WO2014034430A1 - 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池 - Google Patents
非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池 Download PDFInfo
- Publication number
- WO2014034430A1 WO2014034430A1 PCT/JP2013/071865 JP2013071865W WO2014034430A1 WO 2014034430 A1 WO2014034430 A1 WO 2014034430A1 JP 2013071865 W JP2013071865 W JP 2013071865W WO 2014034430 A1 WO2014034430 A1 WO 2014034430A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- electrolyte secondary
- niobium
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 103
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 166
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 94
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 71
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 71
- -1 lithium transition metal Chemical class 0.000 claims abstract description 58
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 47
- 239000000203 mixture Substances 0.000 claims abstract description 46
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000002905 metal composite material Substances 0.000 claims abstract description 45
- 150000002822 niobium compounds Chemical class 0.000 claims abstract description 34
- 239000002002 slurry Substances 0.000 claims abstract description 27
- 150000002821 niobium Chemical class 0.000 claims abstract description 20
- 239000012266 salt solution Substances 0.000 claims abstract description 17
- 239000002253 acid Substances 0.000 claims abstract description 14
- 150000002642 lithium compounds Chemical class 0.000 claims abstract description 13
- 239000012298 atmosphere Substances 0.000 claims abstract description 12
- 230000001590 oxidative effect Effects 0.000 claims abstract description 6
- 239000010955 niobium Substances 0.000 claims description 91
- 229910052758 niobium Inorganic materials 0.000 claims description 69
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 65
- 238000010304 firing Methods 0.000 claims description 38
- 239000007864 aqueous solution Substances 0.000 claims description 35
- 238000000576 coating method Methods 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 239000011248 coating agent Substances 0.000 claims description 29
- 238000002156 mixing Methods 0.000 claims description 24
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- 229910017052 cobalt Inorganic materials 0.000 claims description 17
- 239000010941 cobalt Substances 0.000 claims description 17
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 17
- 238000002425 crystallisation Methods 0.000 claims description 15
- 230000008025 crystallization Effects 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 5
- 239000002245 particle Substances 0.000 description 57
- 239000002131 composite material Substances 0.000 description 38
- 238000006243 chemical reaction Methods 0.000 description 26
- 239000002243 precursor Substances 0.000 description 24
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 15
- 230000007423 decrease Effects 0.000 description 15
- 229910001416 lithium ion Inorganic materials 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000011572 manganese Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910021529 ammonia Inorganic materials 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 7
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 7
- 229940044175 cobalt sulfate Drugs 0.000 description 7
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 7
- 235000011118 potassium hydroxide Nutrition 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 6
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 5
- 238000007600 charging Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 229910001388 sodium aluminate Inorganic materials 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 239000008139 complexing agent Substances 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052789 astatine Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910000592 Ferroniobium Inorganic materials 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- IBXOPEGTOZQGQO-UHFFFAOYSA-N [Li].[Nb] Chemical compound [Li].[Nb] IBXOPEGTOZQGQO-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 238000010294 electrolyte impregnation Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- ZFGFKQDDQUAJQP-UHFFFAOYSA-N iron niobium Chemical compound [Fe].[Fe].[Nb] ZFGFKQDDQUAJQP-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- WPCMRGJTLPITMF-UHFFFAOYSA-I niobium(5+);pentahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[Nb+5] WPCMRGJTLPITMF-UHFFFAOYSA-I 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the same.
- lithium ion secondary battery Lithium metal, lithium alloy, metal oxide, carbon, or the like is used as a negative electrode material for a lithium ion secondary battery. These materials are materials capable of removing and inserting lithium.
- lithium ion secondary batteries using a lithium transition metal composite oxide, in particular, a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material is high because a high voltage of 4V is obtained.
- LiCoO 2 lithium cobalt composite oxide
- many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. ing.
- lithium cobalt composite oxide (LiCoO 2 ) uses a rare and expensive cobalt compound as a raw material, which causes an increase in battery cost. For this reason, it is desired to use materials other than lithium cobalt composite oxide (LiCoO 2 ) as the positive electrode active material.
- lithium ion secondary batteries As newly proposed materials, lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ) using nickel can be cited. it can.
- Lithium-manganese composite oxide (LiMn 2 O 4 ) is a powerful alternative to lithium-cobalt composite oxide (LiCoO 2 ) because it is inexpensive and has excellent thermal stability, in particular, safety with respect to ignition.
- LiCoO 2 lithium-cobalt composite oxide
- the theoretical capacity is only about half that of lithium cobalt composite oxide (LiCoO 2 )
- lithium nickel composite oxide (LiNiO 2 ) has almost the same theoretical capacity as lithium cobalt composite oxide (LiCoO 2 ), and shows a slightly lower battery voltage than lithium cobalt composite oxide. For this reason, decomposition
- a lithium-ion secondary battery is made using a lithium-nickel composite oxide composed solely of nickel as a positive electrode active material without replacing nickel with other elements, the cycle is higher than that of lithium-cobalt composite oxide. The characteristics are inferior.
- Patent Document 1 Li a Ni 1-xyz Co x M y Nb z O b (where M is the purpose) for the purpose of improving the thermal stability of an internal short circuit of a lithium ion secondary battery.
- Patent Document 2 Li 1 + z Ni 1-xy Co x Nb y O 2 (0.10 ⁇ x ⁇ 0.21, for the purpose of improving thermal stability and increasing charge / discharge capacity. 0.01 ⁇ y ⁇ 0.08, ⁇ 0.05 ⁇ z ⁇ 0.10), and the peak intensity of the Nb L line is represented by I Nb and the peak intensity of the L line of Ni in the measurement by the energy dispersion method.
- I Nb / I Ni positive electrode active material for non-aqueous electrolyte secondary battery is within 1/2 of the average value of standard deviations is the intensity ratio I Nb / I Ni of when the I Ni .
- Patent Document 4 to both charge-discharge capacity and safety, in order to suppress the deterioration of the cycle characteristics, Li x Ni (1-y -z-a) Co y Mn z M a O 2 (M is Fe , V, Cr, Ti, Mg, Al, Ca, Nb and Zr are at least one element selected from the group consisting of x, y, and z, where 1.0 ⁇ x ⁇ 1.10.
- a substance (A is Ti, Sn, Mg) on the surface of the lithium composite oxide ,
- a positive electrode active material for a non-aqueous electrolyte secondary battery having a structure coated with a compound composed of at least one element selected from the group consisting of Zr, Al, Nb and Zn.
- Patent Document 5 excellent thermal stability, and in order to obtain a high charge-discharge capacity, Li 1 + z Ni 1- x-y Co x M y O 2 (wherein x, y, z is 0.10 ⁇ x ⁇ 0.21, 0.015 ⁇ y ⁇ 0.08, ⁇ 0.05 ⁇ z ⁇ 0.10 is satisfied, and M is from Al, Mn, Nb or Mo, which has better affinity with oxygen than nickel.
- a positive electrode active material for a secondary battery for a non-aqueous electrolyte is proposed in which two kinds of M represented by at least two selected elements and having an average valence exceeding 3) are impregnated or adhered.
- Patent Documents 1 to 5 are all aimed at achieving both thermal stability and charge / discharge capacity, but if the amount of niobium added is small, the charge / discharge capacity is large, but sufficient thermal stability is achieved. On the other hand, when the amount of niobium added is large, the thermal stability is good, but a sufficient charge / discharge capacity cannot be secured. There is also a problem that it is difficult to ensure excellent cycle characteristics.
- the present invention provides a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery that has both high thermal stability and charge / discharge capacity and is excellent in cycle characteristics, and the positive electrode active material It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having excellent safety, high capacity, and excellent cycle characteristics. Furthermore, this invention aims at providing the manufacturing method suitable for production on the industrial scale of the said positive electrode active material for non-aqueous-electrolyte secondary batteries.
- the present inventors diligently investigated the addition of niobium to the lithium metal composite oxide in order to improve the thermal stability.
- a nickel-containing hydroxide was used as a slurry, and a niobium salt solution and an acid were simultaneously added to the slurry.
- the niobium compound can be coated on the nickel-containing hydroxide without peeling by controlling the pH of the solution to be a predetermined value.
- the positive electrode active material for a non-aqueous electrolyte secondary battery manufactured using a nickel-containing hydroxide coated with this niobium compound has a large number of fine voids, and is particularly heat stable. Obtaining the knowledge that the positive electrode active material is good and has a high charge / discharge capacity, the present invention has been completed.
- the manufacturing method of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention have the general formula Li d Ni 1-a-b -c Co a M b Nb c O 2 (where, M is Mn, V, At least one element selected from Mg, Ti and Al, 0.05 ⁇ a ⁇ 0.35, 0 ⁇ b ⁇ 0.10, 0.006 ⁇ c ⁇ 0.06, 0.95 ⁇ d ⁇ 1.20), and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium transition metal composite oxide composed of polycrystalline particles, comprising nickel-containing water A niobium salt solution and an acid are simultaneously added to the oxide slurry, and the pH of the slurry is controlled to be 7 to 11 on a 25 ° C.
- Niobium coating process including nickel coated with the niobium compound A mixing step of mixing a hydroxide with a lithium compound to obtain a lithium mixture, and a firing step of firing the lithium mixture at 700 to 830 ° C. in an oxidizing atmosphere to obtain the lithium transition metal composite oxide. To do.
- the method includes a crystallization step of adding an alkaline aqueous solution to a mixed aqueous solution containing at least nickel and cobalt for crystallization to obtain the nickel-containing hydroxide.
- a crystallization step of adding an alkaline aqueous solution to a mixed aqueous solution containing at least nickel and cobalt for crystallization to obtain the nickel-containing hydroxide.
- M is at least one element selected from Mn, V, Mg, Ti and Al, 0.05 ⁇ a ′ ⁇ 0.35 and 0 ⁇ b ′ ⁇ 0.10.
- the pH of the slurry is preferably controlled to 7 to 10 on a 25 ° C. basis.
- a heat treatment step of heat treating the nickel-containing hydroxide coated with the niobium compound at 105 to 800 ° C. before the mixing step is preferable to include a step of mixing the lithium transition metal composite oxide obtained in the firing step with water at a rate of 100 to 2000 g / L and washing with water.
- the positive electrode active material for non-aqueous electrolyte secondary battery of the present invention have the general formula Li d Ni 1-a-b -c Co a M b Nb c O 2 (where, M is Mn, V, Mg, Ti and At least one element selected from Al, 0.05 ⁇ a ⁇ 0.35, 0 ⁇ b ⁇ 0.10, 0.006 ⁇ c ⁇ 0.06, 0.95 ⁇ d ⁇ 1.
- a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium transition metal composite oxide composed of polycrystalline structure particles, having a porous structure, and having a specific surface area. It is characterized by being 2.0 to 7.0 m 2 / g.
- the crystallite diameter of the lithium transition metal composite oxide is preferably 10 to 150 nm, and c indicating the niobium content of the lithium transition metal composite oxide is 0.006 ⁇ c ⁇ 0.05. preferable.
- non-aqueous electrolyte secondary battery of the present invention is characterized in that the positive electrode active material for a non-aqueous electrolyte secondary battery is used as a positive electrode.
- the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention enables the production of a positive electrode active material having high thermal stability, charge / discharge capacity, and excellent cycle characteristics. By using it, a non-aqueous electrolyte secondary battery having high safety, battery capacity, and excellent cycle characteristics can be obtained. Therefore, the non-aqueous electrolyte secondary battery according to the present invention satisfies the recent demand for higher capacity and longer life for small secondary batteries such as portable electronic devices, and also for hybrid vehicles, electric vehicles, or stationary storage batteries. It is suitable for a power source used for a large-sized secondary battery. Furthermore, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is easy and suitable for production on an industrial scale, and is extremely useful industrially.
- FIG. 1 is a flow diagram of a niobium compound coating.
- FIG. 2 is a cross-sectional view of a coin battery used for battery evaluation.
- 3 is a scanning electron micrograph of the particle cross section of the positive electrode active material obtained in Example 3.
- FIG. 1 is a flow diagram of a niobium compound coating.
- FIG. 2 is a cross-sectional view of a coin battery used for battery evaluation.
- 3 is a scanning electron micrograph of the particle cross section of the positive electrode active material obtained in Example 3.
- the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium transition metal composite oxide having a specific composition and structure.
- the pH of the slurry is in a nickel-containing hydroxide slurry.
- a niobium salt solution and an acid are simultaneously added so as to have a predetermined value in a range of 7 to 11, and a nickel-containing hydroxide coated with a niobium compound is obtained by coating the nickel-containing hydroxide with an Nb compound.
- Niobium coating step mixing step of mixing a nickel-containing hydroxide coated with the niobium compound and a lithium compound to obtain a lithium mixture, firing the lithium mixture at 700 to 830 ° C.
- the niobium coating step it is preferable to include a crystallization step in which an aqueous alkaline solution is added to a mixed aqueous solution containing at least nickel and cobalt for crystallization to obtain the nickel-containing hydroxide.
- a crystallization step in which an aqueous alkaline solution is added to a mixed aqueous solution containing at least nickel and cobalt for crystallization to obtain the nickel-containing hydroxide.
- the nickel-containing hydroxide used in the present invention is preferably represented by the general formula Ni 1-a′-b ′ Co a ′ M b ′ (OH) 2 (where M is Mn, Nickel cobalt represented by at least one additive element selected from V, Mg, Ti and Al, and 0.05 ⁇ a ′ ⁇ 0.35 and 0 ⁇ b ′ ⁇ 0.10. It is a composite hydroxide. Moreover, it is preferable that the said nickel containing hydroxide consists of a secondary particle comprised from the primary particle.
- a ′ indicating the cobalt content is preferably 0.05 ⁇ a ′ ⁇ 0.35, and more preferably 0.07 ⁇ a ′ ⁇ 0.20.
- b ′ indicating the content of the additive element M is preferably 0 ⁇ b ′ ⁇ 0.10, and more preferably 0.01 ⁇ b ′ ⁇ 0.07.
- the manufacturing method of the said nickel containing hydroxide is not specifically limited, It is preferable to obtain with the following manufacturing method.
- an alkaline solution is added to a mixed aqueous solution containing at least nickel (Ni) and cobalt (Co) in the reaction tank to obtain a reaction aqueous solution.
- the nickel-containing hydroxide is co-precipitated in the reaction tank and crystallized.
- the mixed aqueous solution may be a nickel and cobalt sulfate solution, a nitrate solution, or a chloride solution.
- composition of the metal element contained in the mixed aqueous solution coincides with the composition of the metal element contained in the nickel-containing hydroxide obtained. Therefore, the composition of the metal element in the mixed aqueous solution can be prepared so as to be the same as the composition of the metal element of the target nickel-containing hydroxide.
- a complexing agent can be added to the mixed aqueous solution.
- the complexing agent is not particularly limited as long as it can form a complex by binding to nickel ions and cobalt ions in an aqueous solution, and examples thereof include an ammonium ion supplier. Although it does not specifically limit as an ammonium ion supplier, For example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride etc. can be used.
- the temperature of the reaction aqueous solution is preferably in the range of more than 60 ° C. and 80 ° C. or less, and the pH of the reaction aqueous solution is 10 to 10 ° C. 11 (based on 25 ° C.) is preferable.
- the pH of the reaction tank exceeds crystallization, the nickel-containing hydroxide becomes fine particles, the filterability deteriorates, and spherical particles may not be obtained.
- the pH is less than 10
- the rate of formation of the nickel-containing hydroxide is remarkably slow, Ni remains in the filtrate, and the amount of precipitated Ni deviates from the target composition, resulting in a mixed hydroxide having a target ratio.
- the solubility of Ni is increased, and the phenomenon that the precipitation amount of Ni deviates from the target composition and does not cause coprecipitation can be avoided.
- the temperature of the reaction aqueous solution exceeds 80 ° C., the amount of water evaporation increases, so that the slurry concentration increases, the solubility of Ni decreases, and crystals such as sodium sulfate are generated in the filtrate.
- the charge / discharge capacity of the positive electrode material may be reduced, for example, increase in the battery voltage.
- the solubility of Ni increases, so the pH of the aqueous reaction solution is preferably 10 to 12.5, and the temperature is 50 to 80 ° C. Preferably there is.
- the ammonia concentration in the aqueous reaction solution is preferably kept constant within a range of 3 to 25 g / L. If the ammonia concentration is less than 3 g / L, the solubility of metal ions cannot be kept constant, so that plate-shaped hydroxide primary particles having a uniform shape and particle size are not formed, and gel-like nuclei are formed. The particle size distribution is easy to spread because it is easy to generate.
- the ammonia concentration exceeds 25 g / L, the solubility of metal ions becomes too high, the amount of metal ions remaining in the reaction aqueous solution increases, and compositional deviations are likely to occur. Further, when the ammonia concentration varies, the solubility of metal ions varies, and uniform hydroxide particles are not formed. Therefore, it is preferable to maintain a constant value.
- the ammonia concentration is preferably maintained at a desired concentration by setting the upper and lower limits to about 5 g / L. After reaching a steady state, the precipitate is collected, filtered and washed with water to obtain a nickel-containing hydroxide.
- a mixed aqueous solution and an alkaline solution, and in some cases, an aqueous solution containing an ammonium ion supplier are continuously supplied to overflow from the reaction vessel, and a precipitate is collected, filtered and washed to obtain a nickel-containing hydroxide. You can also.
- Niobium coating step In the niobium coating step, while stirring the slurry obtained by mixing the nickel-containing hydroxide obtained in the crystallization step with water, the niobium salt solution and the acid are dropped simultaneously, This is a step of obtaining a nickel-containing hydroxide coated with a niobium compound by controlling the pH of the slurry to be constant within a range of 7 to 11 on the basis of a liquid temperature of 25 ° C.
- the nickel-containing hydroxide coated with the niobium compound is a precursor of a lithium transition metal composite oxide (hereinafter also simply referred to as “precursor”).
- the precursor preferably has the general formula Ni 1-a-b-c Co a M b Nb c (OH) 2 (where, M is the addition of at least one selected Mn, V, Mg, Ti and Al It is an element, and 0.05 ⁇ a ⁇ 0.35, 0 ⁇ b ⁇ 0.10, and 0.006 ⁇ c ⁇ 0.06).
- the c representing the niobium content of the precursor is more preferably 0.006 ⁇ c ⁇ 0.05, and further preferably 0.006 ⁇ c ⁇ 0.04. Further, it is more preferable that “a” indicating the cobalt content is 0.07 ⁇ a ⁇ 0.20, and “b” indicating the content of the additive element M is 0.01 ⁇ b ⁇ 0.07.
- the niobium salt solution is not particularly limited as long as it is a solution containing a niobium salt having a sufficiently high solubility in water. Use an aqueous solution dissolved in an aqueous solution. Further, a niobium salt solution can be obtained by dissolving ferroniobium in a caustic potash solution and removing the produced iron compound. When a niobium salt having low solubility in water or an insoluble compound is used, segregation of niobium occurs and uniform coating becomes more difficult.
- the niobium compound is not particularly limited as long as it is a generally available product, regardless of powder, granule, or lump shape.
- niobium source The preferred dissolution conditions of the niobium metal or niobium compound (hereinafter referred to as “niobium source”) vary slightly depending on the desired niobium concentration, but the caustic potash concentration is 150 to 500 g / L, and the temperature exceeds 90 ° C. It is preferable to dissolve the niobium source in a caustic potash aqueous solution having a temperature of °C or less. When the concentration of caustic potash is less than 150 g / L, the niobium source cannot be sufficiently dissolved, and the amount of niobium residue in the residue increases.
- the niobium concentration in the niobium salt solution is preferably 5 to 40 g / L.
- the niobium concentration is less than 5 g / L, the amount of niobium salt solution necessary for coating increases, and the productivity decreases.
- the niobium concentration exceeds 40 g / L, the niobium salt may precipitate in the solution, making it difficult to coat the niobium compound.
- the niobium salt solution and the acid are dropped simultaneously so that the pH becomes a predetermined value, and the niobium compound is added to the nickel-containing hydroxide.
- niobium hydroxide is crystallized and coated.
- the pH (based on 25 ° C.) is set to a predetermined value within a range of 7 to 11, preferably 7 to 10, more preferably 7 or more and less than 9.
- the precipitated niobium compound when the pH exceeds 11, the precipitated niobium compound is peeled off from the nickel-containing hydroxide, and niobium flows out during filtration, and the lithium transition metal composite oxide has a predetermined niobium content (target niobium content). This is because it becomes impossible to set the amount.
- the composition may not be uniform among the nickel-containing hydroxide particles, and the battery characteristics may deteriorate.
- the predetermined value for controlling the pH may be appropriately determined in consideration of the amount of niobium added and the particle size of the nickel-containing hydroxide, and the niobium coating is stably formed by the pH. It is determined.
- the acid is not particularly limited, but sulfuric acid and hydrochloric acid which are inexpensive and can be used industrially are preferable.
- the acid concentration to be added is preferably 10 to 50% by mass with respect to the total amount of the acid aqueous solution.
- the coating treatment of the niobium compound proceeds within the above pH range, and the nickel-containing hydroxide particles are appropriately damaged. That is, since the crystallization of the niobium compound occurs at a lower pH side than the nickel hydroxide of the metal compound contained in the nickel-containing hydroxide, the nickel-containing hydroxide particles are easily damaged. It is considered that this damaged portion becomes a void of the lithium transition metal composite oxide particles in the subsequent firing step, forms a porous structure, and contributes to an improvement in charge / discharge capacity.
- the niobium salt solution and the nickel-containing hydroxide are mixed first, and then the acid is added dropwise to adjust the pH, so that the niobium compound is precipitated before the nickel-containing hydroxide particles are damaged, so the firing step Thus, the nickel-containing hydroxide particles are not damaged to the extent that a sufficient porous structure is formed.
- the niobium coating step it is preferable to deposit the niobium compound alone. That is, the pH suitable for crystallization differs depending on the metal species, for example, pH 9 to 10 for aluminum hydroxide, but by crystallization of a niobium compound alone at a suitable pH, it is more efficient.
- the lithium transition metal composite oxide can be coated while suppressing the deviation of niobium composition.
- the apparatus used for the niobium coating step is not particularly limited, and for example, a reaction vessel capable of adjusting the temperature and capable of stirring can be used.
- the pH is controlled to a predetermined value using a controller or the like, but it is preferable to control the fluctuation range of the pH during crystallization of the niobium compound within a range of 0.3 or less.
- the niobium coating can be made uniform and the state of the hydroxide particles can be made uniform.
- the nickel-containing hydroxide is washed with water to remove by-products generated during coating, thereby obtaining a precursor in which the niobium compound is coated on the surface of the nickel-containing hydroxide.
- the coating of the niobium compound is finely and uniformly distributed on the surface of the nickel-containing hydroxide, it becomes easy to diffuse into the lithium transition metal composite oxide particles in the subsequent firing. Yes. For this reason, the lithium transition metal composite oxide after firing has a uniform distribution of niobium.
- composition ratio of the metal element of the precursor obtained in the niobium coating step does not change even in the firing step which is a subsequent step. Therefore, it is preferable that the composition ratio of the precursor metal element to be obtained is matched with the composition ratio of the positive electrode active material to be finally obtained.
- the heat treatment step moisture contained in the precursor can be removed, and moisture remaining in the precursor up to the firing step can be reduced.
- the ratio of the number of atoms of metals other than lithium (Me) and the number of atoms of lithium (Li) in the positive electrode active material to be produced (Li / Me) It is possible to prevent variation.
- the hydroxide (composite hydroxide) in the nickel-containing hydroxide coated with all niobium compounds is not necessarily combined. There is no need to convert to oxide.
- the composite hydroxide in the precursor may be converted to the composite oxide.
- it may be heated to a temperature at which residual moisture in the precursor is removed, and is preferably 105 to 800 ° C.
- residual moisture can be removed by heating the composite hydroxide to 105 ° C. or higher.
- it is less than 105 degreeC, since it takes a long time to remove residual moisture, it is not industrially suitable.
- the temperature exceeds 800 ° C., the particles converted into the composite oxide may sinter and aggregate.
- the atmosphere in which the heat treatment is performed is not particularly limited, and is preferably performed in an air stream that can be easily performed.
- the heat treatment time is not particularly limited, but if it is less than 1 hour, the residual moisture in the composite hydroxide may not be sufficiently removed, so that it is preferably at least 1 hour, more preferably 5 to 15 hours.
- the installation used for heat processing is not specifically limited, What is necessary is just to be able to heat a composite hydroxide in an air stream, and an electric furnace without a blower dryer and gas generation can be used conveniently.
- the precursor obtained in the niobium coating step or the heat treatment step and the lithium compound are mixed.
- the precursor and the lithium compound are mixed so that Li / Me in the lithium mixture is 0.95 to 1.20. That is, it mixes so that Li / Me in a lithium mixture may become the same as Li / Me in the positive electrode active material of this invention. This is because Li / Me does not change before and after the firing step, and Li / Me mixed in this mixing step becomes Li / Me in the positive electrode active material.
- Li / Me decreases by washing. Therefore, when washing with water, it is preferable to mix the precursor and the lithium compound in anticipation of the decrease in Li / Me.
- the decrease in Li / Me varies depending on the firing conditions and washing conditions, but is about 0.05 to 0.1. The decrease can be confirmed by producing a small amount of positive electrode active material as a preliminary test.
- the lithium compound is not particularly limited, but for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable because it is easily available.
- lithium hydroxide is more preferably used in consideration of ease of handling and stability of quality.
- the lithium mixture is sufficiently mixed before firing. If the mixing is not sufficient, Li / Me varies among individual particles, which may cause problems such as insufficient battery characteristics.
- a general mixer can be used for mixing, for example, a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, etc. can be used, and a complex body such as composite hydroxide particles is not destroyed. It is sufficient that the precursor and the lithium compound are sufficiently mixed.
- the lithium mixture obtained in the mixing step is fired in an oxidizing atmosphere at 700 to 830 ° C., preferably 700 to 820 ° C., more preferably 700 to 800 ° C. to obtain a polycrystalline structure.
- This is a step of forming a lithium transition metal composite oxide composed of particles.
- the lithium mixture is fired in the firing step, lithium in the lithium compound diffuses into the precursor, so that a lithium transition metal composite oxide is formed. If the firing temperature is less than 700 ° C., sufficient diffusion of lithium into the precursor will not be performed, and excess lithium and unreacted particles may remain, or the crystal structure may not be sufficiently arranged, so that a sufficient battery can be obtained. There arises a problem that characteristics cannot be obtained.
- Calcination time is preferably at least 3 hours, more preferably 6 to 24 hours. This is because if it is less than 3 hours, the lithium transition metal composite oxide may not be sufficiently produced.
- the atmosphere during firing is preferably an oxidizing atmosphere, and more preferably an atmosphere having an oxygen concentration of 18 to 100% by volume. That is, firing is preferably performed in the air or in an oxygen stream. This is because, if the oxygen concentration is less than 18% by volume, it cannot be oxidized sufficiently and the crystallinity of the lithium transition metal composite oxide may be insufficient. Considering battery characteristics in particular, it is preferable to carry out in an oxygen stream.
- calcination is preferably performed at a temperature lower than the firing temperature and a temperature at which the lithium compound and the precursor can react.
- a temperature lower than the firing temperature and a temperature at which the lithium compound and the precursor can react By holding the lithium mixture at such a temperature, lithium is sufficiently diffused into the precursor, and a uniform lithium transition metal composite oxide can be obtained.
- it is preferable to carry out calcination by holding at a temperature of 400 to 550 ° C. for about 1 to 10 hours.
- the furnace used for firing is not particularly limited as long as the lithium mixture can be fired in the atmosphere or an oxygen stream, but an electric furnace without gas generation is preferable, and a batch type or continuous type furnace is used. Either can be used.
- a batch type or continuous type furnace is used. Either can be used.
- the lithium transition metal composite oxide obtained by firing sintering between particles is suppressed, but coarse particles may be formed by weak sintering or aggregation. In such a case, it is preferable to adjust the particle size distribution by crushing to eliminate the sintering and aggregation.
- the water washing step is a step of filtering and drying the lithium transition metal composite oxide after washing with water.
- the lithium transition metal composite oxide obtained by the firing step can be used as a positive electrode active material as it is, but by removing excess lithium on the particle surface, the surface area that can be contacted with the electrolyte is increased and charged. Since discharge capacity can be improved, it is preferable to wash with water after firing. Moreover, since the weak part formed in the particle
- the amount (g) of the lithium transition metal composite oxide with respect to 1 L of water contained in the slurry is 100 to 2000 g / L, preferably 500 to 1600 g / L. That is, as the slurry concentration increases, the amount of powder increases. When the slurry concentration exceeds 2000 g / L, the viscosity is very high and stirring becomes difficult. However, it becomes difficult to separate the powder from the powder even when peeling occurs.
- the slurry concentration is less than 100 g / L
- the amount of lithium elution is large and the amount of lithium on the surface is small due to being too dilute.
- lithium desorption from the crystal lattice of the positive electrode active material occurs, Not only tends to collapse, but the aqueous solution having a high pH absorbs carbon dioxide in the atmosphere and reprecipitates lithium carbonate.
- the water used is not particularly limited, but pure water is preferable. By using pure water, it is possible to prevent a decrease in battery performance due to adhesion of impurities to the positive electrode active material. It is preferable that the amount of adhering water remaining on the particle surface during solid-liquid separation (filtration) of the slurry is small. When the amount of adhering water is large, lithium dissolved in the liquid is reprecipitated, and the amount of lithium existing on the surface of the lithium transition metal composite oxide particles after drying increases.
- the drying temperature is not particularly limited, but is preferably 80 to 350 ° C. If the temperature is less than 80 ° C., the drying of the positive electrode active material after washing with water becomes slow, so that a gradient of lithium concentration occurs between the particle surface and the inside of the particle, and the battery characteristics may be deteriorated. On the other hand, near the surface of the positive electrode active material, it is expected that it is very close to the stoichiometric ratio, or slightly desorbed lithium and close to the charged state. As a result, the crystal structure close to 1 may be destroyed, and the battery characteristics may be deteriorated.
- the drying time is not particularly limited, but is preferably 2 to 24 hours.
- the positive electrode active material for a non-aqueous electrolyte secondary battery of the positive electrode active material present invention for a nonaqueous electrolyte secondary battery is represented by the general formula Li d Ni 1-a-b -c Co a M b Nb c O 2 (where, M is At least one element selected from Mn, V, Mg, Ti and Al, 0.05 ⁇ a ⁇ 0.35, 0 ⁇ b ⁇ 0.10, 0.006 ⁇ c ⁇ 0.06, 0.95 ⁇ d ⁇ 1.20), and is a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium transition metal composite oxide composed of polycrystalline particles, It has a structure and a specific surface area of 2.0 to 7.0 m 2 / g.
- a indicating the cobalt content is 0.05 ⁇ a ⁇ 0.35, preferably 0.07 ⁇ a ⁇ 0.20, and more preferably 0.10 ⁇ a ⁇ 0.20.
- Cobalt is an additive element that contributes to the improvement of cycle characteristics. However, if the value of a is less than 0.05, sufficient cycle characteristics cannot be obtained, and the capacity retention rate also decreases. On the other hand, when the value of a exceeds 0.35, the initial discharge capacity is greatly reduced.
- C indicating the niobium content is 0.006 ⁇ c ⁇ 0.06, preferably 0.006 ⁇ c ⁇ 0.05, and more preferably 0.006 ⁇ c ⁇ 0.04.
- the value of c is less than 0.006, the amount added is too small and the safety improvement is insufficient.
- safety is improved according to the amount added, but if the value of c exceeds 0.06, the charge / discharge capacity decreases. In addition, the cycle characteristics are also reduced.
- Niobium is an additive element that is thought to contribute to the suppression of the thermal decomposition reaction by deoxygenation of the lithium transition metal composite oxide and is effective in improving safety.
- the form of niobium may be either a solid solution in the lithium transition metal composite oxide or a lithium niobium composite oxide at the crystal grain boundary or particle surface of the lithium transition metal composite oxide. It is preferable that it is dissolved.
- solid solution means a state in which the niobium compound is hardly detected as particles by energy dispersive X-ray spectroscopy measurement (EDX measurement) of a transmission electron microscope.
- the ratio between the grain boundary and the niobium concentration in the grain is preferably 4 or less, and preferably 3 or less. Is more preferable.
- the ratio between the grain boundary and the Nb concentration in the grain can be obtained from the EDX measurement result of a transmission electron microscope.
- the additive element M is at least one element selected from Mn, V, Mg, Ti and Al.
- B indicating the content of M is 0 ⁇ b ⁇ 0.10, preferably 0.01 ⁇ b ⁇ 0.07.
- M can be added to improve battery characteristics such as cycle characteristics and safety. If b indicating the amount of M added exceeds 0.10, the battery characteristics are further improved, but the initial discharge capacity is greatly lowered, which is not preferable. Furthermore, since 0 ⁇ b ⁇ 0.10 that always includes M can exhibit excellent cycle characteristics, b is preferably in this range.
- D indicating the ratio of the number of moles of metal other than lithium (Me) to lithium (Li / Me) is 0.95 ⁇ d ⁇ 1.20, and preferably 0.98 ⁇ d ⁇ 1.10. .
- the charge / discharge capacity decreases.
- the charge / discharge capacity increases as the value of d increases, but when d exceeds 1.20, the safety is lowered.
- content of each component of the said lithium transition metal complex oxide can be measured by the quantitative analysis by an inductively coupled plasma (ICP) method.
- ICP inductively coupled plasma
- the positive electrode active material is made of a lithium transition metal composite oxide composed of polycrystalline particles, and has a porous structure.
- the porous structure refers to the number of voids having a size that can be confirmed by observation (magnification 5000 times) on an arbitrary cross section (observation surface) of a scanning electron microscope for any 20 or more particles.
- the index obtained by dividing the total number of voids by the total particle cross-sectional length ( ⁇ m) of the particles (hereinafter also referred to as “number of voids”) is 2 / ⁇ m or more, preferably 3 / ⁇ m or more, more preferably This refers to those present at least 4 / ⁇ m.
- the size that can be confirmed means that the distance between any two points on the outer edge of the void on the observation surface is 0.3 ⁇ m or more, and the particle cross-sectional major axis is an arbitrary value on the outer periphery of the particle on the observation surface of the particle. The maximum distance between two points.
- particles having a particle size of 20% or less of the volume reference average diameter (MV) of the subsequent positive electrode active material are excluded from the determination of the porous structure. This is because particles having a particle size of 20% or less of the average particle size are quantitatively small in the positive electrode active material and have little influence on the charge / discharge capacity. Because it may not be appropriate.
- the voids have a maximum length of preferably 50% or less, more preferably 40% or less of the particle cross-sectional major axis by cross-sectional observation with a scanning electron microscope, and are preferably present at least at grain boundaries.
- the average particle diameter of the positive electrode active material can be measured by laser diffraction scattering method measurement, and is preferably 5 to 20 ⁇ m as a volume reference average diameter (MV).
- MV volume reference average diameter
- the positive electrode active material preferably has a mesopore volume of 0.0025 to 0.0200 ml / g, more preferably 0.003 to 0.015 ml / g. Since mesopores are fine, they cannot be sufficiently confirmed by cross-sectional observation with a scanning electron microscope, but can be measured by a nitrogen adsorption method, and the fine pore amount of the positive electrode active material can be evaluated. By having a mesopore volume in the above range, the contact between the electrolytic solution and the positive electrode active material is increased, and the charge / discharge capacity is further improved.
- the positive electrode active material has a specific surface area of 2.0 to 7.0 m 2 / g, preferably 2.4 to 5.0 m 2 / g, more preferably 2.4 to 4.5 m 2 / g. It is. When the specific surface area is less than 2.0 m 2 / g, the particle surface that can come into contact with the electrolytic solution decreases, and a sufficient charge / discharge capacity cannot be obtained. On the other hand, when the specific surface area exceeds 7.0 m 2 / g, the particle surface that comes into contact with the electrolytic solution increases so much that the safety is lowered.
- the specific surface area is a value measured by the BET method.
- the crystallite diameter of the lithium transition metal oxide is preferably 10 to 150 nm, more preferably 10 to 130 nm, and even more preferably 10 to 100 nm.
- the crystallite diameter is less than 10 nm, the crystal grain boundary increases so much that the resistance of the active material increases, so that sufficient charge / discharge capacity may not be obtained.
- the crystallite diameter exceeds 150 nm, crystal growth proceeds excessively, and cation mixing in which nickel is mixed into the lithium layer of the lithium transition metal composite oxide, which is a layered compound, occurs, and charge / discharge capacity decreases.
- the crystallite diameter is a value calculated from a peak on the (003) plane in X-ray diffraction (XRD) measurement.
- Non-aqueous electrolyte secondary battery of the present invention Embodiments of the non-aqueous electrolyte secondary battery of the present invention will be described in detail for each component.
- the nonaqueous electrolyte secondary battery of the present invention is composed of the same constituent elements as those of a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a nonaqueous electrolytic solution.
- the embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention is implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiment. can do.
- the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
- Positive Electrode A positive electrode mixture forming the positive electrode and each material constituting the positive electrode mixture will be described.
- the powdered positive electrode active material of the present invention, a conductive material, and a binder are mixed, and if necessary, a target solvent such as activated carbon and viscosity adjustment is added, and this is kneaded to obtain a positive electrode mixture paste. Make it.
- the respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery.
- the content of the positive electrode active material is 60 to 95% by mass as in the case of the positive electrode of a general lithium secondary battery.
- the content is desirably 1 to 20% by mass, and the content of the binder is desirably 1 to 20% by mass.
- the obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, an aluminum foil and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced.
- the sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production.
- the manufacturing method of the positive electrode is not limited to the above-described examples, and may depend on other methods.
- the conductive agent for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used.
- the binder for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluororubber, styrene butadiene, cellulose resin, polyacrylic acid, and the like can be used.
- the binder plays a role of holding the active material particles, and for example, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene can be used.
- fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber
- thermoplastic resins such as polypropylene and polyethylene
- a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture.
- an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.
- activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
- Negative electrode For the negative electrode, metallic lithium, lithium alloy, or the like, and a negative electrode mixture made by mixing a binder with a negative electrode active material capable of occluding and desorbing lithium ions and adding an appropriate solvent to form a paste. In addition, it is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
- the negative electrode active material for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, or a powdery carbon material such as coke can be used.
- a fluorine-containing resin such as polyvinylidene fluoride can be used as in the case of the positive electrode, and the active material and the solvent for dispersing the binder include N-methyl-2-pyrrolidone.
- Organic solvents can be used.
- Separator A separator is interposed between the positive electrode and the negative electrode.
- the separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many fine holes can be used.
- Non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
- organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate, tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc.
- the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
- the shape of the lithium secondary battery according to the present invention composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above is various, such as a cylindrical type and a laminated type. be able to.
- the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the electrode body is impregnated with the non-aqueous electrolyte.
- the positive electrode current collector and the positive electrode terminal communicating with the outside, and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like.
- the battery having the above structure can be sealed in a battery case to complete the battery.
- Example 1 (Crystallization process) Nickel sulfate and cobalt sulfate were mixed so that the molar ratio of nickel: cobalt was 84.0: 16.0 to obtain a mixed aqueous solution.
- a 25% by mass sodium hydroxide solution and 25% by mass ammonia water were simultaneously added to the mixed aqueous solution in the reaction tank with stirring to obtain a reaction aqueous solution.
- the reaction aqueous solution has a pH of 11.8 on the basis of 25 ° C., a reaction temperature of 50 ° C., an ammonia concentration of 10 g / L, and a nickel-containing hydroxide (nickel cobalt) made of spherical secondary particles by a coprecipitation method.
- Composite hydroxide After the inside of the reaction vessel was stabilized, a slurry containing nickel cobalt composite hydroxide was collected from the overflow port, filtered, washed with water and dried to obtain a nickel cobalt composite hydroxide.
- the amount of niobium added is the molar ratio of niobium to metal other than lithium (Me) assuming that all niobium contained in the added niobium salt solution is taken into the thirium transition metal composite oxide (hereinafter referred to as “T niobium addition amount c ′ ”)) was set to 0.03.
- the lithium mixture was inserted into a magnesia firing vessel, and heated up to 500 ° C. at a heating rate of 2.77 ° C./min in an oxygen stream at a flow rate of 6 L / min. Hold for 3 hours. Then, after heating up to 780 degreeC with the same temperature increase rate and hold
- the obtained lithium transition metal composite oxide was mixed with pure water so that the slurry concentration was 1500 g / L to prepare a slurry, washed with water for 30 minutes using a stirrer, and then filtered. After filtration, it was held at 210 ° C. for 14 hours using a vacuum dryer and cooled to room temperature to obtain a positive electrode active material.
- Table 1 shows the target niobium addition amount, the pH value in the coating process, and the firing temperature as the production conditions.
- the cross section of the obtained positive electrode active material was observed with a transmission electron microscope, no heterogeneous phase was observed, and by EDX analysis, niobium was uniformly distributed in the positive electrode active material particles, It was confirmed that the Nb concentration ratio (Nb concentration in grain boundaries / Nb concentration in grains) was 3 or less. Further, by observation with a scanning electron microscope, the presence or absence of a porous structure was evaluated by obtaining an index related to the porosity from the number of voids and the major axis of the particle cross section ( ⁇ m). The composition of the obtained positive electrode active material was analyzed by the ICP method, the specific surface area was determined by the BET method, and the volume reference average diameter (MV) was determined by the laser scattering diffraction method.
- MV volume reference average diameter
- the mesopore volume was determined by the nitrogen adsorption method, and the crystallite diameter was calculated from the Scerler's formula using the 2 ⁇ and the half width of the (003) plane in the diffraction pattern obtained by XRD measurement.
- Table 2 shows the composition, volume-based average diameter, specific surface area, mesopore volume, and crystallite diameter.
- the initial capacity evaluation of the obtained positive electrode active material was performed as follows. 70% by mass of the active material powder was mixed with 20% by mass of acetylene black and 10% by mass of PTFE, and 150 mg was taken out from this to produce a pellet to obtain a positive electrode. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt was used as the electrolyte. A 2032 type coin battery as shown in FIG. 2 was fabricated in an Ar atmosphere glove box whose dew point was controlled at ⁇ 80 ° C.
- the prepared battery is left for about 24 hours, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V to obtain an initial charge capacity.
- the capacity when the battery was discharged to a cutoff voltage of 3.0 V after a one hour rest was defined as the initial discharge capacity.
- the safety of the positive electrode is evaluated by CCCV charging (constant current-constant voltage charging. First, charging operates at a constant current) to a 2032 type coin battery manufactured by the same method as described above. Then, the battery was disassembled with care so as not to short-circuit, and the positive electrode was taken out. 3.0 mg of this electrode was weighed, 1.3 mg of the electrolyte was added, sealed in an aluminum measuring container, and the temperature rising rate was 10 ° C./min using a differential scanning calorimeter (DSC) PTC-10A (manufactured by Rigaku). The exothermic behavior was measured from room temperature to 300 ° C. in min, and the obtained maximum exothermic peak height was regarded as safety evaluation.
- the evaluation results of the positive electrode active material are summarized in Table 1.
- Example 2 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the target niobium addition amount c ′ was 0.05 and the pH of the slurry in the coating step was 7.0.
- the production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- Example 3 Sodium aluminate aqueous solution, 25 mass% sodium hydroxide was added to the mixed aqueous solution of nickel sulfate and cobalt sulfate in the reaction tank so that the molar ratio of nickel: cobalt: aluminum was 81.5: 15.0: 3.5.
- a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the solution and 25% by mass aqueous ammonia were simultaneously added and the target niobium addition amount c ′ was 0.01.
- FIG. 3 shows the observation result of the particle cross section of the positive electrode active material by a scanning electron microscope.
- the production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- Example 4 A mixed aqueous solution of nickel sulfate and cobalt sulfate, aqueous sodium aluminate solution, 25 mass% sodium hydroxide solution, 25 mass so that the molar ratio of nickel: cobalt: aluminum is 81.5: 15.0: 3.5. % Aqueous ammonia was simultaneously added to the reaction vessel, the target niobium addition amount c was set to 0.01, and the pH in the coating step was set to 10.0. It was evaluated as it was obtained. The production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- Example 5 A mixed aqueous solution of nickel sulfate and cobalt sulfate, aqueous sodium aluminate solution, 25 mass% sodium hydroxide solution, 25 mass so that the molar ratio of nickel: cobalt: aluminum is 81.5: 15.0: 3.5.
- a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that% ammonia water was simultaneously added to the reaction vessel, the target niobium addition amount c was 0.01, and the firing temperature was 700 ° C. did.
- the production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- Example 6 A mixed aqueous solution of nickel sulfate and cobalt sulfate, aqueous sodium aluminate solution, 25 mass% sodium hydroxide solution, 25 mass so that the molar ratio of nickel: cobalt: aluminum is 81.5: 15.0: 3.5.
- a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that% ammonia water was simultaneously added to the reaction vessel and the calcination temperature was 830 ° C. The production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- Example 1 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH in the coating step was 12.0. The production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- Comparative Example 2 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the firing temperature was 850 ° C. The production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- Comparative Example 3 A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the target niobium addition amount c was 0.07. The production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- Example 4 A mixed aqueous solution of nickel sulfate and cobalt sulfate, aqueous sodium aluminate solution, 25 mass% sodium hydroxide solution, 25 mass so that the molar ratio of nickel: cobalt: aluminum is 81.5: 15.0: 3.5.
- a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that% ammonia water was simultaneously added to the reaction vessel, the coating step was not performed, and the firing temperature was 740 ° C. The production conditions are shown in Table 1, and the evaluation results of the obtained positive electrode active material are shown in Table 2, respectively.
- the initial discharge capacity of the obtained positive electrode active material generally exceeds 180 mAh / g, indicating that the material can be used as the positive electrode active material.
- the capacity retention rate is about 80%, and it can be seen that it has excellent cycle characteristics.
- M (0 ⁇ b ⁇ 0.1) brings about stabilization of the structure of the positive electrode active material in repeated charging and discharging, and exhibits excellent cycle characteristics.
- the maximum exothermic peak height by DSC measurement is 1.5 cal / sec / g or less, and the calorific value is greatly suppressed as compared with the conventional positive electrode active material to which niobium of Comparative Example 4 is not added. I understand.
- Comparative Example 3 since the amount of niobium added was as high as 0.07, the initial discharge capacity was greatly reduced to 140.5 mAh / g. The cycle characteristics are also low. Comparative Example 4 is a conventional positive electrode active material to which niobium is not added. Although the initial discharge capacity is high and the cycle characteristics are excellent, the maximum exothermic peak height is very high as 7.0 cal / sec / g. The thermal stability was not good.
- the non-aqueous electrolyte secondary battery of the present invention which has high initial capacity and excellent cycle characteristics while being excellent in safety, is used as a power source for small portable electronic devices that always require high capacity and long life. It is suitable for.
- power sources and stationary storage batteries for electric vehicles it is indispensable to secure safety by increasing the size of the battery and to install an expensive protection circuit to ensure higher safety.
- the lithium ion secondary battery of the present invention has excellent safety, not only is it easy to ensure safety, but also it is possible to simplify expensive protection circuits and reduce costs. It is suitable as a power source for electric vehicles and a stationary storage battery.
- the power source for electric vehicles means not only an electric vehicle driven purely by electric energy but also a so-called hybrid vehicle power source used in combination with a combustion engine such as a gasoline engine or a diesel engine.
- Lithium metal negative electrode 2 Separator (electrolyte impregnation) 3 Positive electrode (Evaluation electrode) 4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
さらに、特許文献3では、大容量を有し、かつ充電時の熱安定性を向上させることを目的として、組成式LixNiaMnbCocM1dM2eO2(ただし、M1は、Al、Ti及びMgからなる群から選択される少なくとも一種類以上の元素であり、M2は、Mo、W及びNbからなる群から選択される少なくとも一種類以上の元素であり、0.2≦x≦1.2、0.6≦a≦0.8、0.05≦b≦0.3、0.05≦c≦0.3、0.02≦d≦0.04、0.02≦e≦0.06、a+b+c+d+e=1.0である。)で表される正極活物質が提案されている。
さらに、本発明は、上記非水電解液二次電池用正極活物質の工業的規模での生産に適した製造方法を提供することを目的とする。
さらに、このニオブ化合物が被覆されたニッケル含有水酸化物を用いて製造される非水系電解質二次電池用正極活物質は、多数の微細な空隙を有するものとなっており、特に熱安定性が良好で、かつ高い充放電容量をもつ正極活物質となるとの知見を得て、本発明を完成するに至った。
前記ニオブ被覆工程において、前記スラリーのpHが25℃基準で7~10に制御することが好ましい。
さらに、前記混合工程の前に、前記ニオブ化合物で被覆されたニッケル含有水酸化物を、105~800℃で熱処理する熱処理工程を含むことが好ましい。
さらに、前記焼成工程で得られたリチウム遷移金属複合酸化物を、100~2000g/Lの割合で水と混合し、水洗する工程を含むことが好ましい。
さらに、本発明の非水系電解質二次電池用正極活物質の製造方法は、容易で工業的規模での生産に適したものであり、工業上極めて有用である。
さらに、前記ニオブ被覆工程の前に、少なくともニッケル及びコバルトを含む混合水溶液にアルカリ水溶液を加えて晶析させ、前記ニッケル含有水酸化物を得る晶析工程を含むことが好ましい。
以下、各製造工程、得られる正極活物質及び非水系電解質二次電池等について、詳細に説明をする。
(1)晶析工程
本発明に用いられるニッケル含有水酸化物は、好ましくは、一般式Ni1-a’-b’Coa’Mb’(OH)2(但し、MはMn、V、Mg、Ti及びAlの中から選ばれる少なくとも1種の添加元素であり、0.05≦a’≦0.35、0≦b’≦0.10である。)で表されるニッケルコバルト複合水酸化物である。また、前記ニッケル含有水酸化物は、一次粒子から構成された二次粒子からなることが好ましい。
コバルトの含有量を示すa’は、0.05≦a’≦0.35であることが好ましく、0.07≦a’≦0.20であることがより好ましい。また、添加元素Mの含有量を示すb’は、0≦b’≦0.10が好ましく、0.01≦b’≦0.07であることがより好ましい。
まず、反応槽内の少なくともニッケル(Ni)とコバルト(Co)を含む混合水溶液に、アルカリ溶液を加えて反応水溶液とする。次に、反応水溶液を一定速度にて撹拌してpHを制御することにより、反応槽内にニッケル含有水酸化物を共沈殿させ晶析させる。
ここで、混合水溶液は、ニッケル及びコバルトの硫酸塩溶液、硝酸塩溶液、塩化物溶液を用いることができる。
錯化剤は、特に限定されず、水溶液中でニッケルイオン、コバルトイオンと結合して錯体を形成可能なものであればよく、例えば、アンモニウムイオン供給体が挙げられる。アンモニウムイオン供給体としては、とくに限定されないが、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができる。
反応槽のpHが11を超えて晶析すると、前記ニッケル含有水酸化物が細かい粒子となり、濾過性も悪くなり、球状粒子が得られない場合がある。一方、pHが10よりも小さいと前記ニッケル含有水酸化物の生成速度が著しく遅くなり、濾液中にNiが残留し、Niの沈殿量が目的組成からずれて目的の比率の混合水酸化物が得られなくなることがある。
また、前記反応水溶液の温度が60℃超であると、Niの溶解度が上がり、Niの沈殿量が目的組成からずれ、共沈にならない現象を回避できる。一方、前記反応水溶液の温度が80℃を越えると、水の蒸発量が多いためにスラリー濃度が高くなり、Niの溶解度が低下する上、濾液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇する等、正極材の充放電容量が低下する可能性が生じる。
反応槽内において、反応水溶液中のアンモニア濃度は、好ましくは3~25g/Lの範囲内で一定値に保持する。アンモニア濃度が3g/L未満であると、金属イオンの溶解度を一定に保持することができないため、形状及び粒径が整った板状の水酸化物一次粒子が形成されず、ゲル状の核が生成しやすいため粒度分布も広がりやすい。一方、アンモニア濃度が25g/Lを越えると、金属イオンの溶解度が大きくなりすぎ、反応水溶液中に残存する金属イオン量が増えて、組成のずれなどが起きやすくなる。
また、アンモニア濃度が変動すると、金属イオンの溶解度が変動し、均一な水酸化物粒子が形成されないため、一定値に保持することが好ましい。例えば、アンモニア濃度は、上限と下限の幅を5g/L程度として所望の濃度に保持することが好ましい。
そして定常状態になった後に沈殿物を採取し、濾過、水洗してニッケル含有水酸化物を得る。あるいは、混合水溶液とアルカリ溶液、場合によってはアンモニウムイオン供給体を含む水溶液を連続的に供給して反応槽からオーバーフローさせて沈殿物を採取し、濾過、水洗してニッケル含有水酸化物を得ることもできる。
ニオブ被覆工程は、上記晶析工程で得られたニッケル含有水酸化物を水と混合して得たスラリーを撹拌しながら、ニオブ塩溶液と酸を同時に滴下して、該スラリーのpHを液温25℃基準で7~11の範囲で一定となるように制御することにより、ニオブ化合物で被覆されたニッケル含有水酸化物を得る工程である。
前記ニオブ化合物で被覆されたニッケル含有水酸化物は、リチウム遷移金属複合酸化物の前駆体(以下、単に「前駆体」ともいう。)である。該前駆体は、好ましくは、一般式Ni1-a-b-cCoaMbNbc(OH)2(但し、MはMn、V、Mg、Ti及びAlから選ばれる少なくとも1種の添加元素であり、0.05≦a≦0.35、0≦b≦0.10、0.006≦c≦0.06である。)で表される。
該前駆体の前記ニオブ含有量を示すcが0.006≦c≦0.05であることがより好ましく、0.006≦c≦0.04であることがさらに好ましい。また、コバルトの含有量を示すaは、0.07≦a≦0.20、添加元素Mの含有量を示すbは、0.01≦b≦0.07であることがより好ましい。
水への溶解度が低い、あるいは不溶性化合物が生成するニオブ塩を用いると、ニオブの偏析が起きて均一な被覆がより困難となる。
上記ニオブ化合物は、粉末状、もしくは粒状、又は、塊状と特に形状を選ばず、一般に入手できる物であれば特に制限されるものではない。
苛性カリの濃度が150g/Lよりも少ない場合、ニオブ源を十分に溶解できず、残渣中のニオブ残留量が増加する。逆に、苛性カリの濃度が500g/Lを超える場合、苛性カリの飽和濃度に近く、ニオブ源を溶解し難くなる。また、溶解時の温度が60℃以下の場合、反応性が低下し、溶解に長時間を要してしまう。一方、90℃を超えると反応性は上がるが、水の蒸発量が多い上、激しく反応して突沸する危険がある。
前記酸としては、特に限定されるものではないが、安価で工業的に利用できる硫酸、塩酸が好ましい。また、添加する酸濃度としては、酸水溶液全量に対して10~50質量%であることが好ましい。
一方、ニオブ塩溶液とニッケル含有水酸化物を先に混合した後、酸を滴下して、pHを調整すると、ニッケル含有水酸化物粒子が損傷を受ける前にニオブ化合物が析出するため、焼成工程において、十分な多孔質構造が形成される程度までニッケル含有水酸化物粒子の損傷が生じない。
また、ニオブ被覆工程においては、ニオブ化合物を単独で析出させることが好ましい。すなわち、晶析に適したpHは、金属種ごとに異なり、例えば、アルミニウム水酸化物ではpH9~10であるが、ニオブ化合物を単独で、適したpHで晶析することにより、より効率よく、前記リチウム遷移金属複合酸化物におけるニオブの組成ずれを抑制して被覆することが可能となる。
ニオブ化合物を被覆した後、ニッケル含有水酸化物を水洗して被覆時に生成する副生成物を除去し、ニオブ化合物がニッケル含有水酸化物の表面に被覆された前駆体を得る。上記ニオブ化合物の被覆は、ニッケル含有水酸化物の表面に微細に、かつ均一に分布しているため、後工程の焼成においてリチウム遷移金属複合酸化物粒子内への拡散が容易なものとなっている。このため、焼成後のリチウム遷移金属複合酸化物は、ニオブが均一に分布したものとなる。
次に、上記前駆体(ニオブ化合物で被覆されたニッケル含有水酸化物)とリチウム化合物と混合してリチウム混合物を得るが、本発明の製造方法においては、リチウム化合物と混合する前に、上記前駆体を熱処理する熱処理工程を追加することができる。この工程で添加元素Mを含む化合物を加えても良い。
次に、ニオブ被覆工程または熱処理工程で得られた前駆体とリチウム化合物とを混合する。前駆体とリチウム化合物とは、リチウム混合物中のLi/Meが、0.95~1.20となるように、混合される。つまり、リチウム混合物におけるLi/Meが、本発明の正極活物質におけるLi/Meと同じになるように混合される。これは、焼成工程前後で、Li/Meは変化しないので、この混合工程で混合するLi/Meが正極活物質におけるLi/Meとなるからである。
焼成工程は、前記混合工程で得られたリチウム混合物を酸化雰囲気中700~830℃、好ましくは700~820℃、より好ましくは700~800℃で焼成して、多結晶構造の粒子からなるリチウム遷移金属複合酸化物を形成する工程である。焼成工程においてリチウム混合物を焼成すると、前駆体にリチウム化合物中のリチウムが拡散するので、リチウム遷移金属複合酸化物が形成される。焼成温度が700℃未満であると、前駆体中へのリチウムの拡散が十分に行われなくなり、余剰のリチウムや未反応の粒子が残ったり、結晶構造が十分整わなくなったりして、十分な電池特性が得られないという問題が生じる。また、焼成温度が830℃を超えると、形成されたリチウム遷移金属複合酸化物粒子間で激しく焼結が生じるとともに、異常粒成長を生じる可能性がある。異常粒成長が生じると、焼成後の粒子が粗大となってしまい粒子形態を保持できなくなる可能性があり、正極活物質を形成したときに、比表面積が低下して正極の抵抗が上昇して電池容量が低下するという問題が生じる。
焼成によって得られたリチウム遷移金属複合酸化物は、粒子間の焼結は抑制されているが、弱い焼結や凝集により粗大な粒子を形成していることがある。このような場合には、解砕により上記焼結や凝集を解消して粒度分布を調整することが好ましい。
水洗工程は、上記リチウム遷移金属複合酸化物を水洗した後、濾過、乾燥する工程である。
上記焼成工程によって得られたリチウム遷移金属複合酸化物は、そのままの状態でも正極活物質として用いられるが、粒子表面の余剰リチウムを除去することにより、電解液と接触可能な表面積が増加して充放電容量を向上させることができるため、焼成後に水洗することが好ましい。また、粒子表面に形成された脆弱部も十分に除去されるため、電解液との接触が増加して充放電容量を向上させることができる。
水洗する際のスラリー濃度としては、スラリー中に含まれる水1Lに対する前記リチウム遷移金属複合酸化物の量(g)が100~2000g/L、好ましくは500~1600g/Lであることが好ましい。すなわち、スラリー濃度が濃いほど粉末量が多くなり、2000g/Lを超えると、粘度も非常に高いため攪拌が困難となるばかりか、液中のアルカリが高いので平衡の関係から付着物の溶解速度が遅くなったり、剥離が起きても粉末からの分離が難しくなる。一方、スラリー濃度が100g/L未満では、希薄過ぎるためリチウムの溶出量が多く、表面のリチウム量は少なくなるが、正極活物質の結晶格子中からのリチウムの脱離も起きるようになり、結晶が崩れやすくなるばかりか、高pHの水溶液が大気中の炭酸ガスを吸収して炭酸リチウムを再析出する。
上記スラリーの固液分離(濾過)時の粒子表面に残存する付着水は少ないことが好ましい。付着水が多いと液中に溶解したリチウムが再析出し、乾燥後リチウム遷移金属複合酸化物粒子の表面に存在するリチウム量が増加する。
上記乾燥の時間としては、特に限定されないが、好ましくは2~24時間である。
本発明の非水系電解質二次電池用正極活物質は、一般式LidNi1-a-b-cCoaMbNbcO2(但し、MはMn、V、Mg、Ti及びAlの中から選ばれる少なくとも1種の元素であり、0.05≦a≦0.35、0≦b≦0.10、0.006≦c≦0.06、0.95≦d≦1.20である。)で表され、多結晶構造の粒子で構成されたリチウム遷移金属複合酸化物からなる非水電解質二次電池用正極活物質であって、多孔質構造を有し、比表面積が2.0~7.0m2/gであることを特徴とするものである。
さらに、固溶している場合には、結晶粒界と粒内のニオブ濃度の比(結晶粒界のNb濃度/粒内のNb濃度)が4以下であることが好ましく、3以下であることがより好ましい。結晶粒界と粒内のNb濃度の比は、透過型電子顕微鏡のEDX測定結果より求めることができる。固溶することにより、少量添加でも上記熱分解反応の抑制効果を高めることができる。
なお、上記リチウム遷移金属複合酸化物の各成分の含有量は、誘導結合プラズマ(ICP)法による定量分析により測定することができる。
なお、比表面積は、BET法により測定される値である。
なお、結晶子径は、X線回折(XRD)測定における(003)面のピークから計算される値である。
本発明の非水系電解質二次電池の実施形態について、構成要素ごとにそれぞれ詳しく説明する。本発明の非水系電解質二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。
正極を形成する正極合材およびそれを構成する各材料について説明する。本発明の粉末状の正極活物質と、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な穴を多数有する膜を用いることができる。
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO2)2等、およびそれらの複合塩を用いることができる。
さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。
以上説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明に係るリチウム二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
いずれの形状を採る場合であっても、正極および負極をセパレータを介して積層させて電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を集電用リード等を用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。
(晶析工程)
ニッケル:コバルトのモル比が84.0:16.0となるように硫酸ニッケルと硫酸コバルトとを混合し、混合水溶液を得た。次に、反応槽中の前記混合水溶液に、25質量%水酸化ナトリウム溶液及び25質量%アンモニア水を、撹拌しながら同時に添加し、反応水溶液とした。反応水溶液は、pHが25℃基準で11.8、反応温度が50℃、および、アンモニア濃度が10g/Lに保ち、共沈法によって球状の二次粒子からなるニッケル含有水酸化物(ニッケルコバルト複合水酸化物)を形成させた。反応槽内が安定した後、オーバーフロー口からニッケルコバルト複合水酸化物を含むスラリーを回収し、濾過、水洗後乾燥してニッケルコバルト複合水酸化物を得た。
次に、ニオブ酸(Nb2O5・xH2O)粉末を、苛性カリ溶液(300g/L)に、ニオブ濃度で30g/Lとなるように、溶解温度を80℃で一定に保持し、6時間攪拌して、溶解させた後、残渣を濾別してニオブ塩溶液作製した。
上記ニッケルコバルト複合水酸化物を純水と混合したスラリーに、上記ニオブ塩溶液と25質量%硫酸水溶液とを、液温25℃で保持しながらpHが8.0となるように同時に滴下し、ニオブ化合物で被覆されたニッケルコバルト複合水酸化物を得た。なお、添加したニオブ量は、添加したニオブ塩溶液に含まれるニオブがすべてチリウム遷移金属複合酸化物に取り込まれると仮定した場合の、リチウム以外の金属(Me)に対するニオブのモル比(以下、「狙いのニオブ添加量c’」という。)で、0.03とした。
上記被覆ニッケルコバルト複合水酸化物を前駆体として、市販の水酸化リチウムをLi/Meが1.10になるように秤量した後、該前駆体の形骸が維持される程度の強さでシェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて十分に混合してリチウム混合物を得た。
このリチウム混合物をマグネシア製の焼成容器に挿入し、密閉式電気炉を用いて、流量6L/分の酸素気流中で昇温速度2.77℃/分で500℃まで昇温して500℃で3時間保持した。その後、同様の昇温速度で780℃まで昇温して12時間保持した後、室温まで炉冷し、リチウム遷移金属複合酸化物を得た。
(水洗工程)
得られたリチウム遷移金属複合酸化物をスラリー濃度が1500g/Lとなるように純水と混合してスラリーを作製し、スターラーを用いて30分水洗した後にろ過した。ろ過後、真空乾燥機を用いて210℃で14時間保持して室温まで冷却して、正極活物質を得た。製造条件として、狙いのニオブ添加量、被覆工程におけるpH値、焼成温度を表1に示す。
得られた正極活物質の組成をICP法により分析するとともに、BET法により比表面積を、レーザー散乱回折法により体積基準平均径(MV)をそれぞれ求めた。また、窒素吸着法によりメソ細孔容積を求め、XRD測定により得られた回折パターンにおける(003)面の2θおよび半値幅を用いてScerrerの式より結晶子径を算出した。組成、体積基準平均径、比表面積、メソ細孔容積、結晶子径を表2に示す。
得られた正極活物質の初期容量評価は以下のようにして行った。活物質粉末70質量%にアセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し正極とした。負極としてリチウム金属を用い、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用いた。露点が-80℃に管理されたAr雰囲気のグローブボックス中で、図2に示すような2032型のコイン電池を作製した。
サイクル特性の評価は次のようにして行った。各電池に対し、温度25℃にて、1Cのレートで4.4Vまで(充電電圧は要確認)CC充電し、10分間休止した後、同じレートで3.0VまでCC放電し、10分間休止する、という充放電サイクルを、200サイクル繰り返した。1サイクル目および200サイクル目の放電容量を測定し、1サイクル目2C放電容量に対する、200サイクル目2C放電容量の百分率を容量維持率(%)として求めた。
正極の安全性の評価は、上記と同様な方法で作製した2032型のコイン電池をカットオフ電圧4.5VまでCCCV充電(定電流-定電圧充電。まず、充電が、定電流で動作し、それから定電圧で充電を終了するという2つのフェーズの充電過程を用いる充電)した後、短絡しないように注意しながら解体して正極を取り出した。この電極を3.0mg計り取り、電解液を1.3mg加えて、アルミニウム製測定容器に封入し、示差走査熱量計(DSC)PTC-10A(Rigaku社製)を用いて昇温速度10℃/minで室温から300℃まで発熱挙動を測定し、得られた最大発熱ピーク高さを安全性の評価とした。正極活物質の評価結果を表1にまとめて示す。
狙いのニオブ添加量c’を0.05としたこと、被覆工程におけるスラリーのpHを7.0としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
ニッケル:コバルト:アルミニウムのモル比が81.5:15.0:3.5となるように、反応槽内の硫酸ニッケル及び硫酸コバルトの混合水溶液に、アルミン酸ソーダ水溶液、25質量%水酸化ナトリウム溶液及び25質量%アンモニア水を、同時に添加したこと、狙いのニオブ添加量c’を0.01としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。
得られた正極活物質の断面を透過型電子顕微鏡により観察したところ、異相は認められず、EDX分析により、ニオブは正極活物質粒子内に均一に分布しており、結晶粒界と粒内のNb濃度比(結晶粒界のNb濃度/粒内のNb濃度)は3以下であることが確認された。正極活物質の粒子断面の走査型電子顕微鏡による観察結果を図3に示す。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
ニッケル:コバルト:アルミニウムのモル比が81.5:15.0:3.5となるように、硫酸ニッケルと硫酸コバルトの混合水溶液と、アルミン酸ソーダ水溶液、25質量%水酸化ナトリウム溶液、25質量%アンモニア水を反応槽に同時に添加したこと、狙いのニオブ添加量cを0.01としたこと、被覆工程におけるpHを10.0としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
ニッケル:コバルト:アルミニウムのモル比が81.5:15.0:3.5となるように、硫酸ニッケルと硫酸コバルトの混合水溶液と、アルミン酸ソーダ水溶液、25質量%水酸化ナトリウム溶液、25質量%アンモニア水を反応槽に同時に添加したこと、狙いのニオブ添加量cを0.01としたこと、焼成温度を700℃としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
ニッケル:コバルト:アルミニウムのモル比が81.5:15.0:3.5となるように、硫酸ニッケルと硫酸コバルトの混合水溶液と、アルミン酸ソーダ水溶液、25質量%水酸化ナトリウム溶液、25質量%アンモニア水を反応槽に同時に添加したこと、焼成温度を830℃としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
被覆工程におけるpHを12.0としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
(比較例2)
焼成温度を850℃とした以外は実施例1と同様にして正極活物質を得るとともに評価した。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
(比較例3)
狙いのニオブ添加量cを0.07とした以外は実施例1と同様にして正極活物質を得るとともに評価した。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
(比較例4)
ニッケル:コバルト:アルミニウムのモル比が81.5:15.0:3.5となるように、硫酸ニッケルと硫酸コバルトの混合水溶液と、アルミン酸ソーダ水溶液、25質量%水酸化ナトリウム溶液、25質量%アンモニア水を反応槽に同時に添加したこと、被覆工程を行わなかったこと、焼成温度を740℃としたこと以外は実施例1と同様にして正極活物質を得るとともに評価した。製造条件を表1に、得られた正極活物質の評価結果を表2にそれぞれ示す。
表1に示すように、本発明の実施例1~6では、得られた正極活物質の初期放電容量がおおむね180mAh/gを超え、正極活物質として使用可能な材料であることがわかる。容量維持率についても、80%程度であり、優れたサイクル特性を有していることがわかる。Mが存在していること(0<b≦0.1)で繰り返し充放電における正極活物質の構造の安定化をもたらし、優れたサイクル特性を発現させていると考えられる。また、DSC測定による最大発熱ピーク高さは1.5cal/sec/g以下であり、比較例4のニオブを加えていない従来の正極活物質と比較して発熱量が大幅に抑制されていることがわかる。
また、被覆工程においてpHを12.0に制御した比較例1では、被覆中にニオブ化合物が剥離したために、得られた正極活物質のニオブ添加量が0.005と被覆工程における狙いの添加量の1/6となっている。そのために最大発熱ピーク高さが7.5cal/sec/gと非常に高くなっており、熱安定性が良くなかった。
比較例2では、高温で焼成したために層状化合物であるリチウム遷移金属複合酸化物のリチウム層にニッケルが混入するカチオンミキシングが起こり、初期放電容量が大幅に低下した。また、最大発熱ピーク高さが高くなっている。
比較例3ではニオブ添加量が0.07と高いために、初期放電容量が140.5mAh/gと大幅に低下した。サイクル特性についても、低くなっている。
比較例4は、ニオブを添加していない従来の正極活物質であり、初期放電容量は高く、サイクル特性も優れているものの、最大発熱ピーク高さが7.0cal/sec/gと非常に高くなっており、熱安定性が良くなかった。
また、電気自動車用の電源や定置型蓄電池においては、電池の大型化による安全性の確保の難しさと、より高度な安全性を確保するための高価な保護回路の装着は必要不可欠であるが、本発明のリチウムイオン二次電池は、優れた安全性を有しているために安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにできるという点において、電気自動車用の電源や定置型蓄電池として好適である。なお、電気自動車用の電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用するいわゆるハイブリッド車用の電源をいう。
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
Claims (10)
- 一般式LidNi1-a-b-cCoaMbNbcO2(但し、Mは、Mn、V、Mg、Ti及びAlの中から選ばれる少なくとも1種の元素であり、0.05≦a≦0.35、0≦b≦0.10、0.006≦c≦0.06、0.95≦d≦1.20である。)で表され、多結晶構造の粒子で構成されたリチウム遷移金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、
ニッケル含有水酸化物のスラリーに、ニオブ塩溶液と酸とを同時に添加して、前記スラリーのpHが25℃基準で7~11となるように制御し、ニオブ化合物で被覆されたニッケル含有水酸化物を得るニオブ被覆工程、
前記ニオブ化合物で被覆されたニッケル含有水酸化物をリチウム化合物と混合して、リチウム混合物を得る混合工程及び
前記リチウム混合物を酸化雰囲気中700~830℃で焼成し、前記リチウム遷移金属複合酸化物を得る焼成工程
を含むことを特徴とする非水系電解質二次電池用正極活物質の製造方法。 - さらに、前記ニオブ被覆工程の前に、少なくともニッケル及びコバルトを含む混合水溶液にアルカリ水溶液を加えて晶析させ、前記ニッケル含有水酸化物を得る晶析工程を含み、
前記ニッケル含有水酸化物が一般式(1)Ni1-a’-b’Coa’Mb’(OH)2(但し、Mは、Mn、V、Mg、Ti及びAlの中から選ばれる少なくとも1種の元素であり、0.05≦a’≦0.35、0≦b’≦0.10である。)で表される
ことを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。 - 前記リチウム遷移金属複合酸化物におけるニオブ含有量を示すcが、0.006≦c≦0.05であることを特徴とする請求項1または2に記載の非水系電解質二次電池用正極活物質の製造方法。
- 前記ニオブ被覆工程において、前記スラリーのpHが25℃基準で7~10に制御することを特徴とする請求項1記載の非水系電解質二次電池用正極活物質の製造方法。
- さらに、前記混合工程の前に、前記ニオブ化合物で被覆されたニッケル含有水酸化物を、105~800℃で熱処理する熱処理工程を含むことを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。
- さらに、前記焼成工程で得られたリチウム遷移金属複合酸化物を、100~2000g/Lの割合で水と混合し、水洗する工程を含むことを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。
- 一般式LidNi1-a-b-cCoaMbNbcO2(但し、MはMn、V、Mg、Ti及びAlの中から選ばれる少なくとも1種の元素であり、0.05≦a≦0.35、0≦b≦0.10、0.006≦c≦0.06、0.95≦d≦1.20である。)で表され、多結晶構造の粒子で構成されたリチウム遷移金属複合酸化物からなる非水系電解質二次電池用正極活物質であって、
多孔質構造を有し、比表面積が2.0~7.0m2/gであることを特徴とする非水系電解質二次電池用正極活物質。 - 前記リチウム遷移金属複合酸化物の結晶子径が10~150nmであることを特徴とする請求項7に記載の非水系電解質二次電池用正極活物質。
- 前記リチウム遷移金属複合酸化物におけるニオブ含有量を示すcが、0.006≦c≦0.05であることを特徴とする請求項8に記載の非水系電解質二次電池用正極活物質。
- 請求項7~9のいずれかに記載の非水系電解質二次電池用正極活物質を正極に用いたことを特徴とする非水系電解質二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157004425A KR101713454B1 (ko) | 2012-08-28 | 2013-08-13 | 비수계 전해질 이차 전지용 정극 활물질의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질 및 이것을 사용한 비수계 전해질 이차 전지 |
CN201380044025.5A CN104584281B (zh) | 2012-08-28 | 2013-08-13 | 非水系电解质二次电池用正极活性物质的制造方法,非水系电解质二次电池用正极活性物质,和使用所述物质的非水系电解质二次电池 |
US14/420,082 US9774036B2 (en) | 2012-08-28 | 2013-08-13 | Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same |
JP2014510991A JP5614513B2 (ja) | 2012-08-28 | 2013-08-13 | 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-187245 | 2012-08-28 | ||
JP2012187245 | 2012-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034430A1 true WO2014034430A1 (ja) | 2014-03-06 |
Family
ID=50183245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/071865 WO2014034430A1 (ja) | 2012-08-28 | 2013-08-13 | 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9774036B2 (ja) |
JP (1) | JP5614513B2 (ja) |
KR (1) | KR101713454B1 (ja) |
CN (1) | CN104584281B (ja) |
WO (1) | WO2014034430A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5916876B2 (ja) * | 2012-09-28 | 2016-05-11 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 |
JP2017107827A (ja) * | 2015-11-27 | 2017-06-15 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池 |
JP2017157303A (ja) * | 2016-02-29 | 2017-09-07 | 三菱重工業株式会社 | リチウムイオン二次電池 |
WO2018123951A1 (ja) | 2016-12-26 | 2018-07-05 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
JP2018532236A (ja) * | 2015-11-30 | 2018-11-01 | エルジー・ケム・リミテッド | 二次電池用正極活物質及びこれを含む二次電池 |
KR20190040293A (ko) | 2016-08-31 | 2019-04-17 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지 |
JP2019139862A (ja) * | 2018-02-06 | 2019-08-22 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池 |
WO2019187953A1 (ja) * | 2018-03-30 | 2019-10-03 | 住友化学株式会社 | リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、及びリチウム複合金属化合物の製造方法 |
JP2019186175A (ja) * | 2018-04-17 | 2019-10-24 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
JP2020145189A (ja) * | 2019-02-28 | 2020-09-10 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 |
JP2020145188A (ja) * | 2019-02-28 | 2020-09-10 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 |
WO2020195431A1 (ja) | 2019-03-27 | 2020-10-01 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
WO2020195432A1 (ja) | 2019-03-27 | 2020-10-01 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
WO2020262264A1 (ja) | 2019-06-25 | 2020-12-30 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
US20210175490A1 (en) * | 2017-12-08 | 2021-06-10 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Low-temperature preparation of cathode active material |
US11264608B2 (en) | 2018-06-26 | 2022-03-01 | Nichia Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery |
WO2022065443A1 (ja) | 2020-09-25 | 2022-03-31 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、リチウムイオン二次電池 |
CN114284488A (zh) * | 2021-12-23 | 2022-04-05 | 上海瑞浦青创新能源有限公司 | 一种正极材料及其稳定性的判定方法和用途 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6034265B2 (ja) | 2013-09-12 | 2016-11-30 | トヨタ自動車株式会社 | 活物質複合粉体及びリチウム電池並びにその製造方法 |
JP6281545B2 (ja) * | 2015-09-14 | 2018-02-21 | トヨタ自動車株式会社 | 活物質複合粉体の製造方法 |
WO2017221554A1 (ja) * | 2016-06-23 | 2017-12-28 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極活物質、並びにリチウムイオン二次電池 |
KR102133916B1 (ko) | 2016-12-28 | 2020-07-15 | 주식회사 엘지화학 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
CN107910531B (zh) * | 2017-11-20 | 2021-04-30 | 江西理工大学 | 一种高镍基三元正极材料的制备方法 |
CN108199027A (zh) * | 2018-01-09 | 2018-06-22 | 江西理工大学 | 一种铌掺杂无钴镍基正极材料及其制备方法 |
WO2019179219A1 (zh) * | 2018-03-21 | 2019-09-26 | 浙江林奈新能源有限公司 | 镍钴铝三元锂离子电池正极材料、其制备方法和用途、以及锂离子电池 |
US12142762B2 (en) * | 2019-06-28 | 2024-11-12 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
WO2020262101A1 (ja) * | 2019-06-28 | 2020-12-30 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法 |
JPWO2021006125A1 (ja) * | 2019-07-08 | 2021-01-14 | ||
CN118867227A (zh) * | 2019-11-29 | 2024-10-29 | 艾可普罗 Bm 有限公司 | 锂复合氧化物 |
EP4229693B1 (en) * | 2020-10-15 | 2024-07-10 | Basf Se | Process for making a coated cathode active material |
KR102707545B1 (ko) * | 2021-10-28 | 2024-09-13 | 주식회사 에코프로비엠 | 고체 이차전지용 양극활물질 제조방법 |
KR102707546B1 (ko) * | 2021-10-29 | 2024-09-13 | 주식회사 에코프로비엠 | 고체 이차전지용 양극활물질 제조방법 |
JP2024526658A (ja) * | 2021-11-02 | 2024-07-19 | エルジー エナジー ソリューション リミテッド | 二次電池用正極活物質 |
EP4228029A4 (en) * | 2021-12-28 | 2024-02-14 | Contemporary Amperex Technology Co., Limited | Positive electrode material and preparation method therefor, and secondary battery having same |
KR102767262B1 (ko) * | 2022-03-23 | 2025-02-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002151071A (ja) * | 2000-11-08 | 2002-05-24 | Dowa Mining Co Ltd | 非水系二次電池用正極活物質とその製造方法およびそれを用いた非水系二次電池 |
JP2005142165A (ja) * | 1999-07-29 | 2005-06-02 | Toshiba Corp | 薄型非水電解質二次電池 |
JP2006147500A (ja) * | 2004-11-24 | 2006-06-08 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池 |
JP2008181839A (ja) * | 2007-01-26 | 2008-08-07 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 |
JP2012014887A (ja) * | 2010-06-30 | 2012-01-19 | Hitachi Ltd | リチウムイオン二次電池 |
WO2012043321A1 (ja) * | 2010-09-28 | 2012-04-05 | Dowaホールディングス株式会社 | リチウム-遷移金属酸化物粉体およびその製造方法、リチウムイオン電池用正極活物質、並びにリチウムイオン二次電池 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3362025B2 (ja) | 1999-04-30 | 2003-01-07 | 同和鉱業株式会社 | 正極活物質と該正極活物質を用いたリチウム二次電池 |
US6468693B1 (en) | 1999-07-29 | 2002-10-22 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
CN101093887A (zh) | 2003-05-13 | 2007-12-26 | 三菱化学株式会社 | 层状锂镍系复合氧化物粉末及其制造方法 |
JP4781004B2 (ja) * | 2005-04-28 | 2011-09-28 | パナソニック株式会社 | 非水電解液二次電池 |
KR20080031470A (ko) * | 2005-08-01 | 2008-04-08 | 가부시키가이샤 산도쿠 | 양극 활물질, 비수 전해질 전지용 양극, 비수 전해질 전지 |
JP5100024B2 (ja) | 2006-03-30 | 2012-12-19 | 住友金属鉱山株式会社 | 非水電解質二次電池用の正極活物質及びそれを用いた非水電解質二次電池 |
CN102044673B (zh) * | 2006-04-07 | 2012-11-21 | 三菱化学株式会社 | 锂二次电池正极材料用锂镍锰钴系复合氧化物粉体 |
JP2008153017A (ja) | 2006-12-15 | 2008-07-03 | Ise Chemicals Corp | 非水電解液二次電池用正極活物質 |
JP5481786B2 (ja) * | 2007-07-03 | 2014-04-23 | 住友化学株式会社 | リチウム複合金属酸化物 |
JP5409174B2 (ja) * | 2009-08-04 | 2014-02-05 | 住友金属鉱山株式会社 | 正極活物質用リチウムニッケル複合酸化物、その製造方法及びそれを用いた非水電解質二次電池 |
JP5653637B2 (ja) * | 2010-03-01 | 2015-01-14 | 古河電気工業株式会社 | 正極活物質材料、正極、2次電池及びこれらの製造方法 |
JP5629509B2 (ja) * | 2010-07-01 | 2014-11-19 | 株式会社Kadokawa | 情報処理装置、情報閲覧装置、情報処理方法、およびプログラム |
-
2013
- 2013-08-13 US US14/420,082 patent/US9774036B2/en active Active
- 2013-08-13 KR KR1020157004425A patent/KR101713454B1/ko not_active Application Discontinuation
- 2013-08-13 CN CN201380044025.5A patent/CN104584281B/zh active Active
- 2013-08-13 JP JP2014510991A patent/JP5614513B2/ja active Active
- 2013-08-13 WO PCT/JP2013/071865 patent/WO2014034430A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005142165A (ja) * | 1999-07-29 | 2005-06-02 | Toshiba Corp | 薄型非水電解質二次電池 |
JP2002151071A (ja) * | 2000-11-08 | 2002-05-24 | Dowa Mining Co Ltd | 非水系二次電池用正極活物質とその製造方法およびそれを用いた非水系二次電池 |
JP2006147500A (ja) * | 2004-11-24 | 2006-06-08 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池 |
JP2008181839A (ja) * | 2007-01-26 | 2008-08-07 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 |
JP2012014887A (ja) * | 2010-06-30 | 2012-01-19 | Hitachi Ltd | リチウムイオン二次電池 |
WO2012043321A1 (ja) * | 2010-09-28 | 2012-04-05 | Dowaホールディングス株式会社 | リチウム-遷移金属酸化物粉体およびその製造方法、リチウムイオン電池用正極活物質、並びにリチウムイオン二次電池 |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014051148A1 (ja) * | 2012-09-28 | 2016-08-25 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 |
JP5916876B2 (ja) * | 2012-09-28 | 2016-05-11 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 |
JP2017107827A (ja) * | 2015-11-27 | 2017-06-15 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池 |
US11581538B2 (en) | 2015-11-30 | 2023-02-14 | Lg Energy Solution, Ltd. | Positive electrode active material for secondary battery, and secondary battery comprising the same |
US11081694B2 (en) | 2015-11-30 | 2021-08-03 | Lg Chem, Ltd. | Positive electrode active material for secondary battery, and secondary battery comprising the same |
JP2018532236A (ja) * | 2015-11-30 | 2018-11-01 | エルジー・ケム・リミテッド | 二次電池用正極活物質及びこれを含む二次電池 |
JP2017157303A (ja) * | 2016-02-29 | 2017-09-07 | 三菱重工業株式会社 | リチウムイオン二次電池 |
KR20190040293A (ko) | 2016-08-31 | 2019-04-17 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지 |
US11165062B2 (en) | 2016-08-31 | 2021-11-02 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery |
CN110392950A (zh) * | 2016-12-26 | 2019-10-29 | 住友金属矿山株式会社 | 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池 |
US11735726B2 (en) | 2016-12-26 | 2023-08-22 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery |
JPWO2018123951A1 (ja) * | 2016-12-26 | 2019-10-31 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
JP7176412B2 (ja) | 2016-12-26 | 2022-11-22 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
KR20190095302A (ko) | 2016-12-26 | 2019-08-14 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수계 전해질 이차 전지 |
WO2018123951A1 (ja) | 2016-12-26 | 2018-07-05 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
US12062775B2 (en) * | 2017-12-08 | 2024-08-13 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Low-temperature preparation of cathode active material |
US20210175490A1 (en) * | 2017-12-08 | 2021-06-10 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Low-temperature preparation of cathode active material |
JP2019139862A (ja) * | 2018-02-06 | 2019-08-22 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池 |
KR20200136927A (ko) * | 2018-03-30 | 2020-12-08 | 스미또모 가가꾸 가부시끼가이샤 | 리튬 복합 금속 화합물, 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극, 리튬 이차 전지, 및 리튬 복합 금속 화합물의 제조 방법 |
WO2019187953A1 (ja) * | 2018-03-30 | 2019-10-03 | 住友化学株式会社 | リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、及びリチウム複合金属化合物の製造方法 |
US11949101B2 (en) | 2018-03-30 | 2024-04-02 | Sumitomo Chemical Company, Limited | Lithium composite metal compound, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for manufacturing lithium composite metal compound |
KR102619753B1 (ko) | 2018-03-30 | 2023-12-29 | 스미또모 가가꾸 가부시끼가이샤 | 리튬 복합 금속 화합물, 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극, 리튬 이차 전지, 및 리튬 복합 금속 화합물의 제조 방법 |
JP2019178025A (ja) * | 2018-03-30 | 2019-10-17 | 住友化学株式会社 | リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、及びリチウム複合金属化合物の製造方法 |
JP7197825B2 (ja) | 2018-04-17 | 2022-12-28 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
JP2019186175A (ja) * | 2018-04-17 | 2019-10-24 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
US11264608B2 (en) | 2018-06-26 | 2022-03-01 | Nichia Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery |
JP2020145189A (ja) * | 2019-02-28 | 2020-09-10 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 |
JP7389347B2 (ja) | 2019-02-28 | 2023-11-30 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 |
JP2020145188A (ja) * | 2019-02-28 | 2020-09-10 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 |
JP7480527B2 (ja) | 2019-02-28 | 2024-05-10 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 |
WO2020195431A1 (ja) | 2019-03-27 | 2020-10-01 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
WO2020195432A1 (ja) | 2019-03-27 | 2020-10-01 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
WO2020262264A1 (ja) | 2019-06-25 | 2020-12-30 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
WO2022065443A1 (ja) | 2020-09-25 | 2022-03-31 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、リチウムイオン二次電池 |
KR20230074480A (ko) | 2020-09-25 | 2023-05-30 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 리튬 이온 이차 전지용 정극 활물질 및 그 제조 방법, 리튬 이온 이차 전지 |
CN114284488A (zh) * | 2021-12-23 | 2022-04-05 | 上海瑞浦青创新能源有限公司 | 一种正极材料及其稳定性的判定方法和用途 |
CN114284488B (zh) * | 2021-12-23 | 2023-10-27 | 上海瑞浦青创新能源有限公司 | 一种正极材料及其稳定性的判定方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
KR20150048122A (ko) | 2015-05-06 |
CN104584281B (zh) | 2017-06-16 |
CN104584281A (zh) | 2015-04-29 |
US20150194673A1 (en) | 2015-07-09 |
JP5614513B2 (ja) | 2014-10-29 |
JPWO2014034430A1 (ja) | 2016-08-08 |
US9774036B2 (en) | 2017-09-26 |
KR101713454B1 (ko) | 2017-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5614513B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池 | |
JP7001082B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法、及び非水系電解質二次電池の製造方法 | |
JP7001081B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法、及び非水系電解質二次電池の製造方法 | |
JP7176412B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP5651937B2 (ja) | 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこれを用いた非水系電解質二次電池 | |
JP5638232B2 (ja) | 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP5877817B2 (ja) | 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池 | |
CN109803929B (zh) | 镍锰复合氢氧化物及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法 | |
JP6340791B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法 | |
JP5076448B2 (ja) | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 | |
JP6201277B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法 | |
JP7135855B2 (ja) | ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
WO2012165654A1 (ja) | 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池 | |
JP5776996B2 (ja) | 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池 | |
JP6201146B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池 | |
WO2015076323A1 (ja) | 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池 | |
JP2022177291A (ja) | 高強度リチウムイオン二次電池用正極活物質、及び、該正極活物質を用いたリチウムイオン二次電池 | |
JP2008198363A (ja) | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 | |
JP6536658B2 (ja) | 非水系電解質二次電池用正極活物質、及びこれを用いた非水系電解質二次電池 | |
JP7273260B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 | |
JP2006147500A (ja) | 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池 | |
JP2019131417A (ja) | ニッケル複合水酸化物とその製造方法、および正極活物質の製造方法 | |
JP5045135B2 (ja) | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 | |
JP5354112B2 (ja) | 非水系二次電池用正極活物質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014510991 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832465 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14420082 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157004425 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13832465 Country of ref document: EP Kind code of ref document: A1 |