | 2009-04-23 | 2012-12-04 | Akonia Holographics, Llc | Photopolymer media with enhanced dynamic range |
JP2010256631A (ja) | 2009-04-24 | 2010-11-11 | Konica Minolta Opto Inc | ホログラム光学素子 |
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
US9335604B2 (en) * | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
US8639072B2 (en) | 2011-10-19 | 2014-01-28 | Milan Momcilo Popovich | Compact wearable display |
WO2010125337A2 (en) | 2009-04-27 | 2010-11-04 | Milan Momcilo Popovich | Compact holographic edge illuminated wearable display |
EP2425291B1 (en) | 2009-04-29 | 2022-10-19 | BAE Systems PLC | Head mounted display |
US8321810B2 (en) | 2009-04-30 | 2012-11-27 | Microsoft Corporation | Configuring an adaptive input device with selected graphical images |
WO2010125926A1 (ja) | 2009-04-30 | 2010-11-04 | コニカミノルタホールディングス株式会社 | 防汚性積層体 |
GB0908206D0 (en) | 2009-05-13 | 2009-06-24 | Univ Hull | Photonic crystal structure and method of formation thereof |
US8375473B2 (en) | 2009-06-01 | 2013-02-19 | Wilcox Industries Corp. | Helmet mount for viewing device |
US20100322555A1 (en) | 2009-06-22 | 2010-12-23 | Imec | Grating Structures for Simultaneous Coupling to TE and TM Waveguide Modes |
US8194325B2 (en) | 2009-06-30 | 2012-06-05 | Nokia Corporation | Optical apparatus and method |
US20110001895A1 (en) | 2009-07-06 | 2011-01-06 | Dahl Scott R | Driving mechanism for liquid crystal based optical device |
US8699836B2 (en) | 2009-07-07 | 2014-04-15 | Alcatel Lucent | Optical coupler |
IL199763B (en) | 2009-07-08 | 2018-07-31 | Elbit Systems Ltd | Automatic contractual system and method for observation |
US9244275B1 (en) | 2009-07-10 | 2016-01-26 | Rockwell Collins, Inc. | Visual display system using multiple image sources and heads-up-display system using the same |
JP5545076B2 (ja) | 2009-07-22 | 2014-07-09 | ソニー株式会社 | 画像表示装置及び光学装置 |
FR2948775B1 (fr) | 2009-07-31 | 2011-12-02 | Horiba Jobin Yvon Sas | Systeme optique planaire d'imagerie polychromatique a large champ de vision |
US20120224062A1 (en) | 2009-08-07 | 2012-09-06 | Light Blue Optics Ltd | Head up displays |
US8184363B2 (en) | 2009-08-07 | 2012-05-22 | Northrop Grumman Systems Corporation | All-fiber integrated high power coherent beam combination |
US8447365B1 (en) | 2009-08-11 | 2013-05-21 | Howard M. Imanuel | Vehicle communication system |
US7884992B1 (en) | 2009-08-13 | 2011-02-08 | Darwin Optical Co., Ltd. | Photochromic optical article |
US8354806B2 (en) | 2009-08-21 | 2013-01-15 | Microsoft Corporation | Scanning collimation of light via flat panel lamp |
US20110044582A1 (en) | 2009-08-21 | 2011-02-24 | Microsoft Corporation | Efficient collimation of light with optical wedge |
JP5588794B2 (ja) | 2009-08-28 | 2014-09-10 | 株式会社フジクラ | グレーティング構造を有する基板型光導波路素子、波長分散補償素子および基板型光導波路素子の製造方法 |
US8354640B2 (en) | 2009-09-11 | 2013-01-15 | Identix Incorporated | Optically based planar scanner |
US20110075257A1 (en) | 2009-09-14 | 2011-03-31 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | 3-Dimensional electro-optical see-through displays |
US8120548B1 (en) | 2009-09-29 | 2012-02-21 | Rockwell Collins, Inc. | System, module, and method for illuminating a target on an aircraft windshield |
US11320571B2 (en) | 2012-11-16 | 2022-05-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
US9341846B2 (en) | 2012-04-25 | 2016-05-17 | Rockwell Collins Inc. | Holographic wide angle display |
US8233204B1 (en) | 2009-09-30 | 2012-07-31 | Rockwell Collins, Inc. | Optical displays |
CN102792210B (zh) | 2009-10-01 | 2015-12-16 | 龙卷风光谱系统有限公司 | 用于改善色散摄谱仪的光谱分辨率的分光器 |
US8089568B1 (en) | 2009-10-02 | 2012-01-03 | Rockwell Collins, Inc. | Method of and system for providing a head up display (HUD) |
US20200057353A1 (en) | 2009-10-09 | 2020-02-20 | Digilens Inc. | Compact Edge Illuminated Diffractive Display |
US9075184B2 (en) | 2012-04-17 | 2015-07-07 | Milan Momcilo Popovich | Compact edge illuminated diffractive display |
US11204540B2 (en) | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
USD659137S1 (en) | 2009-10-19 | 2012-05-08 | Brother Industries, Ltd. | Image display device |
WO2011051660A1 (en) | 2009-10-27 | 2011-05-05 | Milan Momcilo Popovich | Compact holographic edge illuminated eyeglass display |
US8396341B2 (en) | 2009-10-30 | 2013-03-12 | China University Of Science And Technology | Optical filters based on polymer asymmetric bragg couplers and its method of fabrication |
CN102870157B (zh) | 2009-11-03 | 2016-01-20 | 拜尔材料科学股份公司 | 生产全息膜的方法 |
KR101746886B1 (ko) | 2009-11-03 | 2017-06-27 | 코베스트로 도이칠란드 아게 | 홀로그래픽 매체의 제조 방법 |
WO2011055109A2 (en) | 2009-11-03 | 2011-05-12 | Milan Momcilo Popovich | Apparatus for reducing laser speckle |
US8384694B2 (en) | 2009-11-17 | 2013-02-26 | Microsoft Corporation | Infrared vision with liquid crystal display device |
US8578038B2 (en) | 2009-11-30 | 2013-11-05 | Nokia Corporation | Method and apparatus for providing access to social content |
US8698705B2 (en) | 2009-12-04 | 2014-04-15 | Vuzix Corporation | Compact near eye display with scanned image generation |
WO2011073673A1 (en) | 2009-12-17 | 2011-06-23 | Bae Systems Plc | Projector lens assembly |
WO2011080962A1 (ja) | 2009-12-28 | 2011-07-07 | キヤノン・コンポーネンツ株式会社 | 密着型イメージセンサユニット、及びそれらを用いた画像読取装置 |
US8982480B2 (en) | 2009-12-29 | 2015-03-17 | Elbit Systems Of America, Llc | System and method for adjusting a projected image |
US8905547B2 (en) | 2010-01-04 | 2014-12-09 | Elbit Systems Of America, Llc | System and method for efficiently delivering rays from a light source to create an image |
WO2011085233A1 (en) | 2010-01-07 | 2011-07-14 | Holotouch, Inc. | Compact holographic human-machine interface |
WO2011089433A1 (en) | 2010-01-25 | 2011-07-28 | Bae Systems Plc | Projection display |
US8137981B2 (en) | 2010-02-02 | 2012-03-20 | Nokia Corporation | Apparatus and associated methods |
US8659826B1 (en) | 2010-02-04 | 2014-02-25 | Rockwell Collins, Inc. | Worn display system and method without requiring real time tracking for boresight precision |
JP5240214B2 (ja) | 2010-02-15 | 2013-07-17 | 株式会社島津製作所 | 表示装置 |
CA2789607C (en) | 2010-02-16 | 2018-05-01 | Midmark Corporation | Led light for examinations and procedures |
US9097890B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | Grating in a light transmissive illumination system for see-through near-eye display glasses |
US8964298B2 (en) | 2010-02-28 | 2015-02-24 | Microsoft Corporation | Video display modification based on sensor input for a see-through near-to-eye display |
US9128281B2 (en) | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
US9223134B2 (en) | 2010-02-28 | 2015-12-29 | Microsoft Technology Licensing, Llc | Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses |
US20120194420A1 (en) | 2010-02-28 | 2012-08-02 | Osterhout Group, Inc. | Ar glasses with event triggered user action control of ar eyepiece facility |
AU2011220382A1 (en) | 2010-02-28 | 2012-10-18 | Microsoft Corporation | Local advertising content on an interactive head-mounted eyepiece |
US9366862B2 (en) | 2010-02-28 | 2016-06-14 | Microsoft Technology Licensing, Llc | System and method for delivering content to a group of see-through near eye display eyepieces |
US20140063055A1 (en) | 2010-02-28 | 2014-03-06 | Osterhout Group, Inc. | Ar glasses specific user interface and control interface based on a connected external device type |
US8472120B2 (en) | 2010-02-28 | 2013-06-25 | Osterhout Group, Inc. | See-through near-eye display glasses with a small scale image source |
US8488246B2 (en) | 2010-02-28 | 2013-07-16 | Osterhout Group, Inc. | See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film |
US9129295B2 (en) | 2010-02-28 | 2015-09-08 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
US9341843B2 (en) | 2010-02-28 | 2016-05-17 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a small scale image source |
CA2789965C (en) | 2010-03-03 | 2017-06-06 | Elbit Systems Ltd. | System for guiding an aircraft to a reference point in low visibility conditions |
WO2011107831A1 (en) | 2010-03-04 | 2011-09-09 | Nokia Corporation | Optical apparatus and method for expanding an exit pupil |
JP2011187108A (ja) | 2010-03-05 | 2011-09-22 | Hitachi Maxell Ltd | 偏光性回折格子及びその製造方法、並びに、その偏光性回折格子を用いた光ピックアップ装置 |
US8725001B2 (en) | 2010-03-10 | 2014-05-13 | Ofs Fitel, Llc | Multicore fiber transmission systems and methods |
WO2011110821A1 (en) | 2010-03-12 | 2011-09-15 | Milan Momcilo Popovich | Biometric sensor |
WO2011119179A1 (en) | 2010-03-24 | 2011-09-29 | University Of North Carolina At Charlotte | Waveguide assisted solar energy harvesting |
EP2372454A1 (de) | 2010-03-29 | 2011-10-05 | Bayer MaterialScience AG | Photopolymer-Formulierung zur Herstellung sichtbarer Hologramme |
JP2011216701A (ja) | 2010-03-31 | 2011-10-27 | Sony Corp | 固体撮像装置及び電子機器 |
US8697346B2 (en) | 2010-04-01 | 2014-04-15 | The Regents Of The University Of Colorado | Diffraction unlimited photolithography |
US9028123B2 (en) | 2010-04-16 | 2015-05-12 | Flex Lighting Ii, Llc | Display illumination device with a film-based lightguide having stacked incident surfaces |
CN102859429B (zh) | 2010-04-19 | 2016-05-11 | 西铁城控股株式会社 | 磨边前的透镜及磨边透镜的制造方法 |
EP2561396B2 (en) | 2010-04-23 | 2022-09-21 | BAE Systems PLC | Optical waveguide and display device |
EP2381290A1 (en) | 2010-04-23 | 2011-10-26 | BAE Systems PLC | Optical waveguide and display device |
US8477261B2 (en) | 2010-05-26 | 2013-07-02 | Microsoft Corporation | Shadow elimination in the backlight for a 3-D display |
CN101881936B (zh) | 2010-06-04 | 2013-12-25 | 江苏慧光电子科技有限公司 | 全息波导显示器及其全息图像的生成方法 |
US8631333B2 (en) | 2010-06-07 | 2014-01-14 | Microsoft Corporation | Feature set differentiation by tenant and user |
NL2006743A (en) | 2010-06-09 | 2011-12-12 | Asml Netherlands Bv | Position sensor and lithographic apparatus. |
JP5488226B2 (ja) | 2010-06-10 | 2014-05-14 | 富士通オプティカルコンポーネンツ株式会社 | マッハツェンダ型の光変調器 |
US8670029B2 (en) | 2010-06-16 | 2014-03-11 | Microsoft Corporation | Depth camera illuminator with superluminescent light-emitting diode |
US8253914B2 (en) | 2010-06-23 | 2012-08-28 | Microsoft Corporation | Liquid crystal display (LCD) |
US9122015B2 (en) | 2010-07-23 | 2015-09-01 | Nec Corporation | Optical interconnect structure |
US8391656B2 (en) | 2010-07-29 | 2013-03-05 | Hewlett-Packard Development Company, L.P. | Grating coupled converter |
US20130163928A1 (en) | 2010-08-04 | 2013-06-27 | Agency For Science, Technology And Research | Polymer Waveguide for Coupling with Light Transmissible Devices and Method of Fabricating the Same |
WO2012020636A1 (ja) | 2010-08-10 | 2012-02-16 | シャープ株式会社 | 調光素子、表示装置および照明装置 |
USD691192S1 (en) | 2010-09-10 | 2013-10-08 | 3M Innovative Properties Company | Eyewear lens feature |
JP6027970B2 (ja) | 2010-09-10 | 2016-11-16 | バーレイス テクノロジーズ エルエルシー | 半導体ドナーから分離された層を使用するオプトエレクトロニクスデバイスの製造方法、およびそれによって製造されたデバイス |
US8649099B2 (en) | 2010-09-13 | 2014-02-11 | Vuzix Corporation | Prismatic multiple waveguide for near-eye display |
US8582206B2 (en) | 2010-09-15 | 2013-11-12 | Microsoft Corporation | Laser-scanning virtual image display |
TWI435391B (zh) | 2010-09-16 | 2014-04-21 | Dainippon Screen Mfg | 閃光熱處理裝置 |
US8376548B2 (en) | 2010-09-22 | 2013-02-19 | Vuzix Corporation | Near-eye display with on-axis symmetry |
US8633786B2 (en) | 2010-09-27 | 2014-01-21 | Nokia Corporation | Apparatus and associated methods |
US9188717B2 (en) | 2010-10-04 | 2015-11-17 | Panasonic Intellectual Property Management Co., Ltd. | Light acquisition sheet and rod, and light receiving device and light emitting device each using the light acquisition sheet or rod |
US20150015946A1 (en) | 2010-10-08 | 2015-01-15 | SoliDDD Corp. | Perceived Image Depth for Autostereoscopic Displays |
ES2804475T3 (es) | 2010-10-19 | 2021-02-08 | Bae Systems Plc | Dispositivo de visualización que comprende un combinador de imágenes |
WO2012061702A1 (en) | 2010-11-04 | 2012-05-10 | The Regents Of The University Of Colorado, A Body Corporate | Dual-cure polymer systems |
US8305577B2 (en) | 2010-11-04 | 2012-11-06 | Nokia Corporation | Method and apparatus for spectrometry |
EP2450387A1 (de) | 2010-11-08 | 2012-05-09 | Bayer MaterialScience AG | Photopolymer-Formulierung für die Herstellung holographischer Medien |
EP2450893A1 (de) | 2010-11-08 | 2012-05-09 | Bayer MaterialScience AG | Photopolymer-Formulierung zur Herstellung holographischer Medien mit hoch vernetzten Matrixpolymeren |
US9235056B2 (en) | 2010-11-25 | 2016-01-12 | Rights Co., Ltd. | Three-dimensional image display device |
US20130021586A1 (en) | 2010-12-07 | 2013-01-24 | Laser Light Engines | Frequency Control of Despeckling |
USD640310S1 (en) | 2010-12-21 | 2011-06-21 | Kabushiki Kaisha Toshiba | Glasses for 3-dimensional scenography |
JP2012138654A (ja) | 2010-12-24 | 2012-07-19 | Sony Corp | ヘッド・マウント・ディスプレイ |
CN103688208B (zh) | 2010-12-24 | 2017-06-06 | 奇跃公司 | 人体工程学头戴式显示设备和光学系统 |
JP5741901B2 (ja) | 2010-12-27 | 2015-07-01 | Dic株式会社 | 立体画像表示装置用複屈折レンズ材料、及び、立体画像表示装置用複屈折レンズの製造方法 |
KR101807691B1 (ko) | 2011-01-11 | 2017-12-12 | 삼성전자주식회사 | 3차원 디스플레이장치 |
BRPI1100786A2 (pt) | 2011-01-19 | 2015-08-18 | André Jacobovitz | Fotopolímero para gravação de holograma de volume e processo para produzi-lo |
JP5474844B2 (ja) | 2011-02-03 | 2014-04-16 | グーグル・インコーポレーテッド | チューナブル共鳴格子フィルタ |
US8619062B2 (en) | 2011-02-03 | 2013-12-31 | Microsoft Corporation | Touch-pressure sensing in a display panel |
JP2012163642A (ja) | 2011-02-04 | 2012-08-30 | Ricoh Co Ltd | 光偏向素子、レーザ装置及びセンシング装置 |
USD661335S1 (en) | 2011-03-14 | 2012-06-05 | Lg Electronics Inc. | Glasses for 3D images |
CN106200236B (zh) | 2011-03-14 | 2018-07-20 | 杜比实验室特许公司 | 投影仪和方法 |
US8189263B1 (en) | 2011-04-01 | 2012-05-29 | Google Inc. | Image waveguide with mirror arrays |
US8859412B2 (en) | 2011-04-06 | 2014-10-14 | VerLASE TECHNOLOGIES LLC | Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same |
WO2012136970A1 (en) | 2011-04-07 | 2012-10-11 | Milan Momcilo Popovich | Laser despeckler based on angular diversity |
WO2012143701A1 (en) | 2011-04-18 | 2012-10-26 | Bae Systems Plc | A projection display |
CA2835120C (en) | 2011-05-06 | 2019-05-28 | Magic Leap, Inc. | Massive simultaneous remote digital presence world |
WO2012158256A1 (en) | 2011-05-16 | 2012-11-22 | VerLASE TECHNOLOGIES LLC | Resonator-enhanced optoelectronic devices and methods of making same |
WO2012158950A1 (en) | 2011-05-17 | 2012-11-22 | Cross Match Technologies, Inc. | Fingerprint sensors |
FR2975506B1 (fr) | 2011-05-19 | 2013-08-09 | Thales Sa | Composant optique avec empilement de structures micro ou nanostructurees |
DE102012104900B4 (de) | 2011-06-06 | 2020-08-13 | Seereal Technologies S.A. | Verfahren und Vorrichtung zur schichtweisen Erzeugung dünner Volumengitterstapel, Strahlvereiniger für ein holografisches Display sowie Solarmodul und Hologrammbauteil |
WO2012172295A1 (en) | 2011-06-16 | 2012-12-20 | Milan Momcilo Popovich | Holographic beam deflector for autostereoscopic displays |
TWI443395B (zh) | 2011-06-24 | 2014-07-01 | Univ Nat Central | Structure of low - loss optical coupling interface |
KR101908468B1 (ko) | 2011-06-27 | 2018-10-17 | 삼성디스플레이 주식회사 | 표시패널 |
US8693087B2 (en) | 2011-06-30 | 2014-04-08 | Microsoft Corporation | Passive matrix quantum dot display |
CN103648386B (zh) | 2011-07-04 | 2017-08-29 | 皇家飞利浦有限公司 | 在x射线成像设备中调整扫描运动 |
US8767294B2 (en) | 2011-07-05 | 2014-07-01 | Microsoft Corporation | Optic with extruded conic profile |
US8672486B2 (en) | 2011-07-11 | 2014-03-18 | Microsoft Corporation | Wide field-of-view projector |
US9170098B2 (en) | 2011-07-13 | 2015-10-27 | Faro Technologies, Inc. | Device and method using a spatial light modulator to find 3D coordinates of an object |
US8988474B2 (en) | 2011-07-18 | 2015-03-24 | Microsoft Technology Licensing, Llc | Wide field-of-view virtual image projector |
CN102279557B (zh) | 2011-07-26 | 2013-10-30 | 华中科技大学 | 基于全息聚合物分散液晶光栅的彩色三维全息图的制备方法 |
WO2013016409A1 (en) | 2011-07-26 | 2013-01-31 | Magna Electronics Inc. | Vision system for vehicle |
US8907639B2 (en) | 2011-07-28 | 2014-12-09 | Fairchild Semiconductor Corporation | Boost power converter with high-side active damping in discontinuous conduction mode |
US8754831B2 (en) | 2011-08-02 | 2014-06-17 | Microsoft Corporation | Changing between display device viewing modes |
USD661334S1 (en) | 2011-08-05 | 2012-06-05 | Samsung Electronics Co., Ltd. | Glasses for watching 3D image |
US9983361B2 (en) | 2011-08-08 | 2018-05-29 | Greg S. Laughlin | GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby |
US8472119B1 (en) | 2011-08-12 | 2013-06-25 | Google Inc. | Image waveguide having a bend |
GB201114149D0 (en) | 2011-08-17 | 2011-10-05 | Bae Systems Plc | Projection display |
US8548290B2 (en) | 2011-08-23 | 2013-10-01 | Vuzix Corporation | Dynamic apertured waveguide for near-eye display |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
WO2013027006A1 (en) | 2011-08-24 | 2013-02-28 | Milan Momcilo Popovich | Improvements to holographic polymer dispersed liquid crystal materials and devices |
WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
EP2748670B1 (en) | 2011-08-24 | 2015-11-18 | Rockwell Collins, Inc. | Wearable data display |
GB201114771D0 (en) | 2011-08-26 | 2011-10-12 | Bae Systems Plc | A display |
EP3309602A1 (en) | 2011-08-29 | 2018-04-18 | Vuzix Corporation | Controllable waveguide for near-eye display applications |
WO2013034879A1 (en) | 2011-09-07 | 2013-03-14 | Milan Momcilo Popovich | Method and apparatus for switching electro optical arrays |
US20150148728A1 (en) | 2011-09-08 | 2015-05-28 | Children's Medical Center Corporation | Isolated orthosis for thumb actuation |
US8755650B2 (en) | 2011-09-08 | 2014-06-17 | Seagate Technology Llc | Gradient index optical waveguide coupler |
JP5901192B2 (ja) | 2011-09-13 | 2016-04-06 | オリンパス株式会社 | 光学機構 |
US9035344B2 (en) | 2011-09-14 | 2015-05-19 | VerLASE TECHNOLOGIES LLC | Phosphors for use with LEDs and other optoelectronic devices |
US8998414B2 (en) | 2011-09-26 | 2015-04-07 | Microsoft Technology Licensing, Llc | Integrated eye tracking and display system |
US20140330159A1 (en) | 2011-09-26 | 2014-11-06 | Beth Israel Deaconess Medical Center, Inc. | Quantitative methods and systems for neurological assessment |
KR20140066258A (ko) | 2011-09-26 | 2014-05-30 | 마이크로소프트 코포레이션 | 투시 근안 디스플레이에 대한 센서 입력에 기초한 비디오 디스플레이 수정 |
JP5696017B2 (ja) | 2011-09-27 | 2015-04-08 | 富士フイルム株式会社 | インプリント用硬化性組成物、パターン形成方法およびパターン |
US9377852B1 (en) | 2013-08-29 | 2016-06-28 | Rockwell Collins, Inc. | Eye tracking as a method to improve the user interface |
US9715067B1 (en) | 2011-09-30 | 2017-07-25 | Rockwell Collins, Inc. | Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials |
US9366864B1 (en) | 2011-09-30 | 2016-06-14 | Rockwell Collins, Inc. | System for and method of displaying information without need for a combiner alignment detector |
US8634139B1 (en) | 2011-09-30 | 2014-01-21 | Rockwell Collins, Inc. | System for and method of catadioptric collimation in a compact head up display (HUD) |
US8903207B1 (en) | 2011-09-30 | 2014-12-02 | Rockwell Collins, Inc. | System for and method of extending vertical field of view in head up display utilizing a waveguide combiner |
US8937772B1 (en) | 2011-09-30 | 2015-01-20 | Rockwell Collins, Inc. | System for and method of stowing HUD combiners |
US9599813B1 (en) | 2011-09-30 | 2017-03-21 | Rockwell Collins, Inc. | Waveguide combiner system and method with less susceptibility to glare |
US8749890B1 (en) | 2011-09-30 | 2014-06-10 | Rockwell Collins, Inc. | Compact head up display (HUD) for cockpits with constrained space envelopes |
GB201117029D0 (en) | 2011-10-04 | 2011-11-16 | Bae Systems Plc | Optical waveguide and display device |
US20130088637A1 (en) | 2011-10-11 | 2013-04-11 | Pelican Imaging Corporation | Lens Stack Arrays Including Adaptive Optical Elements |
KR20130039918A (ko) | 2011-10-13 | 2013-04-23 | 주식회사 플렉스엘시디 | 액티브형 입체안경 |
CN102360093A (zh) | 2011-10-19 | 2012-02-22 | 苏州大学 | 一种全息闪耀光栅制作方法 |
EP3974041B1 (en) | 2011-10-28 | 2024-07-10 | Magic Leap, Inc. | System and method for augmented and virtual reality |
US8929589B2 (en) | 2011-11-07 | 2015-01-06 | Eyefluence, Inc. | Systems and methods for high-resolution gaze tracking |
CN103261936B (zh) | 2011-11-08 | 2015-10-21 | 松下知识产权经营株式会社 | 具备取光板的光接收装置 |
WO2013069250A1 (ja) | 2011-11-08 | 2013-05-16 | パナソニック株式会社 | 光取り込みシート、ならびに、それを用いた受光装置および発光装置 |
WO2013069248A1 (ja) | 2011-11-08 | 2013-05-16 | パナソニック株式会社 | 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置 |
US20140140091A1 (en) | 2012-11-20 | 2014-05-22 | Sergiy Victorovich Vasylyev | Waveguide illumination system |
RU2628164C2 (ru) | 2011-11-23 | 2017-08-15 | Мэджик Лип, Инк. | Система отображения трехмерной виртуальной и дополненной реальности |
WO2013080522A1 (ja) | 2011-11-29 | 2013-06-06 | パナソニック株式会社 | 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置 |
US8651678B2 (en) | 2011-11-29 | 2014-02-18 | Massachusetts Institute Of Technology | Polarization fields for dynamic light field display |
USD673996S1 (en) | 2011-12-01 | 2013-01-08 | Lg Electronics Inc. | Glasses for watching 3D image |
EP2788803B1 (en) | 2011-12-09 | 2020-05-27 | Lumentum Operations LLC | Varying beam parameter product of a laser beam |
EP2795394A1 (en) | 2011-12-23 | 2014-10-29 | Johnson & Johnson Vision Care Inc. | Variable optic ophthalmic device including liquid crystal elements |
US8917453B2 (en) | 2011-12-23 | 2014-12-23 | Microsoft Corporation | Reflective array waveguide |
WO2013097874A1 (en) | 2011-12-28 | 2013-07-04 | Wavelight Gmbh | Spectroscopic instrument and process for spectral analysis |
US8638498B2 (en) | 2012-01-04 | 2014-01-28 | David D. Bohn | Eyebox adjustment for interpupillary distance |
US20150010265A1 (en) | 2012-01-06 | 2015-01-08 | Milan, Momcilo POPOVICH | Contact image sensor using switchable bragg gratings |
USD718304S1 (en) | 2012-01-06 | 2014-11-25 | Google Inc. | Display device component |
US9278674B2 (en) | 2012-01-18 | 2016-03-08 | Engineered Arresting Systems Corporation | Vehicle operator display and assistive mechanisms |
US8810600B2 (en) | 2012-01-23 | 2014-08-19 | Microsoft Corporation | Wearable display device calibration |
US20150107671A1 (en) | 2012-01-24 | 2015-04-23 | AMI Research & Development, LLC | Monolithic broadband energy collector with dichroic filters and mirrors embedded in waveguide |
US9000615B2 (en) | 2012-02-04 | 2015-04-07 | Sunfield Semiconductor Inc. | Solar power module with safety features and related method of operation |
US9001030B2 (en) | 2012-02-15 | 2015-04-07 | Google Inc. | Heads up display |
EP2634605B1 (en) | 2012-02-29 | 2015-10-28 | Huawei Technologies Co., Ltd. | A diffractive coupling grating for perpendicular coupling |
US8985803B2 (en) | 2012-03-21 | 2015-03-24 | Microsoft Technology Licensing, Llc | Freeform-prism eyepiece with illumination waveguide |
US8749886B2 (en) | 2012-03-21 | 2014-06-10 | Google Inc. | Wide-angle wide band polarizing beam splitter |
US8736963B2 (en) | 2012-03-21 | 2014-05-27 | Microsoft Corporation | Two-dimensional exit-pupil expansion |
US9274338B2 (en) | 2012-03-21 | 2016-03-01 | Microsoft Technology Licensing, Llc | Increasing field of view of reflective waveguide |
US11068049B2 (en) | 2012-03-23 | 2021-07-20 | Microsoft Technology Licensing, Llc | Light guide display and field of view |
WO2013146096A1 (ja) | 2012-03-26 | 2013-10-03 | 株式会社Jvcケンウッド | 画像表示装置、および、画像表示装置の制御方法 |
JP2013200467A (ja) | 2012-03-26 | 2013-10-03 | Seiko Epson Corp | 虚像表示装置 |
GB2500631B (en) | 2012-03-27 | 2017-12-27 | Bae Systems Plc | Improvements in or relating to optical waveguides |
US10191515B2 (en) | 2012-03-28 | 2019-01-29 | Microsoft Technology Licensing, Llc | Mobile device light guide display |
US8830588B1 (en) | 2012-03-28 | 2014-09-09 | Rockwell Collins, Inc. | Reflector and cover glass for substrate guided HUD |
US9558590B2 (en) | 2012-03-28 | 2017-01-31 | Microsoft Technology Licensing, Llc | Augmented reality light guide display |
US9523852B1 (en) | 2012-03-28 | 2016-12-20 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
US9717981B2 (en) | 2012-04-05 | 2017-08-01 | Microsoft Technology Licensing, Llc | Augmented reality and physical games |
JP6176747B2 (ja) | 2012-04-05 | 2017-08-09 | マジック リープ, インコーポレイテッド | アクティブな中心窩能力を有する広角(fov)結像デバイス |
JP5994715B2 (ja) | 2012-04-10 | 2016-09-21 | パナソニックIpマネジメント株式会社 | 計算機ホログラム型表示装置 |
JP6001320B2 (ja) | 2012-04-23 | 2016-10-05 | 株式会社ダイセル | 体積ホログラム記録用感光性組成物、これを用いた体積ホログラム記録媒体及びその製造方法、並びにホログラム記録方法 |
US20130286053A1 (en) | 2012-04-25 | 2013-10-31 | Rod G. Fleck | Direct view augmented reality eyeglass-type display |
US9389415B2 (en) | 2012-04-27 | 2016-07-12 | Leia Inc. | Directional pixel for use in a display screen |
US20130312811A1 (en) | 2012-05-02 | 2013-11-28 | Prism Solar Technologies Incorporated | Non-latitude and vertically mounted solar energy concentrators |
TW201400946A (zh) | 2012-05-09 | 2014-01-01 | Sony Corp | 照明裝置及顯示裝置 |
US20130300997A1 (en) | 2012-05-09 | 2013-11-14 | Milan Momcilo Popovich | Apparatus for reducing laser speckle |
US8721092B2 (en) | 2012-05-09 | 2014-05-13 | Microvision, Inc. | Wide field of view substrate guided relay |
JP6145966B2 (ja) | 2012-05-09 | 2017-06-14 | ソニー株式会社 | 表示装置 |
US9456744B2 (en) | 2012-05-11 | 2016-10-04 | Digilens, Inc. | Apparatus for eye tracking |
US9235057B2 (en) | 2012-05-18 | 2016-01-12 | Reald Inc. | Polarization recovery in a directional display device |
US20130305437A1 (en) | 2012-05-19 | 2013-11-21 | Skully Helmets Inc. | Augmented reality motorcycle helmet |
US10502876B2 (en) | 2012-05-22 | 2019-12-10 | Microsoft Technology Licensing, Llc | Waveguide optics focus elements |
EP2855629A1 (en) | 2012-05-25 | 2015-04-08 | Cambridge Enterprise Ltd. | Printing of liquid crystal droplet laser resonators on a wet polymer solution and product made therewith |
US9459461B2 (en) | 2012-05-31 | 2016-10-04 | Leia Inc. | Directional backlight |
US9201270B2 (en) | 2012-06-01 | 2015-12-01 | Leia Inc. | Directional backlight with a modulation layer |
US8989535B2 (en) | 2012-06-04 | 2015-03-24 | Microsoft Technology Licensing, Llc | Multiple waveguide imaging structure |
US20130328948A1 (en) | 2012-06-06 | 2013-12-12 | Dolby Laboratories Licensing Corporation | Combined Emissive and Reflective Dual Modulation Display System |
JP6238974B2 (ja) | 2012-06-11 | 2017-11-29 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 導波路リフレクタアレイプロジェクタを用いる複数の深度平面3次元ディスプレイ |
US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
EP2862026A1 (en) | 2012-06-18 | 2015-04-22 | Milan Momcilo Popovich | Apparatus for copying a hologram |
US9098111B2 (en) | 2012-06-22 | 2015-08-04 | Microsoft Technology Licensing, Llc | Focus guidance within a three-dimensional interface |
US9841537B2 (en) | 2012-07-02 | 2017-12-12 | Nvidia Corporation | Near-eye microlens array displays |
US9367036B2 (en) | 2012-07-03 | 2016-06-14 | Samsung Electronics Co., Ltd. | High speed hologram recording apparatus |
US8816578B1 (en) | 2012-07-16 | 2014-08-26 | Rockwell Collins, Inc. | Display assembly configured for reduced reflection |
BR112015001491A2 (pt) | 2012-07-25 | 2017-08-22 | Csem Centre Suisse D´Electronique Et De Microtechnique Sa Rech Et Developpement | Método para otimizar um guia de onda por acoplamento de luz |
US10111989B2 (en) | 2012-07-26 | 2018-10-30 | Medline Industries, Inc. | Splash-retarding fluid collection system |
US9175975B2 (en) | 2012-07-30 | 2015-11-03 | RaayonNova LLC | Systems and methods for navigation |
DE102012213685B4 (de) | 2012-08-02 | 2020-12-24 | tooz technologies GmbH | Anzeigevorrichtung |
US8913324B2 (en) | 2012-08-07 | 2014-12-16 | Nokia Corporation | Display illumination light guide |
US9146407B2 (en) | 2012-08-10 | 2015-09-29 | Mitsui Chemicals, Inc. | Fail-safe electro-active lenses and methodology for choosing optical materials for fail-safe electro-active lenses |
JP6291707B2 (ja) | 2012-08-10 | 2018-03-14 | 三菱電機株式会社 | 密着イメージセンサ、密着イメージセンサ用出力補正装置及び密着イメージセンサ用出力補正方法 |
JP6251741B2 (ja) | 2012-08-13 | 2017-12-20 | コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag | 液晶ディスプレイ用照明装置 |
US8742952B1 (en) | 2012-08-14 | 2014-06-03 | Rockwell Collins, Inc. | Traffic awareness systems and methods |
US8885997B2 (en) | 2012-08-31 | 2014-11-11 | Microsoft Corporation | NED polarization system for wavelength pass-through |
WO2014034655A1 (ja) | 2012-08-31 | 2014-03-06 | 日本電気株式会社 | 光プローブ、検査装置、検査方法 |
CN104797960B (zh) | 2012-09-04 | 2017-08-15 | 真三维公司 | 用于自动立体视频显示器的可切换透镜阵列 |
DE102012108424A1 (de) | 2012-09-10 | 2014-03-13 | Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover | Optisches System mit einer GRIN-Optik und Vorrichtung mit zumindest zwei optischen Systemen |
US8731350B1 (en) | 2012-09-11 | 2014-05-20 | The United States Of America As Represented By The Secretary Of The Navy | Planar-waveguide Bragg gratings in curved waveguides |
US10025089B2 (en) | 2012-10-05 | 2018-07-17 | Microsoft Technology Licensing, Llc | Backlight for viewing three-dimensional images from a display from variable viewing angles |
USD694310S1 (en) | 2012-10-23 | 2013-11-26 | Samsung Electronics Co., Ltd. | Glasses with earphones |
CN110749378B (zh) | 2012-10-24 | 2022-12-27 | 视瑞尔技术公司 | 照明设备 |
GB201219126D0 (en) | 2012-10-24 | 2012-12-05 | Oxford Energy Technologies Ltd | Low refractive index particles |
JP2014089294A (ja) | 2012-10-30 | 2014-05-15 | Toshiba Corp | 液晶レンズ装置およびその駆動方法 |
CN102928981B (zh) | 2012-11-14 | 2016-08-03 | 中航华东光电有限公司 | 全息光波导头盔显示器光学系统 |
US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
WO2014080155A1 (en) | 2012-11-20 | 2014-05-30 | Milan Momcilo Popovich | Waveguide device for homogenizing illumination light |
US20150288129A1 (en) | 2012-11-28 | 2015-10-08 | VerLASE TECHNOLOGIES LLC | Optically Surface-Pumped Edge-Emitting Devices and Systems and Methods of Making Same |
US20140146394A1 (en) | 2012-11-28 | 2014-05-29 | Nigel David Tout | Peripheral display for a near-eye display device |
EP2929391B1 (en) | 2012-12-10 | 2020-04-15 | BAE SYSTEMS plc | Improvements in and relating to displays |
WO2014091200A1 (en) | 2012-12-10 | 2014-06-19 | Bae Systems Plc | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
WO2014091204A1 (en) | 2012-12-10 | 2014-06-19 | Bae Systems Plc | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
GB2508661A (en) | 2012-12-10 | 2014-06-11 | Bae Systems Plc | Improved display |
CN103031557A (zh) | 2012-12-12 | 2013-04-10 | 中国科学院长春光学精密机械与物理研究所 | 类矩形全息光栅等离子体刻蚀方法 |
US8937771B2 (en) | 2012-12-12 | 2015-01-20 | Microsoft Corporation | Three piece prism eye-piece |
US20140168260A1 (en) | 2012-12-13 | 2014-06-19 | Paul M. O'Brien | Waveguide spacers within an ned device |
KR101551548B1 (ko) | 2012-12-14 | 2015-09-09 | 주식회사 엘지화학 | 액정 소자의 제조 방법 |
US10386556B2 (en) | 2012-12-14 | 2019-08-20 | Merck Patent Gmbh | Birefringent RM lens |
US10311609B2 (en) | 2012-12-17 | 2019-06-04 | Clinton B. Smith | Method and system for the making, storage and display of virtual image edits |
US10146053B2 (en) | 2012-12-19 | 2018-12-04 | Microsoft Technology Licensing, Llc | Multiplexed hologram tiling in a waveguide display |
US10192358B2 (en) | 2012-12-20 | 2019-01-29 | Microsoft Technology Licensing, Llc | Auto-stereoscopic augmented reality display |
GB2509536A (en) | 2013-01-08 | 2014-07-09 | Bae Systems Plc | Diffraction grating |
EP4556966A3 (en) | 2013-01-08 | 2025-07-23 | Snap Inc. | Diffraction gratings and the manufacture thereof |
US9842562B2 (en) | 2013-01-13 | 2017-12-12 | Qualcomm Incorporated | Dynamic zone plate augmented vision eyeglasses |
CN108681065B (zh) | 2013-01-15 | 2021-11-23 | 奇跃公司 | 超高分辨率扫描光纤显示器 |
US20140204437A1 (en) | 2013-01-23 | 2014-07-24 | Akonia Holographics Llc | Dynamic aperture holographic multiplexing |
US8873149B2 (en) | 2013-01-28 | 2014-10-28 | David D. Bohn | Projection optical system for coupling image light to a near-eye display |
US20150262424A1 (en) | 2013-01-31 | 2015-09-17 | Google Inc. | Depth and Focus Discrimination for a Head-mountable device using a Light-Field Display System |
US9298168B2 (en) | 2013-01-31 | 2016-03-29 | Leia Inc. | Multiview 3D wrist watch |
US20140240842A1 (en) | 2013-02-22 | 2014-08-28 | Ian Nguyen | Alignment-insensitive image input coupling |
CN105188516B (zh) | 2013-03-11 | 2017-12-22 | 奇跃公司 | 用于增强和虚拟现实的系统与方法 |
US20160054563A9 (en) | 2013-03-14 | 2016-02-25 | Honda Motor Co., Ltd. | 3-dimensional (3-d) navigation |
US20140268277A1 (en) | 2013-03-14 | 2014-09-18 | Andreas Georgiou | Image correction using reconfigurable phase mask |
CN105246650B (zh) | 2013-03-15 | 2017-06-09 | 四站有限责任公司 | 弯曲容器上的拉环的装置和方法 |
US10042186B2 (en) | 2013-03-15 | 2018-08-07 | Ipventure, Inc. | Electronic eyewear and display |
KR102318391B1 (ko) | 2013-03-15 | 2021-10-26 | 매직 립, 인코포레이티드 | 디스플레이 시스템 및 방법 |
GB2512077B (en) | 2013-03-19 | 2019-10-23 | Univ Erasmus Med Ct Rotterdam | Intravascular optical imaging system |
JP6422856B2 (ja) | 2013-03-25 | 2018-11-14 | 技術研究組合光電子融合基盤技術研究所 | 光回路 |
GB201305691D0 (en) | 2013-03-28 | 2013-05-15 | Bae Systems Plc | Improvements in and relating to displays |
WO2014155096A1 (en) | 2013-03-28 | 2014-10-02 | Bae Systems Plc | Improvements in and relating to displays |
USD697130S1 (en) | 2013-04-02 | 2014-01-07 | Pulzit AB | Sports glasses |
WO2014172252A1 (en) | 2013-04-15 | 2014-10-23 | Kent State University | Patterned liquid crystal alignment using ink-jet printed nanoparticles and use thereof to produce patterned, electro-optically addressable devices; ink-jet printable compositions |
US9674413B1 (en) | 2013-04-17 | 2017-06-06 | Rockwell Collins, Inc. | Vision system and method having improved performance and solar mitigation |
USD726180S1 (en) | 2013-04-18 | 2015-04-07 | Vuzix Corporation | Video eyewear device |
USD694311S1 (en) | 2013-04-22 | 2013-11-26 | Samsung Electronic Co., Ltd. | Earphone glasses |
WO2014176695A1 (en) | 2013-04-30 | 2014-11-06 | Lensvector Inc. | Reprogrammable tuneable liquid crystal lens intraocular implant and methods therefor |
US9488836B2 (en) | 2013-05-02 | 2016-11-08 | Microsoft Technology Licensing, Llc | Spherical interface for binocular display |
CA151094S (en) | 2013-05-10 | 2014-03-31 | Recon Instr Inc | Glasses with heads-up display and modules |
US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
DE102013209436A1 (de) | 2013-05-22 | 2014-11-27 | Robert Bosch Gmbh | Vorrichtung und Verfahren zum Erzeugen eines Beleuchtungsmusters |
US9316849B2 (en) | 2013-05-23 | 2016-04-19 | Omnivision Technologies, Inc. | Mounting system for glasses frames |
USD701206S1 (en) | 2013-06-04 | 2014-03-18 | Oculus VR, Inc. | Virtual reality headset |
US9639985B2 (en) | 2013-06-24 | 2017-05-02 | Microsoft Technology Licensing, Llc | Active binocular alignment for near eye displays |
US10228561B2 (en) | 2013-06-25 | 2019-03-12 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism and gaze-detection light |
US9625723B2 (en) | 2013-06-25 | 2017-04-18 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism |
US20140375542A1 (en) | 2013-06-25 | 2014-12-25 | Steve Robbins | Adjusting a near-eye display device |
US9176324B1 (en) | 2013-06-25 | 2015-11-03 | Rockwell Collins, Inc. | Enhanced-image presentation system, device, and method |
US10126551B2 (en) | 2013-06-26 | 2018-11-13 | Bae Systems Plc | Display comprising an optical waveguide for displaying an image |
US8913865B1 (en) | 2013-06-27 | 2014-12-16 | Microsoft Corporation | Waveguide including light turning gaps |
US9664905B2 (en) | 2013-06-28 | 2017-05-30 | Microsoft Technology Licensing, Llc | Display efficiency optimization by color filtering |
ITTO20130541A1 (it) | 2013-06-28 | 2014-12-29 | St Microelectronics Srl | Dispositivo a semiconduttore integrante un partitore resistivo e procedimento di fabbricazione di un dispositivo a semiconduttore |
US9754507B1 (en) | 2013-07-02 | 2017-09-05 | Rockwell Collins, Inc. | Virtual/live hybrid behavior to mitigate range and behavior constraints |
WO2015006784A2 (en) | 2013-07-12 | 2015-01-15 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
US10228242B2 (en) | 2013-07-12 | 2019-03-12 | Magic Leap, Inc. | Method and system for determining user input based on gesture |
US10345903B2 (en) | 2013-07-30 | 2019-07-09 | Microsoft Technology Licensing, Llc | Feedback for optic positioning in display devices |
CN109100887B (zh) | 2013-07-30 | 2021-10-08 | 镭亚股份有限公司 | 背光体、电子显示器、多视图显示器和操作方法 |
US9727772B2 (en) | 2013-07-31 | 2017-08-08 | Digilens, Inc. | Method and apparatus for contact image sensing |
JP6131766B2 (ja) | 2013-08-06 | 2017-05-24 | 株式会社デンソー | 車両用ヘッドアップディスプレイ装置 |
US9335548B1 (en) | 2013-08-21 | 2016-05-10 | Google Inc. | Head-wearable display with collimated light source and beam steering mechanism |
JP6232863B2 (ja) | 2013-09-06 | 2017-11-22 | セイコーエプソン株式会社 | 光学デバイス及び画像表示装置 |
US9244281B1 (en) | 2013-09-26 | 2016-01-26 | Rockwell Collins, Inc. | Display system and method using a detached combiner |
US9785231B1 (en) | 2013-09-26 | 2017-10-10 | Rockwell Collins, Inc. | Head worn display integrity monitor system and methods |
US9239507B2 (en) | 2013-10-25 | 2016-01-19 | Forelux Inc. | Grating based optical coupler |
US9164290B2 (en) | 2013-11-06 | 2015-10-20 | Microsoft Corporation | Grating configurations for a tiled waveguide display |
DE102013223964B3 (de) | 2013-11-22 | 2015-05-13 | Carl Zeiss Ag | Abbildungsoptik sowie Anzeigevorrichtung mit einer solchen Abbildungsoptik |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
KR102493498B1 (ko) | 2013-11-27 | 2023-01-27 | 매직 립, 인코포레이티드 | 가상 및 증강 현실 시스템들 및 방법들 |
US9551468B2 (en) | 2013-12-10 | 2017-01-24 | Gary W. Jones | Inverse visible spectrum light and broad spectrum light source for enhanced vision |
US20150167868A1 (en) | 2013-12-17 | 2015-06-18 | Scott Boncha | Maple sap vacuum collection systems with chew proof tubing |
WO2015091282A1 (en) | 2013-12-19 | 2015-06-25 | Bae Systems Plc | Improvements in and relating to waveguides |
KR20150072151A (ko) | 2013-12-19 | 2015-06-29 | 한국전자통신연구원 | Slm을 이용하여 홀로그램 엘리먼트 이미지들을 기록하는 홀로그램 기록 장치 및 방법 |
ES2704700T3 (es) | 2013-12-19 | 2019-03-19 | Bae Systems Plc | Mejoras en guías de onda y en relación con ellas |
US9804316B2 (en) | 2013-12-20 | 2017-10-31 | Apple Inc. | Display having backlight with narrowband collimated light sources |
US9459451B2 (en) | 2013-12-26 | 2016-10-04 | Microsoft Technology Licensing, Llc | Eye tracking apparatus, method and system |
JPWO2015114743A1 (ja) | 2014-01-29 | 2017-03-23 | 日立コンシューマエレクトロニクス株式会社 | 光情報装置、光情報処理方法 |
US9671612B2 (en) | 2014-01-29 | 2017-06-06 | Google Inc. | Dynamic lens for head mounted display |
US9519089B1 (en) | 2014-01-30 | 2016-12-13 | Rockwell Collins, Inc. | High performance volume phase gratings |
KR102207799B1 (ko) | 2014-01-31 | 2021-01-26 | 매직 립, 인코포레이티드 | 멀티-포컬 디스플레이 시스템 및 방법 |
USD752129S1 (en) | 2014-02-19 | 2016-03-22 | Lg Electroincs Inc. | Frame to fix portable electronic device |
CN103777282A (zh) | 2014-02-26 | 2014-05-07 | 华中科技大学 | 一种光栅耦合器及光信号的耦合方法 |
US10203762B2 (en) | 2014-03-11 | 2019-02-12 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
US9762895B1 (en) | 2014-03-11 | 2017-09-12 | Rockwell Collins, Inc. | Dual simultaneous image presentation for a three-dimensional aviation display |
JP2015172713A (ja) | 2014-03-12 | 2015-10-01 | オリンパス株式会社 | 表示装置 |
JP6201836B2 (ja) | 2014-03-14 | 2017-09-27 | ソニー株式会社 | 光学装置及びその組立方法、ホログラム回折格子、表示装置並びにアライメント装置 |
WO2015139761A1 (en) | 2014-03-20 | 2015-09-24 | Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement | Imaging system |
WO2015145119A1 (en) | 2014-03-24 | 2015-10-01 | Wave Optics Ltd | Display system |
US9244280B1 (en) | 2014-03-25 | 2016-01-26 | Rockwell Collins, Inc. | Near eye display system and method for display enhancement or redundancy |
US10048647B2 (en) | 2014-03-27 | 2018-08-14 | Microsoft Technology Licensing, Llc | Optical waveguide including spatially-varying volume hologram |
USD725102S1 (en) | 2014-03-27 | 2015-03-24 | Lg Electronics Inc. | Head mounted display device |
USD754782S1 (en) | 2014-05-16 | 2016-04-26 | Kopin Corporation | Eyewear viewing device |
JP1511166S (ko) | 2014-05-21 | 2014-11-10 | ||
CN104035157B (zh) | 2014-05-26 | 2017-12-26 | 北京理工大学 | 一种基于衍射光学元件的波导显示器 |
KR102193052B1 (ko) | 2014-05-30 | 2020-12-18 | 매직 립, 인코포레이티드 | 가상 또는 증강 현실 장치로 가상 콘텐츠 디스플레이를 생성하기 위한 방법들 및 시스템들 |
USD751551S1 (en) | 2014-06-06 | 2016-03-15 | Alpha Primitus, Inc. | Pair of temple arms for an eyeglass frame with mount |
TWD183013S (zh) | 2014-06-24 | 2017-05-11 | 谷歌公司 | 可穿戴鉸接式顯示裝置 |
TWI540401B (zh) | 2014-06-26 | 2016-07-01 | 雷亞有限公司 | 多視角三維腕錶及在多視角三維腕錶中產生三維時間影像的方法 |
JP6172679B2 (ja) | 2014-06-26 | 2017-08-02 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 光結合構造、半導体デバイス、マルチ・チップ・モジュールのための光インターコネクト構造、および光結合構造のための製造方法 |
WO2016010289A1 (en) | 2014-07-15 | 2016-01-21 | Samsung Electronics Co., Ltd. | Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system |
CN104076424A (zh) * | 2014-07-28 | 2014-10-01 | 上海交通大学 | 全息聚合物分散液晶光栅及其制备方法 |
JP2016030503A (ja) | 2014-07-29 | 2016-03-07 | 日本精機株式会社 | ヘッドアップディスプレイ装置 |
US9557466B2 (en) | 2014-07-30 | 2017-01-31 | Leia, Inc | Multibeam diffraction grating-based color backlighting |
ES2856011T3 (es) | 2014-07-30 | 2021-09-27 | Leia Inc | Retroiluminación de colores basada en redes de difracción multihaz |
GB2529003B (en) | 2014-08-03 | 2020-08-26 | Wave Optics Ltd | Optical device |
US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
US9377623B2 (en) | 2014-08-11 | 2016-06-28 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing volume Bragg grating |
US9678345B1 (en) | 2014-08-15 | 2017-06-13 | Rockwell Collins, Inc. | Dynamic vergence correction in binocular displays |
US9626936B2 (en) | 2014-08-21 | 2017-04-18 | Microsoft Technology Licensing, Llc | Dimming module for augmented and virtual reality |
US9733475B1 (en) | 2014-09-08 | 2017-08-15 | Rockwell Collins, Inc. | Curved waveguide combiner for head-mounted and helmet-mounted displays (HMDS), a collimated virtual window, or a head up display (HUD) |
US20160077338A1 (en) | 2014-09-16 | 2016-03-17 | Steven John Robbins | Compact Projection Light Engine For A Diffractive Waveguide Display |
US10088616B2 (en) * | 2014-09-19 | 2018-10-02 | Toyota Motor Engineering & Manufacturing North America, Inc. | Panel with reduced glare |
WO2016042283A1 (en) | 2014-09-19 | 2016-03-24 | Milan Momcilo Popovich | Method and apparatus for generating input images for holographic waveguide displays |
USD746896S1 (en) | 2014-09-23 | 2016-01-05 | Costa Del Mar, Inc. | Eyeglasses |
US9494799B2 (en) | 2014-09-24 | 2016-11-15 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing switchable diffraction gratings |
US9715110B1 (en) | 2014-09-25 | 2017-07-25 | Rockwell Collins, Inc. | Automotive head up display (HUD) |
WO2016046514A1 (en) | 2014-09-26 | 2016-03-31 | LOKOVIC, Kimberly, Sun | Holographic waveguide opticaltracker |
CN112925100B (zh) | 2014-09-29 | 2023-10-31 | 奇跃公司 | 光学系统 |
US9435961B2 (en) | 2014-10-15 | 2016-09-06 | Huawei Technologies Co., Ltd. | Stacked photonic chip coupler for SOI chip-fiber coupling |
WO2016069606A1 (en) | 2014-10-27 | 2016-05-06 | Wichita State University | Lens mount for a wearable mobile device |
JP2016085430A (ja) | 2014-10-29 | 2016-05-19 | セイコーエプソン株式会社 | 虚像表示装置 |
WO2016087442A1 (en) | 2014-12-01 | 2016-06-09 | Danmarks Tekniske Universitet | Compact optical sensor for measuring physical parameters |
USD827641S1 (en) | 2014-12-16 | 2018-09-04 | Sony Corporation | Wearable media player |
IL236491B (en) | 2014-12-25 | 2020-11-30 | Lumus Ltd | A method for manufacturing an optical component in a conductive substrate |
US9759919B2 (en) | 2015-01-05 | 2017-09-12 | Microsoft Technology Licensing, Llc | Virtual image display with curved light path |
WO2016111708A1 (en) | 2015-01-10 | 2016-07-14 | Leia Inc. | Two-dimensional/three-dimensional (2d/3d) switchable display backlight and electronic display |
JP6824171B2 (ja) | 2015-01-10 | 2021-02-10 | レイア、インコーポレイテッドLeia Inc. | 制御された回折カップリング効率を有する回折格子ベースの背面照明 |
WO2016111706A1 (en) | 2015-01-10 | 2016-07-14 | Leia Inc. | Polarization-mixing light guide and multibeam grating-based backlighting using same |
CN107111059B (zh) | 2015-01-10 | 2020-10-13 | 镭亚股份有限公司 | 光栅耦合光导 |
CN111323867A (zh) | 2015-01-12 | 2020-06-23 | 迪吉伦斯公司 | 环境隔离的波导显示器 |
WO2016113533A2 (en) | 2015-01-12 | 2016-07-21 | Milan Momcilo Popovich | Holographic waveguide light field displays |
ES2803583T3 (es) | 2015-01-19 | 2021-01-28 | Leia Inc | Luz de fondo basada en rejilla unidireccional empleando una isla reflectiva |
JP6867947B2 (ja) | 2015-01-20 | 2021-05-12 | ディジレンズ インコーポレイテッド | ホログラフィック導波路ライダー |
KR102243288B1 (ko) | 2015-01-28 | 2021-04-22 | 레이아 인코포레이티드 | 3차원(3d) 전자 디스플레이 |
US9535253B2 (en) | 2015-02-09 | 2017-01-03 | Microsoft Technology Licensing, Llc | Display system |
US9372347B1 (en) | 2015-02-09 | 2016-06-21 | Microsoft Technology Licensing, Llc | Display system |
US9423360B1 (en) | 2015-02-09 | 2016-08-23 | Microsoft Technology Licensing, Llc | Optical components |
US10018844B2 (en) | 2015-02-09 | 2018-07-10 | Microsoft Technology Licensing, Llc | Wearable image display system |
US9513480B2 (en) | 2015-02-09 | 2016-12-06 | Microsoft Technology Licensing, Llc | Waveguide |
US9429692B1 (en) | 2015-02-09 | 2016-08-30 | Microsoft Technology Licensing, Llc | Optical components |
US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
US20180246354A1 (en) | 2015-02-23 | 2018-08-30 | Digilens, Inc. | Electrically focus-tunable lens |
US10088689B2 (en) | 2015-03-13 | 2018-10-02 | Microsoft Technology Licensing, Llc | Light engine with lenticular microlenslet arrays |
US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
CN107409202A (zh) | 2015-03-20 | 2017-11-28 | 奇跃公司 | 用于增强现实显示系统的光组合器 |
US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
CN107709477B (zh) * | 2015-04-30 | 2021-10-29 | 科慕埃弗西有限公司 | 包含可交联聚合物添加剂的耐久性建筑涂料 |
JP2018523147A (ja) | 2015-05-08 | 2018-08-16 | ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc | ディスプレイにおける、および、ディスプレイに関連する改良 |
PT3295242T (pt) | 2015-05-09 | 2020-07-31 | Leia Inc | Retroiluminação baseada numa rede de varrimento de cor e visualização electrónica utilizando esta última |
WO2016183537A1 (en) | 2015-05-14 | 2016-11-17 | Cross Match Technologies, Inc. | Handheld biometric scanner device |
JP2017003744A (ja) | 2015-06-09 | 2017-01-05 | セイコーエプソン株式会社 | 光学デバイスおよび画像表示装置 |
EP3308219B1 (en) | 2015-06-15 | 2024-08-07 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
CN104880868B (zh) * | 2015-06-16 | 2017-12-29 | 京东方科技集团股份有限公司 | 一种液晶光栅及其制作方法和显示装置 |
US10670862B2 (en) | 2015-07-02 | 2020-06-02 | Microsoft Technology Licensing, Llc | Diffractive optical elements with asymmetric profiles |
KR102390346B1 (ko) | 2015-07-20 | 2022-04-22 | 매직 립, 인코포레이티드 | 가상/증강 현실 시스템에서 안쪽 지향 각도들을 가진 시준 섬유 스캐너 설계 |
US9541763B1 (en) | 2015-07-29 | 2017-01-10 | Rockwell Collins, Inc. | Active HUD alignment |
US10038840B2 (en) | 2015-07-30 | 2018-07-31 | Microsoft Technology Licensing, Llc | Diffractive optical element using crossed grating for pupil expansion |
US9864208B2 (en) | 2015-07-30 | 2018-01-09 | Microsoft Technology Licensing, Llc | Diffractive optical elements with varying direction for depth modulation |
US9791694B1 (en) | 2015-08-07 | 2017-10-17 | Rockwell Collins, Inc. | Transparent film display system for vehicles |
US10180520B2 (en) | 2015-08-24 | 2019-01-15 | Akonia Holographics, Llc | Skew mirrors, methods of use, and methods of manufacture |
WO2017041079A1 (en) | 2015-09-05 | 2017-03-09 | Leia Inc. | Angular subpixel rendering multiview display using shifted multibeam diffraction gratings |
KR101759727B1 (ko) | 2015-09-11 | 2017-07-20 | 부산대학교 산학협력단 | 에포다이즈드 격자를 기반으로 한 폴리머 광도파로 가변 파장 필터의 제작방법 |
EP3359999A1 (en) | 2015-10-05 | 2018-08-15 | Popovich, Milan Momcilo | Waveguide display |
US10429645B2 (en) | 2015-10-07 | 2019-10-01 | Microsoft Technology Licensing, Llc | Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling |
US10241332B2 (en) | 2015-10-08 | 2019-03-26 | Microsoft Technology Licensing, Llc | Reducing stray light transmission in near eye display using resonant grating filter |
US10067346B2 (en) | 2015-10-23 | 2018-09-04 | Microsoft Technology Licensing, Llc | Holographic display |
US9946072B2 (en) | 2015-10-29 | 2018-04-17 | Microsoft Technology Licensing, Llc | Diffractive optical element with uncoupled grating structures |
KR102744773B1 (ko) | 2015-11-04 | 2024-12-18 | 매직 립, 인코포레이티드 | 눈-추적 기반 동적 디스플레이 교정 |
US11231544B2 (en) | 2015-11-06 | 2022-01-25 | Magic Leap, Inc. | Metasurfaces for redirecting light and methods for fabricating |
US9791696B2 (en) | 2015-11-10 | 2017-10-17 | Microsoft Technology Licensing, Llc | Waveguide gratings to improve intensity distributions |
US9915825B2 (en) | 2015-11-10 | 2018-03-13 | Microsoft Technology Licensing, Llc | Waveguides with embedded components to improve intensity distributions |
US10359627B2 (en) * | 2015-11-10 | 2019-07-23 | Microsoft Technology Licensing, Llc | Waveguide coatings or substrates to improve intensity distributions having adjacent planar optical component separate from an input, output, or intermediate coupler |
FR3043852B1 (fr) | 2015-11-13 | 2017-12-22 | Commissariat Energie Atomique | Dispositif laser et procede de fabrication d’un tel dispositif laser |
WO2017087390A1 (en) | 2015-11-16 | 2017-05-26 | Analog Devices, Inc. | Waveguide-based integrated spectrometer |
US10558043B2 (en) | 2015-12-02 | 2020-02-11 | Rockwell Collins, Inc. | Worn display using a peripheral view |
WO2017094129A1 (ja) | 2015-12-02 | 2017-06-08 | 株式会社日立製作所 | ホログラム光情報再生装置 |
US10162181B2 (en) | 2015-12-03 | 2018-12-25 | Microsoft Technology Licensing, Llc | Display device with optics for brightness uniformity tuning having DOE optically coupled to receive light at central and peripheral regions |
US9800607B2 (en) | 2015-12-21 | 2017-10-24 | Bank Of America Corporation | System for determining effectiveness and allocation of information security technologies |
US20170176747A1 (en) | 2015-12-21 | 2017-06-22 | Tuomas Heikki Sakari Vallius | Multi-Pupil Display System for Head-Mounted Display Device |
US10038710B2 (en) | 2015-12-22 | 2018-07-31 | Sap Se | Efficient identification of log events in enterprise threat detection |
USD793468S1 (en) | 2016-01-04 | 2017-08-01 | Garmin Switzerland Gmbh | Display device |
USD795865S1 (en) | 2016-01-06 | 2017-08-29 | Vuzix Corporation | Monocular smart glasses |
US10152121B2 (en) | 2016-01-06 | 2018-12-11 | Facebook Technologies, Llc | Eye tracking through illumination by head-mounted displays |
EP3380878B1 (en) | 2016-01-06 | 2023-03-08 | Vuzix Corporation | Two channel imaging light guide with dichroic reflectors |
USD795866S1 (en) | 2016-01-06 | 2017-08-29 | Vuzix Corporation | Monocular smart glasses |
CN106960661B (zh) | 2016-01-08 | 2019-06-21 | 京东方科技集团股份有限公司 | 一种3d显示装置及其驱动方法 |
US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
US10056020B2 (en) | 2016-02-11 | 2018-08-21 | Oculus Vr, Llc | Waveguide display with two-dimensional scanner |
US9874931B1 (en) | 2016-02-22 | 2018-01-23 | Rockwell Collins, Inc. | Head-tracking system and method |
JP6736911B2 (ja) | 2016-02-29 | 2020-08-05 | セイコーエプソン株式会社 | 光束径拡大素子及び画像表示装置 |
US10540007B2 (en) | 2016-03-04 | 2020-01-21 | Rockwell Collins, Inc. | Systems and methods for delivering imagery to head-worn display systems |
US9886742B2 (en) | 2016-03-17 | 2018-02-06 | Google Llc | Electro-optic beam steering for super-resolution/lightfield imagery |
EP3433659B1 (en) | 2016-03-24 | 2024-10-23 | DigiLens, Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
CN109154717B (zh) | 2016-04-11 | 2022-05-13 | 迪吉伦斯公司 | 用于结构光投射的全息波导设备 |
US10025093B2 (en) | 2016-04-13 | 2018-07-17 | Microsoft Technology Licensing, Llc | Waveguide-based displays with exit pupil expander |
US9791703B1 (en) | 2016-04-13 | 2017-10-17 | Microsoft Technology Licensing, Llc | Waveguides with extended field of view |
US9939577B2 (en) | 2016-04-20 | 2018-04-10 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source |
JP6780014B2 (ja) | 2016-04-21 | 2020-11-04 | ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc | メタマテリアルで被覆された導波路を有するディスプレイ |
US9885870B2 (en) | 2016-04-25 | 2018-02-06 | Microsoft Technology Licensing, Llc | Diffractive optical elements with analog modulations and switching |
US10197804B2 (en) | 2016-04-25 | 2019-02-05 | Microsoft Technology Licensing, Llc | Refractive coating for diffractive optical elements |
US10241346B2 (en) | 2016-05-07 | 2019-03-26 | Microsoft Technology Licensing, Llc | Degrees of freedom for diffraction elements in wave expander |
WO2017197020A1 (en) | 2016-05-12 | 2017-11-16 | Magic Leap, Inc. | Distributed light manipulation over imaging waveguide |
GB201609027D0 (en) | 2016-05-23 | 2016-07-06 | Bae Systems Plc | Waveguide manufacturing method |
GB201609026D0 (en) | 2016-05-23 | 2016-07-06 | Bae Systems Plc | Waveguide manufacturing method |
GB2550958B (en) | 2016-06-03 | 2022-02-23 | Bae Systems Plc | Waveguide structure |
USD840454S1 (en) | 2016-07-08 | 2019-02-12 | Rockwell Collins, Inc. | Head worn display wave-guide assembly |
KR102194688B1 (ko) | 2016-08-22 | 2020-12-24 | 매직 립, 인코포레이티드 | 다층 회절 접안렌즈 |
KR102519016B1 (ko) | 2016-09-07 | 2023-04-05 | 매직 립, 인코포레이티드 | 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들 |
KR102646789B1 (ko) | 2016-09-22 | 2024-03-13 | 삼성전자주식회사 | 지향성 백라이트 유닛 및 이를 포함하는 입체 영상 표시 장치 |
EP3523574B1 (en) | 2016-10-05 | 2025-02-26 | LEIA Inc. | Mode-selectable backlight, method, and display employing directional scattering features |
US10444510B1 (en) | 2016-10-11 | 2019-10-15 | Facebook Technologies, Llc | Opposed gratings in a waveguide display |
CN106443867A (zh) | 2016-11-09 | 2017-02-22 | 苏州苏大维格光电科技股份有限公司 | 一种波导器件及三维显示装置 |
KR102654870B1 (ko) | 2016-11-09 | 2024-04-05 | 삼성전자주식회사 | 3차원 영상 디스플레이용 백라이트 유닛 및 그 제조방법 |
US20190278224A1 (en) | 2016-11-17 | 2019-09-12 | Akonia Holographics Llc | Hologram recording systems and optical recording cells |
JP7019695B2 (ja) | 2016-11-18 | 2022-02-15 | マジック リープ, インコーポレイテッド | 広入射角範囲の光を再指向するための多層液晶回折格子 |
GB2556938B (en) | 2016-11-28 | 2022-09-07 | Bae Systems Plc | Multiple waveguide structure for colour displays |
EP3548939A4 (en) | 2016-12-02 | 2020-11-25 | DigiLens Inc. | UNIFORM OUTPUT LIGHTING WAVEGUIDE DEVICE |
CN110073259A (zh) | 2016-12-15 | 2019-07-30 | 松下知识产权经营株式会社 | 波导片以及光电变换装置 |
US10088686B2 (en) | 2016-12-16 | 2018-10-02 | Microsoft Technology Licensing, Llc | MEMS laser scanner having enlarged FOV |
US10185151B2 (en) | 2016-12-20 | 2019-01-22 | Facebook Technologies, Llc | Waveguide display with a small form factor, a large field of view, and a large eyebox |
CN106848835B (zh) | 2016-12-22 | 2020-04-28 | 华中科技大学 | 一种基于表面光栅的dfb激光器 |
CN106842397B (zh) | 2017-01-05 | 2020-07-17 | 苏州苏大维格光电科技股份有限公司 | 一种树脂全息波导镜片及其制备方法、及三维显示装置 |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
US10698214B2 (en) | 2017-01-17 | 2020-06-30 | Microsoft Technology Licensing, Llc | Optical device to improve image uniformity |
US10295824B2 (en) | 2017-01-26 | 2019-05-21 | Rockwell Collins, Inc. | Head up display with an angled light pipe |
KR20190105576A (ko) | 2017-01-26 | 2019-09-17 | 디지렌즈 인코포레이티드 | 균일한 출력 조명을 갖는 도파관 장치 |
US11460694B2 (en) | 2017-02-14 | 2022-10-04 | Snap Inc. | Waveguide structure |
JP2020508484A (ja) | 2017-02-15 | 2020-03-19 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | アーチファクト軽減を組み込むプロジェクタアーキテクチャ |
US10508232B2 (en) * | 2017-02-16 | 2019-12-17 | Dow Global Technologies Llc | Polymer composites and films comprising reactive additives having thiol groups for improved quantum dot dispersion and barrier properties |
US11054581B2 (en) | 2017-03-01 | 2021-07-06 | Akonia Holographics Llc | Ducted pupil expansion |
US10613268B1 (en) | 2017-03-07 | 2020-04-07 | Facebook Technologies, Llc | High refractive index gratings for waveguide displays manufactured by self-aligned stacked process |
JP2020512578A (ja) | 2017-03-21 | 2020-04-23 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 組み合わせられた視野のための異なる回折格子を有するスタックされた導波管 |
CN110431471B (zh) | 2017-03-21 | 2023-06-23 | 奇跃公司 | 用于具有宽视野的波导投影仪的方法和系统 |
IL300511A (en) | 2017-03-22 | 2023-04-01 | Magic Leap Inc | Depth-based rendering for display systems |
CN106950744B (zh) | 2017-04-26 | 2019-07-19 | 华中科技大学 | 一种全息聚合物分散液晶光栅及其制备方法 |
DE102017110246A1 (de) | 2017-05-11 | 2018-11-15 | Hettich Franke Gmbh & Co. Kg | Schwenkbeschlag und Möbel |
US10466487B2 (en) | 2017-06-01 | 2019-11-05 | PogoTec, Inc. | Releasably attachable augmented reality system for eyewear |
JP7213831B2 (ja) | 2017-06-13 | 2023-01-27 | ビュージックス コーポレーション | 拡大された光分配を行う重合格子を備えた画像光ガイド |
US10859834B2 (en) | 2017-07-03 | 2020-12-08 | Holovisions | Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear |
WO2019046649A1 (en) | 2017-08-30 | 2019-03-07 | Digilens, Inc. | METHODS AND APPARATUS FOR COMPENSATION OF IMAGE DISTORTION AND LIGHT UNIFORMITY IN A WAVEGUIDE |
US10107966B1 (en) | 2017-09-06 | 2018-10-23 | International Business Machines Corporation | Single-mode polymer waveguide connector assembly |
AU201811384S (en) | 2017-09-08 | 2018-05-11 | Bae Systems Plc | Headwear optical articles |
US10569449B1 (en) | 2017-09-13 | 2020-02-25 | Facebook Technologies, Llc | Nanoimprint lithography system and method |
US11175506B2 (en) | 2017-09-28 | 2021-11-16 | Google Llc | Systems, devices, and methods for waveguide-based eyebox expansion in wearable heads-up displays |
US10929667B2 (en) | 2017-10-13 | 2021-02-23 | Corning Incorporated | Waveguide-based optical systems and methods for augmented reality systems |
CN116149058A (zh) | 2017-10-16 | 2023-05-23 | 迪吉伦斯公司 | 用于倍增像素化显示器的图像分辨率的系统和方法 |
JP7486701B2 (ja) | 2017-10-19 | 2024-05-20 | スナップ・インコーポレーテッド | ヘッドアップディスプレイ用の軸方向に非対称な画像ソース |
USD872170S1 (en) | 2017-11-09 | 2020-01-07 | OxSight Limited | Glasses |
US10983257B1 (en) | 2017-11-21 | 2021-04-20 | Facebook Technologies, Llc | Fabrication of self-aligned grating elements with high refractive index for waveguide displays |
JP1611400S (ko) | 2017-11-24 | 2021-08-16 | ||
JP7073690B2 (ja) | 2017-11-29 | 2022-05-24 | セイコーエプソン株式会社 | 記録装置 |
EP3499278A1 (en) | 2017-12-13 | 2019-06-19 | Thomson Licensing | A diffraction grating structure comprising several grating lines |
US10852547B2 (en) | 2017-12-15 | 2020-12-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
KR102662955B1 (ko) | 2017-12-21 | 2024-05-02 | 스냅 아이엔씨 | 웨어러블 장치 |
FI129113B (en) | 2017-12-22 | 2021-07-15 | Dispelix Oy | Waveguide display and display element with new lattice configuration |
FI129400B (en) | 2017-12-22 | 2022-01-31 | Dispelix Oy | Diffractive waveguide element and diffractive waveguide display |
FI129167B (en) | 2017-12-22 | 2021-08-31 | Dispelix Oy | Interference-free waveguide display |
WO2019136471A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Liquid crystal materials and formulations |
JP2021509737A (ja) | 2018-01-08 | 2021-04-01 | ディジレンズ インコーポレイテッド | 低官能性モノマーを組み込むホログラフィック材料システムおよび導波管 |
WO2019136470A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Low haze liquid crystal materials |
KR20250089565A (ko) | 2018-01-08 | 2025-06-18 | 디지렌즈 인코포레이티드. | 도파관 셀을 제조하기 위한 시스템 및 방법 |
US10732569B2 (en) | 2018-01-08 | 2020-08-04 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
WO2019136476A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Waveguide architectures and related methods of manufacturing |
KR102745805B1 (ko) | 2018-01-08 | 2024-12-20 | 디지렌즈 인코포레이티드. | 광 도파관의 제조 방법 |
USD859510S1 (en) | 2018-01-16 | 2019-09-10 | Costa Del Mar, Inc. | Eyeglasses |
US10823887B1 (en) | 2018-01-23 | 2020-11-03 | Facebook Technologigegs, Llc | Diffraction grating with a variable refractive index using multiple resins |
US10914954B2 (en) | 2018-08-03 | 2021-02-09 | Facebook Technologies, Llc | Rainbow reduction for waveguide displays |
CN108107506A (zh) | 2018-02-12 | 2018-06-01 | 福州大学 | 一种光通信波段聚合物波导光栅耦合器及其制作方法 |
CN208092344U (zh) | 2018-02-13 | 2018-11-13 | 成都理想境界科技有限公司 | 一种单眼大视场近眼显示光学系统及头戴式显示设备 |
US10866426B2 (en) | 2018-02-28 | 2020-12-15 | Apple Inc. | Scanning mirror display devices |
WO2019171038A1 (en) | 2018-03-07 | 2019-09-12 | Bae Systems Plc | Waveguide structure for head up displays |
USD855687S1 (en) | 2018-03-09 | 2019-08-06 | Kopin Corporation | Eyewear viewing device |
CN208621784U (zh) | 2018-03-15 | 2019-03-19 | 中国计量大学 | 一种柔性介入式医用导管空间弯曲检测的光栅光波导器件 |
KR20200133265A (ko) | 2018-03-16 | 2020-11-26 | 디지렌즈 인코포레이티드. | 복굴절 제어가 통합된 홀로그래픽 도파관 및 이를 제조하는 방법 |
FI130178B (en) | 2018-03-28 | 2023-03-29 | Dispelix Oy | Waveguide element and waveguide stack for display use |
FI128837B (en) | 2018-03-28 | 2021-01-15 | Dispelix Oy | Outlet pupil dilator |
FI129387B (en) | 2018-03-28 | 2022-01-31 | Dispelix Oy | Waveguide elements |
FI129359B (en) | 2018-03-28 | 2021-12-31 | Dispelix Oy | Diffractive grating |
US10345519B1 (en) | 2018-04-11 | 2019-07-09 | Microsoft Technology Licensing, Llc | Integrated optical beam steering system |
US10732351B2 (en) | 2018-04-23 | 2020-08-04 | Facebook Technologies, Llc | Gratings with variable depths formed using planarization for waveguide displays |
US20190339558A1 (en) | 2018-05-07 | 2019-11-07 | Digilens Inc. | Methods and Apparatuses for Copying a Diversity of Hologram Prescriptions from a Common Master |
US10649119B2 (en) | 2018-07-16 | 2020-05-12 | Facebook Technologies, Llc | Duty cycle, depth, and surface energy control in nano fabrication |
WO2020023779A1 (en) | 2018-07-25 | 2020-01-30 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
US10578876B1 (en) | 2018-09-10 | 2020-03-03 | Facebook Technologies, Llc | Waveguide having a phase-matching region |
US11103892B1 (en) | 2018-09-25 | 2021-08-31 | Facebook Technologies, Llc | Initiated chemical vapor deposition method for forming nanovoided polymers |
USD880575S1 (en) | 2018-09-25 | 2020-04-07 | Oakley, Inc. | Eyeglasses |
JP7155815B2 (ja) | 2018-09-27 | 2022-10-19 | セイコーエプソン株式会社 | 頭部装着型表示装置 |
US11454809B2 (en) | 2018-10-16 | 2022-09-27 | Meta Platforms Technologies LLC | Display waveguide assembly with color cross-coupling |
US11243333B1 (en) | 2018-10-24 | 2022-02-08 | Facebook Technologies, Llc | Nanovoided optical structures and corresponding systems and methods |
US10598938B1 (en) | 2018-11-09 | 2020-03-24 | Facebook Technologies, Llc | Angular selective grating coupler for waveguide display |
US10690831B2 (en) | 2018-11-20 | 2020-06-23 | Facebook Technologies, Llc | Anisotropically formed diffraction grating device |
CN113302546A (zh) | 2018-11-20 | 2021-08-24 | 奇跃公司 | 用于增强现实显示系统的目镜 |
US11340386B1 (en) | 2018-12-07 | 2022-05-24 | Facebook Technologies, Llc | Index-gradient structures with nanovoided materials and corresponding systems and methods |
US11306193B1 (en) | 2018-12-10 | 2022-04-19 | Facebook Technologies, Llc | Methods for forming ordered and disordered nanovoided composite polymers |
US11233189B2 (en) | 2018-12-11 | 2022-01-25 | Facebook Technologies, Llc | Nanovoided tunable birefringence |
EP3894938A4 (en) | 2018-12-11 | 2022-08-24 | Digilens Inc. | Methods and apparatuses for providing a single grating layer color holographic waveguide display |
US12124034B2 (en) | 2018-12-19 | 2024-10-22 | Apple Inc. | Modular system for head-mounted device |
US11307357B2 (en) | 2018-12-28 | 2022-04-19 | Facebook Technologies, Llc | Overcoating slanted surface-relief structures using atomic layer deposition |
WO2020149956A1 (en) | 2019-01-14 | 2020-07-23 | Digilens Inc. | Holographic waveguide display with light control layer |
US11667059B2 (en) | 2019-01-31 | 2023-06-06 | Meta Platforms Technologies, Llc | Techniques for reducing surface adhesion during demolding in nanoimprint lithography |
US20200249568A1 (en) | 2019-02-05 | 2020-08-06 | Facebook Technologies, Llc | Curable formulation with high refractive index and its application in surface relief grating using nanoimprinting lithography |
WO2020163524A1 (en) | 2019-02-05 | 2020-08-13 | Digilens Inc. | Methods for compensating for optical surface nonuniformity |
KR20210138609A (ko) | 2019-02-15 | 2021-11-19 | 디지렌즈 인코포레이티드. | 일체형 격자를 이용하여 홀로그래픽 도파관 디스플레이를 제공하기 위한 방법 및 장치 |
US20220283377A1 (en) | 2019-02-15 | 2022-09-08 | Digilens Inc. | Wide Angle Waveguide Display |
CN113728075A (zh) | 2019-02-22 | 2021-11-30 | 迪吉伦斯公司 | 具有高衍射效率和低雾度的全息聚合物分散液晶混合物 |
JP2022525165A (ja) | 2019-03-12 | 2022-05-11 | ディジレンズ インコーポレイテッド | ホログラフィック導波管バックライトおよび関連する製造方法 |
AU2020259217B2 (en) | 2019-04-18 | 2025-01-02 | Snap Inc. | Optical arrangement for a display |
US20200341194A1 (en) | 2019-04-26 | 2020-10-29 | Digilens Inc. | Holographic Waveguide Illumination Homogenizers |
US20200348519A1 (en) | 2019-05-03 | 2020-11-05 | Digilens Inc. | Waveguide Display with Wide Angle Peripheral Field of View |
JP1664536S (ko) | 2019-05-03 | 2020-07-27 | ||
US20200386947A1 (en) | 2019-06-07 | 2020-12-10 | Digilens Inc. | Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing |
US11137603B2 (en) | 2019-06-20 | 2021-10-05 | Facebook Technologies, Llc | Surface-relief grating with patterned refractive index modulation |
US11550083B2 (en) | 2019-06-26 | 2023-01-10 | Meta Platforms Technologies, Llc | Techniques for manufacturing slanted structures |
KR20220036963A (ko) | 2019-07-22 | 2022-03-23 | 디지렌즈 인코포레이티드. | 도파관의 대량 제조를 위한 시스템 및 방법 |
KR20220038452A (ko) | 2019-07-29 | 2022-03-28 | 디지렌즈 인코포레이티드. | 픽셀화된 디스플레이의 이미지 해상도와 시야를 증배하는 방법 및 장치 |
GB2589685B (en) | 2019-08-21 | 2023-01-18 | Snap Inc | Manufacture of surface relief structures |
KR20220045988A (ko) | 2019-08-21 | 2022-04-13 | 배 시스템즈 피엘시 | 광 도파로 |
US20210055551A1 (en) | 2019-08-23 | 2021-02-25 | Facebook Technologies, Llc | Dispersion compensation in volume bragg grating-based waveguide display |
KR20250030038A (ko) | 2019-08-29 | 2025-03-05 | 디지렌즈 인코포레이티드. | 진공 격자 및 이의 제조 방법 |
BR112022004171A2 (pt) | 2019-09-06 | 2022-05-31 | Bae Systems Plc | Guia de onda e método para fabricar uma ferramenta de grade mestra de guia de onda |
US11598919B2 (en) | 2019-10-14 | 2023-03-07 | Meta Platforms Technologies, Llc | Artificial reality system having Bragg grating |
US11428938B2 (en) | 2019-12-23 | 2022-08-30 | Meta Platforms Technologies, Llc | Switchable diffractive optical element and waveguide containing the same |
US11662584B2 (en) | 2019-12-26 | 2023-05-30 | Meta Platforms Technologies, Llc | Gradient refractive index grating for display leakage reduction |
US20210199873A1 (en) | 2019-12-26 | 2021-07-01 | Facebook Technologies, Llc | Dual-side antireflection coatings for broad angular and wavelength bands |
CN111025657A (zh) | 2019-12-31 | 2020-04-17 | 瑞声通讯科技(常州)有限公司 | 近眼显示装置 |
WO2021138607A1 (en) | 2020-01-03 | 2021-07-08 | Digilens Inc. | Modular waveguide displays and related applications |
US20210238374A1 (en) | 2020-02-04 | 2021-08-05 | Facebook Technologies, Llc | Templated synthesis of nanovoided polymers |
US11536972B2 (en) | 2020-05-22 | 2022-12-27 | Magic Leap, Inc. | Method and system for dual projector waveguide displays with wide field of view using a combined pupil expander-extractor (CPE) |
WO2021242898A1 (en) | 2020-05-26 | 2021-12-02 | Digilens Inc. | Eyed glow suppression in waveguide based displays |
US20230290290A1 (en) | 2020-06-22 | 2023-09-14 | Digilens Inc. | Systems and Methods for Real-Time Color Correction of Waveguide Based Displays |
US11543584B2 (en) | 2020-07-14 | 2023-01-03 | Meta Platforms Technologies, Llc | Inorganic matrix nanoimprint lithographs and methods of making thereof with reduced carbon |
KR20230036151A (ko) | 2020-07-14 | 2023-03-14 | 디지렌즈 인코포레이티드. | 나노입자-기초 홀로그램 광중합체 재료 및 관련 적용 |
US20220082739A1 (en) | 2020-09-17 | 2022-03-17 | Facebook Technologies, Llc | Techniques for manufacturing variable etch depth gratings using gray-tone lithography |
US11592681B2 (en) | 2020-09-23 | 2023-02-28 | Meta Platforms Technologies, Llc | Device including diffractive optical element |
WO2022109615A1 (en) | 2020-11-23 | 2022-05-27 | Digilens Inc. | Photonic crystals and methods for fabricating the same |
US20220206232A1 (en) | 2020-12-30 | 2022-06-30 | Facebook Technologies, Llc | Layered waveguide fabrication by additive manufacturing |
US20220204790A1 (en) | 2020-12-31 | 2022-06-30 | Facebook Technologies, Llc | High refractive index overcoat formulation and method of use with inkjet printing |
WO2022150841A1 (en) | 2021-01-07 | 2022-07-14 | Digilens Inc. | Grating structures for color waveguides |
WO2022187870A1 (en) | 2021-03-05 | 2022-09-09 | Digilens Inc. | Evacuated periotic structures and methods of manufacturing |
-
2020
- 2020-08-28 KR KR1020257006495A patent/KR20250030038A/ko active Pending
- 2020-08-28 US US17/006,569 patent/US11442222B2/en active Active
- 2020-08-28 KR KR1020227010444A patent/KR102775783B1/ko active Active
- 2020-08-28 CN CN202080062857.XA patent/CN114450608A/zh active Pending
- 2020-08-28 JP JP2022513163A patent/JP2022546413A/ja active Pending
- 2020-08-28 EP EP20856729.7A patent/EP4022370A4/en active Pending
- 2020-08-28 WO PCT/US2020/048590 patent/WO2021041949A1/en unknown
-
2022
- 2022-01-20 US US17/648,511 patent/US11592614B2/en active Active
- 2022-09-12 US US17/931,495 patent/US11899238B2/en active Active
-
2024
- 2024-01-08 US US18/407,259 patent/US20240142695A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2022546413A (ja) | 2022-11-04 |
US11442222B2 (en) | 2022-09-13 |
US20210063634A1 (en) | 2021-03-04 |
EP4022370A1 (en) | 2022-07-06 |
US11592614B2 (en) | 2023-02-28 |
CN114450608A (zh) | 2022-05-06 |
US20220155623A1 (en) | 2022-05-19 |
WO2021041949A1 (en) | 2021-03-04 |
US11899238B2 (en) | 2024-02-13 |
KR102775783B1 (ko) | 2025-02-28 |
KR20220054386A (ko) | 2022-05-02 |
US20230078253A1 (en) | 2023-03-16 |
US20240142695A1 (en) | 2024-05-02 |
EP4022370A4 (en) | 2023-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102775783B1 (ko) | 진공 격자 및 이의 제조 방법 | |
US12158612B2 (en) | Evacuated periodic structures and methods of manufacturing | |
US12271035B2 (en) | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing | |
US11543594B2 (en) | Methods and apparatuses for providing a holographic waveguide display using integrated gratings | |
US20210033857A1 (en) | Methods and Apparatus for Multiplying the Image Resolution and Field-of-View of a Pixelated Display | |
US20240027670A1 (en) | Photonic Crystals and Methods for Fabricating the Same | |
US12222499B2 (en) | Eye glow suppression in waveguide based displays | |
KR20250065701A (ko) | 진공 주기적 구조체를 포함하는 도파로-기반 디스플레이 | |
CN117321495A (zh) | 排空型周期性结构和制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
PA0104 | Divisional application for international application |
Comment text: Divisional Application for International Patent Patent event code: PA01041R01D Patent event date: 20250226 Application number text: 1020227010444 Filing date: 20220329 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20250327 Comment text: Request for Examination of Application |