EP2205968B1 - Dispositifs modulaires à utiliser sur place et leurs utilisations - Google Patents
Dispositifs modulaires à utiliser sur place et leurs utilisations Download PDFInfo
- Publication number
- EP2205968B1 EP2205968B1 EP08836072.2A EP08836072A EP2205968B1 EP 2205968 B1 EP2205968 B1 EP 2205968B1 EP 08836072 A EP08836072 A EP 08836072A EP 2205968 B1 EP2205968 B1 EP 2205968B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sample
- assay
- analyte
- individual
- bodily fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 *C1CCCC1 Chemical compound *C1CCCC1 0.000 description 3
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5302—Apparatus specially adapted for immunological test procedures
- G01N33/5304—Reaction vessels, e.g. agglutination plates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150755—Blood sample preparation for further analysis, e.g. by separating blood components or by mixing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/0241—Drop counters; Drop formers
- B01L3/0262—Drop counters; Drop formers using touch-off at substrate or container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5025—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/52—Containers specially adapted for storing or dispensing a reagent
- B01L3/527—Containers specially adapted for storing or dispensing a reagent for a plurality of reagents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/54—Supports specially adapted for pipettes and burettes
- B01L9/543—Supports specially adapted for pipettes and burettes for disposable pipette tips, e.g. racks or cassettes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/02—Apparatus for enzymology or microbiology with agitation means; with heat exchange means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/26—Inoculator or sampler
- C12M1/266—Magnetic separators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/38—Diluting, dispersing or mixing samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5091—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5302—Apparatus specially adapted for immunological test procedures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54326—Magnetic particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54386—Analytical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/94—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00871—Communications between instruments or with remote terminals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/028—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/08—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1065—Multiple transfer devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1065—Multiple transfer devices
- G01N35/1074—Multiple transfer devices arranged in a two-dimensional array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N37/00—Details not covered by any other group of this subclass
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/40—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0038—Devices for taking faeces samples; Faecal examination devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/0051—Devices for taking samples of body liquids for taking saliva or sputum samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/0058—Devices for taking samples of body liquids for taking sperm samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/007—Devices for taking samples of body liquids for taking urine samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B2010/0074—Vaginal or cervical secretions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B2010/0077—Cerebrospinal fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00281—Individual reactor vessels
- B01J2219/00283—Reactor vessels with top opening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00281—Individual reactor vessels
- B01J2219/00286—Reactor vessels with top and bottom openings
- B01J2219/00292—Reactor vessels with top and bottom openings in the shape of pipette tips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00306—Reactor vessels in a multiple arrangement
- B01J2219/00313—Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
- B01J2219/00315—Microtiter plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
- B01J2219/00364—Pipettes
- B01J2219/00367—Pipettes capillary
- B01J2219/00369—Pipettes capillary in multiple or parallel arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
- B01J2219/00364—Pipettes
- B01J2219/00371—Pipettes comprising electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
- B01J2219/00385—Printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00457—Dispensing or evacuation of the solid phase support
- B01J2219/00459—Beads
- B01J2219/00466—Beads in a slurry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00495—Means for heating or cooling the reaction vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/005—Beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00693—Means for quality control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00702—Processes involving means for analysing and characterising the products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/04—Exchange or ejection of cartridges, containers or reservoirs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0689—Sealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/14—Process control and prevention of errors
- B01L2200/141—Preventing contamination, tampering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/14—Process control and prevention of errors
- B01L2200/148—Specific details about calibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0654—Lenses; Optical fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0829—Multi-well plates; Microtitration plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1805—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/043—Moving fluids with specific forces or mechanical means specific forces magnetic forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/021—Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/0275—Interchangeable or disposable dispensing tips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
- B01L7/525—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
- B01L7/5255—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones by moving sample containers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00178—Special arrangements of analysers
- G01N2035/00237—Handling microquantities of analyte, e.g. microvalves, capillary networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
- G01N2035/00821—Identification of carriers, materials or components in automatic analysers nature of coded information
- G01N2035/00851—Identification of carriers, materials or components in automatic analysers nature of coded information process control parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00871—Communications between instruments or with remote terminals
- G01N2035/00881—Communications between instruments or with remote terminals network configurations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N2035/0097—Control arrangements for automatic analysers monitoring reactions as a function of time
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N2035/1027—General features of the devices
- G01N2035/103—General features of the devices using disposable tips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N2035/1027—General features of the devices
- G01N2035/1032—Dilution or aliquotting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N2035/1027—General features of the devices
- G01N2035/1034—Transferring microquantities of liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N2035/1027—General features of the devices
- G01N2035/1048—General features of the devices using the transfer device for another function
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4737—C-reactive protein
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/475—Assays involving growth factors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/71—Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/91—Transferases (2.)
- G01N2333/912—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/91—Transferases (2.)
- G01N2333/912—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- G01N2333/91205—Phosphotransferases in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/91—Transferases (2.)
- G01N2333/912—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- G01N2333/91205—Phosphotransferases in general
- G01N2333/9129—Transferases for other substituted phosphate groups (2.7.8)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/26—Infectious diseases, e.g. generalised sepsis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/60—Complex ways of combining multiple protein biomarkers for diagnosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25375—Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
Definitions
- Point-of-care systems can rapidly deliver test results to medical personnel, other medical professionals and patients. Early diagnosis of a disease or disease progression can allow medical personnel to begin or modify therapy in a timely manner.
- Multiplexed biomarker measurement can provide additional knowledge of the condition of a patient. For example, when monitoring the effects of a drug, three or more biomarkers can be measured in parallel.
- microtiter plates and other similar apparatuses have been used to perform multiplexed separation-based assays.
- a microtiter plate (for example, a 384 well microtiter plate) can perform a large number of assays in parallel.
- POC Point-of-Care
- the number of assays that can be performed in parallel is often limited by the size of the device and the volume of the sample to be analyzed. In many POC devices, the number assays performed is about 2 to 10. A POC device capable of performing multiplexed assays on a small sample would be desirable.
- a shortcoming of many multiplexed POC assay devices is the high cost of manufacturing the components of the device. If the device is disposable, the high cost of the components can make the manufacturing of a POC device impractical. Further, for multiplexed POC devices that incorporate all of the necessary reagents onboard of the device, if any one of those reagents exhibit instability, an entire manufactured lot of devices may have to be discarded even if all the other reagents are still usable.
- a multiplexed POC assay suitable to each customer can be very expensive, difficult to calibrate, and difficult to maintain quality control.
- POC methods have proven to be very valuable in monitoring disease and therapy (for example, blood glucose systems in diabetes therapy, Prothrombin Time measurement in anticoagulant therapy using Warfarin). By measuring multiple markers, it is believed that complex diseases (such as cancer) and therapies such as multi-drug therapy for cancer can be better monitored and controlled.
- WO 2007/002579 discloses devices and methods for point of care instruments. Gibbons I et al., Clin. Chem., 35/9, 1869-1873, September 1989 discusses a patient-side immunoassay system with a single-use cartridge for measuring analytes in blood. US 2007/224084 discloses portable medical devices that allow real-time detection of analytes from a biological fluid and which are useful for providing point-of-care testing for a variety of medical applications.
- a desirable design provides modular capture surfaces and assay incubation elements. Furthermore, modular capture surfaces and assay incubation elements need to be integrated into POC disposables suited for just-in-time (JIT) manufacturing methods. It would be desirable to provide a customizable POC device at a practical cost to user and the manufacturer. The present invention addresses these needs and provides related advantages as well.
- a cartridge for automated detection of an analyte in a bodily fluid sample comprising: an array of addressable assay units configured to run a chemical reaction that yields a detectable signal indicative of the presence or absence of the analyte; and an array of addressable reagent units, wherein an individual addressable reagent unit of the array is addressed to correspond to an individual addressable assay unit of the array of assay units, and wherein the individual reagent unit is configured to be calibrated in reference to the corresponding individual assay unit before the arrays are assembled on the cartridge and wherein the individual assay unit of the array of addressable assay units and the individual reagent unit of the array of addressable reagent units are configured to be movable into fluid communication such that reagents for running the chemical reaction are brought to contact with the portion of the sample in the assay unit.
- the device can further comprise a sample collection unit configured to receive the bodily fluid sample.
- a cartridge for automated detection of an analyte in a bodily fluid sample comprising: a sample collection unit configured to receive the bodily fluid sample; an array of assay units configured to receive a portion of the sample from the sample collection unit and run a chemical reaction that yields a detectable signal indicative of the presence of the analyte in the sample; and an array of reagent units containing reagents for running the chemical reaction; wherein an individual assay unit of the array of assay units and an individual reagent unit of the array of reagents units are configured to be movable into fluid communication such that reagents for running the chemical reaction are brought to contact with the bodily fluid sample in the assay unit.
- An individual reagent unit can be configured to receive a movable assay unit.
- the individual assay unit comprises an assay tip.
- the individual assay unit is configured to run an immunoassay.
- the bodily fluid sample can be a blood sample.
- a sample collection unit is configured to receive a volume of the bodily fluid sample about 50, 20, 10, 5 or 3 microliters or less. In an instance, the sample collection unit is configured to receive a volume of the bodily fluid sample equivalent to a single drop of blood.
- a cartridge as described herein can comprise a pretreatment unit configured to retrieve a portion of the bodily fluid sample for running the chemical reaction to detect the analyte and the pretreatment unit can be configured to retrieve plasma from whole blood sample received in the sample collection unit.
- a system for automated detection of an analyte in a bodily fluid sample comprising: a cartridge as described herein; and a detection assembly for detecting the detectable signal indicative of the presence or absence of the analyte.
- the system can further comprise a programmable mechanical device configured to move the individual assay unit from a first location to a second location.
- a system comprises a fluid transfer device.
- the fluid transfer device can be a pipette and can be automated.
- a system can also comprise a communication assembly for transmitting a protocol based on the analyte to be detected.
- a system herein comprises a heating block configured to receive an individual assay unit and can also comprise a magnetic block, for example, that can be used for separation of red cells from the sample.
- a system for automated detection of a plurality of analytes in a bodily fluid sample, comprising: a fluidic device comprising: a sample collection unit configured to contain the bodily fluid sample; an array of assay units, wherein an individual assay unit of said array of assay units is configured to run a chemical reaction that yields a signal indicative of an individual analyte of said plurality of analytes being detected; and an array of reagent units, wherein an individual reagent unit of said array of reagent units contains a reagent; and a fluid transfer device comprising a plurality of heads, wherein an individual head of the plurality of heads is configured to engage the individual assay unit, and wherein said fluid transfer device comprises a programmable processor configured to direct fluid transfer of the bodily fluid sample from the sample collection unit and the reagent from the individual reagent unit into the individual assay unit.
- the configuration of the processor to direct fluid transfer effects a degree of dilution of the bodily fluid sample in the array of assay units to bring signals indicative of the plurality of analytes being detected within a detectable range, such that said plurality of analytes are detectable with said system.
- a bodily fluid sample comprises at least two analytes that are present at concentrations that differ by at least 2, 5, 10, 15, 50, or 100 orders of magnitude.
- the degree of dilution of the bodily fluid sample can bring the signals indicative of the at least two analytes within the detectable range.
- a system herein can further comprise a detector configured to detect signal intensities of the detectable range.
- An exemplary detector is a photomultiplier and a detectable range of the detector can be about 20 to about 10 million counts.
- the individual head of a fluid transfer device is configured to adhere to the individual assay unit.
- the individual assay unit can provide an immunoassay reaction site.
- the individual assay unit is a pipette tip.
- the fluid transfer device can be a pipette such as an air-displacement pipette.
- the fluid transfer device can also comprises a motor in communication with the programmable processor, wherein the motor can move said plurality of heads based on a protocol from said programmable processor.
- a system for automated detection of a plurality of analytes in a plasma portion of a whole blood sample, comprising: a device configured to automatically receive and process the whole blood sample to yield the plasma portion, from which a detectable signal indicative of the presence or absence of the analyte of interest is generated onboard the device; and a detection assembly for detecting the detectable signal indicative of the presence or absence of the analyte.
- a method of detecting an analyte in a bodily fluid sample comprising: providing a bodily fluid sample to a cartridge as described herein; allowing said sample to react within at least one assay unit; and detecting said detectable signal generated from said analyte collected in said sample of bodily fluid.
- the bodily fluid sample can be blood and the method can comprise retrieving plasma from the blood.
- a method of on-demand assembly of a cartridge for automated detection of an analyte in a bodily fluid sample wherein the cartridge comprises a housing, said housing comprising: an array of addressable assay units, wherein an individual assay unit of the array is configured to run a chemical reaction that yields a detectable signal indicative of the presence or absence of the analyte; and an array of addressable reagent units, wherein an individual reagent unit of the array is addressed to correspond to the individual assay unit
- said method comprises: (i) placing according to the analyte to be detected an array of addressable assay units, wherein an individual assay unit of the array is configured to run a chemical reaction that detects an analyte of interest ordered by said end user, into the housing; (ii) placing according to the analyte to be detected an array of reagent units, wherein an individual reagent unit of the array corresponds to the individual assay unit, into the housing; and (iii)
- the method can comprise selecting an analyte to be detected.
- the method comprises sealing the cartridge.
- the method comprises labeling the cartridge with a readable label indicating the analyte to be detected, for example with a bar code or RFID.
- a method for automated detection of a plurality of analytes in a bodily fluid sample comprising: providing the bodily fluid sample to a fluidic device, wherein the fluidic device comprises: a sample collection unit configured to contain the bodily fluid sample; an array of assay units, wherein an individual assay unit of said array of assay units is configured to run a chemical reaction that yields a signal indicative of an individual analyte of said plurality of analytes being detected; and an array of reagent units, wherein an individual reagent unit of said array of reagent units contains a reagent; engaging the individual assay unit using a fluid transfer device; transferring the bodily fluid sample from the sample collection unit to the individual assay unit using the fluid transfer device; and transferring the reagent from the individual reagent unit to the individual assay unit, thereby reacting the reagent with the bodily fluid sample to yield the signal indicative of the individual analyte of the plurality of analytes being detected.
- the fluid transfer device comprises a plurality of heads, wherein an individual head of the plurality of heads is configured to engage the individual assay unit; and wherein said fluid transfer device comprises a programmable processor configured to direct fluid transfer of the bodily fluid sample from the sample collection unit and the reagent from the individual reagent unit into the individual assay unit.
- the method can further comprise providing instructions to the programmable processor, wherein the instructions can direct the step of transferring the bodily fluid sample to the individual assay unit.
- the step of transferring the bodily fluid sample effects a degree of dilution of the bodily fluid sample in the individual assay unit to bring the signal indicative the individual analyte of the plurality of analytes being detected within a detectable range.
- the bodily fluid sample can comprise at least two individual analytes that are present at concentrations that differ by at least 2, 5, 10, 15, 50, or 100 orders of magnitude.
- the degree of dilution of the bodily fluid sample brings the signals indicative of the at least two individual analytes within the detectable range.
- the detectable range is about 1000 to about 1 million counts per second using a photomultiplier.
- the reagent in the individual reagent unit is an enzyme substrate for an immunoassay and the method can further comprise repeating the step of transferring the reagent from the individual reagent unit after the reaction to yield the signal indicative of the individual analyte of the plurality of analytes being detected is complete, thereby creating a second reaction to yield a second signal indicative of the individual analyte.
- An intensity of the signal and a second intensity of the second signal indicative of the individual analyte can be averaged to calculate the final intensity of the signal indicative of the individual analyte.
- a method is described herein of measuring a volume of a liquid sample, comprising: reacting a known quantity of a control analyte in a liquid sample with a reagent to yield a detectable signal indicative of the control analyte; and comparing said detectable signal with an expected detectable signal, wherein the expected signal is indicative of an expected volume of the liquid sample, and wherein said comparison provides a measurement of said volume of said liquid sample being measured.
- the control analyte is not normally present in said liquid sample in a detectable amount.
- the method can comprise verifying the volume of said liquid sample when the measurement of the volume of the sample is within about 50% of the expect volume of the liquid sample.
- the method further comprises: reacting a bodily fluid sample containing a target analyte with a reagent to yield a detectable signal indicative of the target analyte; and measuring the quantity of the target analyte in the bodily fluid sample using an intensity of said detectable signal indicative of the target analyte and the measurement of said volume of said liquid sample.
- the liquid sample and the bodily fluid sample can be the same sample and the control analyte does not react with the target analyte in the bodily fluid sample. In some instances, the liquid sample and the bodily fluid sample are different liquid samples.
- the control analyte can be, for example, fluorescein-labeled albumin, fluorescein labeled IgG, anti-fluorescein, anti-digoxigenin, digoxigenin-labeled albumin, digoxigenin-labeled IgG, biotinylated proteins, non-human IgG.
- a method of retrieving plasma from a blood sample comprises: mixing a blood sample in the presence of magnetizable particles in a sample collection unit, wherein the magnetizable particles comprise an antibody capture surface for binding to non-plasma portions of the blood sample; and applying a magnetic field above a plasma collection area to the mixed blood sample to effect suspension of the non-plasma portions of the blood sample on top of the plasma collection area.
- the sample collection unit is a capillary tube.
- the blood sample can be less than about 20 microliters and the plasma retrieved can be less than about 10 microliters.
- the blood sample is not diluted.
- mixing occurs in the presence of antibodies unbound to a solid surface.
- the mixing can comprise mixing by syringe action.
- Also described is a method of using automated immunoassay for detecting an analyte present in plasma portion of a whole blood sample comprising: providing a whole blood sample to a device that is configured to automatically receive and process on board the whole blood sample to yield the plasma portion, from which a detectable signal indicative of the presence or absence of the analyte of interest is generated on board; detecting said signal that is indicative of the presence or absence of the analyte in said bodily fluid sample; and transmitting result of (b) to an end user.
- the immunoassay can be an ELISA. In some instances, the result is transmitted wirelessly.
- a method as described herein is carried out in a system as described herein.
- Figure 1 illustrates an exemplary device of the invention comprising assay units, reagents unit, and other modular components of the device.
- Figure 2 illustrates two side-cut away views of the exemplary device of Figure 1 comprising cavities in the housing of the device shaped to accommodate an assay unit, a reagent unit, and a sample tip.
- Figure 3A demonstrates an exemplary assay unit that comprises a small tip or tubular formation.
- Figure 3B demonstrates an example of a sample tip as described herein.
- Figures 4A and 4B illustrate two examples of a reagent unit comprising a cup.
- Figure 5 demonstrates an example of a system comprising a device and a fluid transfer device.
- Figure 6 illustrates an exemplary system of the invention comprising a heating block for temperature control and a detector.
- Figure 7 demonstrates an exemplary a system wherein a patient delivers blood to a device and then the device is inserted into a reader.
- Figure 8 illustrates the process flow of building a system for assessing the medical condition of a patient.
- Figures 9A through 9E demonstrate an example of a plasma separation method wherein a whole blood sample has been aspirated into a sample tip and a magnetic reagent is mixed and suspended with the sample, then a magnetic field is applied to the whole blood sample and magnetic reagent mixture. Separated blood plasma sample can then be distributed into a well of a device.
- Figure 10 demonstrates an exemplary method of a control assay as described herein comprising a known quantity of control analyte.
- Figure 11 illustrates a thin film, for example, contamination, within the tip when a liquid is expelled and another liquid aspirated.
- Figure 12 illustrates a calibration curve correlating an assay unit and a reagent unit for conducting an assay for VEGFR2.
- Figure 13 illustrates a calibration curve correlating results for an assay unit and a reagent unit for conducting an assay for P1GF in a system, as measured with a luminometer.
- Figure 14 illustrates CRP concentration plotted against the assay signal (photon counts) and the data fitted to a 5-term polynomial function to generate a calibration function.
- Figure 15 shows a fit was achieved between a model and the values of the parameters Smax, C0.5 and D as described herein.
- Figure 16 displays data according to the dilution used to achieve the final concentration in an assay tip.
- Figure 17 illustrates the normalized assay response (B/Bmax) is plotted against the log normalized concentration (C/C0.5) for relative dilutions: 1:1 (solid line), 5:1 (dashed line), and 25:1 (dotted line).
- Figures 18 and 19 illustrate a similar example as Figure 17 at different normalized concentrations.
- Figure 20 demonstrates the assay response for a control analyte after the steps of: removal of the detector antibody, washing the assay, and adding a substrate, as read in a spectro-luminometer for 0.5 s.
- Figure 21 demonstrates the results of an assay that was evaluated by measuring photons produced over about 10 s in a system herein.
- the embodiments and aspects of the invention described herein pertain to devices, systems, and methods for automated detection of an analyte in a sample of bodily fluid.
- the invention is capable of detecting and/or quantifying analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders, or effects of biological or therapeutic agents.
- a device for automated detection of an analyte in a bodily fluid sample comprises an array of addressable assay units configured to run a chemical reaction that yields a detectable signal indicative of the presence or absence of the analyte, and an array of addressable reagent units, each of which is addressed to correspond to one or more addressable assay units in said device, such that individual reagent units can be calibrated in reference to the corresponding assay unit(s) before the arrays are assembled on the device.
- a device for automated detection of an analyte in a bodily fluid sample comprises an array of assay units configured to run a chemical reaction that yields a detectable signal indicative of the presence of the analyte, and an array of reagent units containing reagents for running the chemical reaction, wherein at least one of the assay units and at least one of the reagent units are movable relative to each other within the device such that reagents for running the chemical reaction are automatically brought to contact with the bodily fluid sample in the assay unit.
- the array of assay units or reagent units can be addressed according to the chemical reaction to be run by the configured assay unit.
- at least one of the assay units and at least one of the reagent units are movable relative to each other within the device such that reagents for running the chemical reaction are automatically brought to contact with the bodily fluid sample in the assay unit.
- the device of the invention is self-contained and comprises all reagents, liquid- and solid-phase reagents, required to perform a plurality of assays in parallel.
- the device is configured to perform at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 200, 500, 1000 or more assays.
- One or more control assays can also be incorporated into the device to be performed in parallel if desired.
- the assays can be quantitative immunoassays and can be conducted in a short period of time. Other assay type can be performed with a device of the invention including, but not limited to, measurements of nucleic acid sequences and measurements of metabolytes, such as cholesterol. In some embodiments, the assay is completed in no more than one hour, preferably less than 30, 15, 10, or 5 minutes. In other embodiments, the assay is performed in less than 5 minutes.
- the duration of assay detection can be adjusted accordingly to the type of assay that is to be carried out with a device of the invention. For example, if needed for higher sensitivity, an assay can be incubated for more than one hour or up to more than one day. In some examples, assays that require a long duration may be more practical in other POC applications, such as home use, than in a clinical POC setting.
- any bodily fluids suspected to contain an analyte of interest can be used in conjunction with the system or devices of the invention.
- Commonly employed bodily fluids include but are not limited to blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, and cerebrospinal fluid.
- a bodily fluid may be drawn from a patient and provided to a device in a variety of ways, including but not limited to, lancing, injection, or pipetting.
- the terms subject and patient are used interchangeably herein, and refer to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets.
- a lancet punctures the skin and withdraws a sample using, for example, gravity, capillary action, aspiration, or vacuum force.
- the lancet may be part of the device, or part of a system, or a stand alone component.
- the lancet may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods.
- a patient can simply provide a bodily fluid to the device, as for example, could occur with a saliva sample.
- the collected fluid can be placed in the sample collection unit within the device.
- the device comprises at least one microneedle which punctures the skin.
- the volume of bodily fluid to be used with a device is generally less than about 500 microliters, typically between about 1 to 100 microliters. Where desired, a sample of 1 to 50 microliters, 1 to 40 microliters, 1 to 30 microliters, 1 to 10 microliters or even 1 to 3 microliters can be used for detecting an analyte using the device.
- the volume of bodily fluid used for detecting an analyte utilizing the subject devices or systems is one drop of fluid.
- one drop of blood from a pricked finger can provide the sample of bodily fluid to be analyzed with a device, system or method described herein.
- a sample of bodily fluid can be collected from a subject and delivered to a device of the invention as described hereinafter.
- the arrays of assay and reagent units are configured to be a set of mix-and-match components.
- the assay units can comprise at least one capture surface capable of reacting with an analyte from the sample of bodily fluid.
- the assay unit may be a tubular tip with a capture surface within the tip. Examples of tips of the invention are described herein.
- a reagent unit typically stores liquid or solid reagents necessary for conducting an assay that detect a give analyte.
- Each individual assay and reagent unit can be configured for assay function independently. To assemble a device, the units can be assembled in a just-in-time fashion for use in integrated cartridges.
- the device can be modular and include components such as a housing that is generic for all assays, assay units, such as tips, and reagent units, such as a variety of frangible or instrument operable containers that encapsulate liquid reagents.
- an assembled device is then tested to verify calibration (the relation of the system response to known analyte levels).
- Assay devices can be assembled from a library of premanufactured and calibrated elements on demand.
- fluidic pathways within a device can be simple and obviate any chance of trapping bubbles and providing an efficient way to wash away excess labeled reagents in reagent excess assays such as ELISAs.
- a housing for a device of the invention can be made of polystyrene or another moldable or machinable plastic and can have defined locations to place assay units and reagent units.
- the housing has means for blotting tips or assay units to remove excess liquid.
- the means for blotting can be a porous membrane, such as cellulose acetate, or a piece bibulous material such as filter paper.
- At least one of the components of the device may be constructed of polymeric materials.
- polymeric materials include polystyrene, polycarbonate, polypropylene, polydimethysiloxanes (PDMS), polyurethane, polyvinylchloride (PVC), polysulfone, polymethylmethacrylate (PMMA), acrylonitrile-butadiene-styrene (ABS), and glass.
- the device or the subcomponents of the device may be manufactured by variety of methods including, without limitation, stamping, injection molding, embossing, casting, blow molding, machining, welding, ultrasonic welding, and thermal bonding.
- a device in manufactured by injection molding, thermal bonding, and ultrasonic welding can be affixed to each other by thermal bonding, ultrasonic welding, friction fitting (press fitting), adhesives or, in the case of certain substrates, for example, glass, or semi-rigid and non-rigid polymeric substrates, a natural adhesion between the two components.
- the device 100 is also sometimes referred to herein as a cartridge 100.
- the device 100 comprises a housing 130 with locations to accommodate assay units 121 and reagent units 103, 122, 124, 125.
- assay units 121 occupy a center row of the housing 130 of the device 100.
- the assay units 121 can optionally include at least one calibration unit 126.
- the assay units 121 are similar to pipette tips and are referred to as assay tips 121 and the calibration units 126 are referred to as calibration tips 126 herein, however, the assay units 121 can be of any shape and size as are accommodated broadly by a device 100 as described herein.
- the assay units 121 and calibration units 126 are exemplary assay units 121 and are described in more detail herein.
- the assay units 121 in Figure 1 can comprise a capture surface and are capable, for example, of performing a chemical reaction such as nucleic acid assays and immunoassays.
- the assay units 121 can be assembled into the housing according to instructions or the assays that a user wishes to perform on a sample.
- the housing of the device 100 can comprise a sample collection unit 110 configured to contain a sample.
- a sample such as a blood sample
- a sample tip 111 (for example, a pipette tip that couples to a fluid transfer device as described in more detail herein) can occupy another portion of the housing 130 .
- the sample tip 111 can distribute the sample to pretreatment reagent units or pretreatment units 103, 104, 105, 106, 107, or assay units 121.
- Exemplary pretreatment units 103, 104, 105, 106, 107 include but are not limited to: mixing units 107 , diluent or dilution units 103,104, and, if the sample is a blood sample, plasma removal or retrieval units 105, 106.
- the pretreatment units 103, 104, 105, 106, 107 can be the same type of unit or different types of units.
- Other pretreatment units 103, 104, 105, 106, 107 as are necessary to run a chemical reaction can be incorporated into device 100 as would be obvious to one skilled in the art with knowledge of this disclosure.
- the units 103, 104, 105, 106, 107 can contain various amounts of reagents or diluents, flexible to whatever is needed to run the assay on the current cartridge 100 .
- the assay units 121 can be manufactured separately from the housing 130 and then inserted into the housing 130 with pick-and-place methods.
- the assay units 121 can fit snugly into the housing 130 or can fit loosely into the housing 130 .
- the housing 130 is manufactured such that is holds the reagent units 103, 122, 124, 125 and/or assay units 121 snugly in place, for example during shipping or manipulation a cartridge.
- Reagents units 103, 122, 124, 125 are shown in Figure 1 that contain a conjugate reagent 122 (for example, for use with an immunoassay), a wash reagent 125 (for example, to wash said conjugate from capture surfaces), and a substrate 124 (for example, an enzyme substrate).
- Reagent units 103, 122, 124, 125 can be manufactured and filled separately from the housing 130 and then placed into the housing 130 . In this way, a cartridge 100 can be built in a modular manner, therefore increasing the flexibility of the cartridge 100 to be used for a variety of assays.
- Reagents in a reagent unit 103, 122, 124, 125 can be chosen according to the assay to be run. Exemplary reagents and assays are described herein.
- a device such as the example shown in Figure 1
- the device can comprise tip touch-off pads 112 to remove excess sample or reagent from an assay tip 121 or a sample tip 111 after fluid transfer, for example, by a system as described herein.
- the housing 130 can also comprise units or areas 101, 102 within the device 100 for placing a used tip or unit, for example, in order to avoid cross-contamination of a sample tip 111 or assay unit 121.
- the device 100 comprises a sample tip 111 for transferring a sample between units of the device 100.
- the device 100 as illustrated in Figure 1 also comprises a pretreatment tip 113 for transferring a sample that has been pretreated in a unit of the device 100 to other units of a device 100 to perform a chemical reaction.
- the sample tip 111 can be used to remove a blood sample from the sample collection unit 110 and transfer the blood sample to pretreatment units 103, 104, 105, 106, 107 as described.
- Red cells can be removed from the blood sample in the pretreatment units 103, 104, 105, 106, 107 and the pretreatment tip 113 can then be used to collect the blood plasma from the pretreatment units 103, 104, 105, 106, 107 and transfer the blood plasma to another pretreatment unit (for example, a diluent unit) 103, 104, 105, 106, 107 and/or to at least one assay unit 121 .
- a sample tip 111 is the sample collection unit 110 .
- the sample collection unit 110 is similar to a well and is configured to contain a sample as received by a user.
- Assay units 121 and reagent units 103, 122, 124, 125 as shown in Figure 1 can be addressable to indicate the location of the units on the cartridge 100 .
- a column of the cartridge 100 as shown in Figure 1 can contain an assay unit 121 to run an assay configured to detect C-reactive protein, and the column can contain corresponding reagent units 103, 122, 124, 125 for that assay in the same column, wherein the units are addressed to correspond to each other.
- the addresses can be entered and stored in a computer system, and the cartridge 100 can be given a label, such as a bar code.
- the computer system can send the addresses of the units to a system, such as those described herein, to transfer the fluids and run a reaction according to the addresses entered info the computer.
- the addresses can be part of a protocol sent to operate the system.
- the addresses can be in any configuration and can be altered if need be to change the protocol of running an assay, which in turn can offer a change in assay protocol or steps to a user of the cartridge that has not been typically available in prior art POC devices.
- the housing 130 and units are configured in a 6 by 8 array of units as shown in Figure 1 .
- the layout of the units can be of any format, for example, rectangular arrays or random layouts.
- a cartridge 100 can comprise any number of units, for example between 1 and about 500. In some embodiments, a cartridge 100 has between 5-100 units. As an example as shown in Figure 1 , the cartridge 100 has 48 units.
- a cavity can be shaped in a housing 220 of a device to accommodate assay units (for example, assay tips) 201 in a vertical orientation (housing horizontal) with their bosses toward the top of the device 200.
- assay units for example, assay tips
- a cavity can also be shaped to accommodate a reagent unit 210, 212 or a sample collection unit or tip 202.
- the sample collection unit comprises a bendable or breakable element that serves to protect a small collection tube during shipment and to hold a plunger device in place within a capillary.
- FIG 2A Also shown in Figure 2A are two exemplary embodiments of reagent units 210, 212 as are described herein.
- the bottom of the housing 220 can be configured to collect waste liquids, for example, wash reagents after use that are transferred back through a hole in the housing 220 to the bottom.
- the housing 220 can comprise an absorbent pad to collect waste fluids.
- the assay units 201 and sample units 202 can be positioned to fit through a cavity of the housing 220 of the device 200 and extend beyond an inner support structure.
- the reagent units 210, 212 fit snugly into the housing as is shown in Figure 2 and do not extend beyond the inner support structure.
- the housing 220 and the areas in which the assay units 201 and reagents units 210, 212 can be held and positioned may adapt a variety of patterns.
- each tip provides for a single assay and can be paired with or corresponded to an appropriate reagent, such as required reagents for running the designated assay.
- Some tips provide for control assay units and have known amounts of analyte bound to their capture surfaces either in the manufacturing process or during the performance of an assay.
- the unit is configured to run a control assay for comparison.
- the control assay unit may comprise, for example, a capture surface and analyte that are in a solid or liquid state.
- the device holds all reagents and liquids required by the assay.
- the reagents within the device may include a sample diluent, a detector conjugate (for example, three enzyme-labeled antibodies), a wash solution, and an enzyme substrate. Additional reagents can be provided as needed.
- reagents can be incorporated into a device to provide for sample pretreatment.
- pretreatment reagents include, without limitation, white cell lysis reagents, reagents for liberating analytes from binding factors in the sample, enzymes, and detergents.
- the pretreatment reagents can also be added to a diluent contained within the device.
- An individual reagent unit can be configured to receive a movable assay unit.
- the individual assay unit comprises an open ended hollow cylindrical element comprising a capture surface and a reaction cuvette.
- a cylindrical assay unit can be referred to as an assay tip herein.
- the individual assay unit is configured to run an immunoassay.
- An assay unit 301 that comprises a small tip or tubular formation is shown in Figure 3A .
- the tip 301 is configured to provide an interior cylindrical capture surface 311 and a boss 321 capable of engaging with the housing of device.
- the boss 321 and the tip 301 is configured to engage with a mechanism of moving the tip 301 such as a system as described herein or for example, a fluid transfer device.
- An assay tip 301 as shown in Figure 3A can comprise an opening 331 at the bottom of the tip.
- the opening 331 can be utilized for transferring fluids or reagents in and out of an assay unit 301 .
- an assay unit 301 as described is or is similar to a pipette tip with the improvement that the assay unit 301 comprises a capture surface 311 configured to detect an analyte in a sample.
- the tip 301 can be manufactured by an injection-molded process.
- the tip 301 is made of a clear polystyrene for use with chemiluminescence assays.
- an exemplary tip 301 comprises a boss (shown as the larger top half of the tip 301 ), which can engage with a housing and can engage, for example, with tapered elements of a fluid transfer device and/or pipetting devices so as to form a pressure-tight seal.
- the exemplary tip 301 comprises a smaller cylindrical part.
- an assay capture surface is contained within the smaller cylindrical part. The assay capture surface can be anywhere within the tip 301 or on the outside of the tip 301 .
- the surface of the tip 301 can be of many geometries including, but not limited to, tubular, cubic, or pyramidal. In chemiluminescence and fluorescence-based assays, the tip 301 can serve as a convenient means to present the assay product to the assay optics.
- Figure 3B demonstrates an exemplary sample collection unit 302 comprising a sample tip 302 .
- the sample tip 302 as shown in Figure 3B can also be separate from a sample collection unit 302 and used to transfer sample from the sample collection units to other units on a device as described herein.
- the sample tip as shown in Figure 3B comprises a boss 322 as described herein to couple the tip 302 with a housing of a device and a fluid transfer device.
- the sample tip 302 also comprises an opening 332 to allow the transfer of fluids or samples in and out of the sample tip.
- the sample tip 302 is of the same shape as an assay tip 301 . In other embodiments (such as those shown in Figures 3A and 3B ), the sample tip 302 is a different shape than the assay tip 301 .
- one function of a tip is to enable samples and liquid reagents to be brought into contact with the capture surface of the assay unit.
- the movement can occur by a variety of means including, but not limited to, capillary action, aspiration, and controlled pumping.
- the small size of the tips enables rapid control of the required temperature for a chemical reaction. Heat transfer and/or maintenance can be carried out by simply placing the tip in a temperature controlled block.
- the tip is able to contain about 1 to 40 microliters of fluid. In a further embodiment, the tip is able to contain about 5 to 25 microliters of fluid. In an embodiment, the tip contains 20 microliters of fluid. In some instances, a tip can contain 1 microliter of fluid or less. In other instances, a tip can contain up to 100 microliters.
- the end of the tip can be blotted onto an absorbent material (for example incorporated into a disposable cartridge) prior to introduction of the next assay component to avoid contamination with a small amount of sample and/or reagent. Due to physical forces, any liquid drawn into a subject tip can be held at any desired location with minimal risk of the liquid draining out, even when held in a vertical orientation.
- an absorbent material for example incorporated into a disposable cartridge
- the assay unit for example, an assay tip
- assay capture reagents prior to use, using similar fluidics as in the assay (for example, controlled capillary or mechanical aspiration).
- a capture surface (also referred to herein as a reaction site) can be formed by a binding antibody or other capture reagents bound covalently or by adsorption to the assay unit. The surface can then dried and maintained in dry condition until used in an assay. In an embodiment, there is a reaction site for each analyte to be measured.
- the assay unit can be moved into fluid communication with the reagent unit and/or a sample collection unit, such that a reagent or sample can interact with a reaction site where bound probes can detect an analyte of interest in the bodily fluid sample.
- a reaction site can then provide a signal indicative of the presence or concentration of the analyte of interest, which can then be detected by a detection device described herein.
- the location and configuration of a reaction site is an important element in an assay device.
- disposable immunoassay devices have been configured with their capture surface as an integral part of the device.
- a molded plastic assay unit is either commercially available or can be made by injection molding with precise shapes and sizes.
- the characteristic dimension can be a diameter of 0.05 - 3 mm or can be a length of 3 to 30 mm.
- the units can be coated with capture reagents using method similar to those used to coat microtiter plates but with the advantage that they can be processed in bulk by placing them in a large vessel, adding coating reagents and processing using sieves, holders, and the like to recover the pieces and wash them as needed.
- the assay unit can offer a rigid support on which a reactant can be immobilized.
- the assay unit is also chosen to provide appropriate characteristics with respect to interactions with light.
- the assay unit can be made of a material, such as functionalized glass, Si, Ge, GaAs, GaP, SiO 2 , SiN 4 , modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, PMMA, ABS, or combinations thereof.
- an assay unit comprises polystyrene.
- Other appropriate materials may be used in accordance with the present invention.
- a transparent reaction site may be advantageous.
- the surface may be advantageously opaque and/or preferentially light scattering.
- a reactant immobilized at the capture surface can be anything useful for detecting an analyte of interest in a sample of bodily fluid.
- reactants include, without limitation, nucleic acid probes, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with a specific analyte.
- Various commercially available reactants such as a host of polyclonal and monoclonal antibodies specifically developed for specific analytes can be used.
- the immobilization may be covalent or noncovalent, via a linker moiety, or tethering them to an immobilized moiety.
- Non-limiting exemplary binding moieties for attaching either nucleic acids or proteinaceous molecules such as antibodies to a solid support include streptavidin or avidin/biotin linkages, carbamate linkages, ester linkages, amide, thiolester, (N)-functionalized thiourea, functionalized maleimide, amino, disulfide, amide, hydrazone linkages, and among others.
- a silyl moiety can be attached to a nucleic acid directly to a substrate such as glass using methods known in the art.
- Surface immobilization can also be achieved via a Poly-L Lysine tether, which provides a charge-charge coupling to the surface.
- the assay units can be dried following the last step of incorporating a capture surface.
- drying can be performed by passive exposure to a dry atmosphere or via the use of a vacuum manifold and/or application of clean dry air through a manifold.
- an assay unit is designed to enable the unit to be manufactured in a high volume, rapid manufacturing processes.
- tips can be mounted in large-scale arrays for batch coating of the capture surface into or onto the tip.
- tips can be placed into a moving belt or rotating table for serial processing.
- a large array of tips can be connected to vacuum and/or pressure manifolds for simple processing.
- an assay unit can be operably coupled with a fluid transfer device.
- the fluid transfer device can be operated under automatic control without human interaction.
- the control of the installed height of a disposable liquid tip relies on the tapered interference attachment of the tip to the liquid dispenser.
- a fluid transfer device can engage the tip.
- the immersion length of a tip in liquid to be transferred must be known to minimize the liquid contact with the outside of the tip which may be uncontrolled.
- a hard stop can be molded at the bottom of the tapered connector which engages the nozzle of the dispenser.
- An air tight seal can be made by an o-ring that is half way up the taper or in the flat bottom of the nozzle. By separating the seal function of the tip from the controlled height of the tip both can be separately adjusted.
- the modular device and fluid transfer device can enable many assays to be performed in parallel.
- the reagent units of a device can store reagents that are required to perform a give chemical reaction for detecting a given analyte of interest.
- Liquid reagents can be dispensed into small capsules that can be manufactured from a variety of materials including, without limitation, plastic such as polystyrene, polyethylene, or polypropylene.
- the reagent units are cylindrical cups. Two examples of a reagent unit 401, 402 comprising a cup are shown in Figures 4A and 4B . Where desired, the units 401, 402 fit snugly into cavities in a housing of a device. The units 401, 402 can be sealed on the open surface to avoid spilling the reagents 411, 412 onboard.
- the seal is an aluminized plastic and can be sealed to the cup by thermal bonding.
- a unit can be of any shape as is necessary to contain a reagent.
- a cylindrical shaped reagent unit 401 is shown in Figure 4A , and the reagent unit contains a liquid reagent 411.
- a different shaped reagent unit 402 is illustrated in Figure 4B also contain a liquid reagent 412 .
- Both exemplary reagent units 401, 402 comprise optional slight modifications near the top surface that allow the units 401, 402 to fit snugly into a housing of a device as described herein.
- the reagent units are modular.
- the reagent unit can be designed to enable the unit to be manufactured in a high volume, rapid manufacturing processes. For example, many reagent units can be filled and sealed in a large-scale process simultaneously.
- the reagent units can be filled according to the type of assay or assays to be run by the device. For example, if one user desires different assays than another user, the reagent units can be manufactured accordingly to the preference of each user, without the need to manufacture an entire device.
- reagent units can be placed into a moving belt or rotating table for serial processing.
- the reagent units are accommodated directly into cavities in the housing of a device.
- a seal can be made onto areas of housing surrounding the units.
- Reagents according to the present invention include without limitation wash buffers, enzyme substrates, dilution buffers, conjugates, enzyme-labeled conjugates, DNA amplifiers, sample diluents, wash solutions, sample pre-treatment reagents including additives such as detergents, polymers, chelating agents, albumin-binding reagents, enzyme inhibitors, enzymes, anticoagulants, red-cell agglutinating agents, antibodies, or other materials necessary to run an assay on a device.
- An enzyme-labeled conjugate can be either a polyclonal antibody or monoclonal antibody labeled with an enzyme that can yield a detectable signal upon reaction with an appropriate substrate.
- the reagents comprise immunoassay reagents.
- reagents especially those that are relatively unstable when mixed with liquid, are confined separately in a defined region (for example, a reagent unit) within the device.
- a reagent unit contains approximately about 5 microliters to about 1 milliliter of liquid. In some embodiments, the unit may contain about 20-200 microliters of liquid. In a further embodiment, the reagent unit contains 100 microliters of fluid. In an embodiment, a reagent unit contains about 40 microliters of fluid.
- the volume of liquid in a reagent unit may vary depending on the type of assay being run or the sample of bodily fluid provided. In an embodiment, the volumes of the reagents do not have to predetermined, but must be more than a known minimum. In some embodiments, the reagents are initially stored dry and dissolved upon initiation of the assay being run on the device.
- the reagent units can be filled using a siphon, a funnel, a pipette, a syringe, a needle, or a combination thereof.
- the reagent units may be filled with liquid using a fill channel and a vacuum draw channel.
- the reagent units can be filled individually or as part of a bulk manufacturing process.
- an individual reagent unit comprises a different reagent as a means of isolating reagents from each other.
- the reagent units may also be used to contain a wash solution or a substrate.
- the reagent units may be used to contain a luminogenic substrate.
- a plurality of reagents are contained within a reagent unit.
- the setup of the device enables the capability of pre-calibration of assay units and the reagent units prior to assembly of disposables of the subject device.
- a system of the invention comprises a device comprising assay units and reagent units comprising reagents (both liquid and solid phase reagents).
- reagents both liquid and solid phase reagents
- at least one of the whole device, an assay unit, a reagent unit, or a combination thereof is disposable.
- the detection of an analyte with a device is operated by an instrument.
- the instrument, device, and method offer an automated detection system.
- the automated detection system can be automated based upon a defined protocol or a protocol provided to the system by a user.
- a system for automated detection an analyte in a bodily fluid sample comprises a device or cartridge, and a detection assembly or detector for detecting the detectable signal indicative of the presence or absence of the analyte.
- the user applies a sample (for example, a measured or an unmeasured blood sample) to the device and inserts the device into the instrument. All subsequent steps are automatic, programmed either by the instrument (hard wired), the user, a remote user or system, or modification of the instrument operation according to a identifier (for example, a bar code or RFID on the device).
- a sample for example, a measured or an unmeasured blood sample
- Examples of different functions of that can be carried out using a system of the invention include, but are not limited to, dilution of a sample, removal of parts of a sample (for example, red blood cells (RBCs)), reacting a sample in an assay unit, adding liquid reagents to the sample and assay unit, washing the reagents from the sample and assay unit, and containing liquids during and following use of the device.
- Reagents can be onboard the device in a reagent unit or in a reagent unit to assembled onto the device.
- An automated system can detect a particular analyte in a biological sample (for example, blood) by an enzyme-linked immunosorbent assay (ELISA).
- ELISA enzyme-linked immunosorbent assay
- the system is amenable to multiplexing and is particularly suited for detecting an analyte of interest present in a small volume of a whole blood sample (for example, 20 microliters or less).
- the system can also detect analytes in different dilutions of a single sample, allowing different sensitivities to be tested on the same device, when desired. All reagents, supplies, and wastes can be contained on the device of the system.
- a sample from a subject is applied to the assembled device and the device is inserted into an instrument.
- an instrument can begin processing the sample by some combination of removal of red cells (blood sample), dilution of the sample, and movement the sample to the assay unit.
- a plurality of assay units are used and a portion of the sample is moved to individual assay units in sequence or in parallel. Assays can then be performed by a controlled sequence of incubations and applications of reagents to the capture surfaces.
- An exemplary fluid transfer device is comprised of any component required to perform and/or read the assay.
- Example of components include, but are not limited to, pumps to aspirate and eject accurately known fluid volumes from wells or units of the device, at least one translational stage for improving the precision and accuracy of the movement within the system, a detector to detect an analyte in an assay unit, and temperature regulation means to provide a regulated temperature environment for incubation of assays.
- the instrument controls the temperature of the device.
- the temperature is in the range of about 30-40 degrees Celsius.
- the temperature control by the system can comprise active cooling.
- the range of temperature is about 0-100 degrees Celsius.
- temperatures up to 100 degrees Celsius can be achieved.
- the temperature range is about 15-50 degrees Celsius.
- a temperature control unit of the system can comprise a thermoelectric device, such as a Peltier device.
- Cartridges, devices, and systems as described herein can offer many features that are not available in existing POC systems or integrated analysis systems. For example, many POC cartridges rely on a closed fluidic system or loop to handle small volumes of liquid in an efficient manner.
- the cartridges and fluidic devices described herein can have open fluid movement between units of the cartridge.
- a reagent can be stored in a unit, a sample in a sample collection unit, a diluent in a diluent unit, and the capture surface can be in an assay unit, wherein in one state of cartridge, none of the units are in fluid communication with any of the other units.
- the units do not have to be in fluid communication with each other in a state.
- the units can be movable relative to each other in order to bring some units into fluid communication.
- a fluid transfer device can comprise a head that engages an assay unit and moves the assay unit into fluidic communication with a reagent unit.
- the devices and systems herein can provide an effective means for high throughput and real-time detection of analytes present in a bodily fluid from a subject.
- the detection methods may be used in a wide variety of circumstances including identification and quantification of analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders.
- the systems have a broad spectrum of utility in, for example, drug screening, disease diagnosis, phylogenetic classification, parental and forensic identification, disease onset and recurrence, individual response to treatment versus population bases, and monitoring of therapy.
- the subject devices and systems are also particularly useful for advancing preclinical and clinical stage of development of therapeutics, improving patient compliance, monitoring ADRs associated with a prescribed drug, developing individualized medicine, outsourcing blood testing from the central laboratory to the home or on a prescription basis, and monitoring therapeutic agents following regulatory approval.
- the devices and systems can provide a flexible system for personalized medicine. Using the same system, a device can be changed or interchanged along with a protocol or instructions to a programmable processor of the systems to perform a wide variety of assays as described.
- the systems and devices herein offer many features of a laboratory setting in a desk-top or smaller size automated instrument.
- a patient may be provided with a plurality of devices to be used for detecting a variety of analytes.
- a subject may, for example, use different fluidic devices on different days of the week
- the software on the external device associating the identifier with a protocol may include a process to compare the current day with the day the fluidic device is to be used based on a clinical trial for example.
- the patient is provided different reagent units and assay units that can be fit into a housing of a device interchangeably.
- the system can be programmed or reprogrammed by downloading new instructions from, e.g. an external device such as a server.
- the external device can wirelessly send notification to the subject using any of the methods described herein or known in the art to notify them of the proper device and/or proper instructions for the system.
- This example is only illustrative and can easily be extended to, for example, notifying a subject that a fluidic device is not being used at the correct time of day.
- a cartridge as illustrated in Figure 1 can comprise a variety of assay units and reagent units.
- the assay units can comprise a capture surface according to an analyte to be detected.
- the assay units can then be assembled with the rest of the device in a just-in-time fashion.
- the capture surface is integral to the device and if the capture surface is incorrect or not properly formed, the whole device is bad.
- the capture surface and/or assay unit can be individually quality controlled and customized independently of the reagent units and the housing of the device.
- Reagent units can be filled with a variety of reagents in a similar just-in-time fashion. This provides flexibility of the device being customizable. In addition, the reagent units can be filled with different volumes of reagents without affecting the stability of a device or the chemical reactions to be run within the device. Coupled with a system as described with a fluid transfer device, the devices and units described herein offer flexibility in the methods and protocols of the assays to be run. For example, a batch of similar devices containing the same reagents can be given to a patient pool for a clinical trial. Half way through the clinical trial, a user identifies that the assay could be optimized by changing the dilution of the sample and the amount of reagent provided to the assay unit.
- the assay can be changed or optimized by only changing the instructions to a programmable processor of the fluid transfer device.
- the batch of cartridges in the patient pool had excess diluent loaded on the cartridge.
- the new protocol demands four times as much diluent as the previous protocol. Due to the methods and systems provided herein, the protocol can be changed at a central server and sent to all the systems for executing the methods with the devices without having to provide new devices to the patient pool.
- a POC device and system as described herein can offer much of the flexibility of a standard laboratory practice where excess reagents and often excess sample are often available.
- a cartridge can be configured to run 8 assays using an array of assay units and an array of reagent units. Due to the features of the cartridge as described herein, the same housing, or a housing of the same design can be used to manufacture a cartridge with up to 8 different assays than the previous cartridge. This flexibility is difficult to achieve in many current POC device designs because of the closed systems and fluid channels, and therefore the devices may not be modular or as easy to assemble as described.
- the system as described herein has the ability to simultaneously assay analytes that are present in the same sample in a wide concentration range.
- Another advantage for being able to detect concentrations of different analytes present in a wide concentration range is the ability to relate the ratios of the concentration of these analytes to safety and efficacy of multiple drugs administered to a patient. For example, unexpected drug-drug interactions can be a common cause of adverse drug reactions. A real-time, concurrent measurement technique for measuring different analytes would help avoid the potentially disastrous consequence of adverse drug-drug interactions.
- the data generated with the use of the subject fluidic devices and systems can be utilized for performing a trend analysis on the concentration of an analyte in a subject.
- a system as provided herein is configured to run multiple (e.g., five or more) different target analyte detection assays.
- a sample In order to bring the expected analyte concentration within the range of detection of an immunoassay as described herein and commonly used in the POC field, a sample must be diluted e.g., 3:1, 8:1, 10:1, 100:1, and 2200:1, to run each of the five assays. Because the fluid transfer device is able to hold and move fluid within the device, serial dilutions can be performed with a system as described herein to achieve these five different dilutions and detect all five different target analytes. As described above, the protocol for performing the assays is also capable of being adjusted without modifying the device or the system.
- a laboratory setting with traditional pipetting typically larger volumes of sample are used than in a POC setting.
- a laboratory may analyze a blood sample withdrawn from the arm of a patient in a volume in the milliliter range.
- many devices and users demand that the process is fast, easy and/or minimally invasive, therefore, small samples (on the order of a volume in the microliter range) such as one obtained by a fingerstick) are typically analyzed by a POC device.
- small samples on the order of a volume in the microliter range
- current POC devices can lose flexibility in running an assay that is afforded in a laboratory setting. For example, to run multiple assays from a sample, a certain minimum volume can be required for each assay to allow for accurate detection of an analyte, therefore putting some limits on a device in a POC setting.
- a system and/or fluid transfer device as described herein provides a great deal of flexibility.
- the fluid transfer device can be automated to move an assay unit, an assay tip, or an empty pipette from one unit of the device to a separate unit of the device, not in fluid communication with each other. In some instances, this can avoid cross-contamination of the units of a device as described. In other instances, it allows for the flexibility of moving several fluids within a device as described into contact with each other according to a protocol or instructions. For example, a cartridge comprising 8 different reagents in 8 different reagent units can be addressed and engaged by a fluid transfer device in any order combination as is instructed by a protocol.
- the assay protocol can be different or modified without the need for a second cartridge or a second system.
- a user orders a cartridge with a specific type of capture surface and specific reagents to run an assay to detect an analyte (for example, C-reactive protein (CRP)) in a sample.
- the protocol the user originally planned for may require 2 washing steps and 3 dilution steps. After the user has received the device and system, the user has decided that the protocol should actually have 5 washing steps and only 1 dilution step.
- the devices and systems herein can allow the flexibility for this change in protocol without having to reconfigure the device or the system. In this example, only a new protocol or set of instructions are needed to be sent to the programmable processor of the system or the fluid transfer device.
- a system as provided herein is configured to run five different target analyte detection assays, wherein each assay needs to be incubated at a different temperature.
- incubation of multiple assays at different temperatures is a difficult task because the multiple assays are not modular and the capture surfaces cannot be moved relative to the heating device.
- an individual assay unit can be place in an individual heating unit.
- a system comprises a plurality of heating units.
- a system comprises at least as many heating units as assay units. Therefore, a plurality of assays can be run as a plurality of temperatures.
- Systems and devices as described herein can also provide a variety of quality control measures not previously available with many prior art POC devices.
- the assay units and reagents units can be quality controlled separately from each other and/or separately from the housing and/or separately from a system or fluid transfer device. Exemplary methods and systems of quality control offered by the systems and devices herein are described.
- a system as described can run a variety of assays, regardless of the analyte being detected from a bodily fluid sample.
- a protocol dependent on the identity of the device may be transferred from an external device where it can be stored to a reader assembly to enable the reader assembly to carry out the specific protocol on the device.
- the device has an identifier (ID) that is detected or read by an identifier detector described herein.
- the identifier detector can communicate with a communication assembly via a controller which transmits the identifier to an external device. Where desired, the external device sends a protocol stored on the external device to the communication assembly based on the identifier.
- the protocol to be run on the system may comprise instructions to the controller of the system to perform the protocol, including but not limited to a particular assay to be run and a detection method to be performed.
- a signal indicative of an analyte in the bodily fluid sample is generated and detected by a detection assembly of the system.
- the detected signal may then be communicated to the communications assembly, where it can be transmitted to the external device for processing, including without limitation, calculation of the analyte concentration in the sample.
- the identifier may be a bar code identifier with a series of black and white lines, which can be read by an identifier detector such as a bar code reader, which are well known. Other identifiers could be a series of alphanumerical values, colors, raised bumps, or any other identifier which can be located on a device and be detected or read by an identifier detector.
- the identifier detector may also be an LED that emits light which can interact with an identifier which reflects light and is measured by the identifier detector to determine the identity of a device.
- the identifier may comprise a storage or memory device and can transmit information to an identification detector. In some embodiments a combination of techniques may be used. In some embodiments, the detector is calibrated by used of an optical source, such as an LED.
- a bodily fluid sample can be provided to a device, and the device can be inserted into a system.
- the device is partially inserted manually, and then a mechanical switch in the reader assembly automatically properly positions the device inside the system. Any other mechanism known in the art for inserting a disk or cartridge into a system may be used. In some embodiments, manual insertion may be required.
- a method of automatically selecting a protocol to be run on a system comprises providing a device comprising an identifier detector and an identifier; detecting the identifier; transferring said identifier to an external device; and selecting a protocol to be run on the system from a plurality of protocols on said external device associated with said identifier.
- a system for automated detection of a plurality of analytes in a bodily fluid sample comprises: a fluidic device (such as those described herein) comprising: a sample collection unit configured to contain the bodily fluid sample; an array of assay units, wherein an individual assay unit of said array of assay units is configured to run a chemical reaction that yields a signal indicative of an individual analyte of said plurality of analytes being detected; and an array of reagent units, wherein an individual reagent unit of said array of reagent units contains a reagent.
- the system further comprises a fluid transfer device comprising a plurality of heads, wherein an individual head of the plurality of heads is configured to engage the individual assay unit, and wherein said fluid transfer device comprises a programmable processor configured to direct fluid transfer of the bodily fluid sample from the sample collection unit and the reagent from the individual reagent unit into the individual assay unit.
- a fluid transfer device comprising a plurality of heads, wherein an individual head of the plurality of heads is configured to engage the individual assay unit, and wherein said fluid transfer device comprises a programmable processor configured to direct fluid transfer of the bodily fluid sample from the sample collection unit and the reagent from the individual reagent unit into the individual assay unit.
- an individual assay unit comprises a reagent and is configured is to run a chemical reaction with that reagent.
- the configuration of the processor to direct fluid transfer effects a degree of dilution of the bodily fluid sample in the array of assay units to bring signals indicative of the plurality of analytes being detected within a detectable range, such that said plurality of analytes are detectable with said system.
- the bodily fluid sample comprises at least two analytes that are present at concentrations that differ by at least 2, 5, 10, 15, 50, or 100 orders of magnitude.
- the bodily fluid sample is a single drop of blood.
- the concentrations of at least two analytes present in a sample differs by up to 10 orders of magnitude (for example, a first analyte is present at 0.1 pg/mL and a second analyte is present at 500 ug/mL.
- some protein analytes are found at concentrations of greater than 100 mg/mL, which can extend the range of interest to about twelve orders of magnitude.
- a degree of dilution of the bodily fluid sample can bring the signals indicative of the at least two analytes within the detectable range.
- a system further comprises a detector, such as a photomultiplier (PMT).
- PMT photomultiplier
- a detectable range of the detector can be about 10 to about 10 million counts per second. Each count corresponds to a single photon.
- PMTs are not 100% efficient and the observed count rate may be slightly lower than, but still close to, the actual number of photons reaching the detector per unit time.
- counts are measured in about ten intervals of about one second and the results are averaged.
- ranges for assays are 1000 - 1,000,000 counts per second when using a PMT as a detector. In some instances, count rates as low as 100 per second and count rates as high as 10,000,000 are measurable.
- the linear response range of PMTs (for example, the range where count rate is directly proportional to number of photons per unit time) can be about 1000-3,000,000 counts per second.
- an assay has a detectable signal on the low end of about 200-1000 counts per second and on the high end of about 10,000-2,000,000 counts per second.
- the count rate is directly proportional to alkaline phosphatase bound to the capture surface and also directly proportional to the analyte concentration.
- exemplary detectors include avalanche photodiodes, avalanche photodiode arrays, CCD arrays, super-cooled CCD arrays. Many other detectors have an output that is digital and generally proportional to photons reaching the detector. The detectable range for exemplary detectors can be suitable to the detector being used.
- An individual head of a fluid transfer device can be configured to adhere to the individual assay unit.
- the fluid transfer device can be a pipette, such as an air-displacement pipette.
- the fluid transfer device can be automated.
- a fluid transfer device can further comprise a motor in communication with a programmable processor and the motor can move the plurality of heads based on a protocol from the programmable processor.
- an individual assay unit can be a pipette tip, for example, a pipette tip with a capture surface or reaction site.
- the dilution factor must be estimated and reasonably precise. For example, in environments where non-expert users operate the system there needs to be ways of ensuring a dilution of a sample.
- a fluid transfer device can affect a degree of dilution of a sample to provide accurate assay results.
- a programmable fluid transfer device can be multi-headed) to dilute or serially dilute samples as well as provide mixing of a sample and diluent.
- a fluid transfer device can also provide fluid movement in POC devices.
- the systems and devices herein can enable many features of the flexibility of laboratory setting in a POC environment. For example, samples can be collected and manipulated automatically in a table top size or smaller device or system.
- a common issue in POC devices is achieving different dilution ranges when conducting a plurality of assays, wherein the assays may have significantly different sensitivity or specificity. For example, there may be two analytes in a sample, but one analyte has a high concentration in the sample and the other analyte has a very low concentration.
- the systems and devices herein can dilute the sample to significantly different levels in order to detect both analytes.
- a sample can be serially diluted to the appropriate detection range and provided to a capture surface for detection.
- a sample with an analyte in a low concentration may not need to be diluted.
- the assay range of the POC devices and systems provided herein can be expanded from many of the current POC devices.
- a fluid transfer device can be part of a system that is a bench-top instrument.
- the fluid transfer device can comprise a plurality of heads. Any number of heads as is necessary to detect a plurality of analytes in a sample is envisioned for a fluid transfer device of the invention.
- a fluid transfer device has about eight heads mounted in a line and separated by a distance.
- the heads have a tapered nozzle that engages by press fitting with a variety of tips, such as assay unit or sample collection units as described herein.
- the tips can have a feature that enables them to be removed automatically by the instrument and disposed into in a housing of a device as described after use.
- the assay tips are clear and transparent and can be similar to a cuvette within which an assay is run that can be detected by an optical detector such as a photomultiplier tube.
- the programmable processor of a system can comprise instructions or commands and can operate a fluid transfer device according to the instructions to transfer liquid samples by either withdrawing (for drawing liquid in) or extending (for expelling liquid) a piston into a closed air space. Both the volume of air moved and the speed of movement can be precisely controlled, for example, by the programmable processor.
- Mixing of samples (or reagents) with diluents (or other reagents) can be achieved by aspirating components to be mixed into a common tube and then repeatedly aspirating a significant fraction of the combined liquid volume up and down into a tip. Dissolution of reagents dried into a tube can be done is similar fashion.
- Incubation of liquid samples and reagents with a capture surface on which is bound a capture reagent (for example an antibody) can be achieved by drawing the appropriate liquid into the tip and holding it there for a predetermined time. Removal of samples and reagents can be achieved by expelling the liquid into a reservoir or an absorbent pad in a device as described. Another reagent can then be drawn into the tip according to instructions or protocol from the programmable processor.
- a liquid 1111 previously in a tip 1101 can leave a thin film 1113 within the tip 1101 when expelled. Therefore, a system can use the action of the leading (for example uppermost) portion of the next liquid 1112 to scour the previously present liquid 1111 from the tip 1101 . The portion of the subsequent liquid contaminated with the liquid previously present 1113 can be held within the top of the tip 1101 where it does not continue to interact with the capture surface 1102 .
- the capture surface 1102 can be in a defined area of the tip 1101 such that the previous liquid 1111 does not react with the capture surface 1102 , for example as shown in Figure 11 , the capture surface 1102 occupies a defined portion of the cylindrical part of the tip 1101 not extending all the way up to the boss of the tip.
- incubation time is short (for example 10 minutes) and separation of the contaminated zone of liquid is relatively large (> 1 mm) so diffusion or the active components of the contaminated portion of liquid 1113 does not occur rapidly enough react with the capture surface 1102 during the incubation.
- there is a requirement to remove one reagent or wash the capture surface for example, a detector antibody which is labeled with the assay signal generator).
- a fluid transfer device of a system described herein can provide washing by adding further removal and aspiration cycles of fluid transfer, for example, using a wash reagent.
- four wash steps demonstrated that the unbound detector antibody in contact with the capture surface is reduced by a factor of better than 10 6 -fold. Any detector antibody non-specifically bound to the capture surface (highly undesirable) can also be removed during this wash process.
- Extension of the range of an assay can be accomplished by dilution of the sample.
- POC assay systems using disposable cartridges containing the diluent there is often a practical limit to the extent of dilution. For example, if a small blood sample is obtained by fingerstick (for example, about 20 microliters) is to be diluted and the maximum volume of diluent that can be placed in a tube is 250 microliters, the practical limit of dilution of the whole sample is about 10-fold. In an example herein, a system can aspirate a smaller volume of the sample (for example about 2 microliters) making the maximum dilution factor about 100-fold.
- Separation-based ELISA assays can have an intrinsic limitation in thee capacity of the capture surface to bind the analyte (for example about a few hundred ng/ml for a typical protein analyte). Some analytes are present in blood at hundreds of micrograms/ml. Even when diluted by 100-fold, the analyte concentration may be outside the range of calibration.
- multiple dilutions can be achieved by performing multiple fluid transfers of the diluent into an individual assay unit or sample collection unit. For example, if the concentration of an analyte is very high in a sample as described above, the sample can be diluted multiple times until the concentration of the analyte is within an acceptable detection range.
- the systems and methods herein can provide accurate measurements or estimations of the dilutions in order to calculate the original concentration of the analyte.
- a system herein can move a liquid sample and move an assay unit.
- a system can comprise a heating block and a detector.
- a system may provide aspiration-, syringe-, or pipette-type action.
- a fluid transfer device for moving a liquid sample is a pipette and pipette head system.
- the number of pipette devices required by the system can be adjusted according to the type of analyte to be detected and the number of assays being run.
- the actions performed by the pipette system can be automated or operated manually by a user.
- Figure 5 demonstrates an example of a fluid transfer device 520 and system 500 as described herein.
- the fluid transfer device system can move eight different or identical volumes of liquid simultaneously using the eight different heads 522 .
- the cartridge (or device as described herein) 510 comprises eight assay units 501 .
- Individual assay units 501 are configured according to the type of assay to be run within the unit 501 .
- Individual assay units 501 may require a certain volume of sample.
- An individual head 522 can be used to distribute a proper amount of sample to an individual assay unit 501 .
- each head 522 corresponds to an addressed individual assay unit 501 .
- the fluid transfer device mechanism 520 can also be used to distribute reagents from the reagent units.
- Different types of reagents include a conjugate solution, a wash solution, and a substrate solution.
- the stage 530 on which the device 510 sits can be moved to move the device 510 relative to the positioning of the assay units 501 and heads 522 and according to the steps necessary to complete an assay as demonstrated in Figure 5 .
- the heads 522 and tips 501 or the fluid transfer device 520 can be moved relative to the position of the device 510 .
- a reagent is provided in dry form and rehydrated and/or dissolved during the assy. Dry forms include lyophilized materials and films coated on surfaces.
- a system can comprise a holder or engager for moving the assay units or tips.
- An engager may comprise a vacuum assembly or an assembly designed to fit snugly into a boss of an assay unit tip.
- a means for moving the tips can be moved in a manner similar to the fluid transfer device heads. The device can also be moved on a stage according to the position of an engager or holder.
- an instrument for moving the tips is the same as an instrument for moving a volume of sample, such as a fluid transfer device as described herein.
- a sample collection tip can be fit onto a pipette head according to the boss on the collection tip.
- the collection tip can then be used to distribute the liquid throughout the device and system.
- the collection dip can be disposed, and the pipette head can be fit onto an assay unit according to the boss on the assay unit.
- the assay unit tip can then be moved from reagent unit to reagent unit, and reagents can be distributed to the assay unit according to the aspiration-or pipette-type action provided by the pipette head.
- the pipette head can also perform mixing within a collection tip, assay unit, or reagent unit by aspiration- or syringe-type action.
- a system can comprise a heating block for heating the assay or assay unit and/or for control of the assay temperature. Heat can be used in the incubation step of a assay reaction to promote the reaction and shorten the duration necessary for the incubation step.
- a system can comprise a heating block configured to receive an assay unit of the invention.
- the heating block can be configured to receive a plurality of assay units from a device of the invention. For example, if 8 assays are desired to be run on a device, the heating block can be configured to receive 8 assay units.
- assay units can be moved into thermal contact with a heating block using the means for moving the assay units. The heating can be performed by a heating means known in the art.
- the system 600 comprises a translational stage 630 onto which a device 610 (or cartridge in this example) is placed either manually or automatically or a combination of both.
- the system 600 also comprises a heating block 640 that can be aligned with the assay units 611 of the device 610 .
- the device 610 comprises a series of 8 assay units 611 and multiple corresponding reagent units 612
- the heating block 640 also comprises an area 641 for at least 8 units to be heated simultaneously.
- Each of the heating areas 641 can provide the same or different temperatures to each individual assay unit 611 according to the type of assay being run or the type of analyte being detected.
- the system 600 also comprises a detector (such as a photomultiplier tube) 650 for detection of a signal from an assay unit 611 representative of the detection of an analyte in a sample.
- a sensor is provided to locate an assay unit relative to a detector when an assay is detected.
- the detector is a reader assembly housing a detection assembly for detecting a signal produced by at least one assay on the device.
- the detection assembly may be above the device or at a different orientation in relation to the device based on, for example, the type of assay being performed and the detection mechanism being employed.
- the detection assembly can be moved into communication with the assay unit or the assay unit can be moved into communication with the detection assembly.
- an optical detector is provided and used as the detection device.
- Non-limiting examples include a photodiode, photomultiplier tube (PMT), photon counting detector, avalanche photo diode, or charge-coupled device (CCD).
- a pin diode may be used.
- a pin diode can be coupled to an amplifier to create a detection device with a sensitivity comparable to a PMT.
- Some assays may generate luminescence as described herein.
- chemiluminescence is detected.
- a detection assembly could include a plurality of fiber optic cables connected as a bundle to a CCD detector or to a PMT array.
- the fiber optic bundle could be constructed of discrete fibers or of many small fibers fused together to form a solid bundle. Such solid bundles are commercially available and easily interfaced to CCD detectors.
- a detector can also comprise a light source, such as a bulb or light emitting diode (LED).
- the light source can illuminate an assay in order to detect the results.
- the assay can be a fluorescence assay or an absorbance assay, as are commonly used with nucleic acid assays.
- the detector can also comprise optics to deliver the light source to the assay, such as a lens or fiber optics.
- the detection system may comprise non-optical detectors or sensors for detecting a particular parameter of a subject.
- sensors may include temperature, conductivity, potentiometric signals, and amperometric signals, for compounds that are oxidized or reduced, for example, O 2 , H 2 O 2 , and I 2 , or oxidizable/reducible organic compounds.
- a device and system may, after manufacturing, be shipped to the end user, together or individually.
- the device or system of the invention can be packaged with a user manual or instructions for use.
- the system of the invention is generic to the type of assays run on different devices. Because components of the device can be modular, a user may only need one system and a variety of devices or assay units or reagent units to run a multitude of assays in a point-of-care environment. In this context, a system can be repeatedly used with multiple devices, and it may be necessary to have sensors on both the device and the system to detect such changes during shipping, for example.
- a sensor located on either the device or system can relay these changes to, for example, the external device so that adjustments can be made during calibration or during data processing on the external device. For example, if the temperature of a fluidic device is changed to a certain level during shipping, a sensor located on the device could detect this change and convey this information to the system when the device is inserted into the system by the user. There may be an additional detection device in the system to perform these tasks, or such a device may be incorporated into another system component. In some embodiments information may be wirelessly transmitted to either the system or the external device, such as a personal computer or a television. Likewise, a sensor in the system can detect similar changes.
- a sensor in the shipping packaging as well, either instead of in the system components or in addition thereto.
- adverse conditions that would render an assay cartridge or system invalid that can be sensed can include exposure to a temperature higher than the maximum tolerable or breach of the cartridge integrity such that moisture penetration.
- the system comprises a communication assembly capable of transmitting and receiving information wirelessly from an external device.
- wireless communication may be Bluetooth or RTM technology.
- Various communication methods can be utilized, such as a dial-up wired connection with a modem, a direct link such as a T1, ISDN, or cable line.
- a wireless connection is established using exemplary wireless networks such as cellular, satellite, or pager networks, GPRS, or a local data transport system such as Ethernet or token ring over a local area network.
- the information is encrypted before it is transmitted over a wireless network.
- the communication assembly may contain a wireless infrared communication component for sending and receiving information.
- the system may include integrated graphic cards to facilitate display of information.
- the communication assembly can have a memory or storage device, for example localized RAM, in which the information collected can be stored.
- a storage device may be required if information can not be transmitted at a given time due to, for example, a temporary inability to wirelessly connect to a network.
- the information can be associated with the device identifier in the storage device.
- the communication assembly can retry sending the stored information after a certain amount of time.
- an external device communicates with the communication assembly within the reader assembly.
- An external device can wirelessly or physically communicate with a system, but can also communicate with a third party, including without limitation a patient, medical personnel, clinicians, laboratory personnel, or others in the health care industry.
- a patient delivers a blood sample to a device as described herein and then the device is inserted into a reader, wherein the reader can be desktop system capable of reading an analyte in the blood sample.
- the reader can be a system as described herein.
- the reader can be a bench-top or desk-top system and can be capable of reading a plurality of different devices as described herein.
- the reader or system is capable of carrying out a chemical reaction and detecting or reading the results of the chemical reaction.
- a reader is automated according to a protocol sent from an external device (for example, a server comprising a user interface).
- a reader can also send the results of the detection of the chemical reaction to the server and user interface.
- the user for example, medical personnel such as a physician or researcher
- Results can also be stored locally (on the reader) or on the server system.
- the server can also host patient records, a patient diary, and patient population databases.
- Figure 8 illustrates the process flow of building a system for assessing the medical condition of a subject.
- the patient inputs personal data and or measurements from a device, reader, and/or system as described herein into a database as may be present on a server as described.
- the system can configured to display the personal data on a patient station display.
- the patient station display is interactive and the patient can modify inputted data.
- the same or a different database contains data from other subjects with a similar medical condition. Data from the other subjects can be historical data from public or private institutions. Data from other subjects may also be internal data from a clinical study.
- Figure 8 also illustrates the flow of data from reader collection data that includes the data from the subject to a server that is connected over a public network.
- the server can manipulate the data or can just provide the data to a user station.
- the patient data may also be input to the server separately from the data pertaining to a medical condition that is stored in a database.
- Figure 8 also demonstrates a user station display and the flow of information to medical personnel or a user.
- a patient at home can input a bodily fluid sample into a cartridge of the invention as described herein and place it in a system or reader as described herein.
- the patient can view the data from the system at a patient station display and/or modify or input new data into the process flow.
- the data from the patient can then travel over a public network, such as the internet, for example, in an encrypted format, to a server comprising a network interface and a processor, wherein the server is located at a central computing hub or in a clinical trial center.
- the server can use medical condition data to manipulate and understand the data from the user and then send the results over a public network as described to a user station.
- the user station can be in a medical office or laboratory and have a user station display to display the results of the assay and manipulation of the patient data to the medical personnel.
- the medical personnel can receive results and analysis of a sample from a patient from a test that the patient administered in an alternate location such as the patient's home.
- Other embodiments and example of systems and components of systems are described herein.
- the external device can be a computer system, server, or other electronic device capable of storing information or processing information.
- the external device includes one or more computer systems, servers, or other electronic devices capable of storing information or processing information.
- an external device may include a database of patient information, for example but not limited to, medical records or patient history, clinical trial records, or preclinical trial records.
- An external device can store protocols to be run on a system which can be transmitted to the communication assembly of a system when it has received an identifier indicating which device has been inserted in the system.
- a protocol can be dependent on a device identifier.
- the external device stores more than one protocol for each device.
- patient information on the external device includes more than one protocol.
- the external server stores mathematical algorithms to process a photon count sent from a communication assembly and in some embodiments to calculate the analyte concentration in a bodily fluid sample.
- the external device can include one or more servers as are known in the art and commercially available. Such servers can provide load balancing, task management, and backup capacity in the event of failure of one or more of the servers or other components of the external device, to improve the availability of the server.
- a server can also be implemented on a distributed network of storage and processor units, as known in the art, wherein the data processing according to the present invention reside on workstations such as computers, thereby eliminating the need for a server.
- a server can includes a database and system processes.
- a database can reside within the server, or it can reside on another server system that is accessible to the server. As the information in a database may contains sensitive information, a security system can be implemented that prevents unauthorized users from gaining access to the database.
- One advantage of some of the features described herein is that information can be transmitted from the external device back to not only the reader assembly, but to other parties or other external devices, for example without limitation, a PDA or cell phone. Such communication can be accomplished via a wireless network as disclosed herein. In some embodiments a calculated analyte concentration or other patient information can be sent to, for example but not limited to, medical personnel or the patient.
- the data generated with the use of the subject devices and systems can be utilized for performing a trend analysis on the concentration of an analyte in a subject.
- assay results can be substantially immediately communicated to any third party that may benefit from obtaining the results. For example, once the analyte concentration is determined at the external device, it can be transmitted to a patient or medical personnel who may need to take further action.
- the communication step to a third party can be performed wirelessly as described herein, and by transmitting the data to a third party's hand held device, the third party can be notified of the assay results virtually anytime and anywhere.
- a patient may be contacted immediately anywhere if urgent medical action may be required.
- an external device can store a plurality of protocols associated with the system or associated with a particular patient or group of patients. For example, when the identifier is transmitted to the external device, software on the external device can obtain the identifier. Once obtained, software on the external device, such as a database, can use the identifier to identify protocols stored in the database associated with the identifier. If only one protocol is associated with the identifier, for example, the database can select the protocol and software on the external device can then transmit the protocol to the communication assembly of the system.
- the ability to use protocols specifically associated with a device allows for any component of a device of the invention to be used with a single system, and thus virtually any analyte of interest can be detected with a single system.
- multiple protocols may be associated with a single identifier. For example, if it is beneficial to detect from the same patient an analyte once a week, and another analyte twice a week, protocols on the external device associated with the identifier can also each be associated with a different day of the week, so that when the identifier is detected, the software on the external device can select a specific protocol that is associated with the day of the week.
- a patient may be provided with a plurality of devices to use to detect a variety of analytes.
- a subject may, for example, use different devices on different days of the week.
- the software on the external device associating the identifier with a protocol may include a process to compare the current day with the day the device is to be used based on a clinical trial for example. If for example, the two days of the week are not identical, the external device can wirelessly send notification to the subject using any of the methods described herein or known in the art to notify them that an incorrect device is in the system and also of the correct device to use that day. This example is only illustrative and can easily be extended to, for example, notifying a subject that a device is not being used at the correct time of day.
- the system can also use a networking method of assessing the medical condition of a subject.
- a system of communicating information may or may not include a reader for reading subject data. For example, if biomarker data is acquired by a microfluidic point-of-care device, the values assigned to different individual biomarkers may be read by the device itself or a separate device.
- a reader would be a bar code system to scan in subject data that has been entered in an electronic medical record or a physician chart.
- a further example of a reader would consist of an electronic patient record database from which subject data could be directly obtained via the communications network. In this way, the efficacy of particular drugs can be demonstrated in real-time, thus justifying reimbursement of the therapy.
- Noncompliance with a medical treatment can seriously undermine the efficacy of the treatment or trial.
- the system of the present invention can be used to monitor patient compliance and notify the patient or other medical personnel of such noncompliance.
- a patient taking a pharmaceutical agent as part of medical treatment plan can take a bodily fluid sample which is assayed as described herein, but a metabolite concentration, for example, detected by the system may be at an elevated level compared to a known profile that will indicate multiple doses of the pharmaceutical agent have been taken.
- the patient or medical personnel may be notified of such noncompliance via any or the wireless methods discussed herein, including without limitation notification via a handheld device such a PDA or cell phone.
- a known profile may be located or stored on an external device described herein.
- the system can be used to identify sub-populations of patients which are benefited or harmed by a therapy. In this way, drugs with varying toxicity that would otherwise be forced from the market can be saved by allocating them only to those who will benefit.
- the devices and methods of the invention provide an effective means for real-time detection of analytes present in a bodily fluid from a subject.
- the detection methods may be used in a wide variety of circumstances including identification and quantification of analytes that are associated with specific biological processes, physiological conditions, disorders, stages of disorders or stages of therapy.
- the devices and methods have a broad spectrum of utility in, for example, drug screening, disease diagnosis, phylogenetic classification, parental and forensic identification, disease onset and recurrence, individual response to treatment versus population bases, and monitoring of therapy.
- the devices and methods are also particularly useful for advancing preclinical and clinical stage of development of therapeutics, improving patient compliance, monitoring ADRs associated with a prescribed drug, individualized medicine, outsourcing blood testing from the central laboratory to the residence of the patient.
- the device can be employed on a prescription basis, utilized by pharmaceutical companies for monitoring therapeutic agents following regulatory approval or utilized for payors outsourcing blood tests from a central lab.
- the present invention provides a method of detecting an analyte in a bodily fluid sample comprising providing a blood sample to a device or system of the invention, allowing the sample to react within at least one assay unit of the device, and detecting the detectable signal generated from the analyte in the blood sample.
- Figure 1 demonstrates an exemplary embodiment of a device of the invention comprising at least one assay unit and at least one reagent unit.
- the assay units (for example, designated as sample tips and calibrator tips in Figure 1 ) can contain a capture surface and the reagent units can contain items such as conjugates, washes, and substrates.
- the device exemplified in Figure 1 also comprises a whole blood sample collection tip, a plasma sample collection tip, a blood input well, a beads well or plasma separation well, a tip touch-off or blotting pad, a dilution well, a diluted plasma sample well or plasma diluent well, collection tip disposal areas.
- a method comprises performing an Enzyme-linked Immunosorbent Assay (ELISA).
- ELISA Enzyme-linked Immunosorbent Assay
- a sample is provided to a sample collection unit of a device as described herein.
- the device is then inserted into a system, wherein system detects the type of cartridge or device that is inserted.
- the system can then communicate with an external device to receive a set of instructions or protocol that allow the system to perform the desired assay or assays of the cartridge.
- the protocol can be sent to the programmable processor of a fluid transfer device of the system.
- the fluid transfer device engages a sample tip of the cartridge and picks up a certain volume of the sample from the sample collection unit and moves it to a pretreatment unit where red blood cells are removed.
- the plasma of the sample can then be aspirated into a plasma tip or any assay tip by the fluid transfer device according to the protocol.
- the tip containing the plasma can then pick up a diluent to dilute the sample as is necessary for the assays to be run.
- Many different dilutions can be carried by using serial dilutions of the sample.
- each assay tip or assay unit can contain a sample of a different dilution.
- the assay unit can then be incubated with the sample to allow any target analyte present to attach to the capture surface.
- Incubations as described in this example can be at the system or room temperature for any period of time, for example 10 minutes, or can in a heating device of the system as described herein.
- the assay unit can engage a reagent unit addressed with a reagent corresponding to the assay to be run in each individual assay unit that have a capture surface for that assay.
- the first reagent is a detector solution of an ELISA, for example, comprising a detector antibody such as a labeled anti-protein antibody different than the capture surface.
- the detector solution is then aspirated out of the assay unit and then a wash solution can be aspirated into the assay unit to remove any excess detector solution. Multiple wash steps can be used.
- the final reagent to be added is an enzymatic substrate which causes the bound detector solution to chemiluminesce.
- the enzymatic substrate is then expelled from the assay unit and the results of the assay are read by a detector of the system.
- incubations can occur as necessary as described herein. In this example, the entire process after putting the cartridge into the system is automated and carried out by a protocol or set of instructions to the programmable system.
- One exemplary method proceeds with delivering a blood sample into the blood input well.
- the sample can then be picked up by a collection tip and inserted into the plasma separation well.
- the blood can be deposited directly into a well containing a blood separator.
- plasma separation can be carried out by a variety of methods as described herein.
- plasma separation proceeds using magnetizable beads and antibodies to remove the components of the blood that are not plasma.
- the plasma can then be carried by a plasma collection tip as to not contaminate the sample with the whole blood collection tip.
- the plasma collection tip can pick-up a predetermined amount of diluent and dilute the plasma sample.
- the diluted plasma sample is then distributed to the assay units (sample tips) to bind to a capture surface.
- the assay units can be incubated to allow for a capture reaction to be carried out.
- the assay unit then can be used to collect a conjugate to bind with the reaction in the assay unit.
- the conjugate can comprise an entity that allows for the detection of an analyte of interest by a detector, such as an optical detector.
- the reaction can be incubated.
- a reagent unit containing a wash for the conjugate is then accessed by the assay unit (sample tip) to remove any excess conjugate that can interfere with any analyte detection.
- a substrate can be added to the assay unit for detection.
- a calibrator tip assay unit can be used to carry out all of the methods described in this paragraph except the collection and distribution of the sample. Detection and measurements using the calibrator tip assay unit can be used to calibrate the detection and measurements of the analyte from the sample. Other processes and methods similar to those used in this example are described hereinafter.
- the input well or sample collection unit in the example of Figure 1 can collect of contain any type of commonly employed bodily fluids that include, but are not limited to blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue liquids extracted from tissue samples, and cerebrospinal fluid.
- the bodily fluid is blood and can be obtained by a fingerstick.
- the bodily fluid sample is a blood plasma sample.
- a bodily fluid may be drawn from a patient and distributed to the device in a variety of ways including, but not limited to, lancing, injection, or pipetting.
- a lancet punctures the skin and delivers the sample into the device using, for example, gravity, capillary action, aspiration, or vacuum force.
- the lancet may onboard the device, or part of a reader assembly, or a stand alone component. Where needed, the lancet may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods.
- a patient can simply provide a bodily fluid to the device, as could occur, for example, with a saliva sample.
- the collected fluid can be placed into a collection well or unit of the device.
- the volume of bodily fluid to be used with a method or device described herein is generally less than about 500 microliters, further can be between about 1 to 100 microliters.
- a sample of 1 to 50 microliters, 1 to 40 microliters, 1 to 30 microliters, 1 to 10 microliters or even 1 to 3 microliters can be used for detecting an analyte using the subject fluidic device.
- the sample is 20 microliters.
- the volume of bodily fluid used for detecting an analyte utilizing the devices, systems, or methods is one drop of fluid.
- one drop of blood from a pricked finger can provide the sample of bodily fluid to be analyzed with a device, system, or method of the invention.
- the bodily fluids are used directly for detecting the analytes present in the bodily fluid without further processing.
- the bodily fluids can be pre-treated before performing the analysis with a device.
- the choice of pre-treatments will depend on the type of bodily fluid used and/or the nature of the analyte under investigation. For instance, where the analyte is present at low level in a sample of bodily fluid, the sample can be concentrated via any conventional means to enrich the analyte. Methods of concentrating an analyte include but are not limited to drying, evaporation, centrifugation, sedimentation, precipitation, and amplification.
- analyte is a nucleic acid
- it can be extracted using various lytic enzymes or chemical solutions or using nucleic acid binding resins following the accompanying instructions provided by manufacturers.
- extraction can be performed using lysing agents including but not limited to anticoagulants such as EDTA or heparin, denaturing detergent such as SDS or non-denaturing detergent such as Thesit, sodium deoxylate, triton X-100, and tween-20.
- the subject collects a sample of bodily fluid with a syringe.
- the sample can enter the syringe through a capillary tube.
- the subject performs a fmgerstick and touches the outer end of the glass capillary to the blood so that blood is drawn by capillary action and fills the capillary with a volume.
- the sample volume is known.
- the sample volume is in the range of about 5 - 20 microliters or other volume ranges as described herein.
- a method and system is provided to obtain a plasma sample substantially free of red blood cells from a blood sample.
- the analytes are often contained in the blood plasma, and the red blood cells can interfere with a reaction.
- the analytes of interest are in the serum or plasma.
- the final reported concentration of multiple blood tests often needs to relate to the concentration of blood serum or blood plasma in a diluted sample.
- blood serum or blood plasma is the test medium of choice in the lab. Two operations may be necessary prior to running an assay, dilution and red blood cell removal.
- Blood samples vary significantly in the proportion of the sample volume occupied by red cells (the hematocrit which varies from about 20 - 60%).
- the volume of sample obtained may not be that which is intended. If a change in volume is not recognized, it can lead to error in the reported analyte concentrations.
- the present invention provides a method of retrieving plasma from a blood sample that comprises mixing a blood sample in the presence of magnetizable particles in a sample collection unit, wherein the magnetizable particles comprise an antibody capture surface for binding to non-plasma portions of the blood sample, and applying a magnetic field above a plasma collection area to the mixed blood sample to effect suspension of the non-plasma portions of the blood sample on top of the plasma collection area, thereby retrieving the plasma from a blood sample.
- the device or system of the invention may include a magnetic reagent or object which binds to red cells and enables magnetic removal of red cells from plasma.
- the reagent can be provided in lyophilized form but also can be present as a liquid dispersion.
- a reagent comprised of magnetizable particles (for example, about 1 micrometer in size) can be coated with an antibody to a red cell antigen or to some adaptor molecule.
- the reagent also contains unbound antibodies to red cell surface antigens, which may be unlabeled or labeled with an adaptor moiety (such as biotin, digoxigenin, or fluorescein).
- the red blood cells in a diluted sample co-agglutinate with the magnetizable particles aided by a solution phase antibody.
- a lectin that recognizes a red cell surface carbohydrate can be used as a co-agglutination agent.
- combinations of red cell agglutinating agents are used.
- a device of the invention can comprise a blood filter, such as a pad of glass fiber, to aid in the separation of red blood cells from a sample.
- a co-agglutination can occur in which many, if not all, of the red cells form a mixed agglutinate with the magnetizable particles.
- the reagent dissolution and mixing process is driven by repeated aspiration using a tip or collection tip of the invention or a pipette-like tip.
- the mass can be separated from the blood plasma by use of a magnet to hold the mass in place as plasma is allowed to exit the tip.
- the plasma exits the tip by gravity in a vertical orientation, while the magnet holds the mass in place.
- the plasma exits the tip by vacuum or pressure means, while the mass is held within the tip.
- the plasma can be deposited into a well, another collection tip, or assay unit of the invention.
- FIGS 9A through 9E An example of a plasma separation method of the invention is demonstrated in Figures 9A through 9E .
- a whole blood sample 901 has been aspirated into a sample tip 910 as described herein, for example in the amount of about 20 microliters.
- the whole blood sample 901 is then deposited into a separation well 920 (for example, a well containing magnetic beads or particles) of an example device.
- Figure 9B illustrates a method of suspending and mixing a magnetic reagent in the whole blood sample 902 in a separation well (for example, magnetic bead particles and free binding molecules).
- Figure 9C demonstrates a 10 microliter air slug 930 that can be used to prevent loss from the tip 910 .
- the mixed whole blood sample and magnetic reagent 902 are incubated for several seconds (for example, 60 to 180 seconds) to allow an agglutination reaction to occur.
- Figure 9D demonstrates the application of a magnetic field 940 to the whole blood cell and magnetic reagent mixture 902 .
- the magnetic field 940 can be applied by a magnetic collar 942 that is incorporated with a system or with any magnetic means known in the art.
- the magnetic field 940 attracts any particles that have adhered to the magnetic reagent. In this way, the plasma 903 , which does not adhere with the magnetic reagent, can be separated from non-plasma portions of a whole blood sample.
- Figure 9E demonstrates a method of distributing a blood plasma sample 903 , as separated by the magnetic reagent described herein, into a well or unit 950 of a device as described herein.
- the blood plasma sample 903 can also be distributed to a collection tip or assay unit, as well as any other sort of assay device as obvious to one skilled in the art.
- the magnetic field 940 is shown to move with the tip 910 distributing the blood plasma sample 903.
- 5 to 8 microliters of plasma have been removed from a 20 microliter whole blood sample.
- 1 to 99% of a whole blood sample can be plasma separated using a method of the invention.
- 25 to 60% of the volume of the whole blood sample is plasma that can be separated.
- a capillary plasma collection tip (which can be operated by a robotic system or any other system of the invention) collects the blood plasma sample by capillary and aspiration force.
- Another step can comprise distributing the plasma sample in a diluent, and the sample can then be diluted by the diluent.
- the diluted blood plasma sample can then be collected by the collection tip in a predetermined volume.
- the diluted blood plasma sample can then be mixed and distributed into a well or unit of a device to be distributed to one or a plurality of assay units of a device of the invention.
- the sample can also be distributed into any other type of device, such as a microtiter plate, as would be obvious to those skilled in the art.
- a fluid transfer tip can contain the agglutinated mass and the plasma could be deposited into a microtiter plate.
- Other devices and systems as would be obvious to those skilled in the art could be utilized to execute the example blood plasma separation as disclosed herein.
- the sample of bodily fluid can also be diluted in a variety of other manners, such as using a sample collection device capable of dilution.
- the housing of the sample collection device can comprise a tube.
- two moveable seals can contain a volume of a diluent.
- the volume of the diluent is predetermined, e.g., in about the range of 50 microliters to 1 milliliter, preferably in the range of about 100 microliters to 500 microliters.
- a method for automated detection of a plurality of analytes in a bodily fluid sample comprises: providing the bodily fluid sample to a fluidic device, wherein the fluidic device comprises: a sample collection unit configured to contain the bodily fluid sample; an array of assay units, wherein an individual assay unit of said array of assay units is configured to run a chemical reaction that yields a signal indicative of an individual analyte of said plurality of analytes being detected; and an array of reagent units, wherein an individual reagent unit of said array of reagent units contains a reagent.
- the method can also comprise engaging the individual assay unit using a fluid transfer device.
- bodily fluid sample can be transferred from the sample collection unit to the individual assay unit using the fluid transfer device and the reagent from the individual reagent unit can be transferred to the individual assay unit, thereby reacting the reagent with the bodily fluid sample to yield the signal indicative of the individual analyte of the plurality of analytes being detected.
- the fluid transfer device comprises a plurality of heads, wherein an individual head of the plurality of heads is configured to engage the individual assay unit; and wherein said fluid transfer device comprises a programmable processor configured to direct fluid transfer of the bodily fluid sample from the sample collection unit and the reagent from the individual reagent unit into the individual assay unit.
- instructions are provided to the programmable processor, for example, by a user, a subject, or the manufacturer. Instructions can be provided from an external device, such as a personal electronic device or a server.
- the instructions can direct the step of transferring the bodily fluid sample to the individual assay unit.
- the step of transferring the bodily fluid sample can affect a degree of dilution of the bodily fluid sample in the individual assay unit to bring the signal indicative the individual analyte of the plurality of analytes being detected within a detectable range.
- the degree of dilution of the bodily fluid sample brings the signals indicative of the at least two individual analytes within a detectable range as described herein.
- Pattern recognition techniques can be used to determine if the detection of an analyte or a plurality of analytes by a method as described herein is within or outside a certain range. For example, detectable signals outside the reportable range can be rejected.
- the certain range can be established during calibration of a fluidic device the reagent and assay units. For example, the range is established when a device is assembled in a just-in-time fashion.
- the detectable signal of an analyte as detected with a lower dilution factor or degree of dilution exceeds that for a higher dilution factor, the lower dilution result can be rejected as invalid.
- concentrations of an analyte in a sample as derived from signals from samples with different degrees of dilution get lower as the degree of dilution becomes greater. If this does happen, an assay result can be verified.
- the systems, devices, and methods herein provide the flexibility of quality control rules such as those described that many POC devices cannot offer.
- the systems, devices, and methods provide many of the quality control features as would be expected in a laboratory setting.
- a sample is diluted in a ratio that is satisfactory for both high senstivity and low sensitivity assays.
- a dilution ratio of sample to diluent can be in the range of about 1:10,000 - 1:1.
- the device can enable a sample to be diluted into separate locations or extents.
- the device can also enable the sample to be subject to serial dilutions.
- serial dilution within the device or system can dilute the sample up to 10,000,000,000:1.
- a sample containing an analyte for detection can be moved from a first location to a second location by aspiration-, syringe-, or pipette-type action.
- the sample can be drawn into the reaction tip by capillary action or reduced atmospheric pressure.
- the sample is moved to many locations, including an array of assay units of a device of the invention and different wells in the housing of a device of the invention.
- the process of moving the sample can be automated by a system of the invention, as described herein.
- the assay units and/or collection tips containing the sample can also be moved from a first location to a second location.
- the process of moving an assay unit or a collection tip can be automated and carried out by a user-defined protocol.
- the assay units are moved to collect reagent from a reagent unit of the invention.
- movement of an assay unit is automated.
- Aspiration-, syringe-, or pipette-type action can be used to collect reagent from a reagent unit into an assay unit.
- the entire unit can be incubated for a period of time to allow for a reaction between the sample and the capture surface of the assay unit.
- the amount of time needed to incubate the reaction is often dependent on the type of assay being run.
- the process can be automated by a system of the invention. In an embodiment, the incubation time is between 30 seconds and 60 minutes. In another embodiment, the incubation time is 10 minutes.
- An assay unit can also be incubated at an elevated temperature.
- the assay unit is incubated at temperature in a range of about 20 to 70 degrees Celsius.
- the assay unit can be inserted into a heating block to elevate the temperature of the assay unit and/or the contents of the assay unit.
- a conjugate is added to the assay unit after a sample has been added to the unit.
- the conjugate can contain a molecule for labeling an analyte captured by a capture surface in the assay unit. Examples of conjugates and capture surface are described hereinafter.
- the conjugate can be a reagent contained within a reagent unit.
- the conjugate can be distributed to the assay unit by aspiration-, syringe-, or pipette-type action.
- the assay unit can be incubated to allow the conjugate to react with an analyte within the assay unit.
- the incubation time can be determined by the type of assay or the analyte to be detected.
- the incubation temperature can be any temperature appropriate for the reaction.
- a device can comprise an array of addressable assay units configured to run a chemical reaction that yields a detectable signal indicative of the presence or absence of the analyte, and an array of addressable reagent units, each of which is addressed to correspond to one or more addressable assay units in said device, such that individual reagent units are calibrated in reference to the corresponding assay unit(s) before the arrays are assembled on the device.
- the device is calibrated by calibrating the assay units and reagent units before they are assembled on the device. The device can then be assembled using the calibrated components, making the device, and a method and system that utilize the device, modular components.
- Calibration can be pre-established by measuring the performance of assay reagents, such as conjugates, before the assay units and reagent unit are assembled in a device of the invention.
- Calibration information and algorithms can be stored on a server linked wirelessly to the assay system. Calibration can be performed in advance or retrospectively by assays performed in replicate systems at a separate location or by using information obtained when the assay system is used.
- a control material can be used in a device or system to measure or verify the extent of dilution of a bodily fluid sample.
- solid-phase based assays such as ELISA
- an assay uses a solid-phase reagent that is difficult to quality control without destruction of its function.
- the systems and methods herein provide methods to determine the dilution achieved in a POC system using a disposable device with automated mixing and/or dilution.
- a method provides retrospective analysis, for example, by use of a server in real time to analyze data prior to reporting results.
- an assay can be performed and a control assay can be run in parallel to the assay.
- the control assay provides a measurement of an expected dilution of the sample.
- the control assay can verify the dilution of the sample and thus, dilution of a sample for the assay or plurality of assays run within the system can be considered accurate.
- a method of measuring a volume of a liquid sample can comprise: reacting a known quantity of a control analyte in a liquid sample with a reagent to yield a detectable signal indicative of the control analyte; and comparing an intensity of said detectable signal with an expected intensity of said detectable signal, wherein the expected intensity of said signal is indicative of an expected volume of the liquid sample, and wherein said comparison provides a measurement of said volume of said liquid sample being measured.
- the control analyte is not present in said liquid sample in a detectable amount.
- a method can further comprise verifying the volume of said liquid sample when the measurement of the volume of the sample is within about 50% of the expected volume of the liquid sample.
- a method utilized a device or system described herein can further comprise: reacting a bodily fluid sample containing a target analyte with a reagent to yield a detectable signal indicative of the target analyte; and measuring the quantity of the target analyte in the bodily fluid sample using an intensity of said detectable signal indicative of the target analyte and the measurement of said volume of said liquid sample.
- the liquid sample and the bodily fluid sample can be the same sample.
- the control analyte does not react with the target analyte in the bodily fluid sample, therefore providing not interacting with detection of the target analyte.
- the liquid sample and the bodily fluid sample are different liquid samples.
- a control liquid such as water
- a blood sample or in another example, a saliva sample and a blood sample.
- a control analyte can be, without limitation, fluorescein-labeled albumin, fluorescein labeled IgG, anti-fluorescein, anti-digoxigenin, digoxigenin-labeled albumin, digoxigenin-labeled IgG, biotinylated proteins, non-human IgG.
- Other exemplary control analytes can be obvious to one skilled in the art.
- the control analyte does not occur in a human bodily fluid sample.
- a POC system configured to detect a plurality of analytes within a sample
- the system can have capabilities to dilute and mix liquids.
- an automated system or user can use a control assay to measure the dilution actually achieved and factor that dilution into the system calibration.
- a control analyte can be never found in the sample of interest and dried into a reagent unit.
- the quantity of the dried control analyte can be known and mixed with a sample in the reagent unit.
- the concentration of analyte can be measured to indicate the volume of sample and any dilution performed on the sample.
- control analytes for an immunoassay include, but are not limited to: fluorescein-labeled protein, biotinylated protein, fluorescein-labeled, AxlexaTM-labeled, Rhodamine-labeled, Texas Red-labeled, immunoglobulin.
- the labeling can be achieved by having at least two haptens linked per molecule of protein. In some embodiments, 1-20 haptens are linked per molecule of protein. In a further embodiment, 4-10 haptens are linked per molecule of protein. Many proteins have large numbers of free amino groups to which the haptens can be attached. In many instances, hapten-modified proteins are stable and soluble.
- haptens such as fluorescein and Texas Red are sufficiently large and rigid that antibodies with high affinity can be made (for example, a hapten is large enough to fill the antibody binding site).
- haptens can be attached to proteins using reagents, such as fluorescein isothocyanate, and fluorescein carboxylic acid NHS ester to create control analytes in which the part recognized by the assay system is the hapten.
- a method utilizes dried control analyte.
- a dried control analyte avoids dilution of the sample and can make the control analyte more stable.
- Dried control analyte can be formulated so it dissolves rapidly and/or completely on exposure to a liquid sample.
- a control analyte can be an analyte for which antibodies with high affinity.
- a control analyte can be an analyte that has no cross reaction with any endogenous sample component. Additionally, for example, the analyte can be inexpensive and/or easy to make.
- the control analyte is stable over the lifetime of the device or system described herein.
- Exemplary carriers used to create analytes with covalently linked haptens include proteins such as, but not limited to: albumin, IgG, and casein.
- Exemplary polymer carriers used to create novel analytes with covalently linked haptens include, but are not limited to: Dextran, Poly-vinylpyrolidone.
- Exemplary excipients used to formulate and stabilize control analytes include, but are not limited to: sucrose, salts, and buffers (such as sodium phosphate and tris chloride).
- a control analyte and method as described herein can be used in a variety of ways including the examples described herein.
- a method can measure a volume of a sample.
- a method measures dilution or a dilution factor or a degree of dilution of a sample.
- a method provides a concentration of the control analyte in a sample.
- measurements from a method herein using a control analyte can be used to verify or describe measurements of target analytes.
- a fluid transfer device with multiple heads may be used to distribute liquid into a plurality of assay units, including a control unit.
- liquid amount distributed into the plurality of units is the same or similar between the individual units.
- a method described herein with a control analyte can be used to verify that the correct volume of sample has been collected or utilized within a device or system.
- a method verifies the correct volume of diluent has been provided to the sample.
- the dilution factor or degree of dilution can also be verified.
- a method with a control analyte verifies the correct volume of diluted sample has been distributed to the plurality of units.
- Figure 10 demonstrates an exemplary method of a control assay as described herein comprising a known quantity of control analyte.
- a unit 1010 before assembly into a cartridge can be filled with a solution 1001 comprising a known mass of control analyte 1002.
- the liquid of the solution can be removed and the unit 1010 dried to leave the control analyte 1002 in the unit 1010 .
- the unit 1010 can then be inserted into a device and transported for use.
- the unit 1010 is used and receives a sample or diluent 1003
- the sample 1003 can be delivered in an expected volume and mixed with the dried control analyte 1002 within the unit 1010 to create a control solution 1004 with an expected concentration.
- the control solution 1004 can be optionally diluted.
- the control analyte 1002 can be detected by the same manners as a target analyte in the device.
- the control analyte concentration in the control solution 1004 is measured.
- the measurement of the concentration can be used to calculate the volume of the sample 1003 added to create the control solution 1004 . In this manner, a user can compare the measured volume of the sample 1003 with the expected volume of the sample 1003 .
- red blood cells can be removed from a blood sample. However, if some red blood cells remain, or red blood cells are not removed from a blood sample, a method with a control analyte can be used to correct for effects from red blood cells in the blood sample. Because hematocrit can vary significantly (for example, from 20 - 60% of the total volume of a sample), the quantity of an analyte in a fixed or expected volume (v) of blood can be a function of the hematocrit (H expressed here as a decimal fraction). For example, the quantity of analyte with a concentration C in plasma is C*v*(1-H).
- undiluted blood can be dispensed into a device as described and red cells can be removed.
- a control analyte concentration in the plasma fraction can then be measured to estimate the volume of sample plasma and determine the hematocrit.
- unbound conjugate may need to be washed from a reaction site to prevent unbound conjugates from producing inaccurate detection.
- the limiting step of many immunoassays is a washing step. The compromise of minimum carryover and high sensitivity is dependent on the wash removal of unbound conjugate.
- the wash step can be severely limited in a microtiter plate format due to the difficulty of removing the wash liquid from a well (for example, by automatic means).
- An assay unit device and system of the invention can have a number of advantages in the way liquids are handled. An advantage may be an improvement in the signal to noise ratio of an assay.
- a wash of the conjugate can occur by either pushing the wash solution from above or drawing the wash solution up and expelling the liquid similar to the loading of the sample.
- the washing can be repeated as many times as necessary.
- the device can store the wash buffer in reagent units and the assay unit can be brought into fluid communication with the wash.
- the wash reagent is able to remove unbound reagent from the assay units by about 99, 99.9, or 99.999% by washing.
- Washing efficiency is typically defined by the ratio of signal from a given assay to the total amount of signal generated by an assay with no wash step and can be readily determined by routine experimentation. It can be generally preferred to increase the volume of washing solution and time of incubation but without sacrificing the signals from a given assay.
- washing is performed with about 50 ul to about 5000 ul of washing buffer, preferably between about 50 ul to about 500 ul washing buffer, for about 10 to about 300 seconds.
- the last step is to distribute an enzymatic substrate to detect the conjugate by optical or electrical means. Examples of substrates are described hereinafter.
- the reagent in the individual reagent unit of a device herein can be an enzyme substrate for an immunoassay.
- the step of transferring the substrate reagent from the individual reagent unit can be repeated after a reaction at the capture site.
- enzymatic substrate is transferred to a reaction site and incubated.
- used substrate can be removed and replaced with fresh substrate and the assay signal remeasured.
- a signal indicative of the individual analyte being can be detected using a system as described herein from both the first and the second application of substrate.
- the second substrate is usually the same as the original substrate.
- the second substrate is transferred to a reaction site from a second reagent unit of a device herein.
- the second substrate is transferred to a reaction site from the same reagent unit as the original substrate. Transferring a second substrate thereby creates a second reaction to yield a second signal indicative of the individual analyte.
- the intensity of the original signal and a second intensity of the second signal can be compared to calculate the final intensity of the signal indicative of the individual analyte and whether the assay was properly conducted.
- the intensities of the multiple signals can be used for quality control of an assay. For example, if the signals differ by 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% or more, the assay results may be disregarded.
- a method as described herein comprises re-loading sample and or detector-conjugate (enzyme-labeled antibody) and or the enzyme substrate and sample to rectify or confirm an assay signal or to use as an internal control.
- re-use of an assay tip or unit as described can be provided to verify function and/or to add further sample or control materials obtain a second signal.
- a method of re-loading a substrate to an enzyme unit is enabled by the ability of a system as described herein to automatically to transfer liquid samples and reagents into the assay units.
- Some assays do not require the system to deliver a result immediately or on a schedule, therefore, a control method as described offers an opportunity to possibly enhance the reliability of the results.
- a response observed following iterations of adding an enzyme substrate can be used to verify the initial response or to calculate spike recovery.
- a control method provides replicate analyses using an assay unit gave a response significantly lower than that expected.
- exemplary assay errors include, but are not limited to, improper manufacturing of an assay unit or device, improper aspiration of a sample and/or one or more reagents, an assay unit is not positioned properly relative to the photomultiplier during detection, and a missing assay unit in the device or system.
- the present invention provides a method of obtaining pharmacological data useful for assessing efficacy and/or toxicity of a pharmaceutical agent from a test animal utilizing the subject fluidic devices or systems.
- the total blood volume in a mouse is 6-8 mL of blood per 100 gram of body weight.
- a benefit of the current invention is that only a very small volume of blood is required to perform preclinical trials on mice or other small laboratory animals. In some embodiments between about 1 microliter and about 50 microliters are drawn. In an embodiment between about 1 microliter and 10 microliters are drawn. In preferred embodiments about 5 microliters of blood are drawn.
- a further advantage of keeping the test animal alive is evident in a preclinical time course study.
- multiple mice for example, are used to monitor the levels of an analyte in a test subject's bodily fluid over time, the added variable of using multiple subjects is introduced into the trial.
- a single test animal can be used as its own control over a course of time, a more accurate and beneficial preclinical trial can be performed.
- a method of automatically monitoring patient compliance with a medical treatment using the subject devices or systems comprises the steps of allowing a sample of bodily fluid to react with assay reagents in a device to yield a detectable signal indicative of the presence of an analyte in said sample; detecting said signal with said device; comparing said signal with a known profile associated with said medical treatment to determine if said patient is compliant or noncompliant with said medical treatment; and notifying a patient of said compliance or noncompliance.
- system and methods of the invention provide a means of discovering new biomarkers and/or validating by association of trends in such markers with disease and therapy outcomes.
- system and methods of the invention can identify trends in biomarker levels and daily patient diary information over time that can be used to adjust a drug dose to an optimal level for particular patients (for example, adaptive dose-ranging).
- noncompliance may include taking an improper dose of a pharmaceutical agent including without limitation multiple doses or no dose, or may include inappropriately mixing pharmaceutical agents.
- a patient is notified substantially immediately after the signal is compared with a known profile.
- a method of alerting a patient to test a sample of bodily fluid using a device as described herein comprises providing a protocol to be run on said device, said protocol located on an external device, associated with said patient, and comprising a time and date to test said sample of bodily fluid; and notifying patient to test said bodily fluid on said date and time if said sample has not been tested.
- a patient can be notified wirelessly as described herein. Compliance with therapeutic regimes can be improved by use of prompts on a display and obtaining responses from patients (for example, by way of a touch-screen).
- a patient may be provided with a device when procuring a prescription of drugs by any common methods, for example, at a pharmacy.
- a clinical trial subject may be provided with such devices when starting a clinical trial.
- the patient or subject's contact information including without limitation cell phone, email address, text messaging address, or other means of wireless communication, may at that time be entered into the external device and associated with the patient or subject as described herein, for example, in a database.
- Software on the external device may include a script or other program that can detect when a signal generated from a detection device has not yet been sent to the external device, for example at a given time, and the external device can then send an alert notifying the patient to take a bodily fluid sample.
- the system is provided directly to a consumer and is used in lifestyle and/or athletic management. Relevant lifestyle and exercise data can be input and measurements of parameters indicative of muscle damage, anaerobic metabolism (for example, lactic acid) can be measured. In some embodiments, the system can be sufficiently small to be portable.
- the system is particularly suited for measurement of markers in the blood of small animals such as rats and mice that are commonly used in pre-clinical work.
- small animals such as rats and mice that are commonly used in pre-clinical work.
- Such animals only have a small volume of blood and so assay systems requiring very small volumes of sample are particularly useful, especially in longitudinal studies where several samples from a single animal are needed in rapid succession. These considerations can be especially important when several analytes need to be measured in parallel.
- the system includes a convenient way to package the several elements required for multiple complex assays in a secure form for shipping. For example, assay elements click fit into a housing.
- a variety of assays may be performed on a fluidic device according to the present invention to detect an analyte of interest in a sample.
- labels are detectable by spectroscopic, photochemical, biochemical, electrochemical, immunochemical, or other chemical means.
- useful nucleic acid labels include the radioisotopes 32P, 35S, fluorescent dyes, electron-dense reagents, enzymes,.
- a wide variety of labels suitable for labeling biological components are known and are reported extensively in both the scientific and patent literature, and are generally applicable to the present invention for the labeling of biological components.
- Suitable labels include radionucleotides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, bioluminescent labels, or colorimetric labels.
- Reagents defining assay specificity optionally include, for example, monoclonal antibodies, polyclonal antibodies, proteins, nucleic acid probes or other polymers such as affinity matrices, carbohydrates or lipids. Detection can proceed by any of a variety of known methods, including spectrophotometric or optical tracking of radioactive, fluorescent, or luminescent markers, or other methods which track a molecule based upon size, charge or affinity.
- a detectable moiety can be of any material having a detectable physical or chemical property.
- a label includes without limitation any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, nucleic acid probe-based, electrical, optical thermal, or other chemical means.
- the label is coupled directly or indirectly to a molecule to be detected such as a product, substrate, or enzyme, according to methods well known in the art.
- a molecule to be detected such as a product, substrate, or enzyme, according to methods well known in the art.
- a wide variety of labels are used, with the choice of label depending on the sensitivity required, ease of conjugation of the compound, stability requirements, available instrumentation, and disposal provisions.
- Non-radioactive labels are often attached by indirect means.
- a receptor specific to the analyte is linked to a signal generating moiety.
- the analyte receptor is linked to an adaptor molecule (such as biotin or avidin) and the assay reagent set includes a binding moiety (such as a biotinylated reagent or avidin) that binds to the adaptor and to the analyte.
- the analyte binds to a specific receptor on the reaction site.
- a labeled reagent can form a sandwich complex in which the analyte is in the center.
- the reagent can also compete with the analyte for receptors on the reaction site or bind to vacant receptors on the reaction site not occupied by analyte.
- the label is either inherently detectable or bound to a signal system, such as a detectable enzyme, a fluorescent compound, a chemiluminescent compound, or a chemiluminogenic entity such as an enzyme with a luminogenic substrate.
- a signal system such as a detectable enzyme, a fluorescent compound, a chemiluminescent compound, or a chemiluminogenic entity such as an enzyme with a luminogenic substrate.
- ligands and anti-ligands can be used. Where a ligand has a natural anti-ligand, for example, biotin, thyroxine, digoxigenin, and cortisol, it can be used in conjunction with labeled, anti-ligands. Alternatively, any haptenic or antigenic compound can be used in combination with an antibody.
- the label can also be conjugated directly to signal generating compounds, for example, by conjugation with an enzyme or fluorophore.
- Enzymes of interest as labels will primarily be hydrolases, particularly phosphatases, esterases and glycosidases, or oxidoreductases, particularly peroxidases.
- Fluorescent compounds include fluorescein and its derivatives, rhodamine and its derivatives, dansyl groups, and umbelliferone.
- Chemiluminescent compounds include dioxetanes, acridinium esters, luciferin, and 2,3-dihydrophthalazinediones, such as luminol.
- means for detection include scintillation counting or photographic films as in autoradiography.
- the label may be detected by exciting the fluorochrome with light of an appropriate wavelength and detecting the resulting fluorescence by, for example, microscopy, visual inspection, via photographic film, by the use of electronic detectors such as digital cameras, charge coupled devices (CCDs) or photomultipliers and phototubes, or other detection device.
- enzymatic labels are detected by providing appropriate substrates for the enzyme and detecting the resulting reaction product.
- simple colorimetric labels are often detected simply by observing the color associated with the label. For example, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.
- the detectable signal may be provided by luminescence sources.
- Luminescence is the term commonly used to refer to the emission of light from a substance for any reason other than a rise in its temperature.
- atoms or molecules emit photons of electromagnetic energy (e.g ., light) when then move from an excited state to a lower energy state (usually the ground state).
- exciting cause is a photon
- the luminescence process is referred to as photoluminescence.
- the exciting cause is an electron
- the luminescence process can be referred to as electroluminescence. More specifically, electroluminescence results from the direct injection and removal of electrons to form an electron-hole pair, and subsequent recombination of the electron-hole pair to emit a photon.
- Luminescence which results from a chemical reaction is usually referred to as chemiluminescence.
- Luminescence produced by a living organism is usually referred to as bioluminescence.
- photoluminescence is the result of a spin-allowed transition (e.g ., a single-singlet transition, triplet-triplet transition)
- the photoluminescence process is usually referred to as fluorescence.
- fluorescence emissions do not persist after the exciting cause is removed as a result of short-lived excited states which may rapidly relax through such spin-allowed transitions.
- photoluminescence is the result of a spin-forbidden transition (e.g ., a triplet-singlet transition)
- the photoluminescence process is usually referred to as phosphorescence.
- phosphorescence emissions persist long after the exciting cause is removed as a result of long-lived excited states which may relax only through such spin-forbidden transitions.
- a luminescent label may have any one of the above-described properties
- Suitable chemiluminescent sources include a compound which becomes electronically excited by a chemical reaction and may then emit light which serves as the detectible signal or donates energy to a fluorescent acceptor.
- a diverse number of families of compounds have been found to provide chemiluminescence under a variety or conditions.
- One family of compounds is 2,3-dihydro-1,4-phthalazinedione.
- a frequently used compound is luminol, which is a 5-amino compound.
- Other members of the family include the 5-amino-6,7,8-trimethoxy- and the dimethylamino[ca]benz analog. These compounds can be made to luminesce with alkaline hydrogen peroxide or calcium hypochlorite and base.
- Chemiluminescent analogs include para-dimethylamino and -methoxy substituents. Chemiluminescence may also be obtained with oxalates, usually oxalyl active esters, for example, p-nitrophenyl and a peroxide such as hydrogen peroxide, under basic conditions. Other useful chemiluminescent compounds that are also known include -N-alkyl acridinum esters and dioxetanes. Alternatively, luciferins may be used in conjunction with luciferase or lucigenins to provide bioluminescence.
- analytes as used herein includes without limitation drugs, prodrugs, pharmaceutical agents, drug metabolites, biomarkers such as expressed proteins and cell markers, antibodies, serum proteins, cholesterol and other metabolites, polysaccharides, nucleic acids, biological analytes, biomarkers, genes, proteins, or hormones, or any combination thereof.
- Analytes can be combinations of polypeptides, glycoproteins, polysaccharides, lipids, and nucleic acids.
- biomarkers are associated with a particular disease or with a specific disease stage.
- Such analytes include but are not limited to those associated with autoimmune diseases, obesity, hypertension, diabetes, neuronal and/or muscular degenerative diseases, cardiac diseases, endocrine disorders, metabolic disorders, inflammation, cardiovascular diseases, sepsis, angiogenesis, cancers, Alzheimer's disease, athletic complications, and any combinations thereof.
- biomarkers that are present in varying abundance in one or more of the body tissues including heart, liver, prostate, lung, kidney, bone marrow, blood, skin, bladder, brain, muscles, nerves, and selected tissues that are affected by various disease, such as different types of cancer (malignant or non-metastatic), autoimmune diseases, inflammatory or degenerative diseases.
- body tissues including heart, liver, prostate, lung, kidney, bone marrow, blood, skin, bladder, brain, muscles, nerves, and selected tissues that are affected by various disease, such as different types of cancer (malignant or non-metastatic), autoimmune diseases, inflammatory or degenerative diseases.
- analytes that are indicative of a microorganism, virus, or Chlamydiaceae.
- exemplary microorganisms include but are not limited to bacteria, viruses, fungi and protozoa.
- Analytes that can be detected by the subject method also include blood-born pathogens selected from a non-limiting group that consists of Staphylococcus epidermidis, Escherichia coli, methicillin-resistant Staphylococcus aureus (MSRA), Staphylococcus aureus, Staphylococcus hominis, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus capitis, Staphylococcus warneri, Klebsiella pneumoniae, Haemophilus influenzae, Staphylococcus simulans, Streptococcus pneumoniae and Candida albicans.
- MSRA methicillin-resistant Staphylococcus aureus
- Analytes that can be detected by the subject method also encompass a variety of sexually transmitted diseases selected from the following: gonorrhea (Neisseria gorrhoeae), syphilis (Treponena pallidum), clamydia (Clamyda tracomitis), nongonococcal urethritis (Ureaplasm urealyticum), yeast infection (Candida albicans), chancroid (Haemophilus ducreyi), trichomoniasis (Trichomonas vaginalis), genital herpes (HSV type I & II), HIV I, HIV II and hepatitis A, B, C, G, as well as hepatitis caused by TTV.
- gonorrhea Neisseria gorrhoeae
- syphilis Teponena pallidum
- clamydia Clamyda tracomitis
- Additional analytes that can be detected by the subject methods encompass a diversity of respiratory pathogens including but not limited to Pseudomonas aeruginosa, methicillin-resistant Staphlococccus aureus (MSRA), Klebsiella pneumoniae, Haemophilis influenzae, Staphlococcus aureus, Stenotrophomonas maltophilia, Haemophilis parainfluenzae, Escherichia coli, Enterococcus faecalis, Serratia marcescens, Haemophilis parahaemolyticus, Enterococcus cloacae, Candida albicans, Moraxiella catarrhalis, Streptococcus pneumoniae, Citrobacter freundii, Enterococcus faecium, Klebsella oxytoca, Pseudomonas fluorscens, Neiseria meningitidis, Streptococcus py
- Theophylline CRP, CKMB, PSA, Myoglobin, CA125, Progesterone, TxB2, 6-keto-PGF-1-alpha, and Theophylline, Estradiol , Lutenizing hormone, Triglycerides, Tryptase, Low density lipoprotein Cholesterol, High density lipoprotein Cholesterol, Cholesterol, IGFR.
- liver markers include without limitation LDH, (LD5), (ALT), Arginase 1 (liver type), Alpha-fetoprotein (AFP), Alkaline phosphatase, Alanine aminotransferase, Lactate dehydrogenase, and Bilirubin.
- kidney markers include without limitation TNFa Receptor, Cystatin C, Lipocalin-type urinary prostaglandin D, synthatase (LPGDS), Hepatocyte growth factor receptor, Polycystin 2, Polycystin 1, Fibrocystin, Uromodulin, Alanine, aminopeptidase, N-acetyl-B-D-glucosaminidase, Albumin, and Retinol-binding protein (RBP).
- Exemplary heart markers include without limitation Troponin I (TnI), Troponin T (TnT), CK, CKMB, Myoglobin, Fatty acid binding protein (FABP), CRP, D-dimer, S-100 protein, BNP, NT-proBNP, PAPP-A, Myeloperoxidase (MPO), Glycogen phosphorylase isoenzyme BB (GPBB), Thrombin Activatable Fibrinolysis Inhibitor (TAFI), Fibrinogen, Ischemia modified albumin (IMA), Cardiotrophin-1, and MLC-I (Myosin Light Chain-I).
- TnI Troponin I
- TnT Troponin T
- CK Troponin T
- CKMB Myoglobin
- CRP D-dimer
- S-100 protein S-100 protein
- BNP BNP
- NT-proBNP NT-proBNP
- PAPP-A Myeloperoxidas
- pancrease markers include without limitation Amylase, Pancreatitis-Assocoated protein (PAP-1), and Regeneratein proteins (REG).
- PAP-1 Pancreatitis-Assocoated protein
- REG Regeneratein proteins
- Exemplary muscle tissue markers include without limitation Myostatin.
- Exemplary blood markers include without limitation Erythopoeitin (EPO).
- EPO Erythopoeitin
- Exemplary bone markers include without limitation, Cross-linked N-telopeptides of bone type I collagen (NTx) Carboxyterminal cross-linking telopeptide of bone collagen, Lysyl-pyridinoline (deoxypyridinoline), Pyridinoline, Tartrate-resistant acid phosphatase, Procollagen type I C propeptide, Procollagen type I N propeptide, Osteocalcin (bone gla-protein), Alkaline phosphatase, Cathepsin K, COMP (Cartillage Oligimeric Matrix Protein), Osteocrin Osteoprotegerin (OPG), RANKL, sRANK, TRAP 5 (TRACP 5), Osteoblast Specific Factor 1 (OSF-1, Pleiotrophin), Soluble cell adhesion molecules, sTfR, sCD4, sCD8, sCD44, and Osteoblast Specific Factor 2 (OSF-2, Periostin).
- NTx Cross-linked N-
- markers according to the present invention are disease specific.
- Exemplary cancer markers include without limitation PSA (total prostate specific antigen), Creatinine, Prostatic acid phosphatase, PSA complexes, Prostrate-specific gene-1, CA 12-5, Carcinoembryonic Antigen (CEA), Alpha feto protein (AFP), hCG (Human chorionic gonadotropin), Inhibin, CAA Ovarian C1824, CA 27.29, CA 15-3, CAA Breast C1924, Her-2, Pancreatic, CA 19-9, Carcinoembryonic Antigen, CAA pancreatic, Neuron-specific enolase, Angiostatin DcR3 (Soluble decoy receptor 3), Endostatin, Ep-CAM (MK-1), Free Immunoglobulin Light Chain Kappa, Free Immunoglobulin Light Chain Lambda, Herstatin, Chromogranin A, Adrenomedullin, Integrin, Epidermal growth factor receptor, Epidermal growth factor receptor-Ty
- infectious disease conditions include without limitation: Viremia, Bacteremia, Sepsis, and markers: PMN Elastase, PMN elastase/ al-PI complex, Surfactant Protein D (SP-D), HBVc antigen, HBVs antigen, Anti-HBVc, Anti-HIV, T-supressor cell antigen, T-cell antigen ratio, T-helper cell antigen, Anti-HCV, Pyrogens, p24 antigen, Muramyl-dipeptide.
- SP-D Surfactant Protein D
- HBVc antigen HBVs antigen
- Anti-HBVc Anti-HIV
- T-supressor cell antigen T-cell antigen ratio
- T-helper cell antigen Anti-HCV
- Pyrogens Pyrogens
- p24 antigen Muramyl-dipeptide.
- Exemplary diabetes markers include without limitation C-Peptide, Hemoglobin Alc, Glycated albumin, Advanced glycosylation end products (AGEs), 1,5-anhydroglucitol, Gastric Inhibitory Polypeptide, Glucose, Hemoglobin, ANGPTL3 and 4.
- Exemplary inflammation markers include without limitation Rheumatoid factor (RF), Antinuclear Antibody (ANA), C-reactive protein (CRP), Clara Cell Protein (Uteroglobin).
- RF Rheumatoid factor
- ANA Antinuclear Antibody
- CRP C-reactive protein
- Clara Cell Protein Uteroglobin
- Exemplary allergy markers include without limitation Total IgE and Specific IgE.
- autism markers include without limitation Ceruloplasmin, Metalothioneine, Zinc, Copper, B6, B12, Glutathione, Alkaline phosphatase, and Activation of apo-alkaline phosphatase.
- Exemplary coagulation disorders markers include without limitation b-Thromboglobulin, Platelet factor 4, Von Willebrand factor.
- a marker may be therapy specific.
- COX inhibitors include without limitation TxB2 (Cox-1), 6-keto-PGF-1-alpha (Cox 2), 11-Dehydro-TxB-1a (Cox-1).
- markers of the present include without limitation Leptin, Leptin receptor, and Procalcitonin, Brain S100 protein, Substance P, 8-Iso-PGF-2a.
- Exemplary geriatric markers include without limitation, Neuron-specific enolase, GFAP, and S100B.
- Exemplary markers of nutritional status include without limitation Prealbumin, Albumin, Retinol-binding protein (RBP), Transferrin, Acylation-Stimulating Protein (ASP), Adiponectin, Agouti-Related Protein (AgRP), Angiopoietin-like Protein 4 (ANGPTL4, FIAF), C-peptide, AFABP (Adipocyte Fatty Acid Binding Protein, FABP4) Acylation-Stimulating Protein (ASP), EFABP (Epidermal Fatty Acid Binding Protein, FABP5), Glicentin, Glucagon, Glucagon-Like Peptide-1, Glucagon-Like Peptide-2, Ghrelin, Insulin, Leptin, Leptin Receptor, PYY, RELMs, Resistin, amd sTfR (soluble Transferrin Receptor).
- ASP Acylation-Stimulating Protein
- AgRP Agouti-Related Protein
- ANGPTL4
- Exemplary markers of Lipid metabolism include without limitation Apo-lipoproteins (several), Apo-A1, Apo-B, Apo-C-CII, Apo-D, Apo-E.
- Exemplary coagulation status markers include without limitation Factor I: Fibrinogen, Factor II: Prothrombin, Factor III: Tissue factor, Factor IV: Calcium, Factor V: Proaccelerin, Factor VI, Factor VII: Proconvertin, Factor VIII:, Anti-hemolytic factor, Factor IX: Christmas factor, Factor X: Stuart-Prower factor, Factor XI: Plasma thromboplastin antecedent, Factor XII: Hageman factor, Factor XIII: Fibrin-stabilizing factor, Prekallikrein, High-molecular-weight kininogen, Protein C, Protein S, D-dimer, Tissue plasminogen activator, Plasminogen, a2-Antiplasmin, Plasminogen activator inhibitor 1 (PAI1).
- Exemplary monoclonal antibodies include those for EGFR, ErbB2, and IGF1R.
- Exemplary tyrosine kinase inhibitors include without limitation Ab1, Kit, PDGFR, Src, ErbB2, ErbB 4, EGFR, EphB, VEGFR1-4, PDGFRb, FLt3, FGFR, PKC, Met, Tie2, RAF, and TrkA.
- Exemplary Serine/Threoline Kinas Inhibitors include without limitation AKT, Aurora A/B/B, CDK, CDK (pan), CDK1-2, VEGFR2, PDGFRb, CDK4/6, MEK1-2, mTOR, and PKC-beta.
- GPCR targets include without limitation Histamine Receptors, Serotonin Receptors, Angiotensin Receptors, Adrenoreceptors, Muscarinic Acetylcholine Receptors, GnRH Receptors, Dopamine Receptors, Prostaglandin Receptors, and ADP Receptors.
- a therapeutic agent can include any substances that have therapeutic utility and/or potential.
- substances include but are not limited to biological or chemical compounds such as simple or complex organic or inorganic molecules, peptides, proteins (e.g. antibodies) or a polynucleotides (e.g. anti-sense).
- a vast array of compounds can be synthesized, for example polymers, such as polypeptides and polynucleotides, and synthetic organic compounds based on various core structures, and these can also be included as therapeutic agents.
- various natural sources can provide compounds for screening, such as plant or animal extracts, and the like.
- agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the inventive screen.
- the agents and methods also are intended to be combined with other therapies.
- small molecule drugs are often measured by mass-spectrometry which can be imprecise.
- ELISA (antibody-based) assays can be much more accurate and precise.
- Physiological parameters include without limitation parameters such as temperature, heart rate/pulse, blood pressure, and respiratory rate.
- Pharmacodynamic parameters include concentrations of biomarkers such as proteins, nucleic acids, cells, and cell markers. Biomarkers could be indicative of disease or could be a result of the action of a drug.
- Pharmacokinetic (PK) parameters include without limitation drug and drug metabolite concentration. Identifying and quantifying the PK parameters in real time from a sample volume is extremely desirable for proper safety and efficacy of drugs. If the drug and metabolite concentrations are outside a desired range and/or unexpected metabolites are generated due to an unexpected reaction to the drug, immediate action may be necessary to ensure the safety of the patient. Similarly, if any of the pharmacodynamic (PD) parameters fall outside the desired range during a treatment regime, immediate action may have to be taken as well.
- PD pharmacodynamic
- a business method can comprise post prescription monitoring of drug therapy by monitoring trends in biomarkers over time.
- the business method can comprise collecting at least one pharmacological parameter from an individual receiving a medication, said collecting step is effected by subjecting a sample of bodily fluid to reactants contained in a fluidic device, which is provided to said individual to yield a detectable signal indicative of said at least one pharmacological parameter; and cross referencing with the aid of a computer medical records of said individual with the at least one pharmacological parameter of said individual, thereby assisting said clinician in providing individualized medical treatment.
- the devices, systems, and methods herein allow for automatic quantification of a pharmacological parameter of a patient as well as automatic comparison of the parameter with, for example, the patient's medical records which may include a history of the monitored parameter, or medical records of another group of subjects.
- Coupling real-time analyte monitoring with an external device which can store data as well as perform any type of data processing or algorithm, for example provides a device that can assist with typical patient care which can include, for example, comparing current patient data with past patient data. Therefore, also described herein is a business method which effectively performs at least part of the monitoring of a patient that is currently performed by medical personnel.
- a device, method, and system of the invention are used to perform an assay for human VEGFR2.
- the example demonstrates a type of assay that can be performed at the point of care.
- the capture surface of an assay unit can be coated onto the assay unit according to the assay, this example a VEGFR2 assay.
- the inner surface of the assay unit (made from injection molded polystyrene similar to example in Figure 3A ) was exposed to a succession of coating reagents by aspiration and pneumatic ejection. Twenty microliters of each coating reagents were drawn into assay units and incubated at room temperature for 10 minutes.
- the coating reagents used in this example are, as used in succession, Neutravidin (20ug/mL) in Carbonate-Bicarbonate buffer (pH 9), biotinylated "Capture antibody” (a monoclonal antibody directed to VEGFR2 at 20ug/mL) in Tris buffered saline, (pH 8), and a "fixative" reagent containing 3% bovine serum albumin in Tris-buffered saline. After the succession of coatings, the assay units were dried by exposure to dry air and stored desiccated.
- Samples for analysis are then distributed to the assay unit diluted in a solution of 50 mM tris-buffer (pH 8) containing bovine serum albumin and isotonic sucrose for 20 minutes.
- a reagent unit comprising a conjugate, a solution of Alkaline phosphatase (bovine intestine)-labeled monoclonal antibody directed to VEGFR2 (binding to a distinct epitope to the antibody of the capture surface) at 250 ng/mL in a stabilizer reagent from Biostab is provided to the assay unit for 10 minutes.
- the assay unit was washed with a solution contained in a reagent unit (commercially available wash buffer from Assay Designs). The assay unit was washed 5 times. Then the assay unit was moved to collect and mix with another reagent contained in a different reagent, a solution of a commercially available luminogenic substrate for alkaline phosphatase (KPL Phosphaglo), and incubated for 10 minutes. The reaction of the assay in the assay unit was then detected by a detector assembly of the invention.
- a reagent unit commercially available wash buffer from Assay Designs
- Figure 12 demonstrates the VEGFR2 assay response using the method of the example.
- the x axis scale is VEGFR2 concentration (pg/mL); the y scale is relative luminescence (counts). The curve was used to calibrate the modular assay unit and reagent units.
- the lyophilized magnetizable bead pellet was re-suspended by adding 20 uL of whole blood then aspirating and dispensing at least 8 times (approximately 1.5 min) into a conical tube.
- Blood was separated by placing the tip (in a vertical orientation) in a strong, horizontally oriented magnetic field. Typically 8 uL of essentially red cell free plasma with no observable hemolysis was recovered from a 20 ul blood sample (70% yield). Recovery of analytes (compared to plasma not exposed to the magnetic separation) was close to 100% for Protein-C, VEGF, PIGF, Insulin, GIP and GIP-1.
- C-reactive protein is an acute-phase marker. Normal levels are in the high ng/mL to low ug/ml range. In any acute disease process, the human liver produces CRP and levels in blood can increase to hundreds of ug/ml. CRP has presented issues for prior art POC analytic systems because of the wide dynamic range of analyte to be measured (> 10 5 -fold).
- a system as described herein comprising a fluid transfer device and a cartridge or device with arrays of assay and reagent units was developed.
- Assay tips having monoclonal anti-CRP bound to their inner surface were mounted in cartridge together with a detector-antibody solution (alkaline-phosphatase labeled monoclonal anti-CRP (having a different epitope specificity than that on the tips), a wash solution and a chemiluminogenic alkaline phosphatase (PhosphaGLOTM) substrate from KPL.
- a detector-antibody solution alkaline-phosphatase labeled monoclonal anti-CRP (having a different epitope specificity than that on the tips)
- PhosphaGLOTM chemiluminogenic alkaline phosphatase
- the cartridges were loaded with pre-diluted solutions of CRP used without further dilution.
- the cartridges were processed by a system. Successively the CRP solution (10 uL), detector antibody (12 uL) were drawn into the tips incubated for 10 min at 34 °C then discarded. The tips were washed by four aspirations of 20 uL wash solution before 15 uL of substrate was aspirated into the tips. After 10 min at 37 °C, light emission was measured by the instrument for 5 s. CRP concentration was plotted against the assay signal (photon counts) and the data fitted to a 5-term polynomial function as shown below to generate a calibration function as shown in Figure 14 .
- the modification assumes that the response of the assay is linearly proportional to the concentration of the detector antibody, as is the case in this example (data not shown).
- Any carry-over of CRP in the diluted sample into the next reagent (detector antibody) will react rapidly with the reagent rendering it incapable of binding to antigen bound to the solid phase antibody.
- the reduction in effective concentration is reduced in proportion to the CRP carried-over and can be accounted for with a factor (D - C*f)/D.
- S Smax*(C/(C + C0.5))*(D - C*f)/D, wherein S is the assay signal, Smax is the maximum signal (corresponding to zero carry-over), C is the concentration of analyte, C0.5 is the concentration for half-maximal signal (no carry-over), D is the detector antibody concentration, and f is the fractional carryover.
- Data can be then be viewed according to the dilution used to achieve the final concentration in each assay tip, and for each dilution level the responses fit to the same response showing that the dilutions are accurate and precise as shown in Figure 16 .
- the model as described herein can be used to compute responses for any given dilution and set up algorithms to ensure that the analyte concentration in any tip within the calibration range.
- Graphic means of representing the data are shown in Figure 17 , wherein the normalized assay response (B/Bmax) is plotted against the log normalized concentration (C/C0.5) for relative dilutions: 1:1 (solid line), 5:1 (dashed line), and 25:1 (dotted line).
- Figures 18 and 19 illustrate a similar example as Figure 17 at different normalized concentrations.
- Simple pattern recognition algorithms can be used to identify valid data for high concentration samples. For example, for most of the dose-response, the signal decreases with dilution.
- concentrations derived by using the calibration function shown in Example 4 should correspond within some system imprecision with the known dilutions. If the calculated concentration for a low dilution is lower than would correspond with those for higher dilutions, the lower dilution result can be rejected.
- dilution or serial dilution can provide a concentration precision as achieved by immunoassays at signal levels significantly greater (for example, > 10-fold) higher than the blank (zero analyte) signal but not close to the maximum signal (for example ⁇ 0.3*Max. signal). Serial dilution can allow the assay signal to be in this range.
- an average value can be obtained.
- An average value can also be achieved by making replicate measurements at a single dilution level.
- a serial dilution approach as offered by the methods, systems, and device described herein can often eliminate errors due to non-linearity of dilution due to (for example) matrix effects from the sample.
- Fluorescein is a well-known chemical and high affinity antibodies are known which are specific for the molecule. By attaching several fluorescein moieties to a protein such as albumin, an artificial analyte is created that can be measured by ELISA.
- the example herein is set up on a microtiter plate to show the feasibility of such an assay and is easily translatable to a device or system of the invention as described herien.
- Anti-fluorescein monoclonal antibody was attached to wells of 384-well microtiter plates to create a capture surface.
- An assay is performed by adding a series of solutions to the wells and incubating at room temperature for 10 min at each stage when necessary.
- 30 ul of known concentrations of a commercially available preparation of fluorescein-labeled bovine albumin (sample) with a ratio of about five fluoresceins per molecule were added to the wells.
- 30 ul of alkaline phosphatase-labeled anti-fluorescein was added at a concentration of 100 ng/ml.
- Fluorescein-labeled albumin (5 uL at various concentrations up to 80 ng/mL) dissolved in Tris-buffered saline containing bovine albumin at 3 mg/mL (buffer) was placed in polypropylene tubes and dried by exposure to low humidity air overnight. Complete drying was verified by weighing many tubes before and after drying and verifying the appropriate weight loss and a near-constant final weight was achieved. The analyte was recovered by adding 5 uL water, 20 uL human serum and 180 uL buffer and mixing. Control experiments were made by mixing 5 uL aliquots of analyte solution with 20 uL serum and 180 uL buffer.
- Analyte recovery was measured using the assay as described herein. As shown below, the recovery of assay signal (and analyte) is essentially quantitative at all concentrations. It can be desirable to have good recovery (>90%), which is precise ( ⁇ 2% CV in recovery).
- the assay dose-response is linear over the range of interest by having a low concentration of analyte and excess of the reagents. For example, a linear assay dose-response can be achieved by having sufficient capacity for antigen binding on the capture surface such that even at the highest level of analyte only a moderate proportion (for example, ⁇ 30%) of sites are occupied at the end of the binding reaction.
- a linear assay dose-response can be achieved by having development of a signal less than the linear response of the detector (for example, a PMT with up to about 4 million photons per second). As described herein, systems and methods can fall within this range.
- a linear assay dose-response can be achieved by development of a signal sufficiently high as to be precisely measured (for example, photon count rates greater than about 1,000 per second).
- Assay tips were coated by aspiration of the following succession of reagents: 20 uL 5 ug/mL Rabbit anti-fluorescein (Molecular Probes # A6413) in carbonate buffer pH 9, 20 uL 3% bovine albumin in tris-buffered saline pH 8, and 20 uL 2.5 ug/mL bovine albumin labeled with fluorescein (Sigma-Aldrich A9771), each followed by incubation for 10 m and ejection of liquid. The tips were then washed three times by aspiration of bovine albumin in tris-buffered saline pH 8 followed by incubation 3% bovine albumin in tris-buffered saline pH 8.
- Tips were then dried as described herein. These tips were used to assay samples containing goat anti-fluorescein by incubation of 20 uL aliquots of the following solutions in sequence: goat anti-fluorescein (sample) in tris-buffered saline pH 8 containing 3% BSA, alkaline phosphatase labeled Rabbit-anti-goat fluorescein at 100 ng/mL in Stabilzyme TM (a commercially available solvent), washing four times with Wash Buffer, and PhosphaGLO TM alkaline phosphatase chemiluminogenic substrate, each with an incubation at room temperature for 10 min.
- Figure 21 shows a linear response similar to that in Figure 20 .
- Table 2 Configurations of assays for candidate control analytes Capture surface reagent 1 Capture surface reagent 2 Analyte Detector: APase-labeled Anti-fluorescein Fluorescein-labeled albumin Anti-fluorescein Anti-fluorescein Fluorescein-labeled albumin Anti-fluotescein (species X) Anti X-Ig Avidin Biotinylated-species X-IgG Anti X-Ig Anti-biotin Biotin-labeled albumin Anti-biotin or Streptavidin Anti-digoxin Digoxin-labeled albumin Anti-digoxin Fluorescein-labeled albumin Anti-fluorescein (species X) Anti-X-Ig Anti-biotin Biotinylated anti-fluorescein Anti-fluorescein (species X) Anti-X-Ig Anti-biotin Biotinylated anti-fluorescein Anti-fluoresc
- This example illustrates the predictability of response from an immunoassay for CRP using assay tips as described herein following initial addition of reagents, removal of the reaction product, washing the tips then reintroduction of some or all assay components.
- the assay sequence was: tips were incubated in prototype instruments at 34C for 10 min in succession with (1) sample (CRP 0.3, 3, 30,150 and 300 ug/mL), diluted by the instrument 500 then 2000-fold (2) alkaline phosphatase labeled rabbit anti-goat IgG ["Dab”] (5 ng/mL) then washed three times and (3) with PhosphaGLO TM alkaline phosphatase chemiluminogenic substrate ["Substrate”].
- the re-processed assay signals were linearly related (proportional) to the original assay signal.
- the second substrate addition gave a higher signal relative to the original whereas reprocessed assays in which Dab and substrate were both introduced or those where sample, Dab and substrate were all reintroduced gave lower signals than the original.
- all steps in an assay sequence can be examined for quality control to understand if they went as expected according to the expected relationship between the first and subsequent iterations of assay steps.
- the assay result can either be rejected as incorrect or the later iterations of the assay result can be used as the appropriate assay response.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Urology & Nephrology (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Clinical Laboratory Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Tropical Medicine & Parasitology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Sustainable Development (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
Claims (15)
- Cartouche destinée à la détection automatisée d'un analyte dans un échantillon de fluide corporel comprenant :un ensemble d'unités de dosage adressables configuré pour exécuter une réaction chimique qui génère un signal détectable indicatif de la présence ou de l'absence de l'analyte ; etun ensemble d'unités de réactifs adressables, dans laquelle une unité de réactif adressable individuelle de l'ensemble est adressée pour correspondre à une unité de dosage adressable individuelle de l'ensemble des unités de dosage, dans laquelle l'unité de réactif individuelle est configurée pour être calibrée en référence à l'unité de dosage individuelle correspondante avant que les ensembles ne soient assemblés sur la cartouche et dans laquelle l'unité de dosage individuelle de l'ensemble des unités de dosage adressables et l'unité de réactif individuelle de l'ensemble des unités de réactif adressables sont configurées pour être mobiles pour réaliser une communication fluidique, de telle sorte que les réactifs destinés à exécuter la réaction chimique soient amenés en contact avec la partie de l'échantillon dans l'unité de dosage.
- Cartouche selon la revendication 1, dans laquelle :(a) l'unité de réactif individuelle est configurée pour recevoir une unité de dosage mobile ;(b) l'unité de dosage individuelle comprend une pointe de dosage ;(c) l'unité de dosage individuelle est configurée pour exécuter un dosage immunologique ; ou(d) l'échantillon de fluide corporel est un échantillon de sang.
- Cartouche selon la revendication 1, comprenant en outre :(a) une unité de collecte d'échantillon configurée pour :(i) recevoir l'échantillon de fluide corporel ;(ii) recevoir un volume de l'échantillon de fluide corporel approximativement égal ou inférieur à 50 microlitres ; ou(iii) recevoir un volume de l'échantillon de fluide corporel qui est une seule goutte de sang ; ou(b) une unité de prétraitement configurée pour récupérer une partie de l'échantillon de fluide corporel pour exécuter la réaction chimique pour détecter l'analyte, et dans laquelle optionnellement l'échantillon de fluide corporel est un échantillon de sang complet et dans laquelle la partie est du plasma.
- Système pour la détection automatisée d'un analyte dans un échantillon de fluide corporel comprenant :(a) une cartouche selon la revendication 1 ; et(b) un assemblage de détection :(i) pour la détection du signal détectable indicatif de la présence ou de l'absence de l'analyte ;(ii) configuré pour détecter des intensités de signal amenées à être détectable à l'intérieur de la plage par une dilution de l'échantillon de fluide corporel ;(iii) configuré pour détecter des intensités de signal comprises entre environ 1000 et environ 1 million de comptes par seconde en utilisant un photomultiplicateur.
- Système selon la revendication 4, comprenant en outre :(a) un dispositif mécanique programmable configuré pour déplacer l'unité de dosage individuelle à partir d'un premier emplacement jusqu'à un second emplacement ;(b) un assemblage de communication destiné à transmettre un protocole basé sur l'analyte à détecter ;(c) un bloc de chauffage configuré pour recevoir l'unité de dosage individuelle ; ou(d) un bloc magnétique.
- Système selon la revendication 4, comprenant en outre un dispositif de transfert de fluide, dans lequel le dispositif de transfert de fluide :(a) est une pipette, et dans lequel optionnellement la pipette est une pipette à déplacement d'air ;(b) est automatisé ; ou(c) comprend une pluralité de têtes, dans lequel une tête individuelle de la pluralité de têtes est configurée pour venir en prise avec l'unité de dosage individuelle, et comprend un processeur programmable configuré pour diriger un transfert de fluide de l'échantillon de fluide corporel en provenance d'une unité de collecte d'échantillons, et le réactif en provenance de l'unité de réactif individuelle, dans l'unité de dosage individuelle ;et optionnellement :(i) dans lequel la configuration du processeur pour diriger le transfert de fluide réalise un degré de dilution de l'échantillon de fluide corporel dans l'ensemble d'unités de dosage pour obtenir des signaux indicatifs de la pluralité d'analytes détectés à l'intérieur d'une plage détectable, de telle sorte que ladite pluralité d'analytes soient détectables avec ledit système ; ou(ii) dans lequel le dispositif de transfert de fluide comprend en outre un moteur en communication avec le processeur programmable.
- Système selon la revendication 4, dans lequel :(a) l'échantillon de fluide corporel comprend au moins deux analytes qui sont présents à des concentrations qui diffèrent de 2 ordres de grandeur au moins ;(b) l'échantillon de fluide corporel comprend au moins deux analytes qui sont présents à des concentrations qui diffèrent de 5 ordres de grandeur au moins ;(c) un degré de dilution de l'échantillon de fluide corporel permet d'obtenir des signaux indicatifs de deux analytes au moins à l'intérieur de la plage détectable ;(d) l'échantillon de fluide corporel est inférieur à 50 µl environ ;(e) l'échantillon de fluide corporel est une seule goutte de sang ;(f) une tête individuelle d'un dispositif de transfert de fluide est configurée pour adhérer à l'unité de dosage individuelle ;(g) ladite unité de dosage individuelle fournit un site de réaction de dosage immunologique ; ou(h) ladite unité de dosage individuelle est une pointe pour pipette.
- Procédé de détection d'un analyte dans un échantillon de fluide corporel collecté chez un sujet comprenant :(a) la fourniture d'un échantillon de fluide corporel à la cartouche selon la revendication 1 ;(b) la possibilité dudit échantillon de réagir à l'intérieur d'au moins une unité de dosage ; et(c) la détection dudit signal détectable généré à partir dudit analyte collecté dans ledit échantillon de fluide corporel.
- Procédé selon la revendication 8, dans lequel l'échantillon de fluide corporel est du sang et le procédé comprend en outre la récupération du plasma contenu dans le sang.
- Système de détection automatisée d'un analyte dans une partie de plasma d'un échantillon de sang complet, comprenant :(a) une cartouche selon la revendication 1, dans lequel ladite cartouche est configurée en outre pour recevoir et pour traiter de manière automatique l'échantillon de sang complet pour obtenir la partie de plasma, à partir de laquelle un signal détectable indicatif de la présence ou de l'absence de l'analyte d'intérêt, est généré dans la cartouche ; et(b) un assemblage de détection pour détecter le signal détectable indicatif de la présence ou de l'absence de l'analyte.
- Procédé d'assemblage à la demande d'une cartouche selon la revendication 1, dans lequel la cartouche comprend un boîtier, ledit procédé comprenant :(i) le placement dans le boîtier, selon l'analyte à détecter, de l'ensemble des unités de dosage adressable, dans lequel l'unité de dosage individuelle de l'ensemble est configurée pour exécuter une réaction chimique qui détecte un analyte qui présente un intérêt commandée par ledit utilisateur final ;(ii) le placement dans le boîtier, selon l'analyte à détecter, de l'ensemble d'unités de réactifs ; et(iii) la fixation des ensembles (i) et (ii) à l'intérieur du boîtier de la cartouche.
- Procédé selon la revendication 11, comprenant en outre :(a) la sélection d'un analyte à détecter ;(b) le scellage de la cartouche ; ou(c) l'étiquetage de la cartouche avec une étiquette lisible qui indique l'analyte à détecter, et dans lequel optionnellement l'étiquette lisible est un code-barres ou un RFID.
- Procédé de détection automatisée d'une pluralité d'analytes dans un échantillon de fluide corporel collecté chez un sujet comprenant :(a) la fourniture de l'échantillon de fluide corporel à la cartouche selon la revendication 1 ;(b) la mise en prise de l'unité de dosage individuelle en utilisant un dispositif de transfert de fluide ;(c) le transfert de l'échantillon de fluide corporel à partir d'une unité de collecte d'échantillons jusqu'à l'unité de dosage individuelle en utilisant le dispositif de transfert de fluide ; et(d) le transfert d'un réactif à partir de l'unité de réactif individuelle jusqu'à l'unité de dosage d'analyse, en faisant réagir de ce fait le réactif avec l'échantillon de fluide corporel pour obtenir le signal indicatif de l'analyte individuel de la pluralité d'analytes détectés.
- Procédé selon la revendication 13, dans lequel :(a) le dispositif de transfert de fluide comprend une pluralité de têtes, dans lequel une tête individuelle de la pluralité de têtes est configurée pour se mettre en prise avec l'unité de dosage individuelle ; et dans lequel ledit dispositif de transfert de fluide comprend un processeur programmable configuré pour diriger le transfert de fluide de l'échantillon de fluide corporel à partir de l'unité de collecte d'échantillons et du réactif à partir de l'unité de réactif individuelle dans l'unité de dosage individuelle, comprenant en outre optionnellement l'apport d'instructions au processeur programmable, dans lequel optionnellement les instructions dirigent le transfert de l'échantillon de fluide corporel jusqu'à l'unité de dosage individuelle ;(b) l'étape de transfert de l'échantillon de fluide corporel réalise un degré de dilution de l'échantillon de fluide corporel dans l'unité de dosage individuelle pour fournir le signal indicatif de l'analyte individuel de la pluralité d'analytes détectés à l'intérieur d'une plage détectable ;(c) l'échantillon de fluide corporel comprend au moins deux analytes individuels qui sont présents à des concentrations qui diffèrent d'au moins 2 ordres de grandeur ;(d) l'échantillon de fluide corporel comprend au moins deux analytes individuels qui sont présents à des concentrations qui diffèrent d'au moins 5 ordres de grandeur ;(e) le degré de dilution de l'échantillon de fluide corporel permet d'obtenir des signaux indicatifs d'au moins deux analytes individuels à l'intérieur d'une plage détectable ;(f) le degré de dilution de l'échantillon de fluide corporel est détecté au moyen d'un photomultiplicateur et les au moins deux analytes individuels au moins se situent dans une plage comprise entre environ 1000 et environ 1 million de comptes par seconde ;(g) l'échantillon de fluide corporel est inférieur à 50 µl environ ;(h) l'échantillon de fluide corporel est une seule goutte de sang ; ou(i) le réactif dans l'unité de réactif individuelle est un substrat d'enzyme d'un dosage immunologique, comprenant en outre optionnellement la répétition de l'étape du transfert du réactif à partir de l'unité de réactif individuelle une fois que la réaction destinée à obtenir le signal indicatif de l'analyte individuel de la pluralité d'analytes détectés, a pris fin, en créant de ce fait une seconde réaction destinée à obtenir un second signal indicatif de l'analyte individuel, et dans lequel optionnellement une intensité du signal et une seconde intensité du second signal indicatif de l'analyte individuel, sont moyennées pour calculer l'intensité finale du signal indicatif de l'analyte individuel.
- Procédé destiné à mesurer un volume d'un échantillon de fluide biologique collecté chez un sujet, comprenant :(a) la réaction d'une quantité connue d'un analyte de contrôle dans ledit échantillon avec un réactif pour obtenir un signal détectable indicatif de la quantité d'analyte de contrôle, dans lequel ladite étape de réaction se produit dans une cartouche selon la revendication 1 ; et(b) la comparaison dudit signal détectable à un signal détectable escompté, dans lequel le signal escompté est indicatif d'un volume escompté de l'échantillon, et dans lequel ladite comparaison fournit une mesure dudit volume dudit échantillon mesuré ;
comprenant optionnellement en outre :(a) la vérification du volume dudit échantillon lorsque la mesure du volume de l'échantillon est comprise à environ 50 % du volume escompté de l'échantillon ;(b)(i) la réaction dudit échantillon qui contient un analyte cible avec un réactif pour obtenir un signal détectable indicatif de l'analyte cible ; et(ii) la mesure de la quantité d'analyte cible dans l'échantillon sur la base dudit signal détectable indicatif de l'analyte cible et de la mesure dudit volume dudit échantillon de liquide ; ou(c)(i) le mélange de l'échantillon en présence de particules pouvant être aimantées dans une unité de collecte d'échantillons, dans lequel les particules pouvant être aimantées comprennent une surface de capture d'anticorps pour se lier à des parties non plasmiques de l'échantillon ;
et(ii) l'application d'un champ magnétique, au-dessus de la zone de collection de plasma, à l'échantillon mélangé pour réaliser la suspension des parties non plasmiques de l'échantillon sur la zone de collecte de plasma, dans lequel optionnellement :(1) l'échantillon est un échantillon de sang ;(2) l'unité de collecte d'échantillon est un tube capillaire ;(3) l'échantillon est inférieur à 50 microlitres environ ;(4) le plasma récupéré est inférieur à 10 microlitres environ ;(5) l'échantillon n'est pas dilué ;(6) le mélange se produit en présence d'anticorps non liés à une surface solide ;(7) le mélange comprend le mélange suite à une action de seringue ; ou(8) le procédé est exécuté dans un système selon la revendication 4 ou la revendication 8 ; ou(d) la transmission du résultat de la comparaison à un utilisateur final, et dans lequel optionnellement le résultat est transmis de manière sans fil ;et dans lequel optionnellement :(a) l'analyte de contrôle n'est normalement pas présent dans ledit échantillon en une quantité détectable ;(b) un échantillon de liquide et l'échantillon de fluide corporel sont le même échantillon ;(c) l'analyte de contrôle ne réagit pas avec un analyte cible dans l'échantillon de fluide corporel ;(d) un échantillon de liquide et l'échantillon de fluide corporel sont des échantillons de liquide différents ;(e) l'analyte de contrôle est choisi parmi le groupe constitué par : l'albumine, la fluorescéine, l'IgG, la protéine C, l'albumine marquée à la fluorescéine, l'IgG marquée à la fluorescéine, l'anti-fluorescéine, l'anti-digoxigénine, l'albumine marquée à la digoxigénine, l'IgG marquée à la digoxigénine, des protéines combinées à la biotine, et l'IgG non humaine ;(f) la réaction est un dosage immunologique ;(g) la réaction est un ELISA ; ou(h) le procédé est exécuté dans un système selon la revendication 4 ou la revendication 8.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK13178059.5T DK2657699T3 (en) | 2007-10-02 | 2008-10-02 | Modular point-of-care devices and their applications |
EP20187805.5A EP3756767B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires a utiliser sur place et leurs utilisations |
EP24172878.1A EP4450163A3 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires de point d'intervention et leurs utilisations |
EP13178059.5A EP2657699B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
EP17155280.5A EP3181228B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99746007P | 2007-10-02 | 2007-10-02 | |
PCT/US2008/078636 WO2009046227A1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP24172878.1A Division EP4450163A3 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires de point d'intervention et leurs utilisations |
EP13178059.5A Division EP2657699B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
EP17155280.5A Division EP3181228B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
EP20187805.5A Division EP3756767B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires a utiliser sur place et leurs utilisations |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2205968A1 EP2205968A1 (fr) | 2010-07-14 |
EP2205968A4 EP2205968A4 (fr) | 2010-09-29 |
EP2205968B1 true EP2205968B1 (fr) | 2013-11-20 |
Family
ID=40509067
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08836072.2A Active EP2205968B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
EP20187805.5A Active EP3756767B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires a utiliser sur place et leurs utilisations |
EP24172878.1A Pending EP4450163A3 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires de point d'intervention et leurs utilisations |
EP17155280.5A Active EP3181228B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
EP13178059.5A Active EP2657699B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20187805.5A Active EP3756767B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires a utiliser sur place et leurs utilisations |
EP24172878.1A Pending EP4450163A3 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires de point d'intervention et leurs utilisations |
EP17155280.5A Active EP3181228B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
EP13178059.5A Active EP2657699B1 (fr) | 2007-10-02 | 2008-10-02 | Dispositifs modulaires à utiliser sur place et leurs utilisations |
Country Status (17)
Country | Link |
---|---|
US (22) | US8088593B2 (fr) |
EP (5) | EP2205968B1 (fr) |
JP (9) | JP5511669B2 (fr) |
KR (5) | KR101844172B1 (fr) |
CN (6) | CN104297507B (fr) |
AU (2) | AU2008308686B2 (fr) |
BR (2) | BRPI0820328B8 (fr) |
CA (5) | CA2934220C (fr) |
DK (2) | DK2657699T3 (fr) |
ES (2) | ES2818194T3 (fr) |
HK (4) | HK1206422A1 (fr) |
IL (8) | IL204877A (fr) |
MX (2) | MX352987B (fr) |
NZ (1) | NZ584963A (fr) |
RU (2) | RU2540424C2 (fr) |
SG (3) | SG188082A1 (fr) |
WO (1) | WO2009046227A1 (fr) |
Families Citing this family (243)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101381331B1 (ko) | 2005-05-09 | 2014-04-04 | 테라노스, 인코포레이티드 | 현장진료 유체 시스템 및 그 용도 |
EP2205968B1 (fr) * | 2007-10-02 | 2013-11-20 | Theranos, Inc. | Dispositifs modulaires à utiliser sur place et leurs utilisations |
JP5749156B2 (ja) * | 2008-04-05 | 2015-07-15 | シングル セル テクノロジー, インコーポレイテッドSingle Cell Technology, Inc. | 生理活性物質の生産のための単一細胞を選抜する方法 |
US20100056766A1 (en) * | 2008-08-27 | 2010-03-04 | Abbott Laboratories | Purification of biological conjugates by size exclusion chromatography |
EP2389247B1 (fr) | 2009-01-23 | 2017-03-01 | Biotix, Inc. | Plateaux d'embout de pipette antistatiques |
US8790916B2 (en) | 2009-05-14 | 2014-07-29 | Genestream, Inc. | Microfluidic method and system for isolating particles from biological fluid |
CA3081708C (fr) | 2009-10-19 | 2023-10-03 | Theranos Ip Company, Llc | Systeme de capture et d'analyse integre de donnees de sante |
JP5570240B2 (ja) * | 2010-02-22 | 2014-08-13 | アークレイ株式会社 | 試料の分析処理におけるデータ出力方法、分析装置、分析システム、前記方法を実施するためのプログラム、およびこのプログラムの記憶媒体 |
WO2011123649A1 (fr) * | 2010-03-31 | 2011-10-06 | Abbott Point Of Care, Inc. | Procédé et appareil pour mélanger sélectivement des réactifs dans une analyse d'échantillon de fluide biologique sensiblement non dilué |
DE102010022017A1 (de) | 2010-05-29 | 2011-12-01 | Gerstel Systemtechnik Gmbh & Co.Kg | Verfahren zur Probenvorbereitung bei chromatographischen Trennmethoden und Vorrichtungen zur Durchführung einer Probenvorbereitung |
US9180448B2 (en) * | 2010-07-06 | 2015-11-10 | Becton, Dickinson And Company | Method and apparatus for identification of bacteria |
DE102010031240A1 (de) * | 2010-07-12 | 2012-01-12 | Hamilton Bonaduz Ag | Pipettierspitze mit hydrophober Oberflächenausbildung |
CN102375055A (zh) * | 2010-08-19 | 2012-03-14 | 中国人民解放军军事医学科学院微生物流行病研究所 | 一种多重检测免疫层析芯片 |
US9433939B2 (en) | 2010-08-27 | 2016-09-06 | Hewlett-Packard Development Company, L.P. | Liquid dispensing assembly frame |
US9645162B2 (en) * | 2010-08-27 | 2017-05-09 | Hewlett-Packard Development Company, L.P. | Automated assay fluid dispensing |
JP5694726B2 (ja) | 2010-09-30 | 2015-04-01 | 富士フイルム株式会社 | 検査方法および装置 |
US8951781B2 (en) | 2011-01-10 | 2015-02-10 | Illumina, Inc. | Systems, methods, and apparatuses to image a sample for biological or chemical analysis |
AU2013205019B2 (en) * | 2011-01-21 | 2015-12-10 | Labrador Diagnostics Llc | Systems and methods for sample use maximization |
EP4024029A3 (fr) * | 2011-01-21 | 2022-09-14 | Labrador Diagnostics LLC | Systèmes et procédés de maximisation d'utilisation d'échantillon |
US20140127713A1 (en) * | 2011-06-28 | 2014-05-08 | Femke Karina de Theije | Means for the examination of body fluids |
FI20115785A0 (fi) | 2011-08-08 | 2011-08-08 | Thermo Fisher Scientific Oy | Menetelmä ja laite automaattiseen analyysiin |
WO2013021101A1 (fr) | 2011-08-08 | 2013-02-14 | Thermo Fisher Scientific Oy | Procédé et appareil d'analyse automatisée |
US9664702B2 (en) | 2011-09-25 | 2017-05-30 | Theranos, Inc. | Fluid handling apparatus and configurations |
US8380541B1 (en) | 2011-09-25 | 2013-02-19 | Theranos, Inc. | Systems and methods for collecting and transmitting assay results |
US9268915B2 (en) | 2011-09-25 | 2016-02-23 | Theranos, Inc. | Systems and methods for diagnosis or treatment |
US9632102B2 (en) | 2011-09-25 | 2017-04-25 | Theranos, Inc. | Systems and methods for multi-purpose analysis |
US9619627B2 (en) | 2011-09-25 | 2017-04-11 | Theranos, Inc. | Systems and methods for collecting and transmitting assay results |
US20140170735A1 (en) | 2011-09-25 | 2014-06-19 | Elizabeth A. Holmes | Systems and methods for multi-analysis |
US8840838B2 (en) | 2011-09-25 | 2014-09-23 | Theranos, Inc. | Centrifuge configurations |
US8435738B2 (en) * | 2011-09-25 | 2013-05-07 | Theranos, Inc. | Systems and methods for multi-analysis |
US8475739B2 (en) | 2011-09-25 | 2013-07-02 | Theranos, Inc. | Systems and methods for fluid handling |
US10012664B2 (en) | 2011-09-25 | 2018-07-03 | Theranos Ip Company, Llc | Systems and methods for fluid and component handling |
US9250229B2 (en) | 2011-09-25 | 2016-02-02 | Theranos, Inc. | Systems and methods for multi-analysis |
US20140308661A1 (en) * | 2011-09-25 | 2014-10-16 | Theranos, Inc. | Systems and methods for multi-analysis |
US9810704B2 (en) | 2013-02-18 | 2017-11-07 | Theranos, Inc. | Systems and methods for multi-analysis |
CN103946364B (zh) | 2011-09-25 | 2018-04-24 | 赛拉诺斯知识产权有限责任公司 | 用于多重分析的系统和方法 |
WO2013049782A2 (fr) * | 2011-09-30 | 2013-04-04 | Pandora Genomics, LLC | Système, appareil et procédé d'évaluation d'échantillons ou d'analytes à l'aide d'un dispositif de site de soins |
JP2014533824A (ja) * | 2011-11-16 | 2014-12-15 | ライカ・バイオシステムズ・メルボルン・プロプライエタリー・リミテッドLeica Biosystems Melbourne Pty Ltd | 生体サンプル処理装置 |
US9557287B2 (en) | 2012-01-24 | 2017-01-31 | Koninklijke Philips N.V. | Cartridge for processing a fluid |
WO2013184625A2 (fr) * | 2012-06-05 | 2013-12-12 | Siemens Healthcare Diagnostics Inc. | Détermination de qualité d'échantillon de sérum |
US10408786B2 (en) | 2012-06-14 | 2019-09-10 | ChemiSensor, LLP | Distributable chemical sampling and sensing system |
US20130337477A1 (en) * | 2012-06-14 | 2013-12-19 | ChemiSensor LLP | Distributable Chemical Sampling and Sensing System Process |
US9500639B2 (en) | 2012-07-18 | 2016-11-22 | Theranos, Inc. | Low-volume coagulation assay |
MX381057B (es) | 2012-07-18 | 2025-03-12 | Labrador Diagnostics Llc | Centrífuga compacta de alta velocidad para utilizarse con pequeños volúmenes de muestra. |
AU2013295679A1 (en) | 2012-07-25 | 2015-01-29 | Theranos, Inc. | Image analysis and measurement of biological samples |
CN111067547A (zh) | 2012-09-06 | 2020-04-28 | 赛拉诺斯知识产权有限责任公司 | 用于体液样品收集的系统、装置和方法 |
US9636062B2 (en) | 2012-09-06 | 2017-05-02 | Theranos, Inc. | Systems, devices, and methods for bodily fluid sample collection |
US9427184B2 (en) | 2012-09-06 | 2016-08-30 | Theranos, Inc. | Systems, devices, and methods for bodily fluid sample collection |
AU2013315800A1 (en) | 2012-09-11 | 2015-03-12 | Theranos Ip Company, Llc | Information management systems and methods using a biological signature |
US20140114676A1 (en) | 2012-10-23 | 2014-04-24 | Theranos, Inc. | Drug Monitoring and Regulation Systems and Methods |
US20150293085A1 (en) * | 2012-10-31 | 2015-10-15 | Astute Medical, Inc. | Quantitative lateral flow assay |
CN103808916B (zh) * | 2012-11-13 | 2017-06-16 | 中国科学院深圳先进技术研究院 | 体液检测装置 |
US9386948B2 (en) | 2012-12-05 | 2016-07-12 | Theranos, Inc. | Systems, devices, and methods for bodily fluid sample transport |
EP3666188A1 (fr) | 2012-12-05 | 2020-06-17 | Theranos IP Company, LLC | Systèmes, dispositifs et procédés de collecte et de transport d'échantillons de fluides corporels |
US10248765B1 (en) | 2012-12-05 | 2019-04-02 | Theranos Ip Company, Llc | Systems, devices, and methods for bodily fluid sample collection, transport, and handling |
CA2891513A1 (fr) | 2012-12-05 | 2014-06-12 | Theranos, Inc. | Systemes, dispositifs et procedes de collecte et de transport d'echantillons de liquides organiques |
US20140358036A1 (en) * | 2012-12-05 | 2014-12-04 | Theranos, Inc. | Bodily Fluid Sample Collection and Transport |
US9051599B2 (en) | 2012-12-10 | 2015-06-09 | Theranos, Inc. | Rapid, low-sample-volume cholesterol and triglyceride assays |
WO2014093397A1 (fr) * | 2012-12-12 | 2014-06-19 | Green Domain Design, Llc | Appareil d'analyse |
US11320418B2 (en) | 2012-12-12 | 2022-05-03 | Iassay, Inc. | Modular hand-held point of care testing system |
EP2743694A1 (fr) * | 2012-12-14 | 2014-06-18 | Numares GmbH | Procédé d'enrichissement d'un échantillon avec des informations spécifiques et système de tube d'échantillon |
US9599610B2 (en) * | 2012-12-19 | 2017-03-21 | Dnae Group Holdings Limited | Target capture system |
US9995742B2 (en) * | 2012-12-19 | 2018-06-12 | Dnae Group Holdings Limited | Sample entry |
US9805407B2 (en) * | 2013-01-25 | 2017-10-31 | Illumina, Inc. | Methods and systems for using a cloud computing environment to configure and sell a biological sample preparation cartridge and share related data |
CN109813923A (zh) * | 2013-02-18 | 2019-05-28 | 赛拉诺斯知识产权有限责任公司 | 用于采集和传输测定结果的系统和方法 |
US10401373B1 (en) | 2013-02-18 | 2019-09-03 | Theranos Ip Company, Llc | Systems and methods for analyte testing and laboratory oversight |
KR20150119334A (ko) | 2013-02-18 | 2015-10-23 | 테라노스, 인코포레이티드 | 생체시료의 이미지 분석 및 측정 |
US11008628B1 (en) | 2013-02-18 | 2021-05-18 | Labrador Diagnostics Llc | Systems and methods for analyte testing and laboratory oversight |
CA2898477A1 (fr) * | 2013-02-18 | 2014-08-21 | Theranos, Inc. | Systemes et procedes d'analyse multiple |
CA2902484C (fr) | 2013-02-26 | 2021-05-18 | Astute Medical, Inc. | Evaluation d'ecoulement lateral avec retenteur de bande d'essai |
EP3595246A1 (fr) | 2013-03-04 | 2020-01-15 | Theranos IP Company, LLC | Procédés et systèmes de connectivité de réseau |
EP3540444B1 (fr) | 2013-03-11 | 2022-10-26 | Cue Health Inc. | Systèmes et procédés de détection et de quantification d'analytes |
US10545161B2 (en) | 2013-03-11 | 2020-01-28 | Cue Health Inc. | Systems and methods for detection and quantification of analytes |
US20140252079A1 (en) * | 2013-03-11 | 2014-09-11 | Promega Corporation | Analyzer with machine readable protocol prompting |
US9623409B2 (en) | 2013-03-11 | 2017-04-18 | Cue Inc. | Cartridges, kits, and methods for enhanced mixing for detection and quantification of analytes |
AU2013202778A1 (en) * | 2013-03-14 | 2014-10-02 | Gen-Probe Incorporated | Systems, methods, and apparatuses for performing automated reagent-based assays |
EP2972331B1 (fr) | 2013-03-15 | 2018-10-17 | Siemens Healthcare Diagnostics Inc. | Dispositif de distribution microfluidique |
SG11201507272RA (en) | 2013-03-15 | 2015-10-29 | Theranos Inc | Nuclei acid amplification |
CN105229465A (zh) | 2013-03-15 | 2016-01-06 | 赛拉诺斯股份有限公司 | 用于样品制备的装置、系统和方法 |
US9359632B2 (en) | 2013-03-15 | 2016-06-07 | Theranos, Inc. | Devices, systems and methods for sample preparation |
WO2014145291A1 (fr) | 2013-03-15 | 2014-09-18 | Theranos, Inc. | Amplification d'acide nucléique |
US9416776B2 (en) * | 2013-03-15 | 2016-08-16 | Siemens Healthcare Diagnostics Inc. | Microfluidic distributing device |
MX365324B (es) | 2013-03-15 | 2019-05-29 | Theranos Ip Co Llc | Metodos y dispositivos para recoleccion de muestras y separacion de muestras. |
PL2970922T3 (pl) | 2013-03-15 | 2018-06-29 | Theranos, Inc. | Termostabilna ligaza łącząca tępe końce i sposoby jej wykorzystania |
CN115096658A (zh) | 2013-03-15 | 2022-09-23 | 赛拉诺斯知识产权有限责任公司 | 用于体液样品收集的系统、装置和方法 |
CN108445242B (zh) | 2013-03-15 | 2022-03-04 | Hycor生物医学有限责任公司 | 进行样本的冷光和荧光测量的装置和相关方法 |
ES2729637T3 (es) | 2013-03-15 | 2019-11-05 | Theranos Ip Co Llc | Amplificación de ácidos nucleicos |
AU2014241182A1 (en) * | 2013-03-27 | 2015-09-24 | Theranos Ip Company, Llc | Biological sample processing |
ES2756098T3 (es) | 2013-03-27 | 2020-04-27 | Theranos Ip Co Llc | Métodos, dispositivos y sistemas para el análisis de muestras |
EP3570040B1 (fr) | 2013-04-05 | 2024-02-14 | F. Hoffmann-La Roche AG | Procédé d'analyse d'un échantillon biologique |
US10222375B2 (en) | 2013-07-17 | 2019-03-05 | Gold Standard Diagnostics | Process and machine for automated agglutination assays with image automated evaluation |
US20150309025A1 (en) * | 2013-07-17 | 2015-10-29 | Gold Standard Diagnostics | Process and machine for automated agglutination assays |
US10422806B1 (en) | 2013-07-25 | 2019-09-24 | Theranos Ip Company, Llc | Methods for improving assays of biological samples |
CN105555336B (zh) | 2013-08-05 | 2019-04-30 | 康迈德医疗器械有限公司 | 顺应性的贴片泵 |
EP3042208A4 (fr) | 2013-09-06 | 2017-04-19 | Theranos, Inc. | Systèmes et procédés pour détection de maladies infectieuses |
MX2016002797A (es) | 2013-09-06 | 2016-05-26 | Theranos Inc | Dispositivos, sistemas, metodos y equipos para recibir un hisopo. |
US10943689B1 (en) | 2013-09-06 | 2021-03-09 | Labrador Diagnostics Llc | Systems and methods for laboratory testing and result management |
US11545241B1 (en) | 2013-09-07 | 2023-01-03 | Labrador Diagnostics Llc | Systems and methods for analyte testing and data management |
MX2016002851A (es) * | 2013-09-08 | 2016-06-17 | Theranos Inc | Metodos y sistemas para obtener muestras clinicas. |
US20180020823A1 (en) * | 2013-09-08 | 2018-01-25 | Theranos, Inc. | Methods and systems for obtaining clinical samples |
JP6700173B2 (ja) * | 2013-09-24 | 2020-05-27 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | ターゲット検出方法及びシステム |
EP3061062B1 (fr) | 2013-10-24 | 2022-11-16 | Labrador Diagnostics LLC | Systèmes et procédés de commande de tests de laboratoire et de fourniture des résultats de ceux-ci |
US20150164398A1 (en) | 2013-11-11 | 2015-06-18 | Theranos, Inc. | Methods and systems for a sample collection device with a novelty exterior |
ES2716909T3 (es) * | 2013-11-12 | 2019-06-17 | Boditechmed Inc | Cubeta de múltiples pocillos dotada de medios integrados de reacción y de detección |
US11360107B1 (en) | 2014-02-25 | 2022-06-14 | Labrador Diagnostics Llc | Systems and methods for sample handling |
EP3114451B1 (fr) | 2014-03-05 | 2022-10-19 | Labrador Diagnostics LLC | Dispositif pour séparation d'échantillons |
JP2017507730A (ja) | 2014-03-12 | 2017-03-23 | セラノス, インコーポレイテッドTheranos, Inc. | 体液サンプル収集のためのシステム、機器、及び方法 |
US10139348B2 (en) | 2014-03-20 | 2018-11-27 | Universal Bio Research Co., Ltd. | Lightguide aggregate inspection device and inspection method of the same |
USD745423S1 (en) | 2014-05-12 | 2015-12-15 | Cue Inc. | Automated analyzer test cartridge and sample collection device for analyte detection |
MX2016016234A (es) * | 2014-06-11 | 2017-10-02 | Theranos Inc | Metodos, dispositivos y sistemas para analisis de muestras. |
AU2015280423A1 (en) * | 2014-06-23 | 2017-02-02 | The Charles Stark Draper Laboratory, Inc. | Injection well identification using tracer particles |
WO2016007886A1 (fr) | 2014-07-11 | 2016-01-14 | Northwestern University | Biocapteur à base de levure |
EP3177933B1 (fr) * | 2014-08-06 | 2020-02-19 | Société des Produits Nestlé S.A. | Biomarqueurs pour prédire le degré de perte de poids |
WO2016037051A1 (fr) | 2014-09-04 | 2016-03-10 | Theranos, Inc. | Pathogène et test de résistance antimicrobienne |
EP2995937A1 (fr) * | 2014-09-15 | 2016-03-16 | Sensirion AG | Puce de capteur chimique intégré |
WO2016044673A1 (fr) | 2014-09-17 | 2016-03-24 | Theranos, Inc. | Amplification d'acide nucléique multi-étapes hybride |
US9506908B2 (en) | 2014-10-06 | 2016-11-29 | Alveo Technologies, Inc. | System for detection of analytes |
US10352899B2 (en) | 2014-10-06 | 2019-07-16 | ALVEO Technologies Inc. | System and method for detection of silver |
US10196678B2 (en) | 2014-10-06 | 2019-02-05 | ALVEO Technologies Inc. | System and method for detection of nucleic acids |
US10627358B2 (en) | 2014-10-06 | 2020-04-21 | Alveo Technologies, Inc. | Method for detection of analytes |
US9921182B2 (en) | 2014-10-06 | 2018-03-20 | ALVEO Technologies Inc. | System and method for detection of mercury |
WO2016057749A1 (fr) | 2014-10-08 | 2016-04-14 | Theranos, Inc. | Procédés et dispositifs de test de diagnostic en temps réel (rdt) pour ebola et d'autres maladies infectieuses |
US10137453B2 (en) | 2014-12-10 | 2018-11-27 | Biotix, Inc. | Static-defeating apparatus for pipette tips |
US10730053B2 (en) | 2014-12-10 | 2020-08-04 | Biotix, Inc. | Static-defeating apparatus for pipette tips |
USD865216S1 (en) * | 2014-12-10 | 2019-10-29 | Biotix, Inc. | Pipette tip sheet |
USD815753S1 (en) | 2014-12-10 | 2018-04-17 | Biotix, Inc. | Pipette tip sheet |
USD849962S1 (en) * | 2014-12-10 | 2019-05-28 | Biotix, Inc. | Pipette tip retention sheet |
US20160238627A1 (en) | 2015-02-13 | 2016-08-18 | Abbott Laboratories | Decapping and capping apparatus, systems and methods for use in diagnostic analyzers |
US10677811B2 (en) | 2015-02-27 | 2020-06-09 | Mastaplex Ltd. | Sample receptacle, sample container and method of use |
CA3017108A1 (fr) * | 2015-03-12 | 2016-09-15 | The Trustees Of The University Of Pennsylvania | Systeme, procede et dispositif de culture automatisee a haut debit d'organismes genetiquement modifies |
JP2016191668A (ja) * | 2015-03-31 | 2016-11-10 | ソニー株式会社 | 電気的特性測定方法、電気的特性測定装置、及び血液状態解析システム |
CN107743518A (zh) * | 2015-04-08 | 2018-02-27 | 贝克顿·迪金森公司 | 用于从半固体表面收集微生物生长的设备和装置 |
EP3288459B1 (fr) * | 2015-04-29 | 2023-09-20 | Revvity Health Sciences, Inc. | Appareil de prélèvement et de distribution de spécimens |
EP3093656A1 (fr) * | 2015-05-13 | 2016-11-16 | ARKRAY, Inc. | Outil et système analytiques |
CN104865395A (zh) * | 2015-05-21 | 2015-08-26 | 上海儒克生物科技有限公司 | 生物应用机器人、机器人执行模块及执行方法 |
CN107771285A (zh) | 2015-06-08 | 2018-03-06 | 阿奎尔诊断有限公司 | 方法 |
EP4060344A1 (fr) | 2015-06-08 | 2022-09-21 | Arquer Diagnostics Limited | Procédés et kits |
US10775370B2 (en) * | 2015-07-17 | 2020-09-15 | Stat-Diagnostica & Innovation, S.L. | Fluidic system for performing assays |
CA2992596C (fr) | 2015-07-17 | 2023-08-22 | Cue Inc. | Systemes et procedes pour la detection amelioree et la quantification de substances a analyser |
US10371606B2 (en) | 2015-07-21 | 2019-08-06 | Theraos IP Company, LLC | Bodily fluid sample collection and transport |
JP2018528411A (ja) | 2015-07-21 | 2018-09-27 | セラノス, インコーポレイテッドTheranos, Inc. | 体液サンプル収集、輸送および取扱いのためのシステム、機器、ならびに方法 |
CN113358860A (zh) * | 2015-07-23 | 2021-09-07 | 中尺度技术有限责任公司 | 自动化分析系统及在该系统中实施分析的方法 |
US11458205B2 (en) | 2015-08-04 | 2022-10-04 | Duke University | Genetically encoded intrinsically disordered stealth polymers for delivery and methods of using same |
WO2017044888A1 (fr) | 2015-09-09 | 2017-03-16 | Theranos, Inc. | Procédés et dispositifs de collecte et de séparation d'échantillons |
JP6952683B2 (ja) | 2015-09-17 | 2021-10-20 | エス.ディー.サイト ダイアグノスティクス リミテッド | 身体試料中の実体を検出する方法および装置 |
EP3359115A4 (fr) | 2015-10-09 | 2019-03-20 | Theranos, Inc. | Collecte et transport d'un échantillon de liquide corporel |
US11752213B2 (en) | 2015-12-21 | 2023-09-12 | Duke University | Surfaces having reduced non-specific binding and antigenicity |
EP3397972A2 (fr) * | 2015-12-31 | 2018-11-07 | Universal Diagnostics, S.L. | Systèmes et procédés automatiques, outil de préparation d'échantillon personnalisable, script logiciel, et programme d'étalonnage pour détection de métabolites et lipides |
WO2017168411A1 (fr) | 2016-03-30 | 2017-10-05 | S.D. Sight Diagnostics Ltd | Dispositif de traitement d'images destiné à l'identification de parasites du sang |
JP2017185192A (ja) * | 2016-03-31 | 2017-10-12 | カシオ計算機株式会社 | 電子機器、報知方法及びプログラム |
CN109073658B (zh) | 2016-04-14 | 2021-07-09 | 豪夫迈·罗氏有限公司 | 用于测定体液样品中的靶分析物的浓度的方法 |
CN105865873A (zh) * | 2016-05-05 | 2016-08-17 | 柳州市妇幼保健院 | 滤纸干血斑血红蛋白制备盒 |
US11307196B2 (en) | 2016-05-11 | 2022-04-19 | S.D. Sight Diagnostics Ltd. | Sample carrier for optical measurements |
CN109564209B (zh) | 2016-05-11 | 2022-05-31 | 思迪赛特诊断有限公司 | 对样品实施的光学测量 |
WO2017210476A1 (fr) | 2016-06-01 | 2017-12-07 | Duke University | Biocapteurs ne s'encrassant pas |
CN109313190A (zh) * | 2016-06-17 | 2019-02-05 | 西门子医疗保健诊断公司 | 通过流体样品再利用而使流体样品多重化的设备、方法和试剂盒 |
US10989724B1 (en) | 2016-07-29 | 2021-04-27 | Labrador Diagnostics Llc | Systems and methods for multi-analysis |
US20180032954A1 (en) * | 2016-07-29 | 2018-02-01 | Abbott Laboratories | System and method for inventory sharing in a laboratory management system |
US11112418B1 (en) * | 2016-07-29 | 2021-09-07 | Labrador Diagnostics Llc | Systems and methods for multi-analysis |
US11465141B2 (en) | 2016-09-23 | 2022-10-11 | Alveo Technologies, Inc. | Methods and compositions for detecting analytes |
JP2020500150A (ja) | 2016-09-23 | 2020-01-09 | デューク ユニバーシティ | 下限臨界溶液温度挙動を有する非反復かつ非構造的ポリペプチド |
TWI638178B (zh) * | 2016-10-05 | 2018-10-11 | 旺矽科技股份有限公司 | 電測裝置、電測方法及針座電路結構 |
US20180135456A1 (en) * | 2016-11-17 | 2018-05-17 | General Electric Company | Modeling to detect gas turbine anomalies |
CN115192090A (zh) * | 2016-11-23 | 2022-10-18 | 巴德股份有限公司 | 单插入多试样的活检装置 |
LU93333B1 (en) * | 2016-12-06 | 2018-06-08 | Stratec Biomedical Ag | Transfer Tool for use in automated analyser systems |
BE1024369B1 (nl) * | 2016-12-12 | 2018-01-31 | Anne Vanaken | Apparaat voor oogonderzoek |
US11648200B2 (en) | 2017-01-12 | 2023-05-16 | Duke University | Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature triggered hierarchical self-assembly |
WO2018140540A1 (fr) | 2017-01-25 | 2018-08-02 | Cue Health Inc. | Systèmes et procédés pour la détection améliorée et la quantification de substances à analyser |
EP3579975A4 (fr) * | 2017-02-13 | 2021-03-24 | Bio-rad Laboratories, Inc. | Système, procédé et dispositif de formation d'une série d'émulsions |
US11181481B2 (en) | 2017-03-08 | 2021-11-23 | Optofluidic Bioassay, Llc | Optofluidic diagnostics system |
US11857966B1 (en) | 2017-03-15 | 2024-01-02 | Labrador Diagnostics Llc | Methods and devices for sample collection and sample separation |
JP2020513108A (ja) * | 2017-04-07 | 2020-04-30 | イージーディエックス インコーポレイテッドEasyDx,Inc. | 臨床現場即時検査(poct)カートリッジ |
US11554097B2 (en) | 2017-05-15 | 2023-01-17 | Duke University | Recombinant production of hybrid lipid-biopolymer materials that self-assemble and encapsulate agents |
US11680083B2 (en) | 2017-06-30 | 2023-06-20 | Duke University | Order and disorder as a design principle for stimuli-responsive biopolymer networks |
US10660619B2 (en) | 2017-07-19 | 2020-05-26 | Evanostics Llc | Cartridges for oral fluid analysis and methods of use |
KR20190016011A (ko) * | 2017-08-07 | 2019-02-15 | 울산과학기술원 | 자성 입자를 이용한 유체 분리 시스템 및 방법 |
EP3444033B1 (fr) * | 2017-08-18 | 2020-01-08 | CTC Analytics AG | Cartouche pour des dosages chimiques ou biologiques |
CN107356587B (zh) * | 2017-08-24 | 2024-03-01 | 北京贝泰科技有限公司 | 一种光激化学发光即时检测系统 |
EP3673268A1 (fr) * | 2017-08-26 | 2020-07-01 | AJ Innuscreen GmbH | Moyen et procédé de détection d'analytes à l'aide de particules de granulés macroscopiques |
CN107679286A (zh) * | 2017-09-11 | 2018-02-09 | 广东昭信光电科技有限公司 | 一种实现led阵列均匀照明的透镜设计方法及控制系统 |
US20210060543A1 (en) * | 2017-09-27 | 2021-03-04 | Hewlett-Packard Development Company, L.P. | Dilution dispensing |
EP3470141B1 (fr) * | 2017-10-11 | 2024-04-24 | F. Hoffmann-La Roche AG | Appareil et procédé de traitement d'un échantillon biologique avec des particules magnétiques |
CA3079954A1 (fr) * | 2017-11-02 | 2019-05-09 | Memed Diagnostics Ltd. | Cartouche et systeme pour analyser un liquide corporel |
EP3710810B1 (fr) * | 2017-11-14 | 2023-09-06 | S.D. Sight Diagnostics Ltd. | Porte-échantillon pour mesures optiques |
GB201719769D0 (en) * | 2017-11-28 | 2018-01-10 | Cronin 3D Ltd | Analytical device and methods of use |
WO2019117366A1 (fr) * | 2017-12-14 | 2019-06-20 | (주)이노진 | Dispositif de diagnostic in vitro basé sur le sang et procédé de diagnostic |
EP3724636A4 (fr) | 2017-12-15 | 2021-08-18 | Evanostics, LLC | Lecteur optique pour test d'analyte |
US11255868B2 (en) | 2018-02-12 | 2022-02-22 | Electronics And Telecommunications Research Institute | Fluid control equipment for bio-reaction, bio-reaction system and fluid control method for bio-reaction |
JP7002637B2 (ja) * | 2018-03-28 | 2022-01-20 | 富士フイルム株式会社 | 血液検査支援装置、血液検査支援システム、血液検査支援方法、及びプログラム |
US11358148B2 (en) | 2018-03-30 | 2022-06-14 | Idexx Laboratories, Inc. | Point-of-care diagnostic systems and containers for same |
BR112020016080A2 (pt) | 2018-03-30 | 2020-12-15 | Idexx Laboratories, Inc. | Sistema de diagnóstico médico no ponto de atendimento. |
US11541396B2 (en) | 2018-03-30 | 2023-01-03 | Idexx Laboratories, Inc. | Point-of-care diagnostic systems and containers for same |
EP3788343B1 (fr) | 2018-04-30 | 2024-03-27 | Duke University | Plateforme d'administration de médicament à base de polymère de type peg sensible aux stimuli |
DE112019003251T5 (de) * | 2018-06-25 | 2021-03-11 | Vascu Technology, Inc. | Verfahren und Kits zur Detektion von 11-Dehydro-Thromboxan B2 |
EP3819624A4 (fr) * | 2018-07-03 | 2022-03-09 | Shimadzu Corporation | Outil d'assistance à l'extraction d'échantillons et procédé d'extraction d'échantillons |
EP3829622A4 (fr) | 2018-08-02 | 2022-05-11 | Duke University | Protéines de fusion à double agoniste |
EP3608676B1 (fr) * | 2018-08-08 | 2022-01-19 | CTC Analytics AG | Mettre l'échantillon dans le récipient de pointe de pipette pour un posttraitement |
CN109223050B (zh) * | 2018-08-23 | 2021-08-10 | 郑州大学第一附属医院 | 一种内分泌科临床抽检装置 |
USD888269S1 (en) | 2018-09-02 | 2020-06-23 | Memed Diagnostics Ltd. | Capillary blood collector device |
USD951482S1 (en) | 2018-09-02 | 2022-05-10 | Memed Diagnostics Ltd. | Cartridge device |
EP3644063B1 (fr) * | 2018-10-23 | 2023-07-26 | Roche Diagnostics GmbH | Procédé de manipulation de contenants d'échantillons de laboratoire |
EP3644064B1 (fr) * | 2018-10-23 | 2021-08-18 | Roche Diagnostics GmbH | Procédé de manutention de conteneurs d'échantillons de laboratoire et appareil pour manipuler des conteneurs d'échantillons de laboratoire |
CN109394241B (zh) * | 2018-10-30 | 2022-07-08 | 宁静 | 一种医疗用内分泌科临床取检装置 |
KR102674662B1 (ko) | 2018-11-14 | 2024-06-12 | 현대자동차주식회사 | 차량용 열교환기 |
TWI692777B (zh) * | 2018-11-16 | 2020-05-01 | 長庚醫療財團法人高雄長庚紀念醫院 | 智能化急性腎損傷藥物警示系統 |
KR102178336B1 (ko) * | 2018-11-27 | 2020-11-12 | 바디텍메드(주) | 결핵 진단 방법 및 그 장치 |
CN109307541B (zh) * | 2018-11-29 | 2020-03-24 | 郑州安图生物工程股份有限公司 | 一种发光板单孔残液的体积测量方法 |
CN109307540B (zh) * | 2018-11-29 | 2020-04-21 | 郑州安图生物工程股份有限公司 | 一种酶标板单孔残液的体积测量方法 |
US12066383B2 (en) | 2018-12-18 | 2024-08-20 | Aspida Dx Inc. | Optical analyte detection |
WO2020142839A1 (fr) | 2019-01-07 | 2020-07-16 | 1866402 Ontario Inc. | Dispositif et procédés de séparation et d'analyse du sang |
EP3911752B1 (fr) * | 2019-01-14 | 2025-01-29 | Infiniplex Ltd. | Kit multi-test |
EP3927468A1 (fr) | 2019-02-18 | 2021-12-29 | CTC Analytics AG | Dispositif de distribution de fluide et procédé pour effectuer des dosages chimiques ou biologiques |
DK3709024T3 (da) * | 2019-03-12 | 2024-03-04 | Radiometer Medical Aps | Apparat til analyse af biologiske prøver |
US20220143604A1 (en) * | 2019-03-19 | 2022-05-12 | Siemens Healthcare Diagnostics Inc. | HBA1c ASSAY SLIDE AND METHOD OF MAKING SAME |
CN110082519A (zh) * | 2019-04-17 | 2019-08-02 | 迪瑞医疗科技股份有限公司 | 胱抑素c化学发光免疫检测试剂盒及其制备方法 |
CN110142068B (zh) * | 2019-06-12 | 2024-02-02 | 杭州华得森生物技术有限公司 | 一种上皮间质混合型循环肿瘤细胞检测试剂盒及方法 |
US11512314B2 (en) | 2019-07-12 | 2022-11-29 | Duke University | Amphiphilic polynucleotides |
CN110376023B (zh) * | 2019-07-26 | 2022-05-17 | 重庆德方信息技术有限公司 | 应用于智能马桶的控制系统及方法 |
CN114245873A (zh) * | 2019-07-30 | 2022-03-25 | 匹思灵公司 | 同时分析多种生物标志物的设备和同时分析多种生物标志物的方法 |
KR102752778B1 (ko) * | 2019-08-16 | 2025-01-14 | 한국전자통신연구원 | 바이오 물질 검출 방법 |
US20220266245A1 (en) * | 2019-09-02 | 2022-08-25 | Tan Tock Seng Hospital Pte Ltd | A magnetic digital microfluidic system and method of performing an assay |
US20230341422A1 (en) * | 2019-09-27 | 2023-10-26 | Epinex Diagnostics, Inc. | A Home Test for Measuring Glucose Control and Kidney Function in Patients |
CN114787685A (zh) | 2019-12-12 | 2022-07-22 | 思迪赛特诊断有限公司 | 人工生成彩色血液涂片图像 |
CN113219192B (zh) * | 2020-01-21 | 2023-10-20 | 深圳迎凯生物科技有限公司 | 反应器转移方法 |
WO2021150808A1 (fr) * | 2020-01-23 | 2021-07-29 | Precision Healing, Inc. | Diagnostics de la peau utilisant des signatures optiques |
CN111239430A (zh) * | 2020-03-16 | 2020-06-05 | 中国科学院南京地理与湖泊研究所 | 一种批量处理样品的装置及方法 |
KR20220149602A (ko) * | 2020-04-03 | 2022-11-08 | (주)레보스케치 | 항원 맞춤형 검출시약이 프리로딩된 샌드위치 elisa용 카트리지 및 상기 카트리지를 이용한 샌드위치 elisa 장치 |
CN111504972B (zh) * | 2020-05-21 | 2024-07-23 | 朱建国 | 一种pcr采样检测装置 |
CN115698680A (zh) * | 2020-06-18 | 2023-02-03 | 挪威金田有限公司 | 确定全血样品血浆成分中分析物浓度的方法 |
US20220032288A1 (en) * | 2020-07-29 | 2022-02-03 | Smart Ink Technology Corp. | Viral and biochemical early detection test kits |
WO2022021377A1 (fr) * | 2020-07-31 | 2022-02-03 | 杭州九洋生物科技有限公司 | Pipette et procédé de pipetage |
US11914131B1 (en) * | 2020-08-16 | 2024-02-27 | Gregory Dimitrenko | Optical testing system for detecting infectious disease, testing device, specimen collector and related methods |
CN112175808A (zh) * | 2020-10-09 | 2021-01-05 | 张晓芬 | 一种用于检测血液病相关细胞突变的装置 |
WO2022101806A1 (fr) * | 2020-11-11 | 2022-05-19 | Diana Biotechnologies, S.R.O. | Dispositif de prélèvement d'échantillons |
WO2022123599A1 (fr) * | 2020-12-08 | 2022-06-16 | Varun Akur Venkatesan | Système, procédé et dispositif de détection et de surveillance du syndrome des ovaires polykystiques |
CN112932553B (zh) * | 2021-02-01 | 2023-06-13 | 宁津县人民医院 | 一种用于妇科临床的阴道分泌物取样装置 |
CN114849805A (zh) * | 2021-02-05 | 2022-08-05 | 苏州赛尼特格尔实验室科技有限公司 | 一种新型手动机械移液器 |
CA3233168A1 (fr) * | 2021-09-27 | 2023-03-30 | Richard D. Oleschuk | Procede et appareil d'etalonnage rapide de spectrometrie de masse |
US12226776B2 (en) | 2021-11-04 | 2025-02-18 | Instrumentation Laboratory Company | Preparing substances in a medical diagnostic system |
WO2023121101A1 (fr) * | 2021-12-24 | 2023-06-29 | 한국과학기술원 | Dispositif automatisé de diagnostic et procédé de diagnostic l'utilisant |
USD981591S1 (en) | 2022-05-05 | 2023-03-21 | Singular Genomics Systems, Inc. | Sample cartridge |
USD979093S1 (en) | 2022-05-05 | 2023-02-21 | Singular Genomics Systems, Inc. | Reagent cartridge |
USD970036S1 (en) | 2022-05-05 | 2022-11-15 | Singular Genomics Systems, Inc. | Reagent cartridge |
Family Cites Families (898)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2398234A (en) | 1942-12-11 | 1946-04-09 | Horton & Converse | Adjustable automatic pipette |
US3600900A (en) | 1969-11-03 | 1971-08-24 | North American Rockwell | Temperature controlled centrifuge |
US3640434A (en) | 1970-05-15 | 1972-02-08 | Sherwood Medical Ind Inc | Variable capacity fluid-dispensing device |
US3696971A (en) | 1970-09-24 | 1972-10-10 | Electro Nucleonics | Mechanism for simultaneously metering and dispensing liquids |
US3756920A (en) | 1971-04-30 | 1973-09-04 | Nasa | In biological samples my measuring light reactions automatic instrument for chemical processing to dedect microorganisms |
GB1332207A (en) | 1971-05-07 | 1973-10-03 | Ass Elect Ind | Apparatus for charged particle spectroscopy |
BE793544A (fr) | 1972-01-31 | 1973-04-16 | American Hospital Supply Corp | Centrifugeur |
CA972183A (en) | 1973-02-23 | 1975-08-05 | Georges Revillet | Microspectrophotometer |
US3953172A (en) | 1974-05-10 | 1976-04-27 | Union Carbide Corporation | Method and apparatus for assaying liquid materials |
NL179870C (nl) | 1974-08-16 | 1986-12-01 | Sarstedt Kunststoff | Vat voor het afnemen van bloed met een capillair mondstuk. |
US4010893A (en) | 1975-06-20 | 1977-03-08 | Becton, Dickinson And Company | Triac centrifuge |
GB1562900A (en) | 1975-09-24 | 1980-03-19 | Aes Scient Ltd | Preparation of blood plasma and serum samples |
SU598649A1 (ru) | 1976-05-04 | 1978-03-25 | Предприятие П/Я В-2262 | Центрифуга |
US4087248A (en) | 1976-07-26 | 1978-05-02 | Miles Laughton E | Multiple assay machine and method |
US4269604A (en) * | 1976-09-01 | 1981-05-26 | Snowden Jr James E | Method for the on-site determination of the presence of corrosive material in lubricating oil |
US4157781A (en) | 1978-07-19 | 1979-06-12 | Hitoshi Maruyama | Self balancing centrifuge |
US4276383A (en) | 1979-08-02 | 1981-06-30 | The United States Of America As Represented By The Department Of Health, Education & Welfare | Clot lysing timer |
US4270921A (en) | 1979-09-24 | 1981-06-02 | Graas Joseph E | Microchromatographic device and method for rapid determination of a desired substance |
US4250830A (en) | 1979-10-03 | 1981-02-17 | Leif Robert C | Swinging buckets |
EP0030086B2 (fr) * | 1979-11-13 | 1990-03-14 | TECHNICON INSTRUMENTS CORPORATION (a New York corporation) | Ensemble de tubes à essais, kit pour sa fabrication et procédé d'essais immunologiques manuels |
US4276258A (en) | 1980-01-28 | 1981-06-30 | Coulter Electronics, Inc. | Sample and stat feeding system and sample tray |
US4362698A (en) | 1980-03-07 | 1982-12-07 | Sherman-Boosalis Corporation | Closures for fluid sample cups |
US4327595A (en) | 1980-07-07 | 1982-05-04 | Hamilton Company | Method and apparatus for simultaneous dilution and dispensation |
US4344563A (en) | 1980-12-23 | 1982-08-17 | E. I. Du Pont De Nemours And Company | Centrifuge rotor having vertically offset trunnion pins |
FR2498331A1 (fr) * | 1981-01-20 | 1982-07-23 | Kadouche Jean | Recipient reactif pour analyse notamment immunologique |
JPS5822254B2 (ja) | 1981-07-03 | 1983-05-07 | 株式会社 久保田製作所 | 遠心分離機用ロ−タ |
US4488814A (en) | 1981-09-28 | 1984-12-18 | Miles Laboratories, Inc. | Apparatus for and method of optical absorbance and fluorescent radiation measurement |
US4486315A (en) | 1982-03-11 | 1984-12-04 | Ortho Diagnostic Systems Inc. | Immunoassay microparticle washing system and method of use |
US4437586A (en) | 1982-03-29 | 1984-03-20 | Eastman Kodak Company | Mechanically actuated pipette dispenser |
US4478094A (en) | 1983-01-21 | 1984-10-23 | Cetus Corporation | Liquid sample handling system |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4554839A (en) | 1983-10-14 | 1985-11-26 | Cetus Corporation | Multiple trough vessel for automated liquid handling apparatus |
US4555957A (en) | 1983-10-14 | 1985-12-03 | Cetus Corporation | Bi-directional liquid sample handling system |
US5171534A (en) | 1984-01-16 | 1992-12-15 | California Institute Of Technology | Automated DNA sequencing technique |
US4952518A (en) | 1984-10-01 | 1990-08-28 | Cetus Corporation | Automated assay machine and assay tray |
US4545497A (en) | 1984-11-16 | 1985-10-08 | Millipore Corporation | Container cap with frangible septum |
DE185330T1 (de) | 1984-12-18 | 1986-11-27 | Cetus Corp., Emeryville, Calif. | System zur behandlung mehrfacher proben. |
JPS61202142A (ja) | 1985-03-06 | 1986-09-06 | Teijin Ltd | 吸光度を用いた分析方法および分析装置 |
JPS61202141A (ja) | 1985-03-06 | 1986-09-06 | Nec Corp | 吸光光度計 |
US4593837A (en) | 1985-03-15 | 1986-06-10 | Eastman Kodak Company | Variable volume pipette |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
JPS61254833A (ja) | 1985-05-08 | 1986-11-12 | Toyo Soda Mfg Co Ltd | 液定量取出し装置 |
US4756884A (en) | 1985-08-05 | 1988-07-12 | Biotrack, Inc. | Capillary flow device |
JPS6247555A (ja) | 1985-08-23 | 1987-03-02 | エフ.ホフマン ― ラ ロシュ アーゲー | シンチレ−シヨン近接定量法 |
US4725406A (en) * | 1985-10-21 | 1988-02-16 | American Bionetics, Inc. | Apparatus and method for diagnostic analysis of biological fluids |
DE3614085A1 (de) | 1985-12-12 | 1987-06-19 | Hirschmann Glasgeraete | Pipette |
CH671526A5 (fr) | 1985-12-17 | 1989-09-15 | Hamilton Bonaduz Ag | |
JPH0652227B2 (ja) | 1986-04-25 | 1994-07-06 | 梅谷 陽二 | 微小注入量測定装置 |
GB2190195A (en) * | 1986-05-09 | 1987-11-11 | Cambridge Life Sciences | Microtitre plate reader |
JPH0727700Y2 (ja) | 1986-06-16 | 1995-06-21 | 日本電気株式会社 | Pllシンセサイザの制御回路 |
US4744955A (en) | 1986-08-08 | 1988-05-17 | Shapiro Justin J | Adjustable volume pipette sampler |
US5322770A (en) | 1989-12-22 | 1994-06-21 | Hoffman-Laroche Inc. | Reverse transcription with thermostable DNA polymerases - high temperature reverse transcription |
US5310652A (en) | 1986-08-22 | 1994-05-10 | Hoffman-La Roche Inc. | Reverse transcription with thermostable DNA polymerase-high temperature reverse transcription |
JPH0816675B2 (ja) | 1986-09-26 | 1996-02-21 | 株式会社島津製作所 | ガスクロマトグラフ装置 |
JPH07119769B2 (ja) | 1986-10-01 | 1995-12-20 | 株式会社日立製作所 | 自動分析装置 |
US4933291A (en) | 1986-12-22 | 1990-06-12 | Eastman Kodak Company | Centrifugable pipette tip and pipette therefor |
US4902969A (en) | 1987-06-01 | 1990-02-20 | Reliability Incorporated | Automated burn-in system |
JPH0697231B2 (ja) | 1987-07-15 | 1994-11-30 | 富士写真フイルム株式会社 | 生化学分析装置 |
US4822331A (en) | 1987-11-09 | 1989-04-18 | Taylor David C | Centrifuge |
US5055263A (en) | 1988-01-14 | 1991-10-08 | Cyberlab, Inc. | Automated pipetting system |
US5130238A (en) | 1988-06-24 | 1992-07-14 | Cangene Corporation | Enhanced nucleic acid amplification process |
US4925629A (en) * | 1988-07-28 | 1990-05-15 | Bioquant, Inc. | Diagnostic device |
ATE134040T1 (de) * | 1988-08-02 | 1996-02-15 | Abbott Lab | Verfahren und vorrichtung zum erzeugen von eichdaten für die analyse |
US5320808A (en) | 1988-08-02 | 1994-06-14 | Abbott Laboratories | Reaction cartridge and carousel for biological sample analyzer |
US5281540A (en) * | 1988-08-02 | 1994-01-25 | Abbott Laboratories | Test array for performing assays |
JPH0275959A (ja) | 1988-09-12 | 1990-03-15 | Nittec Co Ltd | 自動分折装置 |
US5186162A (en) | 1988-09-14 | 1993-02-16 | Interpore Orthopaedics, Inc. | Ultrasonic transducer device for treatment of living tissue and/or cells |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5326445A (en) * | 1989-05-01 | 1994-07-05 | Hewlett-Packard Company | Vacuum injection capillary electrophoresis |
EP0423278B2 (fr) | 1989-05-01 | 1998-04-15 | Rhone-Poulenc Viscosuisse Sa | Procede pour la fabrication de monofilaments fins |
WO1990013668A1 (fr) | 1989-05-05 | 1990-11-15 | Lifecodes Corporation | Methode pour l'analyse genetique d'un echantillon d'acide nucleique |
ATE141956T1 (de) | 1989-07-11 | 1996-09-15 | Gen Probe Inc | Verfahren zur vervielfältigung von nukleinsäuresequenzen |
CA2020958C (fr) | 1989-07-11 | 2005-01-11 | Daniel L. Kacian | Methodes d'amplification de sequences d'acide nucleique |
US5683888A (en) | 1989-07-22 | 1997-11-04 | University Of Wales College Of Medicine | Modified bioluminescent proteins and their use |
IL94212A0 (en) | 1989-07-24 | 1991-01-31 | Tri Tech Partners And Triton B | Automated analytical apparatus and method |
US5061449A (en) | 1989-07-25 | 1991-10-29 | Matrix Technologies, Corp. | Expandable multi-channel pipetter |
US5005981A (en) | 1989-09-08 | 1991-04-09 | Becton, Dickinson And Company | Apparatus for method for causing vortices in a test tube |
US4991433A (en) * | 1989-09-21 | 1991-02-12 | Applied Acoustic Research | Phase track system for monitoring fluid material within a container |
US5072382A (en) | 1989-10-02 | 1991-12-10 | Kamentsky Louis A | Methods and apparatus for measuring multiple optical properties of biological specimens |
US5089229A (en) | 1989-11-22 | 1992-02-18 | Vettest S.A. | Chemical analyzer |
JP2731613B2 (ja) * | 1989-12-12 | 1998-03-25 | 株式会社クラレ | 酵素免疫測定用カートリツジ、それを用いた測定方法及び測定装置 |
US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
US5292658A (en) | 1989-12-29 | 1994-03-08 | University Of Georgia Research Foundation, Inc. Boyd Graduate Studies Research Center | Cloning and expressions of Renilla luciferase |
SU1722603A1 (ru) | 1990-01-02 | 1992-03-30 | Специальное конструкторское бюро биофизической аппаратуры Московского научно-производственного объединения "Биофизприбор" | Центрифуга |
TW199858B (fr) | 1990-03-30 | 1993-02-11 | Fujirebio Kk | |
US5061381A (en) | 1990-06-04 | 1991-10-29 | Abaxis, Inc. | Apparatus and method for separating cells from biological fluids |
US5173193A (en) | 1991-04-01 | 1992-12-22 | Schembri Carol T | Centrifugal rotor having flow partition |
US5122284A (en) | 1990-06-04 | 1992-06-16 | Abaxis, Inc. | Apparatus and method for optically analyzing biological fluids |
US5242606A (en) | 1990-06-04 | 1993-09-07 | Abaxis, Incorporated | Sample metering port for analytical rotor having overflow chamber |
DK0533838T3 (da) | 1990-06-11 | 1998-02-23 | Nexstar Pharmaceuticals Inc | Nukleinsyreligander |
US5270163A (en) | 1990-06-11 | 1993-12-14 | University Research Corporation | Methods for identifying nucleic acid ligands |
US5527670A (en) | 1990-09-12 | 1996-06-18 | Scientific Generics Limited | Electrochemical denaturation of double-stranded nucleic acid |
EP0478319B1 (fr) | 1990-09-28 | 1997-04-02 | Kabushiki Kaisha Toshiba | Méthode pour la détection de gènes |
JP2969935B2 (ja) | 1990-11-30 | 1999-11-02 | 東ソー株式会社 | 液定量取出し装置 |
DE4041905A1 (de) | 1990-12-27 | 1992-07-02 | Boehringer Mannheim Gmbh | Testtraeger-analysesystem |
US5455166A (en) | 1991-01-31 | 1995-10-03 | Becton, Dickinson And Company | Strand displacement amplification |
FR2673183B1 (fr) | 1991-02-21 | 1996-09-27 | Asulab Sa | Complexes mono, bis ou tris (2,2'-bipyridine substituee) d'un metal choisi parmi le fer, le ruthenium, l'osmium ou le vanadium et leurs procedes de preparation . |
US5273905A (en) | 1991-02-22 | 1993-12-28 | Amoco Corporation | Processing of slide mounted material |
JP3126980B2 (ja) | 1991-03-11 | 2001-01-22 | ザ・ユニバーシテイ・オブ・ジヨージア・リサーチ・フアウンデーシヨン・インコーポレーテツド | レニラ(renilla)ルシフェラーゼのクローニング及び発現 |
US5264184A (en) | 1991-03-19 | 1993-11-23 | Minnesota Mining And Manufacturing Company | Device and a method for separating liquid samples |
US5230864A (en) | 1991-04-10 | 1993-07-27 | Eastman Kodak Company | Gravity assisted collection device |
US5112574A (en) | 1991-04-26 | 1992-05-12 | Imanigation, Ltd. | Multititer stopper array for multititer plate or tray |
US5324481A (en) * | 1991-06-03 | 1994-06-28 | Abbott Laboratories | Carousel for assay specimen carrier |
DE122004000008I1 (de) | 1991-06-14 | 2005-06-09 | Genentech Inc | Humanisierter Heregulin Antikörper. |
WO1994004679A1 (fr) | 1991-06-14 | 1994-03-03 | Genentech, Inc. | Procede pour fabriquer des anticorps humanises |
FR2679661B1 (fr) | 1991-07-26 | 1994-10-14 | Sfri | Appareil d'analyse automatique d'echantillons. |
US5266272A (en) | 1991-10-31 | 1993-11-30 | Baxter Diagnostics Inc. | Specimen processing and analyzing systems with a station for holding specimen trays during processing |
EP0541340B1 (fr) | 1991-11-05 | 1997-07-16 | The Perkin-Elmer Corporation | Appareillage et procédé pour le synthèse des biopolymères |
US6136535A (en) * | 1991-11-14 | 2000-10-24 | Digene Corporation | Continuous amplification reaction |
US5270184A (en) | 1991-11-19 | 1993-12-14 | Becton, Dickinson And Company | Nucleic acid target generation |
US5960160A (en) | 1992-03-27 | 1999-09-28 | Abbott Laboratories | Liquid heater assembly with a pair temperature controlled electric heating elements and a coiled tube therebetween |
US5507410A (en) | 1992-03-27 | 1996-04-16 | Abbott Laboratories | Meia cartridge feeder |
US5288390A (en) | 1992-03-30 | 1994-02-22 | Sun Company, Inc. (R&M) | Polycyclic aromatic ring cleavage (PARC) process |
WO1993019827A1 (fr) | 1992-04-02 | 1993-10-14 | Abaxis, Inc. | Rotor d'analyse comportant une chambre de melange de colorants |
DE69303483T2 (de) | 1992-05-01 | 1997-02-06 | Univ Pennsylvania | Mikrohergestellte Vorrichtungen zum Handhaben von Sperma |
US5380487A (en) | 1992-05-05 | 1995-01-10 | Pasteur Sanofi Diagnostics | Device for automatic chemical analysis |
US5357953A (en) | 1992-05-21 | 1994-10-25 | Puritan-Bennett Corporation | Measurement device and method of calibration |
DE69334326D1 (de) | 1992-09-14 | 2010-05-20 | Stanford Res Inst Int | Hochkonvertierende Reportermoleküle für biologische und andere Testverfahren unter Verwendung von Laseranregungstechniken |
US5674698A (en) | 1992-09-14 | 1997-10-07 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
EP0619476B1 (fr) | 1992-12-19 | 1999-09-22 | Boehringer Mannheim Gmbh | Dispositif pour la détection d'un interface fluidique dans un tube de mesure transparent |
DE4305581A1 (de) | 1993-02-24 | 1994-08-25 | Hettich Andreas Fa | Rotor für eine Schwenkbecherzentrifuge |
FI96143C (fi) * | 1993-03-16 | 1996-05-10 | Wallac Oy | Biospesifinen määritysmenetelmä |
US5416879A (en) | 1993-03-29 | 1995-05-16 | World Precision Instruments, Inc. | Apparatus and method for measuring light absorption in small aqueous fluid samples |
US5478750A (en) | 1993-03-31 | 1995-12-26 | Abaxis, Inc. | Methods for photometric analysis |
JP3563140B2 (ja) | 1995-01-19 | 2004-09-08 | 株式会社日立製作所 | キャピラリーアレイ電気泳動装置 |
EP0702728B1 (fr) | 1993-06-09 | 1998-04-15 | Gamera Bioscience Corporation | Reaction de cycle magnetique |
US5578269A (en) | 1993-06-11 | 1996-11-26 | Ortho Diagnostic Systems Inc. | Automated blood analysis system with an integral centrifuge |
DE69430152T2 (de) | 1993-06-25 | 2002-10-31 | Edward W. Stark | Verfahren und Vorrichtung zum Messen von Glukoseverwandten Substanzen |
JP3343156B2 (ja) | 1993-07-14 | 2002-11-11 | アークレイ株式会社 | 光学式成分濃度測定装置および方法 |
GB9315671D0 (en) | 1993-07-29 | 1993-09-15 | Dow Corning Sa | Foam control agents and their use |
ITMI931761A1 (it) | 1993-08-03 | 1995-02-03 | Healtech Sa | Dispositivo di supporto di informazioni associabile a pazienti ambulatoriali o ospedalieri per la loro identificazione automatica ed |
TW265262B (en) | 1993-08-13 | 1995-12-11 | Nat Science Committee | Mother-and-child interconnected centrifuge tube used for solution separation |
DK0713533T3 (da) * | 1993-08-13 | 2002-11-04 | Albany Molecular Res Inc | Biokatalytiske metoder til syntese og identifikation af biologisk aktive forbindelser |
WO1995006240A1 (fr) | 1993-08-24 | 1995-03-02 | Metrika Laboratories, Inc. | Nouveau dispositif electronique d'analyse jetable |
CA2129787A1 (fr) | 1993-08-27 | 1995-02-28 | Russell G. Higuchi | Surveillance de plusieurs reactions d'amplification simultanement et analyse de ces reactions simultanement |
US5397709A (en) | 1993-08-27 | 1995-03-14 | Becton Dickinson And Company | System for detecting bacterial growth in a plurality of culture vials |
US5591643A (en) | 1993-09-01 | 1997-01-07 | Abaxis, Inc. | Simplified inlet channels |
US6235531B1 (en) | 1993-09-01 | 2001-05-22 | Abaxis, Inc. | Modified siphons for improved metering precision |
JPH0783936A (ja) | 1993-09-10 | 1995-03-31 | Taitetsuku Kk | 理化学実験方法 |
US6146826A (en) | 1993-09-10 | 2000-11-14 | The Trustees Of Columbia University In The City Of New York | Green fluorescent protein |
AU7843194A (en) * | 1993-09-24 | 1995-04-10 | Abbott Laboratories | Automated continuous and random access analytical system and components thereof |
JP3391862B2 (ja) | 1993-10-05 | 2003-03-31 | 株式会社日立製作所 | クロマトグラム解析方法 |
JPH07120393A (ja) | 1993-10-13 | 1995-05-12 | Nippon Tectron Co Ltd | 蛍光検出法 |
US5525300A (en) | 1993-10-20 | 1996-06-11 | Stratagene | Thermal cycler including a temperature gradient block |
EP0892445B1 (fr) | 1993-11-02 | 2004-04-07 | Matsushita Electric Industrial Co., Ltd. | Dispositif semiconducteur comprenant un agrégat de micro-aiguilles semi-conductrices |
US5403415A (en) | 1993-11-17 | 1995-04-04 | Abaxis, Inc. | Method and device for ultrasonic welding |
JPH07151101A (ja) | 1993-11-29 | 1995-06-13 | Kazuo Sugimura | ダイヤフラム接触面が渦巻状の容器 |
JPH07196314A (ja) | 1993-12-28 | 1995-08-01 | Maruo Calcium Co Ltd | チューブ状合成無機微粒子 |
WO1995021191A1 (fr) | 1994-02-04 | 1995-08-10 | William Ward | Indicateur bioluminescent fonde sur l'expression d'un gene codant pour une proteine modifiee a fluorescence verte |
US5551241A (en) | 1994-03-02 | 1996-09-03 | Boeckel; John W. | Thermoelectric cooling centrifuge |
EP0750680B1 (fr) | 1994-03-15 | 1999-01-13 | Scientific Generics Ltd | Denaturation electro-chimique de l'acide nucleique double brins |
US5590052A (en) | 1994-04-14 | 1996-12-31 | Abaxis, Inc. | Error checking in blood analyzer |
US5648211A (en) | 1994-04-18 | 1997-07-15 | Becton, Dickinson And Company | Strand displacement amplification using thermophilic enzymes |
CA2147560A1 (fr) | 1994-04-22 | 1995-10-23 | Donald H. Devaughn | Appareil avec haut de pipette resistant au transfert de liquide et d'aerosol; methode de reduction de transfert |
US5483799A (en) | 1994-04-29 | 1996-01-16 | Dalto; Michael | Temperature regulated specimen transporter |
JP3584990B2 (ja) | 1994-05-09 | 2004-11-04 | タカラバイオ株式会社 | 抗ヒトインフルエンザウイルス抗体 |
US5976896A (en) * | 1994-06-06 | 1999-11-02 | Idexx Laboratories, Inc. | Immunoassays in capillary tubes |
US6403367B1 (en) | 1994-07-07 | 2002-06-11 | Nanogen, Inc. | Integrated portable biological detection system |
JP2637695B2 (ja) | 1994-07-12 | 1997-08-06 | 株式会社バイオセンサー研究所 | 溶液吸引器具および吸引式溶液内微量物質測定装置 |
US5639428A (en) | 1994-07-19 | 1997-06-17 | Becton Dickinson And Company | Method and apparatus for fully automated nucleic acid amplification, nucleic acid assay and immunoassay |
DE69536004D1 (de) | 1994-07-25 | 2009-10-29 | Molecular Devices Corp | Bestimmung der optischen absorptions-weglänge in einem vertikalstrahlphotometer |
US5891734A (en) | 1994-08-01 | 1999-04-06 | Abbott Laboratories | Method for performing automated analysis |
US5527257A (en) | 1994-09-14 | 1996-06-18 | Piramoon Technologies, Inc. | Rotor having endless straps for mounting swinging buckets |
JP3403839B2 (ja) * | 1994-10-27 | 2003-05-06 | プレシジョン・システム・サイエンス株式会社 | カートリッジ容器 |
JP3652424B2 (ja) * | 1994-10-27 | 2005-05-25 | 日本政策投資銀行 | 自動分析装置及びその方法 |
US5777079A (en) | 1994-11-10 | 1998-07-07 | The Regents Of The University Of California | Modified green fluorescent proteins |
JP3571092B2 (ja) * | 1994-12-20 | 2004-09-29 | 富士写真フイルム株式会社 | 乾式分析フィルム片への試料液点着方法 |
US5932110A (en) * | 1995-02-13 | 1999-08-03 | Aksys, Ltd. | Dialysate conductivity adjustment in a batch dialysate preparation system |
US6484897B1 (en) | 1995-02-13 | 2002-11-26 | Amcad Holdings Limited | Containers with variable volume |
US5557596A (en) | 1995-03-20 | 1996-09-17 | Gibson; Gary | Ultra-high density storage device |
US5578270A (en) | 1995-03-24 | 1996-11-26 | Becton Dickinson And Company | System for nucleic acid based diagnostic assay |
US5874214A (en) | 1995-04-25 | 1999-02-23 | Irori | Remotely programmable matrices with memories |
US6340588B1 (en) | 1995-04-25 | 2002-01-22 | Discovery Partners International, Inc. | Matrices with memories |
US6352854B1 (en) | 1995-04-25 | 2002-03-05 | Discovery Partners International, Inc. | Remotely programmable matrices with memories |
US5582705A (en) | 1995-05-19 | 1996-12-10 | Iowa State University Research Foundation, Inc. | Multiplexed capillary electrophoresis system |
US5772962A (en) | 1995-05-29 | 1998-06-30 | Hitachi, Ltd. | Analyzing apparatus using disposable reaction vessels |
US5518923A (en) | 1995-06-06 | 1996-05-21 | Becton Dickinson And Company | Compact blood culture apparatus |
JP3839524B2 (ja) | 1995-06-07 | 2006-11-01 | アジレント・テクノロジーズ・インク | 小型化全分析システム |
US6274288B1 (en) | 1995-06-12 | 2001-08-14 | California Institute Of Technology | Self-trapping and self-focusing of optical beams in photopolymers |
US6168948B1 (en) | 1995-06-29 | 2001-01-02 | Affymetrix, Inc. | Miniaturized genetic analysis systems and methods |
JP3927570B2 (ja) * | 1995-07-31 | 2007-06-13 | プレシジョン・システム・サイエンス株式会社 | 容器 |
EP2259070A3 (fr) | 1995-07-31 | 2011-03-30 | Precision System Science Co., Ltd. | Récipient |
JPH0968533A (ja) | 1995-08-31 | 1997-03-11 | Brother Ind Ltd | 薬品投与量を表示可能な生化学物質測定装置 |
JP3515646B2 (ja) | 1995-09-18 | 2004-04-05 | 大塚電子株式会社 | マルチキャピラリ電気泳動装置 |
DE19535046C2 (de) | 1995-09-21 | 1998-04-16 | Eppendorf Geraetebau Netheler | Handgerät zum Pipettieren und photometrischen Messen von Proben |
US5628890A (en) | 1995-09-27 | 1997-05-13 | Medisense, Inc. | Electrochemical sensor |
JPH09113511A (ja) | 1995-10-18 | 1997-05-02 | Kdk Corp | グリコアルブミン測定用乾式試験片 |
US5687716A (en) | 1995-11-15 | 1997-11-18 | Kaufmann; Peter | Selective differentiating diagnostic process based on broad data bases |
US5854033A (en) | 1995-11-21 | 1998-12-29 | Yale University | Rolling circle replication reporter systems |
US20060074063A1 (en) | 1995-12-29 | 2006-04-06 | Fernandez-Pol Jose A | Pharmacological agent and method of treatment |
US6660233B1 (en) | 1996-01-16 | 2003-12-09 | Beckman Coulter, Inc. | Analytical biochemistry system with robotically carried bioarray |
JPH09192218A (ja) | 1996-01-16 | 1997-07-29 | Hitachi Ltd | 血糖値管理システム |
US5874304A (en) | 1996-01-18 | 1999-02-23 | University Of Florida Research Foundation, Inc. | Humanized green fluorescent protein genes and methods |
US5863502A (en) | 1996-01-24 | 1999-01-26 | Sarnoff Corporation | Parallel reaction cassette and associated devices |
CN1096185C (zh) | 1996-01-27 | 2002-12-11 | 三星电子株式会社 | 使用运动和空间相关的隔行向逐行转换装置和方法 |
US5804387A (en) | 1996-02-01 | 1998-09-08 | The Board Of Trustees Of The Leland Stanford Junior University | FACS-optimized mutants of the green fluorescent protein (GFP) |
US5876995A (en) | 1996-02-06 | 1999-03-02 | Bryan; Bruce | Bioluminescent novelty items |
US5670375A (en) | 1996-02-21 | 1997-09-23 | Biomerieux Vitek, Inc. | Sample card transport method for biological sample testing machine |
US20010044588A1 (en) | 1996-02-22 | 2001-11-22 | Mault James R. | Monitoring system |
JP2988362B2 (ja) | 1996-03-11 | 1999-12-13 | 株式会社日立製作所 | 多検体分析システム |
JPH09244055A (ja) | 1996-03-14 | 1997-09-19 | Hitachi Ltd | 液晶表示装置 |
DE19610538A1 (de) | 1996-03-18 | 1997-09-25 | Deutsches Krebsforsch | Strahlungsermittlungsvorrichtung |
EP0888546A1 (fr) * | 1996-03-19 | 1999-01-07 | University Of Utah Research Foundation | Appareil d'oscillation et methodes d'immunodosage fluorescent homogene a plusieurs echantillons a analyser |
US6114122A (en) | 1996-03-26 | 2000-09-05 | Affymetrix, Inc. | Fluidics station with a mounting system and method of using |
JP2783277B2 (ja) | 1996-03-27 | 1998-08-06 | 日本電気株式会社 | 患者監視装置及び患者監視システム |
ATE315225T1 (de) * | 1996-03-29 | 2006-02-15 | Byk Gulden Italia Spa | Automatische diagnosevorrichtung |
US5906795A (en) | 1996-04-08 | 1999-05-25 | Sanyo Electric Co., Ltd. | Pipetting apparatus |
JPH09281078A (ja) | 1996-04-09 | 1997-10-31 | Hitachi Electron Eng Co Ltd | Dna塩基配列決定装置 |
US5896297A (en) | 1996-04-15 | 1999-04-20 | Valerino, Sr.; Fred M. | Robotube delivery system |
US6399023B1 (en) | 1996-04-16 | 2002-06-04 | Caliper Technologies Corp. | Analytical system and method |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
JP3213566B2 (ja) | 1996-04-26 | 2001-10-02 | アークレイ株式会社 | 検体分析用具およびそれを用いた検体分析方法並びに検体分析装置 |
US5851170A (en) | 1996-04-30 | 1998-12-22 | Dade Behring Inc. | Centrifuge with cam selectable rotational angles and method for unloading same |
US5879628A (en) | 1996-05-06 | 1999-03-09 | Helena Laboratories Corporation | Blood coagulation system having a bar code reader and a detecting means for detecting the presence of reagents in the cuvette |
JP3682302B2 (ja) * | 1996-05-20 | 2005-08-10 | プレシジョン・システム・サイエンス株式会社 | 分注機による磁性体粒子の制御方法およびその装置 |
US5980830A (en) | 1996-05-20 | 1999-11-09 | Sendx Medical, Inc. | Portable modular blood analyzer with simplified fluid handling sequence |
IL118432A (en) | 1996-05-27 | 1999-12-31 | Yissum Res Dev Co | Electrochemical and photochemical electrodes and their use |
AU727296B2 (en) | 1996-06-04 | 2000-12-07 | University Of Utah Research Foundation | System and methods for monitoring for DNA amplification by fluorescence |
US5939291A (en) | 1996-06-14 | 1999-08-17 | Sarnoff Corporation | Microfluidic method for nucleic acid amplification |
US6429025B1 (en) | 1996-06-28 | 2002-08-06 | Caliper Technologies Corp. | High-throughput screening assay systems in microscale fluidic devices |
US5797898A (en) | 1996-07-02 | 1998-08-25 | Massachusetts Institute Of Technology | Microchip drug delivery devices |
US5807523A (en) | 1996-07-03 | 1998-09-15 | Beckman Instruments, Inc. | Automatic chemistry analyzer |
AU3651497A (en) | 1996-07-05 | 1998-02-02 | Beckman Coulter, Inc. | Automated sample processing system |
EP0818547A1 (fr) | 1996-07-10 | 1998-01-14 | Autoliv ASP, Inc. | Récupération de métaux à partir de dispositifs "air bag" |
US5925558A (en) | 1996-07-16 | 1999-07-20 | The Regents Of The University Of California | Assays for protein kinases using fluorescent protein substrates |
US6145688A (en) | 1996-07-17 | 2000-11-14 | Smith; James C. | Closure device for containers |
US5915284A (en) | 1996-07-22 | 1999-06-22 | Cyberlab, Inc. | Multiple channel pipetting device |
US6101488A (en) | 1996-09-04 | 2000-08-08 | Fujitsu Limited | Intelligent information program generation and retrieval system |
US5854684A (en) | 1996-09-26 | 1998-12-29 | Sarnoff Corporation | Massively parallel detection |
GB9620209D0 (en) | 1996-09-27 | 1996-11-13 | Cemu Bioteknik Ab | Method of sequencing DNA |
US5976796A (en) | 1996-10-04 | 1999-11-02 | Loma Linda University | Construction and expression of renilla luciferase and green fluorescent protein fusion genes |
JPH10123136A (ja) | 1996-10-24 | 1998-05-15 | Nippon Tectron Co Ltd | 自動免疫分析装置 |
US5874046A (en) | 1996-10-30 | 1999-02-23 | Raytheon Company | Biological warfare agent sensor system employing ruthenium-terminated oligonucleotides complementary to target live agent DNA sequences |
JP3390793B2 (ja) | 1996-11-06 | 2003-03-31 | 日本電信電話株式会社 | 曲げ剛性測定方法及びその装置 |
AU746549B2 (en) | 1996-11-20 | 2002-05-02 | Becton Dickinson & Company | Microfabricated isothermal nucleic acid amplification devices and methods |
GB9624096D0 (en) | 1996-11-20 | 1997-01-08 | Microbial Systems Ltd | Apparatus and method of use thereof |
US6093156A (en) | 1996-12-06 | 2000-07-25 | Abbott Laboratories | Method and apparatus for obtaining blood for diagnostic tests |
EP1015872B1 (fr) | 1996-12-12 | 2005-03-02 | Prolume, Ltd. | Appareil permettant de detecter et d'identifier des agents infectieux et procede correspondant |
JPH10239240A (ja) | 1997-02-25 | 1998-09-11 | Hitachi Ltd | 自動dnaプローブ装置 |
GB2337113B (en) | 1997-02-28 | 2001-03-21 | Burstein Lab Inc | Laboratory in a disk |
US8293064B2 (en) | 1998-03-02 | 2012-10-23 | Cepheid | Method for fabricating a reaction vessel |
WO1998038487A2 (fr) | 1997-02-28 | 1998-09-03 | Cepheid | Ensemble pour reaction chimique avec echange thermique et interrogee optiquement |
US5846492A (en) | 1997-03-11 | 1998-12-08 | Johnson & Johnson Clinical Diagnostics, Inc. | Sample quality measurement and/or analyte measurement in the dispensing tip of an analyzer |
US6013528A (en) | 1997-03-11 | 2000-01-11 | Ortho-Clinical Diagnostis, Inc. | Analyzer throughput featuring through-the-tip analysis |
JP3393361B2 (ja) | 1997-03-24 | 2003-04-07 | 国立身体障害者リハビリテーションセンター総長 | バイオセンサ |
GB9706654D0 (en) | 1997-04-02 | 1997-05-21 | Scient Generics Ltd | Disassociation of interacting molecules |
US6235471B1 (en) | 1997-04-04 | 2001-05-22 | Caliper Technologies Corp. | Closed-loop biochemical analyzers |
EP0917590A1 (fr) | 1997-04-04 | 1999-05-26 | Innogenetics N.V. | Amplification isothermique en chaine par polymerase par oscillation controlee de la concentration d'ions metalliques divalents |
US5961451A (en) | 1997-04-07 | 1999-10-05 | Motorola, Inc. | Noninvasive apparatus having a retaining member to retain a removable biosensor |
US6696286B1 (en) * | 1997-04-09 | 2004-02-24 | 3M Innovative Properties Company | Method and devices for detecting and enumerating microorganisms |
EP0871034B1 (fr) | 1997-04-10 | 2007-03-07 | Hitachi, Ltd. | Appareil d'analyses automatisé |
JP3181853B2 (ja) | 1997-04-10 | 2001-07-03 | キヤノン株式会社 | 密着型イメージセンサ及び情報処理装置 |
DE19717023C2 (de) | 1997-04-23 | 2003-02-06 | Micronas Gmbh | Vorrichtung zum Behandeln von malignen, tumorösen Gewebebereichen |
KR100351531B1 (ko) | 1997-04-25 | 2002-09-11 | 캘리퍼 테크놀로지스 코포레이션 | 기하형상이 개선된 채널을 채용하는 미소 유체 장치 |
US6429007B1 (en) | 1997-05-02 | 2002-08-06 | BIOMéRIEUX, INC. | Nucleic acid amplification reaction station for disposable test devices |
US6406845B1 (en) | 1997-05-05 | 2002-06-18 | Trustees Of Tuft College | Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample |
JPH10305016A (ja) | 1997-05-08 | 1998-11-17 | Casio Comput Co Ltd | 行動情報提供システム |
US5904899A (en) | 1997-05-15 | 1999-05-18 | Tosoh Corporation | Assaying apparatus and a vessel holder device in use with the assaying apparatus |
US5985214A (en) | 1997-05-16 | 1999-11-16 | Aurora Biosciences Corporation | Systems and methods for rapidly identifying useful chemicals in liquid samples |
ATE306324T1 (de) * | 1997-06-09 | 2005-10-15 | Hoffmann La Roche | Einweg-analysevorrichtung |
US6115545A (en) | 1997-07-09 | 2000-09-05 | Hewlett-Packard Company | Automatic internet protocol (IP) address allocation and assignment |
WO1999004043A1 (fr) | 1997-07-14 | 1999-01-28 | Abbott Laboratories | Telemedecine |
US7475965B2 (en) | 1997-07-15 | 2009-01-13 | Silverbrook Research Pty Ltd | Inkjet printer with low droplet to chamber volume ratio |
US6589789B1 (en) | 1997-07-21 | 2003-07-08 | Quest Diagnostics Incorporated | Automated centrifuge loading device |
JPH1137845A (ja) | 1997-07-22 | 1999-02-12 | Matsushita Electric Ind Co Ltd | 血清量測定装置 |
US5876675A (en) | 1997-08-05 | 1999-03-02 | Caliper Technologies Corp. | Microfluidic devices and systems |
US6294331B1 (en) | 1997-08-08 | 2001-09-25 | The United States Of America As Represented By The Department Of Health And Human Services | Methods for assessing genetic and phenotypic markers by simultaneous multicolor visualization of chromogenic dyes using brightfield microscopy and spectral imaging |
US6368871B1 (en) | 1997-08-13 | 2002-04-09 | Cepheid | Non-planar microstructures for manipulation of fluid samples |
JPH1157560A (ja) | 1997-08-27 | 1999-03-02 | Shin Meiwa Ind Co Ltd | 液体散布車 |
US6042909A (en) | 1997-09-03 | 2000-03-28 | Circe Biomedical, Inc. | Encapsulation device |
EP0902290B1 (fr) | 1997-09-11 | 2008-11-05 | Hitachi, Ltd. | Système de manipulation d'échantillons pour des dispositifs d'analyse automatiques |
US6597450B1 (en) * | 1997-09-15 | 2003-07-22 | Becton, Dickinson And Company | Automated Optical Reader for Nucleic Acid Assays |
GB9719673D0 (en) * | 1997-09-17 | 1997-11-19 | Glaxo Group Ltd | Novel apparatus |
US6825921B1 (en) | 1999-11-10 | 2004-11-30 | Molecular Devices Corporation | Multi-mode light detection system |
US6902703B2 (en) | 1999-05-03 | 2005-06-07 | Ljl Biosystems, Inc. | Integrated sample-processing system |
US6982431B2 (en) | 1998-08-31 | 2006-01-03 | Molecular Devices Corporation | Sample analysis systems |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
DE19745373A1 (de) * | 1997-10-14 | 1999-04-15 | Bayer Ag | Optisches Meßsystem zur Erfassung von Lumineszenz- oder Fluoreszenzsignalen |
FI107080B (fi) | 1997-10-27 | 2001-05-31 | Nokia Mobile Phones Ltd | Mittauslaite |
US6121054A (en) * | 1997-11-19 | 2000-09-19 | Trega Biosciences, Inc. | Method for separation of liquid and solid phases for solid phase organic syntheses |
US6174675B1 (en) | 1997-11-25 | 2001-01-16 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
AUPP058197A0 (en) | 1997-11-27 | 1997-12-18 | A.I. Scientific Pty Ltd | Pathology sample tube distributor |
US6083682A (en) * | 1997-12-19 | 2000-07-04 | Glaxo Group Limited | System and method for solid-phase parallel synthesis of a combinatorial collection of compounds |
DE69840916D1 (de) * | 1997-12-22 | 2009-07-30 | Roche Diagnostics Operations | Messgerät |
ATE400358T1 (de) | 1997-12-24 | 2008-07-15 | Cepheid | Vorrichtung und verfahren zur lyse |
US6074616A (en) | 1998-01-05 | 2000-06-13 | Biosite Diagnostics, Inc. | Media carrier for an assay device |
US5993417A (en) * | 1998-01-06 | 1999-11-30 | Yerfino; Daniel Alberto | Disposable syringe with an automatically retractable hypodermic needle |
US5972615A (en) * | 1998-01-21 | 1999-10-26 | Urocor, Inc. | Biomarkers and targets for diagnosis, prognosis and management of prostate disease |
WO1999039829A1 (fr) * | 1998-02-04 | 1999-08-12 | Merck & Co., Inc. | Puits virtuels destines a etre utilises dans des criblages a haut rendement |
US6420143B1 (en) * | 1998-02-13 | 2002-07-16 | Caliper Technologies Corp. | Methods and systems for performing superheated reactions in microscale fluidic systems |
US6861035B2 (en) | 1998-02-24 | 2005-03-01 | Aurora Discovery, Inc. | Multi-well platforms, caddies, lids and combinations thereof |
US6369893B1 (en) | 1998-05-19 | 2002-04-09 | Cepheid | Multi-channel optical detection system |
US6030582A (en) | 1998-03-06 | 2000-02-29 | Levy; Abner | Self-resealing, puncturable container cap |
US20110130740A1 (en) | 1998-03-06 | 2011-06-02 | Abner Levy | Medication Bottle for Use with Oral Syringe |
US6752965B2 (en) | 1998-03-06 | 2004-06-22 | Abner Levy | Self resealing elastomeric closure |
WO1999046591A2 (fr) | 1998-03-10 | 1999-09-16 | Strategic Diagnostics, Inc. | Dispositif de dosage integre et ses procedes de production |
US6979424B2 (en) | 1998-03-17 | 2005-12-27 | Cepheid | Integrated sample analysis device |
US7188001B2 (en) | 1998-03-23 | 2007-03-06 | Cepheid | System and method for temperature control |
EP1064360B1 (fr) | 1998-03-27 | 2008-03-05 | Prolume, Ltd. | Luciferases, proteines fluorescentes gfp, leurs acides nucleiques, et leur utilisation en diagnostic |
US6235534B1 (en) | 1998-04-27 | 2001-05-22 | Ronald Frederich Brookes | Incremental absorbance scanning of liquid in dispensing tips |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
ATE423622T1 (de) | 1998-05-01 | 2009-03-15 | Gen Probe Inc | Automatisches isolierungs- und amplifizierungsverfahren für eine zielnukleinsäuresequenz |
EP0955097B1 (fr) | 1998-05-04 | 2004-10-06 | F. Hoffmann-La Roche Ag | Dispositif de cycles thermiques avec positionnement automatique du couvercle |
US6200531B1 (en) | 1998-05-11 | 2001-03-13 | Igen International, Inc. | Apparatus for carrying out electrochemiluminescence test measurements |
US7394363B1 (en) | 1998-05-12 | 2008-07-01 | Bahador Ghahramani | Intelligent multi purpose early warning system for shipping containers, components therefor and methods of making the same |
US7498164B2 (en) | 1998-05-16 | 2009-03-03 | Applied Biosystems, Llc | Instrument for monitoring nucleic acid sequence amplification reaction |
US6287765B1 (en) | 1998-05-20 | 2001-09-11 | Molecular Machines, Inc. | Methods for detecting and identifying single molecules |
EP0962773A1 (fr) | 1998-06-03 | 1999-12-08 | Mark Howard Jones | Procédés d'essai, dispositif et marqueurs à base d'électrochimie |
JP3389106B2 (ja) | 1998-06-11 | 2003-03-24 | 松下電器産業株式会社 | 電気化学分析素子 |
US6780617B2 (en) | 2000-12-29 | 2004-08-24 | Chen & Chen, Llc | Sample processing device and method |
US6743605B1 (en) | 1998-06-24 | 2004-06-01 | Enzo Life Sciences, Inc. | Linear amplification of specific nucleic acid sequences |
EP1192089A1 (fr) | 1998-07-06 | 2002-04-03 | The Coca-Cola Company | Panier avec logement faconne dans sa structure |
GB9816088D0 (en) | 1998-07-23 | 1998-09-23 | Axis Biochemicals Asa | System |
US6091490A (en) | 1998-07-30 | 2000-07-18 | The United States Of America As Represented By The Secretary Of The Navy | Fiber-optic pipette (FOP) for rapid long pathlength capillary spectroscopy |
DE19835833A1 (de) | 1998-08-07 | 2000-02-17 | Max Planck Gesellschaft | Dosierkopf zur parallelen Bearbeitung einer Vielzahl von Fluidproben |
US6562300B2 (en) | 1998-08-28 | 2003-05-13 | Becton, Dickinson And Company | Collection assembly |
US6132582A (en) * | 1998-09-14 | 2000-10-17 | The Perkin-Elmer Corporation | Sample handling system for a multi-channel capillary electrophoresis device |
US6517475B1 (en) | 1998-09-25 | 2003-02-11 | Baldwin Filters, Inc. | Centrifugal filter for removing soot from engine oil |
US6159368A (en) * | 1998-10-29 | 2000-12-12 | The Perkin-Elmer Corporation | Multi-well microfiltration apparatus |
ATE374833T1 (de) | 1998-11-09 | 2007-10-15 | Eiken Chemical | Verfahren zur synthese von nukleinsäuren |
US20100262432A1 (en) | 1998-11-13 | 2010-10-14 | Anuthep Benja-Athon | Computer-created-consensus-based health-care system |
US20030012699A1 (en) * | 1998-11-18 | 2003-01-16 | Thomas Moore | Simultaneous handling of magnetic beads in a two-dimensional arrangement |
US6309828B1 (en) | 1998-11-18 | 2001-10-30 | Agilent Technologies, Inc. | Method and apparatus for fabricating replicate arrays of nucleic acid molecules |
RU2147123C1 (ru) | 1998-12-16 | 2000-03-27 | Боев Сергей Федотович | Способ анализа клеточного состава крови по мазку |
US6887693B2 (en) | 1998-12-24 | 2005-05-03 | Cepheid | Device and method for lysing cells, spores, or microorganisms |
US7914994B2 (en) | 1998-12-24 | 2011-03-29 | Cepheid | Method for separating an analyte from a sample |
WO2000040749A2 (fr) | 1999-01-06 | 2000-07-13 | Genenews Inc. | Technique de detection de transcrits geniques dans le sang et leur utilisation |
US6197254B1 (en) | 1999-01-11 | 2001-03-06 | International Food Protection | Self-contained assaying apparatus |
EP1054250B1 (fr) * | 1999-01-25 | 2002-09-04 | Hamamatsu Photonics K.K. | Adaptateur de pipette, pipette de mesure par absorbance, procede et appareil de mesure par absorbance |
US7450229B2 (en) | 1999-01-25 | 2008-11-11 | Amnis Corporation | Methods for analyzing inter-cellular phenomena |
US8885913B2 (en) | 1999-01-25 | 2014-11-11 | Amnis Corporation | Detection of circulating tumor cells using imaging flow cytometry |
US8005314B2 (en) | 2005-12-09 | 2011-08-23 | Amnis Corporation | Extended depth of field imaging for high speed object analysis |
US6348176B1 (en) | 1999-02-11 | 2002-02-19 | Careside, Inc. | Cartridge-based analytical instrument using centrifugal force/pressure for metering/transport of fluids |
GB9903906D0 (en) | 1999-02-19 | 1999-04-14 | Microbiological Res Authority | Method and apparatus for nucleic acid strand separation |
US6215894B1 (en) | 1999-02-26 | 2001-04-10 | General Scanning, Incorporated | Automatic imaging and analysis of microarray biochips |
US8636648B2 (en) | 1999-03-01 | 2014-01-28 | West View Research, Llc | Endoscopic smart probe |
EP1173744A4 (fr) * | 1999-03-02 | 2002-10-16 | Qualigen Inc | Procedes et appareil de separation de fluides biologiques |
EP1127611A3 (fr) | 1999-03-03 | 2001-11-07 | Symyx Technologies, Inc. | Microsystèmes de traitement chimique avec d' analyse intégrée basée sur la séparation des produits de réaction |
JP3524419B2 (ja) | 1999-03-08 | 2004-05-10 | アロカ株式会社 | 吸光度測定装置 |
US20020176801A1 (en) | 1999-03-23 | 2002-11-28 | Giebeler Robert H. | Fluid delivery and analysis systems |
EP1041386B1 (fr) * | 1999-03-25 | 2007-10-17 | Tosoh Corporation | Analyseur |
US6305804B1 (en) | 1999-03-25 | 2001-10-23 | Fovioptics, Inc. | Non-invasive measurement of blood component using retinal imaging |
US6699669B2 (en) * | 1999-04-09 | 2004-03-02 | Space Hardware Optimization Technology, Inc. | Multistage electromagnetic separator for purifying cells, chemicals and protein structures |
US20050100943A1 (en) * | 2000-04-11 | 2005-05-12 | Hideki Kambara | Method of producing probe arrays for biological materials using fine particles |
US6143252A (en) | 1999-04-12 | 2000-11-07 | The Perkin-Elmer Corporation | Pipetting device with pipette tip for solid phase reactions |
US20020177135A1 (en) | 1999-07-27 | 2002-11-28 | Doung Hau H. | Devices and methods for biochip multiplexing |
US20040053290A1 (en) | 2000-01-11 | 2004-03-18 | Terbrueggen Robert Henry | Devices and methods for biochip multiplexing |
JP4085514B2 (ja) | 1999-04-30 | 2008-05-14 | 株式会社島津製作所 | 電気泳動チップ |
JP2003523940A (ja) | 1999-05-11 | 2003-08-12 | オーソ−マクネイル ファーマシューティカル インコーポレイテッド | エリスロポエチン投与の薬物速度論的および薬力学的モデリング |
US6582964B1 (en) | 1999-05-12 | 2003-06-24 | Cme Telemetrix Inc. | Method and apparatus for rapid measurement of HbA1c |
US6716396B1 (en) | 1999-05-14 | 2004-04-06 | Gen-Probe Incorporated | Penetrable cap |
US7056661B2 (en) | 1999-05-19 | 2006-06-06 | Cornell Research Foundation, Inc. | Method for sequencing nucleic acid molecules |
US6544732B1 (en) | 1999-05-20 | 2003-04-08 | Illumina, Inc. | Encoding and decoding of array sensors utilizing nanocrystals |
US6818185B1 (en) | 1999-05-28 | 2004-11-16 | Cepheid | Cartridge for conducting a chemical reaction |
DE60022025T2 (de) | 1999-05-28 | 2006-06-29 | Cepheid, Sunnyvale | Anlage zum brechen von zellen |
US7068361B2 (en) | 1999-06-03 | 2006-06-27 | Baxter International | Apparatus, systems and methods for processing and treating a biological fluid with light |
US6056661A (en) | 1999-06-14 | 2000-05-02 | General Motors Corporation | Multi-range transmission with input split planetary gear set and continuously variable transmission unit |
WO2000078454A1 (fr) | 1999-06-22 | 2000-12-28 | Agilent Technologies, Inc. | Appareil de commande d'un dispositif microfluidique |
US7195670B2 (en) | 2000-06-27 | 2007-03-27 | California Institute Of Technology | High throughput screening of crystallization of materials |
US7951612B2 (en) * | 1999-07-08 | 2011-05-31 | Lee H. Angros | In situ heat induced antigen recovery and staining apparatus and method |
EP1196757B1 (fr) | 1999-07-09 | 2004-01-07 | Genevac Limited | Evaporateur centrifuge pour echantillons a ecran de protection contre la chaleur directe et chauffage uniforme |
US20020010145A1 (en) * | 1999-07-12 | 2002-01-24 | Willson Richard C. | Apparatus, methods and compositions for biotechnical separations |
US6353475B1 (en) | 1999-07-12 | 2002-03-05 | Caliper Technologies Corp. | Light source power modulation for use with chemical and biochemical analysis |
US7138254B2 (en) * | 1999-08-02 | 2006-11-21 | Ge Healthcare (Sv) Corp. | Methods and apparatus for performing submicroliter reactions with nucleic acids or proteins |
US6423536B1 (en) * | 1999-08-02 | 2002-07-23 | Molecular Dynamics, Inc. | Low volume chemical and biochemical reaction system |
US6244119B1 (en) | 1999-08-03 | 2001-06-12 | Wallac Oy | Multichannel pipette system and pipette tips therefor |
AU6524100A (en) | 1999-08-06 | 2001-03-05 | Thermo Biostar Inc. | An automated point of care detection system including complete sample processingcapabilities |
TW517154B (en) | 1999-08-11 | 2003-01-11 | Asahi Chemical Ind | Analyzing cartridge and liquid feed control device |
JP2001065458A (ja) | 1999-08-25 | 2001-03-16 | Matsushita Electric Ind Co Ltd | 圧縮機 |
US6858185B1 (en) | 1999-08-25 | 2005-02-22 | Caliper Life Sciences, Inc. | Dilutions in high throughput systems with a single vacuum source |
RU2148438C1 (ru) | 1999-08-31 | 2000-05-10 | Корчагин Александр Васильевич | Центрифуга |
CN1192567C (zh) | 1999-09-09 | 2005-03-09 | 诺基亚公司 | 基于功率频谱密度估计的数据速率确定 |
US20030175993A1 (en) * | 1999-09-10 | 2003-09-18 | Anthony Toranto | Ketone assay |
DK1431303T3 (en) | 1999-09-13 | 2014-02-17 | Nugen Technologies Inc | A composition for isothermal linear amplification of polynucleotide sequences |
DE19944516B4 (de) | 1999-09-16 | 2006-08-17 | Brainlab Ag | Dreidimensionale Formerfassung mit Kamerabildern |
US6835184B1 (en) | 1999-09-24 | 2004-12-28 | Becton, Dickinson And Company | Method and device for abrading skin |
US6675037B1 (en) | 1999-09-29 | 2004-01-06 | Regents Of The University Of Minnesota | MRI-guided interventional mammary procedures |
WO2001023610A2 (fr) | 1999-09-29 | 2001-04-05 | Solexa Ltd. | Sequençage de polynucleotides |
US6368275B1 (en) | 1999-10-07 | 2002-04-09 | Acuson Corporation | Method and apparatus for diagnostic medical information gathering, hyperthermia treatment, or directed gene therapy |
JP3481578B2 (ja) | 1999-10-12 | 2003-12-22 | 松下電器産業株式会社 | 電子放出素子およびそれを利用した電子源、電界放出型画像表示装置、蛍光灯、並びにそれらの製造方法 |
US7329388B2 (en) * | 1999-11-08 | 2008-02-12 | Princeton Biochemicals, Inc. | Electrophoresis apparatus having staggered passage configuration |
US6471916B1 (en) | 1999-11-09 | 2002-10-29 | Packard Instrument Company | Apparatus and method for calibration of a microarray scanning system |
US6361958B1 (en) | 1999-11-12 | 2002-03-26 | Motorola, Inc. | Biochannel assay for hybridization with biomaterial |
US6750053B1 (en) | 1999-11-15 | 2004-06-15 | I-Stat Corporation | Apparatus and method for assaying coagulation in fluid samples |
US6491666B1 (en) | 1999-11-17 | 2002-12-10 | Microchips, Inc. | Microfabricated devices for the delivery of molecules into a carrier fluid |
JP3441058B2 (ja) | 1999-12-03 | 2003-08-25 | 理化学研究所 | キャピラリーゲル電気泳動用マイクロチップおよびその製造方法 |
JP2001165752A (ja) | 1999-12-06 | 2001-06-22 | Hitachi Ltd | 血清量測定装置および測定方法 |
GB9930000D0 (en) | 1999-12-21 | 2000-02-09 | Phaeton Research Ltd | An ingestible device |
JP4497335B2 (ja) | 1999-12-22 | 2010-07-07 | ベックマン・コールター・インコーポレーテッド | 分析装置 |
US7747312B2 (en) | 2000-01-04 | 2010-06-29 | George Mason Intellectual Properties, Inc. | System and method for automatic shape registration and instrument tracking |
ATE350160T1 (de) | 2000-01-11 | 2007-01-15 | Clinical Micro Sensors Inc | Patrone, die einen biochip enthält |
US6361486B1 (en) | 2000-02-29 | 2002-03-26 | Agilent Technologies, Inc. | Coaxial-drive centrifuge providing tilt control relative to centrifugal force |
WO2001064344A2 (fr) | 2000-03-02 | 2001-09-07 | Microchips, Inc. | Dispositifs microfabriques destines au stockage et a l'exposition selective de produits chimiques et de dispositifs |
CN1255676C (zh) | 2000-03-09 | 2006-05-10 | 医疗分析公司 | 医疗诊断系统 |
BR0109159A (pt) | 2000-03-15 | 2004-09-28 | Emedicalfiles Inc | Sistema de gerenciamento de informações, médicas e de, saúde, hospedado na web |
DE10013511A1 (de) | 2000-03-20 | 2001-10-11 | Brand Gmbh & Co Kg | Mehrkanal-Pipettiereinrichtung sowie Pipettenschaft dafür |
US6488827B1 (en) * | 2000-03-31 | 2002-12-03 | Lifescan, Inc. | Capillary flow control in a medical diagnostic device |
US6413213B1 (en) | 2000-04-18 | 2002-07-02 | Roche Diagnostics Corporation | Subscription based monitoring system and method |
ATE420189T1 (de) | 2000-04-28 | 2009-01-15 | St Jude Childrens Res Hospital | Dna-transfektionssystem zur erzeugung von infektiösen negativsträngigen rna virus |
DE10022693C1 (de) | 2000-05-05 | 2001-10-11 | Cybio Instr Gmbh | Pipettierautomat mit einem Einreihigen-Mehrkanal-Pipettierkopf |
US20020052761A1 (en) | 2000-05-11 | 2002-05-02 | Fey Christopher T. | Method and system for genetic screening data collection, analysis, report generation and access |
JP2003533682A (ja) | 2000-05-15 | 2003-11-11 | テカン・トレーディング・アクチェンゲゼルシャフト | 双方向流動遠心ミクロ流体装置 |
US7006858B2 (en) | 2000-05-15 | 2006-02-28 | Silver James H | Implantable, retrievable sensors and immunosensors |
US6917726B2 (en) | 2001-09-27 | 2005-07-12 | Cornell Research Foundation, Inc. | Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes |
US6943035B1 (en) | 2000-05-19 | 2005-09-13 | Genetix Limited | Liquid dispensing apparatus and method |
IL163684A0 (en) | 2000-05-31 | 2005-12-18 | Given Imaging Ltd | Measurement of electrical characteristics of tissue |
AU2001265012B2 (en) | 2000-06-01 | 2006-07-13 | Georgetown University | Systems and methods for monitoring health and delivering drugs transdermally |
US8071051B2 (en) | 2004-05-14 | 2011-12-06 | Honeywell International Inc. | Portable sample analyzer cartridge |
WO2001093743A2 (fr) | 2000-06-07 | 2001-12-13 | Healthetech, Inc. | Analyseur d'haleine pour detecter la presence de cetones |
US7276158B1 (en) | 2000-06-09 | 2007-10-02 | Ashok K Shukla | Incision-based filtration/separation pipette tip |
JP3638503B2 (ja) * | 2000-06-12 | 2005-04-13 | アークレイ株式会社 | カートリッジ式容器を用いる測定装置および測定方法並びに記録媒体 |
US6465953B1 (en) | 2000-06-12 | 2002-10-15 | General Electric Company | Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices |
FR2810407B1 (fr) | 2000-06-16 | 2002-08-02 | Philippe Escal | Appareil pour l'analyse d'echantillons |
CA2415319A1 (fr) * | 2000-06-16 | 2001-12-20 | Martek Biosciences Corporation | Phycobiliproteine de recombinaison, proteines de fusion a liaison par phycobiliproteine et utilisations a cet effet |
US6859830B1 (en) | 2000-06-23 | 2005-02-22 | Microsoft Corporation | Method and system for detecting a dead server |
US6468474B2 (en) | 2000-07-06 | 2002-10-22 | Varian, Inc. | Saliva testing and confirmation device |
US6603987B2 (en) | 2000-07-11 | 2003-08-05 | Bayer Corporation | Hollow microneedle patch |
US6806604B2 (en) | 2000-07-13 | 2004-10-19 | Kendro Laboratory Products Gmbh | Centrifuge with a magnetically stabilized rotor for centrifugal goods |
JP2002031055A (ja) | 2000-07-14 | 2002-01-31 | Matsushita Electric Ind Co Ltd | 密閉型圧縮機 |
WO2002007064A2 (fr) | 2000-07-17 | 2002-01-24 | Labnetics, Inc. | Procede et appareil pour le traitement des informations electroniques collectees a distance caracterisant les proprietes d'entites biologiques |
EP1304959A1 (fr) | 2000-07-24 | 2003-05-02 | Motorola, Inc. | Capsule electronique a ingerer |
JP2002044007A (ja) | 2000-07-26 | 2002-02-08 | Ricoh Elemex Corp | 携帯電話機 |
US20040005582A1 (en) | 2000-08-10 | 2004-01-08 | Nanobiodynamics, Incorporated | Biospecific desorption microflow systems and methods for studying biospecific interactions and their modulators |
US6905886B2 (en) | 2000-08-11 | 2005-06-14 | Quest Diagnostics Investments Incorporated | Preservative solutions |
US6797518B1 (en) | 2000-09-11 | 2004-09-28 | Ortho-Clinical Diagnostics, Inc. | Analysis method with sample quality measurement |
DE10046110B8 (de) | 2000-09-18 | 2006-07-06 | Siemens Ag | Medizinisches Diagnosegerät mit Patientenerkennung |
WO2002026286A2 (fr) | 2000-09-27 | 2002-04-04 | Cobe Cardiovascular, Inc. | Systeme de perfusion sanguine |
US6689615B1 (en) * | 2000-10-04 | 2004-02-10 | James Murto | Methods and devices for processing blood samples |
WO2002031747A1 (fr) | 2000-10-13 | 2002-04-18 | Irm Llc | Systeme de traitement a haut rendement et procede d'utilisation |
CA2360194C (fr) | 2000-10-25 | 2008-10-07 | Micronix, Inc. | Microcuvette pour l'analyse de corps a l'etat solide utilisant des pellicules seches |
US20020139936A1 (en) | 2000-10-27 | 2002-10-03 | Dumas David P. | Apparatus for fluorescence detection on arrays |
EP1332000B1 (fr) | 2000-10-30 | 2012-06-20 | Sequenom, Inc. | Procede d'apport de volumes inferieurs au microlitre sur un substrat |
US6929636B1 (en) | 2000-11-08 | 2005-08-16 | Hewlett-Packard Development Company, L.P. | Internal drug dispenser capsule medical device |
AU2001295361A1 (en) | 2000-11-17 | 2002-05-27 | Tecan Trading Ag | Method and device for determining the volume of a sample of a liquid |
US6905816B2 (en) * | 2000-11-27 | 2005-06-14 | Intelligent Medical Devices, Inc. | Clinically intelligent diagnostic devices and methods |
JP2002161856A (ja) | 2000-11-28 | 2002-06-07 | Matsushita Electric Ind Co Ltd | シャフトおよびシャフトの製造方法 |
JP2004537713A (ja) | 2000-12-01 | 2004-12-16 | セテク コーポレイション | 高処理量の毛管電気泳動システム |
EP1363736B1 (fr) | 2000-12-18 | 2011-03-02 | Protedyne Corporation | Extrusion du gel pour electrophorese sur gel |
GB0030929D0 (en) | 2000-12-19 | 2001-01-31 | Inverness Medical Ltd | Analyte measurement |
US6312929B1 (en) | 2000-12-22 | 2001-11-06 | Cepheid | Compositions and methods enabling a totally internally controlled amplification reaction |
AU2002243360A1 (en) | 2000-12-26 | 2002-08-06 | C. Frederick Battrell | Microfluidic cartridge with integrated electronics |
JP2003144176A (ja) | 2000-12-27 | 2003-05-20 | Inst Of Physical & Chemical Res | 遺伝子多型の検出方法 |
US6870797B2 (en) | 2001-01-04 | 2005-03-22 | Hewlett-Packard Development Company, L.P. | Media storage system using a transponder for transmitting data signal |
US7435384B2 (en) | 2001-01-08 | 2008-10-14 | Leonard Fish | Diagnostic instrument with movable electrode mounting member and methods for detecting analytes |
US7205157B2 (en) | 2001-01-08 | 2007-04-17 | Becton, Dickinson And Company | Method of separating cells from a sample |
CA2366802A1 (fr) | 2001-01-17 | 2002-07-17 | Bayer Corporation | Methode et appareil permettant d'utiliser les releves infrarouges pour detecter les erreurs d'identification d'une bande d'essai diagnostique utilisee dans un spectrometre a reflectance |
US7315784B2 (en) | 2001-02-15 | 2008-01-01 | Siemens Aktiengesellschaft | Network for evaluating data obtained in a biochip measurement device |
US6484104B2 (en) | 2001-02-15 | 2002-11-19 | Klaus Abraham-Fuchs | Network for evaluating data obtained in a biochip measurement device |
US7567913B2 (en) | 2001-02-16 | 2009-07-28 | Quest Diagnostics Inc. | Method and system for ordering a laboratory test for a patient and obtaining results thereof |
US6612985B2 (en) | 2001-02-26 | 2003-09-02 | University Of Rochester | Method and system for monitoring and treating a patient |
US6899848B1 (en) | 2001-02-27 | 2005-05-31 | Hamilton Company | Automated sample treatment system: apparatus and method |
US6341490B1 (en) * | 2001-03-03 | 2002-01-29 | Gilson, Inc. | Heat transfer apparatus for sample containing well plates |
US6949377B2 (en) | 2001-03-05 | 2005-09-27 | Ho Winston Z | Chemiluminescence-based microfluidic biochip |
JP2002266762A (ja) | 2001-03-07 | 2002-09-18 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置 |
KR20030082535A (ko) | 2001-03-09 | 2003-10-22 | 뉴젠 테크놀로지스 인코포레이티드 | Rna 서열의 증폭을 위한 방법 및 조성물 |
US6893612B2 (en) | 2001-03-09 | 2005-05-17 | Gen-Probe Incorporated | Penetrable cap |
JP2002263185A (ja) | 2001-03-12 | 2002-09-17 | Sanyo Electric Co Ltd | 投薬システム及び方法及び投薬装置 |
US6748337B2 (en) | 2001-03-14 | 2004-06-08 | Wardlaw Partners, Lp | Method and apparatus for providing quality control in an instrument for medical analysis |
JP2002282217A (ja) | 2001-03-27 | 2002-10-02 | Sysmex Corp | 測定装置及びそれを含む測定結果管理システム |
US7010391B2 (en) | 2001-03-28 | 2006-03-07 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US20040044560A1 (en) | 2001-04-05 | 2004-03-04 | Joe Giglio | Kiosk with body fat analyzer |
US7458483B2 (en) | 2001-04-24 | 2008-12-02 | Abbott Laboratories, Inc. | Assay testing diagnostic analyzer |
WO2002089972A1 (fr) * | 2001-05-03 | 2002-11-14 | Commissariat A L'energie Atomique | Dispositif microfluidique destine a l'analyse d'acides nucleiques et/ou de proteines, ses procedes de preparation et son utilisation |
EP1387671A1 (fr) | 2001-05-03 | 2004-02-11 | MASSACHUSETTS EYE & EAR INFIRMARY | Dispositif d'administration de medicament implantable et utilisation associee |
US20030211618A1 (en) | 2001-05-07 | 2003-11-13 | Patel Gordhandhai Nathalal | Color changing steam sterilization indicator |
EP1390760B1 (fr) | 2001-05-09 | 2008-06-18 | Axis-Shield Asa | Systeme de dosage |
US6591124B2 (en) | 2001-05-11 | 2003-07-08 | The Procter & Gamble Company | Portable interstitial fluid monitoring system |
US20050009101A1 (en) | 2001-05-17 | 2005-01-13 | Motorola, Inc. | Microfluidic devices comprising biochannels |
US6919046B2 (en) | 2001-06-07 | 2005-07-19 | Nanostream, Inc. | Microfluidic analytical devices and methods |
JP2002371955A (ja) | 2001-06-15 | 2002-12-26 | Sanuki Kogyo Kk | 往復駆動装置及び該装置を使用した送液ポンプ |
EP1270078B1 (fr) | 2001-06-22 | 2004-09-15 | Jouan Italia S.R.L. | Appareil et procédé pour charger et décharger, automatiquement de godets pour centrifugeuse |
AUPR604101A0 (en) | 2001-06-29 | 2001-07-26 | Unisearch Limited | Aptamers |
CA2764307C (fr) | 2001-06-29 | 2015-03-03 | Meso Scale Technologies, Llc. | Plaques d'epreuve, systemes lecteurs et methodes de mesures de tests par luminescence |
US20030208113A1 (en) | 2001-07-18 | 2003-11-06 | Mault James R | Closed loop glycemic index system |
US6833441B2 (en) | 2001-08-01 | 2004-12-21 | Abmaxis, Inc. | Compositions and methods for generating chimeric heteromultimers |
JP3775263B2 (ja) | 2001-08-10 | 2006-05-17 | ニプロ株式会社 | 記録媒体およびこの記録媒体を用いた血糖測定システム |
WO2003014741A1 (fr) | 2001-08-10 | 2003-02-20 | Matsushita Electric Industrial Co., Ltd. | Biodetecteur et procede servant a analyser des constituants sanguins au moyen de ce dernier |
AU2002330756B2 (en) * | 2001-08-10 | 2009-07-16 | Ahram Biosystems Inc. | System for detecting protease |
US20030095897A1 (en) * | 2001-08-31 | 2003-05-22 | Grate Jay W. | Flow-controlled magnetic particle manipulation |
US6751491B2 (en) | 2001-09-01 | 2004-06-15 | M Biotech Inc | Analyte measuring biosensor chip using image scanning system |
US8024395B1 (en) | 2001-09-04 | 2011-09-20 | Gary Odom | Distributed processing multiple tier task allocation |
US20030139886A1 (en) | 2001-09-05 | 2003-07-24 | Bodzin Leon J. | Method and apparatus for normalization and deconvolution of assay data |
JP2005518553A (ja) * | 2001-09-06 | 2005-06-23 | ジェノミック プロファイリング システムズ インコーポレイティッド | 細胞およびウイルスの迅速かつ高感度な検出方法 |
US20030052074A1 (en) | 2001-09-17 | 2003-03-20 | Chang Min Shuan | Closure for container for holding biological samples |
US7854896B2 (en) | 2001-09-25 | 2010-12-21 | Becton, Dickinson And Company | Closed system storage plates |
JP4754746B2 (ja) * | 2001-09-28 | 2011-08-24 | オリンパス株式会社 | 棒状担体およびこれを具備するシリンダー反応容器 |
US6805842B1 (en) | 2001-10-12 | 2004-10-19 | Mds Sciex | Repuncturable self-sealing sample container with internal collapsible bag |
US6966880B2 (en) | 2001-10-16 | 2005-11-22 | Agilent Technologies, Inc. | Universal diagnostic platform |
US20060121502A1 (en) | 2001-11-09 | 2006-06-08 | Robert Cain | Microfluidics apparatus for cantilevers and methods of use therefor |
US7794994B2 (en) * | 2001-11-09 | 2010-09-14 | Kemeta, Llc | Enzyme-based system and sensor for measuring acetone |
JP2003222611A (ja) | 2001-11-20 | 2003-08-08 | Nec Corp | 分離装置、分離方法および分離装置の製造方法 |
US7635588B2 (en) | 2001-11-29 | 2009-12-22 | Applied Biosystems, Llc | Apparatus and method for differentiating multiple fluorescence signals by excitation wavelength |
JP2003166910A (ja) | 2001-11-30 | 2003-06-13 | Asahi Kasei Corp | 送液機構及び該送液機構を備える分析装置 |
JP2003167960A (ja) | 2001-12-04 | 2003-06-13 | Ikuo Kondo | 健康管理システム |
US20030157723A1 (en) | 2001-12-04 | 2003-08-21 | Dave Smith | Immunoassay chemistry cassette barcode for system customization |
US20050027182A1 (en) | 2001-12-27 | 2005-02-03 | Uzair Siddiqui | System for monitoring physiological characteristics |
US6583879B1 (en) | 2002-01-11 | 2003-06-24 | X-Rite, Incorporated | Benchtop spectrophotometer with improved targeting |
JP2003207454A (ja) | 2002-01-15 | 2003-07-25 | Minolta Co Ltd | 透過光検出装置 |
US7133547B2 (en) | 2002-01-24 | 2006-11-07 | Tripath Imaging, Inc. | Method for quantitative video-microscopy and associated system and computer software program product |
WO2003065030A1 (fr) * | 2002-01-25 | 2003-08-07 | Irm, Llc | Systemes et procedes de gestion de fluides |
FI112093B (fi) | 2002-01-30 | 2003-10-31 | Boreal Plant Breeding Ltd | Menetelmä ja testipakkaus geneettisen identiteetin osoittamiseksi |
US20040109793A1 (en) | 2002-02-07 | 2004-06-10 | Mcneely Michael R | Three-dimensional microfluidics incorporating passive fluid control structures |
US7004928B2 (en) | 2002-02-08 | 2006-02-28 | Rosedale Medical, Inc. | Autonomous, ambulatory analyte monitor or drug delivery device |
US20030212379A1 (en) | 2002-02-26 | 2003-11-13 | Bylund Adam David | Systems and methods for remotely controlling medication infusion and analyte monitoring |
US20040174821A1 (en) * | 2003-03-04 | 2004-09-09 | Christian Eggeling | Method for detecting the impacts of interfering effects on experimental data |
CA2419200C (fr) | 2002-03-05 | 2015-06-30 | Bayer Healthcare Llc | Appareil de prelevement de fluide muni d'une lancette integree et d'une zone de reaction |
JP2003315348A (ja) | 2002-04-22 | 2003-11-06 | Hitachi High-Technologies Corp | 検体処理システム及びそれを用いた検体検査自動化システム |
EP1498067A1 (fr) | 2002-04-25 | 2005-01-19 | Matsushita Electric Industrial Co., Ltd. | Dispositif de determination de dose, injecteur et systeme de gestion sanitaire |
JP2003322653A (ja) | 2002-05-07 | 2003-11-14 | Toshiba Corp | プローブ固定支持体及びプローブ固定担体 |
US20030143113A2 (en) | 2002-05-09 | 2003-07-31 | Lifescan, Inc. | Physiological sample collection devices and methods of using the same |
JP3839349B2 (ja) | 2002-05-15 | 2006-11-01 | 株式会社堀場製作所 | 化学発光酵素免疫測定装置 |
WO2003097808A2 (fr) | 2002-05-17 | 2003-11-27 | Becton, Dickinson And Company | Systeme automatise destine a isoler, amplifier et detecter une sequence d'acides nucleiques cibles |
US7055368B2 (en) | 2002-05-21 | 2006-06-06 | Kendro Laboratory Products, Inc. | Automatic calibration of an imbalance detector |
US7151167B2 (en) * | 2002-06-10 | 2006-12-19 | Phynexus, Inc. | Open channel solid phase extraction systems and methods |
AU2003232168A1 (en) | 2002-06-11 | 2003-12-22 | Chempaq A/S | Lysing reagent, cartridge and automatic electronic cell counter for simultaneous enumeration of different types of white blood cells |
US7272252B2 (en) | 2002-06-12 | 2007-09-18 | Clarient, Inc. | Automated system for combining bright field and fluorescent microscopy |
FR2841249A1 (fr) | 2002-06-19 | 2003-12-26 | Genfit S A | Compositions et methodes pour le dosage de l'apo b48 et de l'apo b100 |
JP4106977B2 (ja) | 2002-06-21 | 2008-06-25 | 株式会社日立製作所 | 分析チップ及び分析装置 |
US6730510B2 (en) | 2002-07-02 | 2004-05-04 | Organogenesis, Inc. | Culture dish and bioreactor system |
DK1539352T3 (da) | 2002-07-23 | 2010-04-19 | Protedyne Corp | Væskehåndteringsværktøj, der har hult stempel |
FR2842912B1 (fr) | 2002-07-25 | 2004-09-10 | Junior Instruments | Procede et dispositf pour le pretraitement par centrifugeage d'echantillons. |
JP2004069395A (ja) * | 2002-08-02 | 2004-03-04 | Nec Corp | マイクロチップ、マイクロチップの製造方法および成分検出方法 |
US20040029266A1 (en) | 2002-08-09 | 2004-02-12 | Emilio Barbera-Guillem | Cell and tissue culture device |
US8200438B2 (en) | 2002-08-19 | 2012-06-12 | Escreen, Inc. | Method and computer program for creating electronic custody and control forms for human assay test samples |
US6780645B2 (en) | 2002-08-21 | 2004-08-24 | Lifescan, Inc. | Diagnostic kit with a memory storing test strip calibration codes and related methods |
CN2559986Y (zh) | 2002-08-23 | 2003-07-09 | 上海博昇微晶科技有限公司 | 集成微流体和微阵列探针的微芯片 |
US20040038385A1 (en) | 2002-08-26 | 2004-02-26 | Langlois Richard G. | System for autonomous monitoring of bioagents |
US7188731B2 (en) | 2002-08-26 | 2007-03-13 | The Regents Of The University Of California | Variable flexure-based fluid filter |
US20070166725A1 (en) | 2006-01-18 | 2007-07-19 | The Regents Of The University Of California | Multiplexed diagnostic platform for point-of care pathogen detection |
JP2004101381A (ja) | 2002-09-10 | 2004-04-02 | Nittec Co Ltd | 自動分析装置用の複光路セル及びこの複光路セルを用いた分析方法 |
CA2498764C (fr) | 2002-09-20 | 2015-11-10 | New England Biolabs, Inc. | Amplification dependant de l'helicase des acides nucleiques |
US7397601B2 (en) | 2004-11-24 | 2008-07-08 | Laudo John S | Optical system for cell imaging |
US7177767B2 (en) | 2002-10-18 | 2007-02-13 | Abaxis, Inc. | Systems and methods for the detection of short and long samples |
US20040086872A1 (en) | 2002-10-31 | 2004-05-06 | Childers Winthrop D. | Microfluidic system for analysis of nucleic acids |
US7390457B2 (en) | 2002-10-31 | 2008-06-24 | Agilent Technologies, Inc. | Integrated microfluidic array device |
JP2006505283A (ja) | 2002-11-08 | 2006-02-16 | フアルマシア・コーポレーシヨン | 高速処理自動化核酸単離及び定量法 |
US6915919B2 (en) | 2002-11-21 | 2005-07-12 | American Bio Medica Corporation | Container closure cap with self-sealing slot |
JP3799323B2 (ja) | 2002-11-29 | 2006-07-19 | Necインフロンティア株式会社 | 情報端末装置及びpcカード |
AU2003296946A1 (en) | 2002-12-12 | 2004-07-09 | Chiron Corporation | A biological sample storage device and method for biological sample contamination testing |
CN1173182C (zh) | 2002-12-18 | 2004-10-27 | 陕西超英生物医学研究开发有限公司 | 糖尿病自身免疫抗体检测蛋白芯片、其制备及检测方法 |
US20060094108A1 (en) | 2002-12-20 | 2006-05-04 | Karl Yoder | Thermal cycler for microfluidic array assays |
US7110107B2 (en) | 2002-12-20 | 2006-09-19 | Corning Incorporated | Capillary assay device and method |
US20040120848A1 (en) | 2002-12-20 | 2004-06-24 | Maria Teodorczyk | Method for manufacturing a sterilized and calibrated biosensor-based medical device |
US7648678B2 (en) | 2002-12-20 | 2010-01-19 | Dako Denmark A/S | Method and system for pretreatment of tissue slides |
WO2004061418A2 (fr) * | 2002-12-26 | 2004-07-22 | Meso Scale Technologies, Llc. | Cartouches d'essai et procedes d'utilisation |
US20040129676A1 (en) * | 2003-01-07 | 2004-07-08 | Tan Roy H. | Apparatus for transfer of an array of liquids and methods for manufacturing same |
DE10307030A1 (de) | 2003-02-20 | 2004-09-09 | Eppendorf Ag | Dosiersystem |
GB0303913D0 (en) | 2003-02-21 | 2003-03-26 | Sophion Bioscience As | Robot centrifugation device |
DE10312197A1 (de) | 2003-03-19 | 2004-09-30 | Roche Diagnostics Gmbh | Probenbehandlungsgerät, insbesondere automatisches Analysegerät |
JP4464172B2 (ja) | 2003-03-31 | 2010-05-19 | キヤノン株式会社 | 生化学反応カートリッジ及びその使用方法 |
WO2004087322A2 (fr) | 2003-04-04 | 2004-10-14 | Koninklijke Philips Electronics N.V. | Separation de fluides dans des microcanaux multiples |
US20050010098A1 (en) | 2003-04-11 | 2005-01-13 | Sigmund Frigstad | Method and apparatus for knowledge based diagnostic imaging |
JP4260541B2 (ja) | 2003-05-12 | 2009-04-30 | 旭化成ファーマ株式会社 | 糖化タンパク質測定用試験片 |
US20040230400A1 (en) | 2003-05-13 | 2004-11-18 | Tomasso David Angelo | Analyzer having concentric rotors |
US20040228766A1 (en) | 2003-05-14 | 2004-11-18 | Witty Thomas R. | Point of care diagnostic platform |
AU2003902422A0 (en) | 2003-05-19 | 2003-06-05 | Intellirad Solutions Pty. Ltd | Access security system |
US7185551B2 (en) | 2003-05-22 | 2007-03-06 | Schwartz H Donald | Pipetting module |
JP2004348496A (ja) | 2003-05-23 | 2004-12-09 | Hitachi Ltd | 通信システム |
US20040241048A1 (en) | 2003-05-30 | 2004-12-02 | Applera Corporation | Thermal cycling apparatus and method for providing thermal uniformity |
EP1629285A2 (fr) | 2003-06-05 | 2006-03-01 | Bioprocessors Corporation | Systeme et procede destines a une automatisation |
US7258673B2 (en) | 2003-06-06 | 2007-08-21 | Lifescan, Inc | Devices, systems and methods for extracting bodily fluid and monitoring an analyte therein |
EP1635700B1 (fr) * | 2003-06-13 | 2016-03-09 | Sanofi-Aventis Deutschland GmbH | Appareil pour dispositif d'analyse sur le lieu de soin |
US7702524B1 (en) | 2003-06-16 | 2010-04-20 | Scheduling.Com, Inc. | Method and system for online secure patient referral system |
KR20060024808A (ko) | 2003-06-20 | 2006-03-17 | 유니바사루 바이오 리사치 가부시키가이샤 | 시료배열ㆍ집적화 장치, 그 방법, 및 시료 집적체 사용장치 |
JP3918178B2 (ja) | 2003-06-23 | 2007-05-23 | 大阪瓦斯株式会社 | 高純度ナノスケールカーボンチューブ含有炭素質材料の製造法 |
US7824623B2 (en) | 2003-06-24 | 2010-11-02 | Millipore Corporation | Multifunctional vacuum manifold |
CN1849064A (zh) * | 2003-07-07 | 2006-10-18 | 先锋高级育种国际公司 | Qtl“随时定位”方法 |
US20050009191A1 (en) | 2003-07-08 | 2005-01-13 | Swenson Kirk D. | Point of care information management system |
CN1849514A (zh) * | 2003-07-08 | 2006-10-18 | 因韦尔尼斯医药瑞士股份有限公司 | 颗粒凝集的检测方法和装置 |
JP2005030983A (ja) | 2003-07-09 | 2005-02-03 | Matsushita Electric Ind Co Ltd | 測定装置 |
JP4087302B2 (ja) | 2003-07-10 | 2008-05-21 | 日本電子株式会社 | 検査装置 |
US7860727B2 (en) | 2003-07-17 | 2010-12-28 | Ventana Medical Systems, Inc. | Laboratory instrumentation information management and control network |
EP1650570B1 (fr) | 2003-07-17 | 2021-05-26 | LSI Medience Corporation | Appareil à utiliser pour mesurer un composant contenu dans un échantillon comprenant un dispositif de mesure et une cartouche |
US7381370B2 (en) | 2003-07-18 | 2008-06-03 | Dade Behring Inc. | Automated multi-detector analyzer |
US8346482B2 (en) | 2003-08-22 | 2013-01-01 | Fernandez Dennis S | Integrated biosensor and simulation system for diagnosis and therapy |
JP3888342B2 (ja) | 2003-08-29 | 2007-02-28 | ブラザー工業株式会社 | ネットワーク装置 |
WO2005084534A1 (fr) | 2003-09-03 | 2005-09-15 | Life Patch International, Inc. | Dispositifs de diagnostic personnel et procedes correspondants |
JPWO2005024437A1 (ja) | 2003-09-05 | 2007-11-08 | 日本電気株式会社 | 測定システム |
EP2489434B1 (fr) | 2003-09-09 | 2016-04-27 | BioGenex Laboratories | Système de traitement d'échantillons |
US20050074873A1 (en) | 2003-09-09 | 2005-04-07 | Shanler Michael S. | Tissue culture vessel |
US7682833B2 (en) | 2003-09-10 | 2010-03-23 | Abbott Point Of Care Inc. | Immunoassay device with improved sample closure |
CA2896407A1 (fr) | 2003-09-11 | 2005-03-24 | Theranos, Inc. | Dispositif medical permettant de surveiller un analyte et de distribuer des medicaments |
US20060115384A1 (en) * | 2003-09-16 | 2006-06-01 | Vici Gig Harbor Group, Inc. | Pipette tip surface sorption extraction |
US7570443B2 (en) | 2003-09-19 | 2009-08-04 | Applied Biosystems, Llc | Optical camera alignment |
US20050225751A1 (en) | 2003-09-19 | 2005-10-13 | Donald Sandell | Two-piece high density plate |
DE10344700A1 (de) | 2003-09-26 | 2005-04-14 | Hirschmann Laborgeräte GmbH & Co. KG | Mehrkanal-Pipettiervorrichtung |
JP2005104750A (ja) | 2003-09-29 | 2005-04-21 | Matsushita Electric Ind Co Ltd | ナノチューブの精製方法 |
JP4441618B2 (ja) | 2003-10-06 | 2010-03-31 | 独立行政法人産業技術総合研究所 | インフルエンザウイルスの検出方法 |
JP5021309B2 (ja) | 2003-10-16 | 2012-09-05 | ステファン ジョン ラルフ | 免疫調節性組成物およびその使用方法 |
EP1678509B1 (fr) | 2003-10-28 | 2008-04-16 | DIESSE DIAGNOSTICA SENESE S.p.A. | Dispositif pour la conduite d'analyses sur des fluides biologiques, et procede connexe |
JP4073023B2 (ja) | 2003-11-07 | 2008-04-09 | 財団法人新産業創造研究機構 | 微小流路デバイスおよびその作製方法 |
WO2005051197A2 (fr) | 2003-11-26 | 2005-06-09 | Koninklijke Philips Electronics, N.V. | Optimisation du deroulement des operations pour un environnement d'imagerie a haut debit |
WO2005121780A2 (fr) * | 2003-12-09 | 2005-12-22 | Board Of Regents, The University Of Texas System | Procedes et appareil permettant de caracteriser, de mesurer et de distribuer des liquides |
JP2007516446A (ja) * | 2003-12-23 | 2007-06-21 | ファストラック インコーポレイテッド | ポイントオブケア診断プラットフォーム |
JP4646809B2 (ja) | 2003-12-26 | 2011-03-09 | パナソニック株式会社 | 生体サンプル判別装置、生体サンプル判別方法、及び生体サンプル判別用プレート |
JP4057539B2 (ja) | 2004-01-09 | 2008-03-05 | 浜松ホトニクス株式会社 | シースフローセルキュベット及びその製造方法 |
US7150995B2 (en) | 2004-01-16 | 2006-12-19 | Metrika, Inc. | Methods and systems for point of care bodily fluid analysis |
PT2611042E (pt) | 2004-01-27 | 2015-04-13 | Altivera L L C | Tira de teste de imunoensaio integrando etiquetas de identificação por radiofrequência (rfid) |
US20050164204A1 (en) * | 2004-01-27 | 2005-07-28 | Reed Thomas D. | Single use lyophilized rnase reagents, and kits and methods for using same |
US20050177057A1 (en) | 2004-02-05 | 2005-08-11 | Mitchell Friedman | Automated breath collection device |
US20050227370A1 (en) | 2004-03-08 | 2005-10-13 | Ramel Urs A | Body fluid analyte meter & cartridge system for performing combined general chemical and specific binding assays |
JP2005291954A (ja) * | 2004-03-31 | 2005-10-20 | Olympus Corp | 使い捨て試薬パックとその試薬パックを用いる分析装置 |
DE602004014898D1 (de) * | 2004-03-31 | 2008-08-21 | Roche Diagnostics Gmbh | Modulare Analysevorrichtung |
EP1743161A2 (fr) | 2004-04-06 | 2007-01-17 | Bio/Data Corporation | Dispositif d'essai jetable a fonction de mesure de volume d'echantillon et procedes de melange |
US20080166753A1 (en) | 2004-04-12 | 2008-07-10 | University Technologies International Inc. | Microbial Growth Assay |
US20050236317A1 (en) * | 2004-04-23 | 2005-10-27 | Millipore Corporation | Pendant drop control in a multiwell plate |
US7887750B2 (en) | 2004-05-05 | 2011-02-15 | Bayer Healthcare Llc | Analytical systems, devices, and cartridges therefor |
CA2566538C (fr) | 2004-05-13 | 2023-03-14 | Anita Goel | Amplification par la polymerase a l'echelle nanometrique: procedes et dispositifs pour l'amplification et la detection d'acides nucleiques |
FR2871150B1 (fr) | 2004-06-04 | 2006-09-22 | Univ Lille Sciences Tech | Dispositif de manipulation de gouttes destine a l'analyse biochimique, procede de fabrication du dispositif, et systeme d'analyse microfluidique |
US8211386B2 (en) * | 2004-06-08 | 2012-07-03 | Biokit, S.A. | Tapered cuvette and method of collecting magnetic particles |
TWI547431B (zh) | 2004-06-09 | 2016-09-01 | 史密斯克萊美占公司 | 生產藥物之裝置及方法 |
US8187535B2 (en) | 2004-06-14 | 2012-05-29 | Parker-Hannifin Corporation | Robotic handling system and method with independently operable detachable tools |
US20060057559A1 (en) | 2004-06-23 | 2006-03-16 | Rigel Pharmaceuticals, Inc. | High-throughput cell migration screening assay |
JP4416579B2 (ja) | 2004-06-23 | 2010-02-17 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
US7609654B2 (en) | 2004-07-01 | 2009-10-27 | Mcdata Corporation | Method of evaluating network connectivity between network resources |
US7494814B2 (en) | 2004-07-13 | 2009-02-24 | Separation Technology, Inc. | Apparatus and method for obtaining rapid creamatocrit and caloric content values of milk |
US7857760B2 (en) | 2004-07-13 | 2010-12-28 | Dexcom, Inc. | Analyte sensor |
US7196719B2 (en) | 2004-07-16 | 2007-03-27 | Vision Robotics Corporation | Angled axis machine vision system and method |
ES2665788T3 (es) | 2004-07-27 | 2018-04-27 | Lsi Medience Corporation | Procedimiento de determinación automática de una muestra |
US20060026040A1 (en) | 2004-07-28 | 2006-02-02 | Reeves Anthony P | System and method for providing remote analysis of medical data |
EP1626281A1 (fr) | 2004-08-03 | 2006-02-15 | The Automation Partnership (Cambridge) Limited | Dispositif de pipetage |
US20060027586A1 (en) * | 2004-08-05 | 2006-02-09 | Longhany Ronald K | Freezer storage container with ventilation openings |
US20060036619A1 (en) | 2004-08-09 | 2006-02-16 | Oren Fuerst | Method for accessing and analyzing medically related information from multiple sources collected into one or more databases for deriving illness probability and/or for generating alerts for the detection of emergency events relating to disease management including HIV and SARS, and for syndromic surveillance of infectious disease and for predicting risk of adverse events to one or more drugs |
US7690275B1 (en) | 2004-08-26 | 2010-04-06 | Elemental Scientific, Inc. | Automated sampling device |
EP1784505B1 (fr) | 2004-09-02 | 2016-06-22 | Bioneer Corporation | Appareil miniaturise pour surveillance en temps reel |
CN1311239C (zh) | 2004-09-07 | 2007-04-18 | 李人 | 免疫层析测试条及其制造方法 |
KR101214780B1 (ko) | 2004-09-15 | 2012-12-21 | 인터젠엑스 인크. | 미세유동 장치 |
US7170050B2 (en) | 2004-09-17 | 2007-01-30 | Pacific Biosciences Of California, Inc. | Apparatus and methods for optical analysis of molecules |
US7744821B2 (en) | 2004-09-21 | 2010-06-29 | Andreas Hettich Gmbh & Co. Kg | Blood bag cup for centrifuges |
AT500882A3 (de) * | 2004-10-06 | 2009-12-15 | Greiner Bio One Gmbh | In-vitro diagnostikum zur speichelvolumsbestimmung |
DE102004048864A1 (de) | 2004-10-07 | 2006-04-13 | Roche Diagnostics Gmbh | Analytisches Testelement mit drahtloser Datenübertragung |
JP2006125868A (ja) * | 2004-10-26 | 2006-05-18 | Arkray Inc | 自動測定用カートリッジおよび測定方法 |
JP2006125855A (ja) | 2004-10-26 | 2006-05-18 | Kusano Kagaku:Kk | 分注装置 |
JP2006125978A (ja) * | 2004-10-28 | 2006-05-18 | Arkray Inc | 試薬カートリッジ容器用押さえ具 |
US20060095429A1 (en) | 2004-10-29 | 2006-05-04 | Eastman Kodak Company | Networked system for routing medical images |
EP1812605A4 (fr) * | 2004-11-05 | 2012-04-25 | Life Technologies Corp | Compositions et procedes permettant d'utiliser des unites d'identification radiofrequence en sciences biologiques |
US7604985B2 (en) | 2004-11-10 | 2009-10-20 | Becton, Dickinson And Company | System and method for determining fill volume in a container |
US20120053068A1 (en) | 2004-11-18 | 2012-03-01 | Eppendorf Array Technologies | Real-time pcr of targets on a micro-array |
US20060111620A1 (en) | 2004-11-23 | 2006-05-25 | Squilla John R | Providing medical services at a kiosk |
WO2006083367A2 (fr) | 2004-11-23 | 2006-08-10 | Response Biomedical Corporation | Dosage immunologique mettant en oeuvre une reaction d'etalonnage interne en deux etapes |
KR100581356B1 (ko) | 2004-11-25 | 2006-05-17 | 재단법인서울대학교산학협력재단 | 싸이토메트리, 빌로시메트리 및 세포 분류에 사용하기위한 폴리전해질 염다리를 사용하는 마이크로칩 |
KR100601974B1 (ko) * | 2004-11-25 | 2006-07-18 | 삼성전자주식회사 | 비드의 상이한 레이저 흡수에 의한 핵산의 정제 장치 및방법 |
US20060121491A1 (en) | 2004-12-02 | 2006-06-08 | Wolber Paul K | Partially degenerate oligonucleotide standards and methods for generating the same |
US8263390B2 (en) | 2004-12-10 | 2012-09-11 | Universal Bio Research Co., Ltd. | Biological material fixed carrier enclosing tip, biological material fixed carrier treatment apparatus, and treatment method thereof |
US7978665B1 (en) | 2004-12-13 | 2011-07-12 | Verizon Laboratories Inc. | Systems and methods for providing connection status and location information in a wireless networking environment |
ITMI20042434A1 (it) | 2004-12-21 | 2005-03-21 | Paolo Giordano | Metodo e dispositivo per l'estrazione rapida di antigeni |
JP4203469B2 (ja) | 2004-12-24 | 2009-01-07 | アロカ株式会社 | 液体試料の攪拌装置 |
CA2598938A1 (fr) | 2005-01-26 | 2006-08-03 | Enigma Diagnostics Ltd | Procede de reaction |
US8614101B2 (en) | 2008-05-20 | 2013-12-24 | Rapid Pathogen Screening, Inc. | In situ lysis of cells in lateral flow immunoassays |
US20060235348A1 (en) | 2005-02-14 | 2006-10-19 | Callicoat David N | Method of extracting and analyzing the composition of bodily fluids |
WO2006087574A2 (fr) | 2005-02-19 | 2006-08-24 | Geneform Technologies Limited | Amplification isothermique d'acides nucleiques |
GB0503836D0 (en) * | 2005-02-24 | 2005-04-06 | Axis Shield Asa | Method |
JP2006276003A (ja) | 2005-03-03 | 2006-10-12 | Juki Corp | 分注装置 |
EP1866653A4 (fr) * | 2005-03-07 | 2009-08-26 | Novx Systems Inc | Analyseur automatise |
CA2871777C (fr) | 2005-03-10 | 2015-07-28 | Matthew J. Hayes | Appareil et methodes de detection de signaux optiques multiples |
US7650395B2 (en) | 2005-03-18 | 2010-01-19 | Microsoft Corporation | Network connectivity management |
EP1865305A1 (fr) * | 2005-03-31 | 2007-12-12 | Kabushiki Kaisha Toshiba | Dispositif de mesure de fluorescence, procédé de mesure de fluorescence, récipient pour mesure de fluorescence, et procédé de fabrication du récipient pour mesure de fluorescence |
US20060223178A1 (en) * | 2005-04-05 | 2006-10-05 | Tom Barber | Devices and methods for magnetic enrichment of cells and other particles |
CN103259027A (zh) | 2005-04-28 | 2013-08-21 | 普罗透斯数字保健公司 | 药物信息系统 |
CA2970005C (fr) | 2005-05-09 | 2020-07-28 | Biofire Diagnostics, Inc. | Appareil et methode d'amplification d'acide nucleique en deux etapes |
KR101381331B1 (ko) | 2005-05-09 | 2014-04-04 | 테라노스, 인코포레이티드 | 현장진료 유체 시스템 및 그 용도 |
GB2425974A (en) | 2005-05-09 | 2006-11-15 | Orion Diagnostica Oy | Sonication of a medium |
IES20050304A2 (en) | 2005-05-11 | 2006-11-15 | Haemoglobal Biotech Ltd | A mobile chemistry and haematology analyser with an intergrated diagnostic databank |
JP4520359B2 (ja) * | 2005-05-13 | 2010-08-04 | 日立ソフトウエアエンジニアリング株式会社 | 粒子捕捉装置、並びに粒子配列方法及び粒子配列装置 |
JP4657803B2 (ja) | 2005-05-19 | 2011-03-23 | 富士フイルム株式会社 | 送液システム及びその送液方法並びに流路ユニット。 |
GB0510362D0 (en) | 2005-05-20 | 2005-06-29 | Univ Greenwich | Device for detecting mycotoxins |
EP1888739B1 (fr) * | 2005-05-24 | 2021-08-11 | Lee H. Angros | Appareil automatique et procédé de traitement d'échantillons biologiques sur lames porte-échantillon |
US20060281187A1 (en) * | 2005-06-13 | 2006-12-14 | Rosedale Medical, Inc. | Analyte detection devices and methods with hematocrit/volume correction and feedback control |
WO2006138743A2 (fr) * | 2005-06-23 | 2006-12-28 | Bioprocessors Corp. | Dispositif de transfert de fluide |
US20070031283A1 (en) * | 2005-06-23 | 2007-02-08 | Davis Charles Q | Assay cartridges and methods for point of care instruments |
CA2613078A1 (fr) | 2005-06-24 | 2007-01-04 | Board Of Regents, The University Of Texas System | Systemes et procedes faisant appel a des cartouches autonomes comprenant des systemes de detection et des systemes de distribution de fluides |
US20070004577A1 (en) | 2005-06-29 | 2007-01-04 | Gabor Lederer | Centrifuge assembly |
US7663750B2 (en) | 2005-06-30 | 2010-02-16 | Applied Biosystems, Llc | Two-dimensional spectral imaging system |
JP2007017354A (ja) | 2005-07-08 | 2007-01-25 | Sumitomo Bakelite Co Ltd | 化学反応検出システム |
JP2007032234A (ja) | 2005-07-29 | 2007-02-08 | Sekisui Chem Co Ltd | 二重床構造 |
US7422554B2 (en) | 2005-08-10 | 2008-09-09 | The Drucker Company, Inc. | Centrifuge with aerodynamic rotor and bucket design |
US9285297B2 (en) * | 2005-08-22 | 2016-03-15 | Applied Biosystems, Llc | Device, system, and method for depositing processed immiscible-fluid-discrete-volumes |
EP2061599A4 (fr) | 2005-08-24 | 2014-01-22 | Telechemistry Oy | Procede permettant de tester un echantillon de liquide, unite de test et systeme automatise d'une pluralite d'unites de test |
US7757778B2 (en) * | 2005-08-24 | 2010-07-20 | Calderwood James A | Ripper boot |
DE102005047131A1 (de) * | 2005-09-30 | 2007-04-12 | Evotec Technologies Gmbh | Verfahren und Vorrichtung zur Manipulation von sedimentierenden Partikeln |
FR2891625B1 (fr) | 2005-10-03 | 2007-12-21 | Francois Melet | Analyseur compact de biochimie seche pour l'analyse d'echantillons sanguins. |
US7733224B2 (en) | 2006-06-30 | 2010-06-08 | Bao Tran | Mesh network personal emergency response appliance |
US8652421B2 (en) | 2005-11-03 | 2014-02-18 | Emd Millipore Corporation | Immunoassay product and process |
US7581660B2 (en) | 2005-11-09 | 2009-09-01 | Hamilton Bonaduz Ag | Drip-resistant pipetting device and drip-resistant pipetting method |
GB0523231D0 (en) | 2005-11-15 | 2005-12-21 | Redfern Jonathan | Liquid photometer using disposable pipette tip vessel |
US20070118399A1 (en) | 2005-11-22 | 2007-05-24 | Avinash Gopal B | System and method for integrated learning and understanding of healthcare informatics |
AU2006320739B2 (en) | 2005-11-28 | 2012-03-29 | Pacific Biosciences Of California, Inc. | Uniform surfaces for hybrid material substrates and methods for making and using same |
GB2432660A (en) | 2005-11-29 | 2007-05-30 | Bacterioscan Ltd | System for counting bacteria and determining their susceptibility to antibiotics |
JP2007152157A (ja) | 2005-11-30 | 2007-06-21 | Hitachi Koki Co Ltd | 遠心機 |
US20070125677A1 (en) | 2005-12-06 | 2007-06-07 | Neil Oronsky | Thermal and/or light protective container assemblies and their methods of use |
US20070131870A1 (en) * | 2005-12-12 | 2007-06-14 | Combisep | Multiplexed CE fluorescence system |
AU2006330913B2 (en) * | 2005-12-21 | 2011-10-27 | Meso Scale Technologies, Llc | Assay modules having assay reagents and methods of making and using same |
CN101379385A (zh) | 2005-12-22 | 2009-03-04 | 霍尼韦尔国际公司 | 便携式样品分析盒 |
WO2007075919A2 (fr) | 2005-12-22 | 2007-07-05 | Honeywell International Inc. | Systeme d'analyseur portatif d'echantillons |
JP2007178328A (ja) * | 2005-12-28 | 2007-07-12 | Shimadzu Corp | 反応容器キット及び反応容器処理装置 |
JP5178528B2 (ja) | 2005-12-29 | 2013-04-10 | アボット ポイント オブ ケア インコーポレイテッド | 分子診断用増幅システムおよび方法 |
CN103499466B (zh) * | 2006-01-18 | 2017-04-12 | 阿戈斯治疗公司 | 用于处理封闭容器中的样品的系统和方法以及相关装置 |
US7876935B2 (en) | 2006-01-30 | 2011-01-25 | Protedyne Corporation | Sample processing apparatus with a vision system |
US7711800B2 (en) | 2006-01-31 | 2010-05-04 | Microsoft Corporation | Network connectivity determination |
WO2007092713A2 (fr) | 2006-02-02 | 2007-08-16 | Trustees Of The University Of Pennsylvania | Système microfluidique et procédé d'analyse de l'expression génique dans des échantillons contenant des cellules et procédé de détection d'une maladie |
US20070192138A1 (en) | 2006-02-16 | 2007-08-16 | Motoaki Saito | Medical record system in a wide-area network environment |
WO2007105198A2 (fr) | 2006-03-10 | 2007-09-20 | Hadas Lewy | Échantillonnage et analyse automatiques au moyen d'un échantilloneur personnel |
WO2007105726A1 (fr) | 2006-03-14 | 2007-09-20 | Nemoto Kyorindo Co., Ltd. | Système d'imagerie médicale |
US8741230B2 (en) | 2006-03-24 | 2014-06-03 | Theranos, Inc. | Systems and methods of sample processing and fluid control in a fluidic system |
EP3088083B1 (fr) | 2006-03-24 | 2018-08-01 | Handylab, Inc. | Méthode pour la mise en oeuvre de pcr au moyen d'une cartouche avec plusieures pistes |
JP5371741B2 (ja) | 2006-04-24 | 2013-12-18 | フィッツ、リチャード | 体液分析装置、当該装置を含むシステム |
US7624557B2 (en) | 2006-05-02 | 2009-12-01 | Box Partition Technologies, Inc. | Assembling machine with continuous periodic assembly motion |
JP2009535635A (ja) | 2006-05-03 | 2009-10-01 | エヌツェーエル ニュー コンセプト ラブ ゲーエムベーハー | 化学的、生化学的、生物学的および物理学的分析、反応、アッセイなどのためのデバイスおよび方法 |
US8007999B2 (en) | 2006-05-10 | 2011-08-30 | Theranos, Inc. | Real-time detection of influenza virus |
CA2657970A1 (fr) | 2006-05-17 | 2007-11-29 | Luminex Corporation | Systemes de type cytometres en flux sur circuits integres pour analyser des particules marquees de maniere fluorescente |
US8232091B2 (en) | 2006-05-17 | 2012-07-31 | California Institute Of Technology | Thermal cycling system |
JP2007309889A (ja) | 2006-05-22 | 2007-11-29 | Olympus Corp | 異物検出装置及び異物検出方法 |
JP2007322324A (ja) | 2006-06-02 | 2007-12-13 | Olympus Corp | 分析装置 |
DE602007003832D1 (de) | 2006-06-06 | 2010-01-28 | Roche Diagnostics Gmbh | Gebrauchsfertiges sammelgefäss für vollblut |
KR100772969B1 (ko) | 2006-06-08 | 2007-11-02 | 양현진 | 원심분리기 및 원심분리방법 |
WO2007146443A2 (fr) | 2006-06-14 | 2007-12-21 | Oldenburg Kevin R Ph D | dispositifs de cyclage thermique et procédés d'utilisation de ceux-ci |
WO2008005464A2 (fr) | 2006-06-30 | 2008-01-10 | University Of Southern California | Étalons de référence internes quantifiables pour immunohistochimie et leurs utilisations |
US7972786B2 (en) | 2006-07-07 | 2011-07-05 | Brandeis University | Detection and analysis of influenza virus |
JP2009544083A (ja) | 2006-07-13 | 2009-12-10 | アイ−スタット コーポレイション | 医療データ取得および患者管理のシステムおよび方法 |
SE531041C2 (sv) | 2006-07-17 | 2008-11-25 | Hemocue Ab | Räkning av trombocyter |
SE530192C2 (sv) | 2006-07-19 | 2008-03-25 | Hemocue Ab | Apparat för avbildning av prov där provhållaren är flyttbar medelst magnetisk växelverkan |
US20080020469A1 (en) | 2006-07-20 | 2008-01-24 | Lawrence Barnes | Method for scheduling samples in a combinational clinical analyzer |
DE102006034245C5 (de) | 2006-07-21 | 2014-05-28 | Stratec Biomedical Systems Ag | Positioniereinrichtung zur Positionierung von Pipetten |
EP1882948A2 (fr) * | 2006-07-28 | 2008-01-30 | Qiagen GmbH | Dispositif destiné au traitement d échantillons |
EP1892531B1 (fr) | 2006-08-22 | 2017-04-05 | Sysmex Corporation | Analyseur d'échantillon |
JP4979305B2 (ja) | 2006-08-22 | 2012-07-18 | シスメックス株式会社 | 分析装置 |
US7787681B2 (en) | 2006-08-25 | 2010-08-31 | The Trustees Of Columbia University In The City Of New York | Systems and methods for robotic transport |
JP2008064701A (ja) | 2006-09-11 | 2008-03-21 | Matsushita Electric Ind Co Ltd | 回転分析デバイス及び計量方法及び検査方法 |
US7674616B2 (en) | 2006-09-14 | 2010-03-09 | Hemosense, Inc. | Device and method for measuring properties of a sample |
US7745149B2 (en) * | 2006-09-14 | 2010-06-29 | National Taiwan University | Tumor markers for ovarian cancer diagnosis |
ATE479779T1 (de) * | 2006-09-29 | 2010-09-15 | Leukocare Ag | Verfahren zum nachweis einer aktivierung des immunsystems oder des ausmasses von zelltod |
US20100240544A1 (en) | 2006-09-29 | 2010-09-23 | Liu David J | Aptamer biochip for multiplexed detection of biomolecules |
CN101523212B (zh) | 2006-10-12 | 2015-04-01 | 皇家飞利浦电子股份有限公司 | 具有试剂层的快速生物传感器 |
US7312042B1 (en) | 2006-10-24 | 2007-12-25 | Abbott Diabetes Care, Inc. | Embossed cell analyte sensor and methods of manufacture |
US7662344B2 (en) | 2006-10-24 | 2010-02-16 | Viaflo Corporation | Locking pipette tip and mounting shaft |
US20110001036A1 (en) | 2006-10-24 | 2011-01-06 | Koninklijke Philips Electronics N.V. | system for imaging an object |
US7662343B2 (en) | 2006-10-24 | 2010-02-16 | Viaflo Corporation | Locking pipette tip and mounting shaft |
US7910302B2 (en) | 2006-10-27 | 2011-03-22 | Complete Genomics, Inc. | Efficient arrays of amplified polynucleotides |
WO2008055257A2 (fr) | 2006-11-02 | 2008-05-08 | Vectrant Technologies Inc. | Cartouche destinée à effectuer des dosages diagnostiques |
US20080113391A1 (en) | 2006-11-14 | 2008-05-15 | Ian Gibbons | Detection and quantification of analytes in bodily fluids |
DE102006057300A1 (de) | 2006-12-05 | 2008-06-19 | Siemens Ag | Anordnung zur Aufbereitung einer Mehrzahl von Proben für eine Analyse |
WO2008077007A1 (fr) | 2006-12-19 | 2008-06-26 | Cytyc Corporation | Procédé d'analyse de la teneur en sang d'échantillons cytologiques |
GB0625595D0 (en) | 2006-12-21 | 2007-01-31 | Oxford Gene Tech Ip Ltd | Sample analyser |
RU2365622C2 (ru) * | 2006-12-22 | 2009-08-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) | СПОСОБ ПРОДУКЦИИ ПУРИНОВЫХ НУКЛЕОЗИДОВ И НУКЛЕОТИДОВ МЕТОДОМ ФЕРМЕНТАЦИИ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИЙ, ПРИНАДЛЕЖАЩИХ К РОДУ Escherichia ИЛИ Bacillus |
US7955867B2 (en) * | 2007-01-31 | 2011-06-07 | Millipore Corporation | High throughput cell-based assays, methods of use and kits |
WO2008115632A2 (fr) | 2007-02-09 | 2008-09-25 | The Regents Of The University Of California | Procédé de recombinaison de séquences d'adn et compositions s'y rapportant |
US20090137047A1 (en) | 2007-03-02 | 2009-05-28 | John Frederick Regan | Automated Diagnostic Kiosk for Diagnosing Diseases |
US20080228107A1 (en) | 2007-03-12 | 2008-09-18 | Venkateshwara N Reddy | Bio-testing booth |
US8143554B2 (en) | 2007-03-16 | 2012-03-27 | Amerigon Incorporated | Air warmer |
US20090215157A1 (en) | 2007-03-27 | 2009-08-27 | Searete Llc | Methods for pathogen detection |
CA2681738A1 (fr) | 2007-03-27 | 2008-10-02 | Theranostics Health, Inc. | Systeme, procede et produit de programmation logicielle pour la manipulation de tests theranostiques |
US8557588B2 (en) | 2007-03-27 | 2013-10-15 | Schlumberger Technology Corporation | Methods and apparatus for sampling and diluting concentrated emulsions |
GB0706281D0 (en) | 2007-03-30 | 2007-05-09 | Guy S And St Thomas Nhs Founda | Apparatus and method for recovering fluid from a fluid absorbing element |
US8877507B2 (en) | 2007-04-06 | 2014-11-04 | Qiagen Gaithersburg, Inc. | Ensuring sample adequacy using turbidity light scattering techniques |
US8387811B2 (en) | 2007-04-16 | 2013-03-05 | Bd Diagnostics | Pierceable cap having piercing extensions |
EP2140412B1 (fr) | 2007-04-23 | 2018-12-12 | Samsung Electronics Co., Ltd. | Système et procédé de télédiagnostic médical |
WO2008149518A1 (fr) | 2007-05-30 | 2008-12-11 | Nemoto Kyorindo Co., Ltd. | Dispositif d'injection de liquide chimique, système d'imagerie fluoroscopique et programme d'ordinateur |
JP4876027B2 (ja) | 2007-05-30 | 2012-02-15 | 株式会社日立ハイテクノロジーズ | 分注装置 |
EP2000528A1 (fr) * | 2007-06-04 | 2008-12-10 | The Automation Partnership (Cambridge) Limited | Appareil d'agitation pour incubateur de culture cellulaire ou similaires |
WO2009002447A1 (fr) | 2007-06-21 | 2008-12-31 | Gen-Probe Incorporated | Instrument et réceptacles pour l'exécution de procédés |
JP4982266B2 (ja) | 2007-06-22 | 2012-07-25 | 株式会社日立ハイテクノロジーズ | 分注処理装置 |
US20090004754A1 (en) | 2007-06-26 | 2009-01-01 | Oldenburg Kevin R | Multi-well reservoir plate and methods of using same |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8133671B2 (en) | 2007-07-13 | 2012-03-13 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8287820B2 (en) | 2007-07-13 | 2012-10-16 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US20090148941A1 (en) | 2007-07-30 | 2009-06-11 | Peter Florez | Disposable mini-bioreactor device and method |
US8158430B1 (en) | 2007-08-06 | 2012-04-17 | Theranos, Inc. | Systems and methods of fluidic sample processing |
JP2010536371A (ja) | 2007-08-21 | 2010-12-02 | ノダリティ,インコーポレイテッド | 診断方法、予後および治療方法 |
US7843560B2 (en) | 2007-08-31 | 2010-11-30 | Dow Global Technologies Inc. | Stable turbidity calibration standards |
US8783484B2 (en) | 2007-08-31 | 2014-07-22 | Saint-Gobain Performance Plastics Corporation | Septa |
EP2205968B1 (fr) | 2007-10-02 | 2013-11-20 | Theranos, Inc. | Dispositifs modulaires à utiliser sur place et leurs utilisations |
EP2205717B1 (fr) | 2007-10-03 | 2017-08-16 | 3M Innovative Properties Company | Procédé de concentration de micro-organismes |
US9083722B2 (en) | 2007-10-05 | 2015-07-14 | Qualcomm Incorporated | Session initiation protocol registration with ping |
WO2009049171A2 (fr) * | 2007-10-10 | 2009-04-16 | Pocared Diagnostics Ltd. | Système utilisé pour identifier des bactéries dans l'urine |
US7947234B2 (en) | 2007-10-17 | 2011-05-24 | Rainin Instrument, Llc | Liquid end assembly for a handheld multichannel pipette with adjustable nozzle spacing |
US20110034758A1 (en) | 2007-10-23 | 2011-02-10 | Vered Shany | Cartridge For A Biological Sample |
EP2210080B1 (fr) * | 2007-10-24 | 2015-01-28 | Biomarker Strategies, Llc | Procédés et dispositifs améliorés pour l'analyse cellulaire |
US20090117009A1 (en) | 2007-11-02 | 2009-05-07 | Richard Cote | Multi-channel electronic pipettor |
US8463167B2 (en) | 2007-11-09 | 2013-06-11 | Canon Kabushiki Kaisha | Image heating apparatus and image heating rotational body to be mounted on the image heating apparatus |
US20090124284A1 (en) | 2007-11-14 | 2009-05-14 | Shimon Scherzer | System and method for providing seamless broadband internet access to web applications |
EP2220477B1 (fr) | 2007-12-18 | 2011-09-21 | CaridianBCT, Inc. | Appareil de traitement de sang avec diffuseur scellé dans un appareil de commande optique |
CN101925821B (zh) | 2008-01-22 | 2014-09-24 | 株式会社岛津制作所 | 测定装置及具有其的液体提取测定系统 |
US20090204435A1 (en) | 2008-01-31 | 2009-08-13 | Brian Gale | System for automating medical imaging diagnostic service delivery |
WO2009099512A2 (fr) | 2008-02-04 | 2009-08-13 | Micropoint Biosciences, Inc. | Rotor pour analyseur centrifuge de fluides |
CN107132185B (zh) | 2008-02-05 | 2020-05-29 | 普凯尔德诊断技术有限公司 | 用于鉴定生物样品中细菌的系统 |
US8034568B2 (en) | 2008-02-12 | 2011-10-11 | Nugen Technologies, Inc. | Isothermal nucleic acid amplification methods and compositions |
US8187808B2 (en) | 2008-02-29 | 2012-05-29 | Northwestern University | Barriers for facilitating biological reactions |
JP5198094B2 (ja) | 2008-03-07 | 2013-05-15 | シスメックス株式会社 | 分析装置 |
US7850917B2 (en) | 2008-03-11 | 2010-12-14 | Ortho-Clinical Diagnostics, Inc. | Particle agglutination in a tip |
US8137920B2 (en) | 2008-03-20 | 2012-03-20 | Abaxis, Inc. | Multi-wavelength analyses of sol-particle specific binding assays |
CA2719625C (fr) | 2008-03-26 | 2019-02-26 | Theranos, Inc. | Procedes et systemes de determination de resultats cliniques |
CA2719747C (fr) | 2008-03-28 | 2018-02-20 | Pacific Biosciences Of California, Inc. | Compositions et procedes pour le sequencage d'acide nucleique |
WO2009123000A1 (fr) | 2008-03-31 | 2009-10-08 | シスメックス株式会社 | Dispositif de traitement de cellules, dispositif de préparation d'échantillons et dispositif d'analyse de cellules |
JP5749156B2 (ja) * | 2008-04-05 | 2015-07-15 | シングル セル テクノロジー, インコーポレイテッドSingle Cell Technology, Inc. | 生理活性物質の生産のための単一細胞を選抜する方法 |
EP2112514A1 (fr) | 2008-04-24 | 2009-10-28 | bioMérieux BV | Procédé et appareil de vérification du fluide dans l'extrémité d'une pipette |
US20090274348A1 (en) | 2008-04-30 | 2009-11-05 | Ortho-Clinical Diagnostics, Inc. | Immunodiagnostic test apparatus having at least one imager to provide agglutination evaluations during centrifugration cycle |
US8029742B2 (en) | 2008-05-05 | 2011-10-04 | Integra Biosciences Corp. | Multi-channel pipettor with repositionable tips |
JP2010133924A (ja) | 2008-10-28 | 2010-06-17 | Sysmex Corp | 液体吸引機構および試料分析装置 |
EP2304436A1 (fr) | 2008-07-10 | 2011-04-06 | Nodality, Inc. | Procédés de diagnostic, pronostic et traitement |
KR100978912B1 (ko) | 2008-07-10 | 2010-08-31 | 주식회사 한랩 | 자동 평형형 원심분리기 |
US20100015690A1 (en) | 2008-07-16 | 2010-01-21 | Ortho-Clinical Diagnostics, Inc. | Use of fluid aspiration/dispensing tip as a microcentrifuge tube |
ES2451541T3 (es) | 2008-07-16 | 2014-03-27 | International Technidyne Corporation | Aparato a base de cubeta para medición y ensayo de la coagulación sanguínea |
US9779213B2 (en) | 2008-07-25 | 2017-10-03 | Fundacao D. Anna Sommer Champalimaud E Dr. Carlos Montez Champalimaud | System for evaluating a pathological stage of prostate cancer |
EP2214011B1 (fr) | 2008-08-01 | 2019-01-02 | Sysmex Corporation | Appareil d'analyse d'échantillon sanguin |
JP5465850B2 (ja) | 2008-08-01 | 2014-04-09 | シスメックス株式会社 | 試料分析システム |
US9034257B2 (en) | 2008-10-27 | 2015-05-19 | Nodality, Inc. | High throughput flow cytometry system and method |
GB2497007B (en) | 2008-11-07 | 2013-08-07 | Sequenta Inc | Methods of monitoring disease conditions by analysis of the full repertoire of the V-D junction or D-J junction sequences of an individual |
US8309306B2 (en) | 2008-11-12 | 2012-11-13 | Nodality, Inc. | Detection composition |
US8900878B2 (en) | 2008-11-28 | 2014-12-02 | Roche Molecular Systems Inc. | Pipetting device, modular pipetting unit, pipetting system and method for pipetting of fluid samples |
CA2745732C (fr) | 2008-12-05 | 2014-02-11 | F. Hoffmann-La Roche Ag | Procede de fabrication d'un ensemble de recipients a reactifs et ensemble de recipients a reactifs |
JP2010145252A (ja) | 2008-12-18 | 2010-07-01 | Nippon Soken Inc | 液体燃料性状検出装置 |
WO2010069080A1 (fr) | 2008-12-19 | 2010-06-24 | Stemcell Technologies Inc. | Appareil de filtration et système de plaque de filtration |
WO2010090857A2 (fr) | 2009-01-21 | 2010-08-12 | Vertex Pharmaceuticals Incorporated | Procédés d'amplification d'acides nucléiques du virus de l'hépatite c |
JP2010175342A (ja) | 2009-01-28 | 2010-08-12 | Hitachi High-Technologies Corp | 自動分析装置及び反応容器 |
US20100215644A1 (en) | 2009-02-25 | 2010-08-26 | Nodality, Inc. A Delaware Corporation | Analysis of nodes in cellular pathways |
US20100246416A1 (en) | 2009-03-25 | 2010-09-30 | Amit Sinha | Systems and methods for remote testing of wireless lan access points |
US8320985B2 (en) | 2009-04-02 | 2012-11-27 | Empire Technology Development Llc | Touch screen interfaces with pulse oximetry |
CN102414554B (zh) | 2009-04-22 | 2014-11-26 | 威斯康星校友研究基金会 | 采用液晶的分析物检测 |
GB2473868A (en) | 2009-09-28 | 2011-03-30 | Invitrogen Dynal As | Apparatus and method of automated processing of biological samples |
EP2253958B1 (fr) | 2009-05-18 | 2013-04-17 | F. Hoffmann-La Roche AG | Système microfluidique basé sur la force centrifuge et méthode pour l'analyse automatique d'échantillons |
DE102009022972A1 (de) | 2009-05-28 | 2010-12-02 | Gea Westfalia Separator Gmbh | Zentrifuge mit einem Schmiermittelsystem |
US8426214B2 (en) | 2009-06-12 | 2013-04-23 | University Of Washington | System and method for magnetically concentrating and detecting biomarkers |
CA3083798C (fr) | 2009-07-27 | 2023-08-15 | Meso Scale Technologies, Llc | Appareils, consommables et procedes d'essai |
EP2311563A1 (fr) | 2009-08-07 | 2011-04-20 | F. Hoffmann-La Roche AG | Unités de traitement et procédé pour le traitement d'échantillons liquides |
US7982201B2 (en) | 2009-09-08 | 2011-07-19 | Jadak, Llc | System and method for detection of liquid level in a vessel |
CA3081708C (fr) | 2009-10-19 | 2023-10-03 | Theranos Ip Company, Llc | Systeme de capture et d'analyse integre de donnees de sante |
US8372657B2 (en) | 2009-10-20 | 2013-02-12 | Agency For Science, Technology, And Research | Microfluidic system for detecting a biological entity in a sample |
EP2490814B1 (fr) | 2009-10-22 | 2015-01-14 | Brian Page | Pipette, appareil et kit pour la mesure de la lumière et procédé correspondant |
US9521055B2 (en) | 2009-11-13 | 2016-12-13 | Verizon Patent And Licensing Inc. | Network connectivity management |
US20120206587A1 (en) | 2009-12-04 | 2012-08-16 | Orscan Technologies Ltd | System and method for scanning a human body |
FI4060325T3 (fi) | 2009-12-07 | 2024-09-25 | Meso Scale Technologies Llc | Määrityskasetin lukija |
US8748186B2 (en) | 2009-12-22 | 2014-06-10 | Abbott Laboratories | Method for performing a blood count and determining the morphology of a blood smear |
US9486803B2 (en) | 2010-01-22 | 2016-11-08 | Biotix, Inc. | Pipette tips |
JP5564980B2 (ja) | 2010-02-23 | 2014-08-06 | 日本電気株式会社 | セキュリティスクリーニングシステムおよびセキュリティスクリーニング方法 |
WO2011106315A1 (fr) | 2010-02-23 | 2011-09-01 | Rheonix, Inc. | Appareil de dosage biologique autonome, procédés et applications |
US20110213579A1 (en) | 2010-02-26 | 2011-09-01 | Henke Tom L | Method and apparatus for verifying test results |
US20110213564A1 (en) | 2010-02-26 | 2011-09-01 | Henke Tom L | Method and apparatus for code verified testing |
WO2011106512A1 (fr) | 2010-02-26 | 2011-09-01 | Quickcheck Health, Inc. | Procédé et appareil pour essai vérifié par code |
US20110213619A1 (en) | 2010-02-26 | 2011-09-01 | Henke Tom L | Method and system for online medical diagnosis |
US20110218428A1 (en) | 2010-03-04 | 2011-09-08 | Medical Scan Technologies, Inc. | System and Method for Three Dimensional Medical Imaging with Structured Light |
US8588807B2 (en) | 2010-04-28 | 2013-11-19 | Palm, Inc. | System and method for dynamically managing connections using a coverage database |
CN103725591A (zh) | 2010-07-23 | 2014-04-16 | 贝克曼考尔特公司 | 盒装载单元 |
US20120059664A1 (en) | 2010-09-07 | 2012-03-08 | Emil Markov Georgiev | System and method for management of personal health and wellness |
US20120083501A1 (en) | 2010-09-24 | 2012-04-05 | Hunt Kevin W | Compounds for treating neurodegenerative diseases |
WO2012054589A2 (fr) | 2010-10-22 | 2012-04-26 | T2 Biosystems, Inc. | Dispositifs contenant des conduits et procédés pour le traitement et la détection d'analytes |
JP5950920B2 (ja) | 2010-10-22 | 2016-07-13 | ティー2 バイオシステムズ インコーポレイテッド | 検体の検出のためのnmrシステムおよび方法 |
US8804114B2 (en) | 2010-11-03 | 2014-08-12 | Pocared Diagnostics Ltd. | Optical cup |
CN108761108B (zh) | 2010-11-23 | 2022-06-07 | 安德鲁联合有限公司 | 容积校准、处理流体和操纵移液管的方法 |
CA2819126A1 (fr) | 2010-12-03 | 2012-06-07 | Abbott Point Of Care Inc. | Dispositif doseur d'echantillon et dispositif d'analyse comportant la dilution integree de l'echantillon |
US20130243794A1 (en) | 2010-12-03 | 2013-09-19 | Beth Israel Deaconess Medical Center, Inc. | Methods for predicting and treating infection-induced illnesses and predicting the severity of infection-induced illnesses |
JP6087293B2 (ja) | 2011-01-06 | 2017-03-01 | メソ スケール テクノロジーズ エルエルシー | アッセイカートリッジ及びその使用方法 |
EP4024029A3 (fr) | 2011-01-21 | 2022-09-14 | Labrador Diagnostics LLC | Systèmes et procédés de maximisation d'utilisation d'échantillon |
US9168523B2 (en) | 2011-05-18 | 2015-10-27 | 3M Innovative Properties Company | Systems and methods for detecting the presence of a selected volume of material in a sample processing device |
CN203941178U (zh) | 2011-05-20 | 2014-11-12 | 珀金埃尔默保健科学公司 | 实验室部件和液体装卸系统及辅助性可流动材料装卸系统 |
EP2746395B1 (fr) | 2011-09-08 | 2017-11-29 | Kabushiki Kaisha DNAFORM | Ensemble d'amorces, procédé d'amplification d'une séquence d'acide nucléique cible à l'aide de celui-ci, et procédé de détection d'un acide nucléique muté à l'aide de celui-ci |
US8435738B2 (en) | 2011-09-25 | 2013-05-07 | Theranos, Inc. | Systems and methods for multi-analysis |
WO2013043203A2 (fr) | 2011-09-25 | 2013-03-28 | Theranos, Inc. | Systèmes et procédés pour analyse multifonction |
US8840838B2 (en) | 2011-09-25 | 2014-09-23 | Theranos, Inc. | Centrifuge configurations |
US20140170735A1 (en) * | 2011-09-25 | 2014-06-19 | Elizabeth A. Holmes | Systems and methods for multi-analysis |
US9632102B2 (en) | 2011-09-25 | 2017-04-25 | Theranos, Inc. | Systems and methods for multi-purpose analysis |
US9664702B2 (en) | 2011-09-25 | 2017-05-30 | Theranos, Inc. | Fluid handling apparatus and configurations |
US20130074614A1 (en) | 2011-09-25 | 2013-03-28 | Theranos, Inc., a Delaware Corporation | Container configurations |
US8475739B2 (en) | 2011-09-25 | 2013-07-02 | Theranos, Inc. | Systems and methods for fluid handling |
US9619627B2 (en) | 2011-09-25 | 2017-04-11 | Theranos, Inc. | Systems and methods for collecting and transmitting assay results |
US8380541B1 (en) | 2011-09-25 | 2013-02-19 | Theranos, Inc. | Systems and methods for collecting and transmitting assay results |
US9268915B2 (en) | 2011-09-25 | 2016-02-23 | Theranos, Inc. | Systems and methods for diagnosis or treatment |
US20130080071A1 (en) | 2011-09-25 | 2013-03-28 | Theranos, Inc., a Delaware Corporation | Systems and methods for sample processing and analysis |
US9810704B2 (en) | 2013-02-18 | 2017-11-07 | Theranos, Inc. | Systems and methods for multi-analysis |
US10012664B2 (en) | 2011-09-25 | 2018-07-03 | Theranos Ip Company, Llc | Systems and methods for fluid and component handling |
US9250229B2 (en) * | 2011-09-25 | 2016-02-02 | Theranos, Inc. | Systems and methods for multi-analysis |
US11249799B2 (en) | 2011-09-26 | 2022-02-15 | Labrador Diagnostics Llc | Methods, systems, and devices for real time execution and optimization of concurrent test protocols on a single device |
US20160077015A1 (en) | 2011-09-25 | 2016-03-17 | Theranos, Inc. | Systems and methods for multi-analysis |
US8392585B1 (en) | 2011-09-26 | 2013-03-05 | Theranos, Inc. | Methods and systems for facilitating network connectivity |
US20140335505A1 (en) | 2011-09-25 | 2014-11-13 | Theranos, Inc. | Systems and methods for collecting and transmitting assay results |
US20160069919A1 (en) | 2011-09-25 | 2016-03-10 | Theranos, Inc. | Systems and methods for multi-analysis |
US20160320381A1 (en) | 2011-09-25 | 2016-11-03 | Theranos, Inc. | Systems and methods for multi-analysis |
CN103946364B (zh) | 2011-09-25 | 2018-04-24 | 赛拉诺斯知识产权有限责任公司 | 用于多重分析的系统和方法 |
US20140308661A1 (en) | 2011-09-25 | 2014-10-16 | Theranos, Inc. | Systems and methods for multi-analysis |
WO2013053855A1 (fr) | 2011-10-11 | 2013-04-18 | Qiagen Gmbh | Procédé de traitement d'échantillon et cartouche de traitement d'échantillon |
JP5854218B2 (ja) | 2012-01-24 | 2016-02-09 | 日立工機株式会社 | 遠心分離機 |
US9073052B2 (en) | 2012-03-30 | 2015-07-07 | Perkinelmer Health Sciences, Inc. | Lab members and liquid handling systems and methods including same |
US20150130463A1 (en) | 2012-06-25 | 2015-05-14 | T2 Biosystems, Inc. | Portable device for nmr based analysis of rheological changes in liquid samples |
US9389229B2 (en) | 2012-07-18 | 2016-07-12 | Theranos, Inc. | Methods for detecting and measuring aggregation |
MX381057B (es) | 2012-07-18 | 2025-03-12 | Labrador Diagnostics Llc | Centrífuga compacta de alta velocidad para utilizarse con pequeños volúmenes de muestra. |
AU2013315800A1 (en) | 2012-09-11 | 2015-03-12 | Theranos Ip Company, Llc | Information management systems and methods using a biological signature |
CN102974474B (zh) | 2012-11-13 | 2014-02-26 | 湖南航天机电设备与特种材料研究所 | 一种超速离心机 |
US20140342371A1 (en) | 2012-12-05 | 2014-11-20 | Theranos, Inc. | Bodily Fluid Sample Collection and Transport |
US9051599B2 (en) | 2012-12-10 | 2015-06-09 | Theranos, Inc. | Rapid, low-sample-volume cholesterol and triglyceride assays |
US20140170678A1 (en) | 2012-12-17 | 2014-06-19 | Leukodx Ltd. | Kits, compositions and methods for detecting a biological condition |
CA2898477A1 (fr) | 2013-02-18 | 2014-08-21 | Theranos, Inc. | Systemes et procedes d'analyse multiple |
US20160054343A1 (en) | 2013-02-18 | 2016-02-25 | Theranos, Inc. | Systems and methods for multi-analysis |
WO2014145291A1 (fr) | 2013-03-15 | 2014-09-18 | Theranos, Inc. | Amplification d'acide nucléique |
SG11201507272RA (en) | 2013-03-15 | 2015-10-29 | Theranos Inc | Nuclei acid amplification |
US9359632B2 (en) | 2013-03-15 | 2016-06-07 | Theranos, Inc. | Devices, systems and methods for sample preparation |
EP3042208A4 (fr) | 2013-09-06 | 2017-04-19 | Theranos, Inc. | Systèmes et procédés pour détection de maladies infectieuses |
MX2016002797A (es) | 2013-09-06 | 2016-05-26 | Theranos Inc | Dispositivos, sistemas, metodos y equipos para recibir un hisopo. |
US10828636B2 (en) | 2016-10-25 | 2020-11-10 | Fannin Partners Llc | Automated remotely instructed driving of an assay |
-
2008
- 2008-10-02 EP EP08836072.2A patent/EP2205968B1/fr active Active
- 2008-10-02 KR KR1020167029179A patent/KR101844172B1/ko active Active
- 2008-10-02 EP EP20187805.5A patent/EP3756767B1/fr active Active
- 2008-10-02 KR KR1020157013343A patent/KR101670621B1/ko active Active
- 2008-10-02 ES ES17155280T patent/ES2818194T3/es active Active
- 2008-10-02 MX MX2016009886A patent/MX352987B/es unknown
- 2008-10-02 CA CA2934220A patent/CA2934220C/fr active Active
- 2008-10-02 CN CN201410452665.6A patent/CN104297507B/zh active Active
- 2008-10-02 RU RU2010117267/15A patent/RU2540424C2/ru not_active IP Right Cessation
- 2008-10-02 DK DK13178059.5T patent/DK2657699T3/en active
- 2008-10-02 EP EP24172878.1A patent/EP4450163A3/fr active Pending
- 2008-10-02 EP EP17155280.5A patent/EP3181228B1/fr active Active
- 2008-10-02 ES ES08836072.2T patent/ES2447875T3/es active Active
- 2008-10-02 KR KR1020187008043A patent/KR20180032684A/ko not_active Ceased
- 2008-10-02 CA CA3042430A patent/CA3042430C/fr active Active
- 2008-10-02 CN CN201310170188.XA patent/CN103323610B/zh active Active
- 2008-10-02 MX MX2010003578A patent/MX2010003578A/es active IP Right Grant
- 2008-10-02 KR KR1020107009627A patent/KR101579327B1/ko active Active
- 2008-10-02 WO PCT/US2008/078636 patent/WO2009046227A1/fr active Application Filing
- 2008-10-02 CN CN201410446608.7A patent/CN104297506B/zh active Active
- 2008-10-02 KR KR1020137025985A patent/KR101669323B1/ko active Active
- 2008-10-02 BR BRPI0820328A patent/BRPI0820328B8/pt active IP Right Grant
- 2008-10-02 CA CA3170924A patent/CA3170924A1/fr active Pending
- 2008-10-02 CN CN201410451942.1A patent/CN104502579B/zh active Active
- 2008-10-02 DK DK08836072.2T patent/DK2205968T3/en active
- 2008-10-02 EP EP13178059.5A patent/EP2657699B1/fr active Active
- 2008-10-02 SG SG2013005848A patent/SG188082A1/en unknown
- 2008-10-02 CN CN200880118646.2A patent/CN101874205B/zh active Active
- 2008-10-02 SG SG10202100638XA patent/SG10202100638XA/en unknown
- 2008-10-02 CA CA2701794A patent/CA2701794C/fr active Active
- 2008-10-02 US US12/244,723 patent/US8088593B2/en active Active
- 2008-10-02 JP JP2010528139A patent/JP5511669B2/ja active Active
- 2008-10-02 SG SG10201606120XA patent/SG10201606120XA/en unknown
- 2008-10-02 BR BR122020017678-4A patent/BR122020017678B1/pt active IP Right Grant
- 2008-10-02 CA CA3138078A patent/CA3138078C/fr active Active
- 2008-10-02 NZ NZ584963A patent/NZ584963A/xx not_active IP Right Cessation
- 2008-10-02 CN CN201810204736.9A patent/CN108333379B/zh active Active
- 2008-10-02 AU AU2008308686A patent/AU2008308686B2/en active Active
-
2010
- 2010-04-06 IL IL204877A patent/IL204877A/en active IP Right Grant
-
2011
- 2011-04-27 HK HK15106861.6A patent/HK1206422A1/xx unknown
- 2011-04-27 HK HK15106879.6A patent/HK1206424A1/xx unknown
- 2011-04-27 HK HK11104252.2A patent/HK1150175A1/xx unknown
- 2011-12-14 US US13/326,023 patent/US9435793B2/en active Active
-
2012
- 2012-12-12 IL IL223603A patent/IL223603A/en active IP Right Grant
- 2012-12-12 IL IL223604A patent/IL223604B/en active IP Right Grant
- 2012-12-12 IL IL223599A patent/IL223599A/en active IP Right Grant
- 2012-12-12 IL IL223600A patent/IL223600A/en active IP Right Grant
- 2012-12-12 IL IL223602A patent/IL223602A/en active IP Right Grant
- 2012-12-12 IL IL223601A patent/IL223601A/en active IP Right Grant
-
2013
- 2013-04-13 AU AU2013205047A patent/AU2013205047B2/en active Active
- 2013-04-19 JP JP2013088250A patent/JP2013145247A/ja not_active Withdrawn
- 2013-05-08 US US13/889,674 patent/US8822167B2/en active Active
- 2013-05-13 US US13/893,258 patent/US9121851B2/en active Active
- 2013-06-12 US US13/916,553 patent/US8697377B2/en active Active
- 2013-06-19 RU RU2013127796A patent/RU2669767C2/ru not_active IP Right Cessation
-
2014
- 2014-07-04 JP JP2014138289A patent/JP2014186038A/ja not_active Withdrawn
- 2014-07-24 US US14/339,946 patent/US9012163B2/en active Active
-
2015
- 2015-03-26 US US14/670,200 patent/US9285366B2/en active Active
- 2015-08-20 US US14/831,734 patent/US9581588B2/en active Active
- 2015-09-08 US US14/848,084 patent/US11092593B2/en active Active
- 2015-09-08 US US14/848,032 patent/US10634667B2/en active Active
- 2015-10-01 US US14/872,718 patent/US20160025721A1/en not_active Abandoned
- 2015-10-08 HK HK15109850.3A patent/HK1209185A1/xx unknown
- 2015-12-08 US US14/963,030 patent/US20160161513A1/en active Pending
-
2016
- 2016-01-27 US US15/007,585 patent/US9588109B2/en active Active
- 2016-03-14 US US15/069,843 patent/US11366106B2/en active Active
- 2016-05-20 US US15/160,578 patent/US11061022B2/en active Active
- 2016-05-20 US US15/160,491 patent/US11143647B2/en active Active
- 2016-06-16 JP JP2016119643A patent/JP2016186495A/ja not_active Withdrawn
- 2016-07-22 US US15/217,360 patent/US10900958B2/en active Active
- 2016-07-22 US US15/217,207 patent/US10670588B2/en active Active
-
2018
- 2018-04-13 US US15/952,958 patent/US11199538B2/en active Active
- 2018-04-13 US US15/952,966 patent/US11137391B2/en active Active
- 2018-05-09 JP JP2018090460A patent/JP2018136345A/ja not_active Withdrawn
- 2018-05-09 JP JP2018090461A patent/JP2018151399A/ja active Pending
- 2018-06-17 IL IL260063A patent/IL260063A/en unknown
-
2020
- 2020-02-21 JP JP2020028387A patent/JP7412215B2/ja active Active
-
2021
- 2021-02-02 US US17/165,249 patent/US20210156848A1/en active Pending
- 2021-03-30 JP JP2021057359A patent/JP2021103185A/ja active Pending
-
2022
- 2022-05-24 US US17/664,790 patent/US11899010B2/en active Active
-
2023
- 2023-10-23 JP JP2023181769A patent/JP2023181301A/ja active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11899010B2 (en) | Modular point-of-care devices, systems, and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100429 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20100831 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 33/48 20060101AFI20090506BHEP Ipc: G01N 33/53 20060101ALI20100825BHEP |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BURD, TAMMY Inventor name: NUGENT, ANTHONY, JOSEPH Inventor name: FRENZEL, GARY Inventor name: HOLMES, ELIZABETH, A. Inventor name: GIBBONS, IAN |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20120103 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THERANOS, INC. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130507 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BURD, TAMMY Inventor name: GIBBONS, IAN Inventor name: NUGENT, ANTHONY JOSEPH Inventor name: FRENZEL, GARY Inventor name: HOLMES, ELIZABETH A. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 641933 Country of ref document: AT Kind code of ref document: T Effective date: 20131215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008028891 Country of ref document: DE Effective date: 20140116 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MEYER AND KOLLEGEN, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20140213 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2447875 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140313 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 641933 Country of ref document: AT Kind code of ref document: T Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140220 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140320 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008028891 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140821 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008028891 Country of ref document: DE Effective date: 20140821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141002 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140221 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081002 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180315 AND 20180326 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: THERANOS IP COMPANY, LLC Effective date: 20180731 Ref country code: ES Ref legal event code: PC2A Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008028891 Country of ref document: DE Representative=s name: PATENTANWALTSKANZLEI MEYER, DE Ref legal event code: R082 Ref document number: 602008028891 Country of ref document: DE Ref country code: DE Ref legal event code: R081 Ref document number: 602008028891 Country of ref document: DE Owner name: LABRADOR DIAGNOSTICS LLC, WILMINGTON, US Free format text: FORMER OWNER: THERANOS, INC., PALO ALTO, CALIF., US Ref country code: DE Ref legal event code: R081 Ref document number: 602008028891 Country of ref document: DE Owner name: THERANOS IP COMPANY, LLC, NEWARK, US Free format text: FORMER OWNER: THERANOS, INC., PALO ALTO, CALIF., US |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008028891 Country of ref document: DE Representative=s name: PATENTANWALTSKANZLEI MEYER, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20191010 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20191010 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: LABRADOR DIAGNOSTICS LLC, US Free format text: FORMER OWNER: THERANOS, INC., US |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: LABRADOR DIAGNOSTICS LLC Effective date: 20201123 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20201031 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: LABRADOR DIAGNOSTICS LLC; US Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: THERANOS IP COMPANY, LLC Effective date: 20210503 Ref country code: NL Ref legal event code: PD Owner name: THERANOS IP COMPANY, LLC; US Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: THERANOS, INC. Effective date: 20210503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008028891 Country of ref document: DE Representative=s name: PATENTANWALTSKANZLEI MEYER, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602008028891 Country of ref document: DE Owner name: LABRADOR DIAGNOSTICS LLC, WILMINGTON, US Free format text: FORMER OWNER: THERANOS IP COMPANY, LLC, NEWARK, CA, US |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230915 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231103 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231102 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240910 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240829 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240909 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240910 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240904 Year of fee payment: 17 |