詳細な説明
RSV F糖タンパク質は、ウイルス膜と細胞膜との融合を促すI型融合タンパク質である(Walsh and Hruska, J. Virol., 47, 171 (1983))。初期合成の後、RSV Fは、折り畳みエネルギーを蓄える準安定性融合前立体構造をとり、それは、宿主細胞膜との接触後、構造再編成の間に高度に安定した融合後立体構造へと解放される。RSV Fタンパク質上の3つの抗原部位(I、II、およびIV)は、中和活性を誘発することが見出されており(Arbiza et al., J. Gen. Virol., 73, 2225 (1992);Lopez et al., J. Virol., 72, 6922 (1998);Lopez et al., J. Virol., 64, 927 (1990))、かつすべては、構造的および生物物理学的な調査によって判定されるように、RSV Fタンパク質の融合後形態上に存在する(McLellan et al., J. Virol., 85, 7788 (2011);Swanson et al., Proc. Natl. Acad. Sci. U.S.A., 108, 9619 (2011))。しかしながら、融合後RSV Fを用いたヒト血清の吸収は、F特異的中和活性の大部分を除去できず、これによりRSV Fの融合前形態が新規な中和抗原部位を持つことが示唆される(Magro et al., Proc. Natl. Acad. Sci. U.S.A., 109, 3089 (2012))。
本明細書において開示される研究より以前は、可溶性の融合前RSV Fタンパク質の均質な調製物は入手できず、融合前F構造の決定および新規な融合前F特異的抗原部位の同定は不可能となっていた。本明細書において記載されるように、RSV Fタンパク質特異的抗体は、RSVを中和するが融合後RSV Fには特異的に結合しないことが同定され、かつこれらの抗体によって認識される融合前Fの三次元構造がを獲得された。本明細書において提供される結果は、RSV Fの融合前立体構造、および著しく強力なRSV融合前F中和抗体のカテゴリーに関する中和のメカニズムを初めて明らかにしている。融合前Fの三次元構造をガイドとして用いて、融合前Fの安定化形態(「PreF」抗原)を構築し、かつ使用して、先行のRSV Fタンパク質ベースの免疫原で達成されたものより何倍も大きいRSV中和免疫応答を生じさせた。
I. 用語
別様に付記されていない限り、技術的用語は従来的使用法に従って用いられる。分子生物学における共通用語の定義は、Oxford University Pressによって刊行されたBenjamin Lewin, Genes VII, 1999;Blackwell Science Ltd.によって刊行されたKendrew et al. (eds.), The Encyclopedia of Molecular Biology, 1994;およびVCH Publishers, Inc.によって刊行されたRobert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, 1995;ならびに他の同様の参考文献に見出され得る。
本明細書において使用するとき、「a」、「an」、および「the」という単数形形態は、文脈で別様にはっきりと示されていない限り、単数形ならびに複数形の両方を指す。例えば、「抗原(an antigen)」という用語は、単一または複数の抗原を含み、「少なくとも1つの抗原」という語句と同等であると見なされ得る。本明細書において使用するとき、「含む(comprise)」という用語は、「含む(include)」を意味する。ゆえに、「抗原を含む(comprising)」とは、他の要素を除外せずに、「抗原を含む(including)」を意味する。別様に示されていない限り、核酸またはポリペプチドに対して与えられる、ありとあらゆる塩基サイズまたはアミノ酸サイズ、およびすべての分子量または分子質量の値は近似であり、記述的な目的のために提供されることがさらに理解されるべきである。本明細書において記載されるものと同様のまたは同等の多くの方法および材料を用いることができるが、特定の適切な方法および材料が本明細書において記載される。矛盾する場合には、用語の説明を含む本明細書が制御する。加えて、材料、方法、および例は、単なる例証に過ぎず、限定することを意図されるものではない。様々な態様の検討を容易にするために、用語についての以下の説明が提供される。
5C4:RSV Fタンパク質の融合前立体構造に特異的に結合するが、RSV Fタンパク質の融合後立体構造には結合しない、中和モノクローナル抗体。5C4抗体は、それぞれSEQ ID NO: 1470および1471として明示されるアミノ酸配列を有する重鎖および軽鎖可変領域を含む。McLellan et al., Science, 340(6136):1113-7, 2013に記載されているように、5C4は、その融合前立体構造の状態にあるRSV Fタンパク質上に見出されるが、融合後立体構造には見出されない、四次的エピトープに特異的に結合する。いくつかの態様において、抗体5C4は、本明細書において開示されるPreF抗原に特異的に結合する。
アジュバント:抗原性を増強させるために用いられるビヒクル。アジュバントには、抗原が吸着されている鉱物の懸濁物(alum、水酸化アルミニウム、またはリン酸アルミニウム);または、例えば抗原溶液が鉱物油中に乳化されている(フロイント不完全アジュバント)、時には死んだマイコバクテリウムの包含を有する(フロイント完全アジュバント)油中水型乳濁液が含まれ、抗原性をさらに増強させる(抗原の分解を阻害しかつ/またはマクロファージの流入を引き起こす)。免疫刺激性オリゴヌクレオチド(CpGモチーフを含むものなど)もアジュバントとして用いられ得る。アジュバントには、共刺激分子などの生物学的分子(「生物学的アジュバント」)が含まれる。例示的なアジュバントには、IL-2、RANTES、GM-CSF、TNF-α、IFN-γ、G-CSF、LFA-3、CD72、B7-1、B7-2、OX-40L、4-1BBL、およびTLR-9アゴニストなどのトール様受容体(TLR)アゴニストが含まれる。当業者であれば、アジュバントを熟知している(例えば、Singh (ed.) Vaccine Adjuvants and Delivery Systems. Wiley-Interscience, 2007を参照されたい)。アジュバントを、開示されるPreF抗原と組み合わせて用いることができる。
投与:選出された経路による、対象内への組成物の導入。投与は、局所的または全身的であり得る。例えば、選出された経路が静脈内である場合、組成物(開示される免疫原を含む組成物など)は、対象の静脈内に組成物を導入することによって投与される。
作用物質:目標または結果を達成するのに有用である任意の物質または物質の任意の組み合わせ;例えば、対象におけるRSV感染症を阻害するのに有用な物質または物質の組み合わせ。作用物質には、タンパク質、核酸分子、化合物、小分子、有機化合物、無機化合物、または組換えウイルスなどのウイルスなど、関心対象の他の分子が含まれる。作用物質には、治療用作用物質(抗RSV剤など)、診断用作用物質、または薬学的作用物質が含まれ得る。一部の態様において、作用物質は、ポリペプチド剤(免疫原性RSVポリペプチドなど)または抗ウイルス剤である。当業者であれば、特定の作用物質は、1つを上回る結果を達成するのに有用であり得ることを理解するであろう。
AM22:RSV Fタンパク質の融合前立体構造に特異的に結合するが、RSV Fタンパク質の融合後立体構造には結合しない、中和モノクローナル抗体。AM22タンパク質および核酸の配列は公知であり、例えばAM22抗体の重鎖および軽鎖のアミノ酸配列は、その全体として本明細書に組み入れられる、米国特許出願公報第2012/0070446号に明示されている。実施例1に記載されるように、AM22は、その融合前立体構造の状態にあるRSV Fタンパク質上に見出されるが融合後立体構造には見出されない位置を含むエピトープ(抗原部位φ上に含まれる)に特異的に結合する。このエピトープは、RSV Fの位置62~69および196~209内に含まれ、かつ融合前立体構造の状態にあるRSV Fタンパク質の膜遠位先端に位置する(例えば、図2Bおよび9Aを参照されたい)。本開示より以前は、AM22が融合前立体構造に特異的であることは公知ではなかった。いくつかの態様において、抗体AM22は、本明細書において開示されるPreF抗原に特異的に結合する。
アミノ酸置換:異なるアミノ酸によるまたはアミノ酸の欠失による、抗原内の1個のアミノ酸の置き換え。一部の例において、抗原内のアミノ酸は、相同タンパク質由来のアミノ酸で置換される。
動物:例えば哺乳類を含むカテゴリーである、生きた多細胞性の脊椎生物または無脊椎生物。哺乳類という用語には、ヒトおよび非ヒト哺乳類の両方が含まれる。同様に、「対象」という用語には、ヒト、および非ヒト霊長類などの獣医学的対象の両方が含まれる。ゆえに、対象への投与には、ヒト対象への投与が含まれ得る。獣医学的対象の非限定的な例には、飼いならされた動物(ネコおよびイヌなど)、家畜(例えば、畜牛、ウマ、ブタ、ヒツジ、およびヤギ)、および実験動物(例えば、マウス、ウサギ、ラット、スナネズミ、モルモット、および非ヒト霊長類)が含まれる。
抗体:RSV Fタンパク質またはその抗原性フラグメントなどの分析物(抗原または免疫原など)に特異的に結合しかつ認識する、天然では1つの免疫グロブリン遺伝子もしくは複数の免疫グロブリン遺伝子、またはそれらのフラグメントによって実質的にコードされるポリペプチド。免疫グロブリン遺伝子は、κ、λ、α、γ、δ、ε、およびμ定常領域遺伝子、ならびに無数の免疫グロブリン可変領域遺伝子を含む。本明細書において用いられる「抗体」という用語には、例えば抗体全体の改変によって、および組換えDNA方法論を用いたデノボ合成によって産生される抗体フラグメントが含まれる。
抗体は、例えば無傷免疫グロブリンとして、および十分に特徴付けされたいくつかの抗体フラグメントとして存在する。例えば、RSV Fタンパク質に結合するFab、Fv、および一本鎖Fv(SCFv)は、RSV Fタンパク質特異的結合物質であると考えられる。これには、無傷免疫グロブリン、ならびにFab'フラグメント、F(ab)'2フラグメント、一本鎖Fvタンパク質(「scFv」)、およびジスルフィド安定化Fvタンパク質(「dsFv」)など、当技術分野において周知のそれらのうちの変種および一部が含まれる。scFvタンパク質は、免疫グロブリンの軽鎖可変領域および免疫グロブリンの重鎖可変領域がリンカーによって結合している融合タンパク質であり、一方でdsFvにおいて、鎖は、該鎖のつながりを安定化させるジスルフィド結合を導入するように変異されている。該用語には、キメラ抗体(ヒト化マウス抗体など)、ヘテロ抱合抗体(二重特異性抗体など)などの遺伝子操作された形態も含まれる。Pierce Catalog and Handbook, 1994-1995(Pierce Chemical Co., Rockford, IL);Kuby, J., Immunology, 3rd Ed., W.H. Freeman & Co., New York, 1997も参照されたい。
抗体フラグメントは以下のように定義される:(1)Fab、無傷軽鎖および一方の重鎖の一部を産出する酵素パパインによる抗体全体の消化によって産生される、抗体分子の一価抗原結合フラグメントを含有するフラグメント;(2)Fab'、無傷軽鎖および重鎖の一部を産出するペプシンによる抗体全体の処理、それに続く還元によって得られる、抗体分子のフラグメント;1個の抗体分子あたり2つのFab'フラグメントが得られる;(3)(Fab')2、後続の還元なしで、酵素ペプシンで抗体全体を処理することによって得られる、抗体のフラグメント;(4)F(ab')2、2つのジスルフィド結合によって一緒にまとめられた2つのFab'フラグメントの二量体;(5)Fv、2本の鎖として発現される、軽鎖の可変領域および重鎖の可変領域を含有する遺伝子操作されたフラグメント;ならびに(6)一本鎖抗体(「SCA」)、遺伝子融合した一本鎖分子として適切なポリペプチドリンカーによって連結された、軽鎖の可変領域、重鎖の可変領域を含有する遺伝子操作された分子。
典型的に、天然に存在する免疫グロブリンは、ジスルフィド結合によって相互接続された重(H)鎖および軽(L)鎖を有する。2つのタイプの軽鎖、ラムダ(λ)およびカッパ(κ)がある。抗体分子の機能的活性を決定する5つの主な重鎖クラス(またはアイソタイプ):IgM、IgD、IgG、IgA、およびIgEがある。開示される抗体は、クラススイッチされ得る。
各重鎖および軽鎖は、定常領域および可変領域を含有する(該領域は、「ドメイン」としても知られる)。いくつかの態様において、重鎖および軽鎖の可変ドメインは、抗原に特異的に結合するように結び付いている。付加的な態様において、重鎖可変ドメインのみが必要とされる。例えば、重鎖のみからなる天然に存在するラクダ抗体は、軽鎖の非存在下で機能的でありかつ安定である(例えば、Hamers-Casterman et al., Nature, 363:446-448, 1993;Sheriff et al., Nat. Struct. Biol., 3:733-736, 1996を参照されたい)。軽鎖および重鎖の可変ドメインは、「相補性決定領域」または「CDR」とも呼ばれる3つの超可変領域によって割り込まれた「フレームワーク」領域を含有する(例えば、Kabat et al., Sequences of Proteins of Immunological Interest, U.S. Department of Health and Human Services, 1991を参照されたい)。異なる軽鎖または重鎖のフレームワーク領域の配列は、種内で比較的保存されている。抗体のフレームワーク領域、つまり構成成分である軽鎖および重鎖の結び付いたフレームワーク領域は、三次元空間においてCDRを位置付けしかつ整列させる働きをする。
CDRは、抗原のエピトープへの結合に主に関与している。所定のCDRのアミノ酸配列境界は、Kabatら(「Sequences of Proteins of Immunological Interest」, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD, 1991;「Kabat」番号付けスキーム)、Al-Lazikaniら(JMB 273, 927-948, 1997;「Chothia」番号付けスキーム)、およびLefrancら(「IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains」, Dev. Comp. Immunol., 27:55-77, 2003;「IMGT」番号付けスキーム)によって記載されているものを含む、いくつかの周知のスキームのうちのいずれかを用いて容易に決定され得る。
各鎖のCDRは、典型的に、(N末端からC末端に)CDR1、CDR2、およびCDR3と称され、かつまた典型的に、特定のCDRが位置する鎖によって同定される。ゆえに、VH CDR3は、それが見出される、抗体の重鎖の可変ドメインに位置し、一方でVL CDR1は、それが見出される、抗体の軽鎖の可変ドメイン由来のCDR1である。軽鎖CDRは、CDR L1、CDR L2、およびCDR L3と称されることもある。重鎖CDRは、CDR H1、CDR H2、およびCDR H3と称されることもある。
抗原:動物内に注入されるまたは吸収される組成物を含む、動物において抗体の産生またはT細胞応答を刺激し得る化合物、組成物、または物質。抗原は、開示される組換えRSV Fタンパク質などの異種抗原によって誘導されるものを含む、特異的な液性免疫または細胞性免疫の産物と反応する。
抗原の例には、免疫細胞によって認識されるものなど、抗原決定基を含有するポリペプチド、ペプチド、脂質、多糖、それらの組み合わせ(糖タンパク質など)、および核酸が含まれるが、それらに限定されるわけではない。一部の例において、抗原には、RSVなど、関心対象の病原体に由来するペプチドが含まれる。具体的な例において、融合前立体構造に安定化された改変RSV Fタンパク質を含む抗原など、抗原はRSVに由来する。「エピトープ」または「抗原決定基」とは、Bおよび/またはT細胞が応答する、抗原の領域を指す。
抗RSV剤:RSVが複製するのをまたは細胞に感染するのを特異的に阻害する作用物質。抗RSV剤の非限定的な例には、モノクローナル抗体パリビズマブ(SYNAGIS(登録商標);MedImmune, Inc.)および小分子抗ウイルス薬リバビリン(多くの供給元によって製造されている、例えばWarrick Pharmaceuticals, Inc.)が含まれる。
原子座標または構造座標:抗原、または抗体と複合した抗原など、原子(散乱中心)によるX線の単色ビームの回折に関して得られたパターンに関連付けされた数学的方程式から導き出された数学的座標。一部の例において、その抗原は、(例えば、融合前特異的抗体に結合することによって、または安定化改変の導入によって、融合前立体構造に安定化された)結晶状のRSV Fタンパク質であり得る。回折データを用いて、結晶の反復単位についての電子密度マップを算出する。電子密度マップを用いて、結晶の単位胞内にある個々の原子の位置を確立する。一例において、「構造座標」という用語は、結晶形態のRSV Fタンパク質の原子などによる、X線の単色ビームの回折に関して得られたパターンに関連付けされた数学的方程式から導き出されたデカルト(Cartesian)座標を指す。
当業者であれば、X線結晶学によって決定された構造座標のセットは、標準誤差がないわけではないことを理解する。本開示の目的のために、骨格原子を用いて、約0.75、または約0.5、または約0.25Åなど、重ね合わせた場合に約1.0Å未満のタンパク質骨格原子(N、Cα、C、およびO)の平均二乗偏差を有する構造座標の任意のセットは、(反対の明確な記述がない場合には)同一であると見なされるものとする。
空洞充填アミノ酸置換:RSV Fタンパク質のタンパク質コア内の空洞、例えばRSV Fタンパク質のプロトマー内に存在している空洞、またはRSV Fタンパク質のプロトマー間の空洞を充填するアミノ酸置換。空洞は、アミノ酸またはアミノ酸側鎖が存在していない、折り畳まれたタンパク質内の本質的に虚空である。いくつかの態様において、空洞充填アミノ酸置換を導入して、融合後立体構造への移行後に崩壊する(例えば、容積の低下を有する)、RSV Fタンパク質融合前立体構造に存在しているRSV Fタンパク質コア内の空洞を充填する。
円順列変異体:タンパク質三次構造の異なる領域間の接続が改変され、それにより一次配列における異なる領域の相対的順序は変更されるが、三次構造における該領域の配置は保たれている、改変された組換えタンパク質。例えば、以下のN末端およびC末端、ならびに接続性:
N末端-A鎖-リンカー-B鎖-リンカー-C鎖-リンカー-D鎖-C末端
を有する、A、B、C、およびD鎖を備えた4本鎖逆平行シートに関して、鎖間のリンカー接続を変更することによる4本の鎖A、B、C、およびDの円順列変異体には、
変更されたN末端およびC末端を備えた順列:
N末端-C鎖-リンカー-D鎖-リンカー-A鎖-リンカー-B鎖-C末端
保たれたN末端を備えた順列:
N末端-A鎖-リンカー-D鎖-リンカー-C鎖-リンカー-B鎖-C末端
保たれたC末端を備えた順列:
N末端-C鎖-リンカー-B鎖-リンカー-A鎖-リンカー-D鎖-C末端
が含まれると考えられる。
接触:固体および液体形態の両方を含む、直接的な物理的関連性にある配置。接触には、一方の分子ともう一方の分子との間の接触、例えば抗体などのもう一方のポリペプチドに接触する、抗原などの一方のポリペプチドの表面にあるアミノ酸間の接触が含まれる。接触には、選出された経路による、開示される抗原の対象への投与などの投与も含まれる。
対照:参照標準物質。一部の態様において、対照は、健常患者から得られた陰性対照サンプルである。他の態様において、対照は、RSV感染症を有すると診断された患者から得られた陽性対照サンプルである。さらに他の態様において、対照は、歴史的対照または標準的な参照の値もしくは値の範囲(公知の予後もしくは成果を有するRSV患者の群、またはベースラインもしくは正常値を表すサンプルの群など、以前に試験された対照サンプルなど)である。
試験サンプルと対照との間の差異は、増加または逆に減少であり得る。差異は、定性的差異または定量的差異、例えば統計的に有意な差異であり得る。一部の例において、差異は、対照と比べて、少なくとも約10%、少なくとも約20%、少なくとも約30%、少なくとも約40%、少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%、少なくとも約100%、少なくとも約150%、少なくとも約200%、少なくとも約250%、少なくとも約300%、少なくとも約350%、少なくとも約400%、少なくとも約500%、または500%を上回るなど、少なくとも約5%の増加または減少である。
D25:RSV Fタンパク質の融合前立体構造に特異的に結合するが、RSV Fタンパク質の融合後立体構造には結合しない、中和モノクローナル抗体。D25タンパク質および核酸の配列は公知であり、例えばD25抗体の重鎖および軽鎖のアミノ酸配列は、その全体として本明細書に組み入れられる、米国特許出願公報第2010/0239593号に明示されており、Kwakkenbos et al., Nat. Med., 16:123-128, 2009も参照されたい。実施例1に記載されるように、D25は、その融合前立体構造の状態にあるRSV Fタンパク質上に見出されるが、融合後立体構造には見出されない、四次的エピトープ(抗原部位φ上に含まれる)に特異的に結合する。このエピトープは、RSV Fの位置62~69および196~209内に含まれ、かつ融合前立体構造の状態にあるRSV Fタンパク質の膜遠位先端に位置する(例えば、図2Bおよび9Aを参照されたい)。本開示より以前は、D25がRSV Fタンパク質の融合前立体構造に特異的であることは公知ではなかった。いくつかの態様において、抗体D25は、本明細書において開示されるPreF抗原に特異的に結合する。
縮重変種および保存的変種:遺伝子コードの結果として縮重している配列を含むポリペプチドをコードするポリヌクレオチド。例えば、遺伝子コードの結果として縮重している配列を含む、開示される抗原または開示される抗原に特異的に結合する抗体をコードするポリヌクレオチド。20種の天然アミノ酸があり、そのほとんどは1種を上回る種類のコドンによって指定される。したがって、すべての縮重ヌクレオチド配列は、該ヌクレオチド配列によってコードされる、抗原または抗原に結合する抗体のアミノ酸配列が不変である限り含まれる。遺伝子コードの縮重のため、多数の機能的に同一な核酸が、任意の所定のポリペプチドをコードする。例えば、CGU、CGC、CGA、CGG、AGA、およびAGGというコドンはすべて、アルギニンというアミノ酸をコードする。ゆえに、タンパク質コード配列内でアルギニンが指定されるあらゆる位置において、コドンは、コードされるタンパク質を変更することなく、記載される対応するコドンのいずれかに変更され得る。そのような核酸変動は、保存的変動の1つの種である「サイレント変動」である。ポリペプチドをコードする本明細書における各核酸配列は、あらゆる考え得るサイレント変動も記載する。当業者であれば、標準的技術によって、核酸における各コドン(メチオニンに対する通常唯一のコドンであるAUGを除く)を改変して、機能的に同一な分子を産出し得ることを認識するであろう。したがって、ポリペプチドをコードする核酸の各「サイレント変動」は、記載される各配列において黙示的である。
当業者であれば、コード配列における単一アミノ酸またはわずかな割合のアミノ酸(例えば5%未満、一部の態様においては1%未満)を変更する、付加する、または欠失させる個々の置換、欠失、または付加は、変更が、化学的に類似したアミノ酸によるアミノ酸の置換をもたらす保存的変動であることを認識するであろう。
機能的に類似したアミノ酸を提供する保存的アミノ酸置換は、当技術分野において周知である。以下の6つの群は、それぞれ、互いに対して保存的置換であるアミノ酸を含有する。
1)アラニン(A)、セリン(S)、トレオニン(T);
2)アスパラギン酸(D)、グルタミン酸(E);
3)アスパラギン(N)、グルタミン(Q);
4)アルギニン(R)、リジン(K);
5)イソロイシン(I)、ロイシン(L)、メチオニン(M)、バリン(V);および
6)フェニルアラニン(F)、チロシン(Y)、トリプトファン(W)
タンパク質内のすべての残基位置が、その他の点では「保存的な」置換を許容するとは限らない。例えば、アミノ酸残基がタンパク質の機能に必須である場合、その他の点では保存的な置換でさえその活性を妨害し得、例えば標的エピトープへの抗体の特異的結合は、該標的エピトープにおける保存的変異によって妨害され得る。
エピトープ:抗原決定基。これらは、抗原性である、分子上の特定の化学基またはペプチド配列であり、そのためそれらは特異的免疫応答を誘発し、例えばエピトープは、Bおよび/またはT細胞が応答する、抗原の領域である。抗体は、RSV Fタンパク質のエピトープ、例えばRSV Fタンパク質の融合前立体構造に存在しているD25またはAM22エピトープなど、特定の抗原エピトープに結合する。
エピトープは、連続アミノ酸、またはタンパク質の三次的折り畳みによって並置された非連続アミノ酸の両方から形成され得る。連続アミノ酸から形成されるエピトープは、典型的に、変性溶媒への曝露で保持され、一方で三次的折り畳みによって形成されるエピトープは、典型的に、変性溶媒での処理で失われる。エピトープは、典型的に、特有の空間的立体構造の状態にある少なくとも3個、より通常では少なくとも5個、約9個、または約8~10個のアミノ酸を含む。エピトープの空間的立体構造を決定する方法には、例えばx線結晶学および核磁気共鳴が含まれる。エピトープには、N結合型グリコシル化など、アミノ酸の翻訳後修飾も含まれ得る。
一態様において、エピトープがMHC分子とともに提示された場合、T細胞は該エピトープに応答する。エピトープは、連続アミノ酸、またはタンパク質の三次的折り畳みによって並置された非連続アミノ酸の両方から形成され得る。連続アミノ酸から形成されるエピトープは、典型的に、変性溶媒への曝露で保持され、一方で三次的折り畳みによって形成されるエピトープは、典型的に、変性溶媒での処理で失われる。エピトープは、典型的に、特有の空間的立体構造の状態にある少なくとも3個、より通常では少なくとも5個、約9個、または約8~10個のアミノ酸を含む。エピトープの空間的立体構造を決定する方法には、例えばx線結晶学および核磁気共鳴が含まれる。
「標的エピトープ」は、モノクローナル抗体など、関心対象の抗体に特異的に結合する、抗原上の特定のエピトープである。一部の例において、標的エピトープは、関心対象の抗体に接触するアミノ酸残基を含み、そのため標的エピトープは、関心対象の抗体と接触していると判定されたアミノ酸残基によって選択され得る。
有効量:RSV Fタンパク質に対する免疫応答などの所望の応答、またはRSV感染症などの病状もしくは疾患の兆候もしくは症状の低下もしくは排除を生じさせるのに十分である、PreF抗原もしくはPreF抗原をコードする核酸または他の作用物質などの作用物質の量。例えば、これは、ウイルス複製を阻害するために、またはウイルス感染症の外面的症状を測定可能な程度に変更するために必要な量であり得る。一般的に、この量は、ウイルス(例えば、RSV)の複製または感染性を測定可能な程度に阻害するのに十分であると考えられる。対象に投与する場合、ウイルス複製のインビトロ阻害を達成することが示されている、(例えば、呼吸組織において)標的組織濃度を達成すると考えられる投薬量が一般的に用いられる。一部の例において、「有効量」は、例えばRSV感染症を治療するための、障害または疾患のいずれかの1つもしくは複数の症状および/または根底にある原因を治療する(予防を含む)量である。一例において、有効量は治療上有効量である。一例において、有効量は、RSV感染症と関連した1つまたは複数の兆候または症状など、特定の疾患または病状の1つまたは複数の兆候または症状が発症するのを阻止する量である。
発現:核酸のタンパク質への翻訳。タンパク質は発現されて、細胞内に留まり得る、細胞表面膜の構成要素になり得る、または細胞外マトリックスもしくは培地中に分泌され得る。
発現制御配列:それが機能的に連結されている異種核酸配列の発現を調節する核酸配列。発現制御配列が核酸配列の転写、および必要に応じて翻訳を制御しかつ調節する場合、発現制御配列は核酸配列に機能的に連結されている。ゆえに、発現制御配列には、適当なプロモーター、エンハンサー、転写ターミネーター、タンパク質コード遺伝子の前の開始コドン(ATG)、イントロンに対するスプライシングシグナル、mRNAの適正な翻訳を可能にするためのその遺伝子の正しいリーディングフレームの維持、および終止コドンが含まれ得る。「制御配列」という用語は、その存在が発現に影響し得る構成要素を最低でも含むことを意図され、その存在が有利であるさらなる構成要素、例えばリーダー配列および融合パートナー配列も含み得る。発現制御配列にはプロモーターが含まれ得る。
プロモーターは、転写を指揮するのに十分な最小配列である。プロモーター依存的遺伝子発現を細胞タイプ特異的、組織特異的に制御可能にする、または外部シグナルもしくは作用物質によって誘導可能にするのに十分であるそうしたプロモーター要素も含まれ;そのような要素は、遺伝子の5'または3'領域に位置し得る。構成的なおよび誘導性のプロモーターの両方が含まれる(例えば、Bitter et al., Methods in Enzymology 153:516-544, 1987を参照されたい)。例えば、細菌システムにおけるクローニングの場合、バクテリオファージλのpL、plac、ptrp、ptac(ptrp-lacハイブリッド型プロモーター)などの誘導性プロモーターが用いられ得る。一態様において、哺乳類細胞システムにおけるクローニングの場合、哺乳類細胞のゲノムに由来するプロモーター(メタロチオネインプロモーターなど)または哺乳類ウイルスに由来するプロモーター(レトロウイルスの長い末端反復;アデノウイルス後期プロモーター;ワクシニアウイルス7.5Kプロモーターなど)を用いることができる。組換えDNA技術または合成技術によって産生されたプロモーターを用いても、核酸配列の転写を提供し得る。
宿主の挿入遺伝子配列の効率的な転写を促すプロモーター配列を含有する発現ベクター内に、ポリヌクレオチドを挿入することができる。発現ベクターは、典型的に、複製起点、プロモーター、ならびに形質転換された細胞の表現型選択を可能にする特異的な核酸配列を含有する。
フェリチン:制御された形で鉄を蓄えかつそれを放出するタンパク質。該タンパク質は、ほぼすべての生きた生物によって産生される。フェリチンは、ある場合には24個のタンパク質サブユニットからなる球状タンパク質複合体に会合する。一部の例において、フェリチンを用いて、抗原、例えば融合前立体構造に安定化された開示されるRSV Fタンパク質抗原などのRSV抗原をその表面に提示するナノ粒子を形成する。
フォルドンドメイン:天然に三量体構造を形成するアミノ酸配列。一部の例において、フォルドンドメインを、融合前立体構造に安定化された開示されるRSV Fタンパク質抗原のアミノ酸配列内に含めることができ、それにより該抗原は三量体を形成する。一例において、フォルドンドメインは、
として明示されるT4フォルドンドメインである。いくつかの態様は、例えばフォルドンドメインに近接した、切断目的で用いられ得るトロンビン切断部位の組み入れによって、精製タンパク質から切断され得るフォルドンドメインを含む。
糖タンパク質(gp):ポリペプチド側鎖に共有結合で接着したオリゴ糖鎖(グリカン)を含有するタンパク質。糖質は、翻訳時修飾または翻訳後修飾でタンパク質に接着される。この過程は、グリコシル化として知られている。細胞外に伸長しているセグメントを有するタンパク質において、細胞外セグメントはグリコシル化されることが多い。糖タンパク質は重要な膜内在性タンパク質であることが多く、そこでそれらは細胞-細胞相互作用における役割を果たす。一部の例において、糖タンパク質は、融合前立体構造に安定化されたRSV Fタンパク質抗原またはその免疫原性フラグメントなど、RSV糖タンパク質である。
グリコシル化部位:グリカンの接着に応える、タンパク質などのポリペプチドの表面にあるアミノ酸配列。N結合型グリコシル化部位は、NX(S/T)のトリプレット配列であり、式中、Nはアスパラギンであり、Xはプロリンを除く任意の残基であり、かつ(S/T)はセリンまたはトレオニン残基である。グリカンは、多糖またはオリゴ糖である。グリカンを用いて、糖タンパク質、糖脂質、またはプロテオグリカンなどの糖抱合体の糖質部分も指し得る。
相同タンパク質:類似した構造および機能を有するタンパク質、例えば2種またはそれを上回る種類の種またはウイルス系統において類似した構造および機能を有する、2種またはそれを上回る種類の種またはウイルス系統由来のタンパク質。例えば、RSV A由来のRSV Fタンパク質は、ウシRSV由来のRSV Fタンパク質に対する相同タンパク質である。相同タンパク質は、類似したタンパク質折り畳み特徴を共有し、構造類似体と見なされ得る。
相同タンパク質は、典型的に、少なくとも80%、少なくとも90%、少なくとも91%、少なくとも92%、少なくとも93%、少なくとも94%、または少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、または少なくとも99%の配列保存性などの高度な配列保存性、および少なくとも80%、少なくとも90%、少なくとも91%、少なくとも92%、少なくとも93%、少なくとも94%、または少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、または少なくとも99%の配列同一性などの高度な配列同一性を共有する。
宿主細胞:その中でベクターが繁殖し得かつそのDNAが発現し得る細胞。細胞は、原核生物または真核生物のものであり得る。該用語は、対象宿主細胞の任意の子孫も含む。複製中に生じる変異があり得るため、すべての子孫が親細胞と同一ではない可能性があることが理解される。しかしながら、「宿主細胞」という用語が用いられる場合、そのような子孫が含まれる。
免疫原:病原体に感染したまたは感染症の危険性がある哺乳類など、哺乳類において免疫応答を誘導し得るタンパク質またはその一部。免疫原の投与は、関心対象の病原体に対する防御免疫および/または事前(proactive)免疫につながり得る。一部の例において、免疫原には、開示されるPreF抗原が含まれる。
免疫応答:刺激に対する、B細胞、T細胞、または単球などの免疫系の細胞の応答。一態様において、応答は特定の抗原に特異的である(「抗原特異的応答」)。一態様において、免疫応答は、CD4+応答またはCD8+応答などのT細胞応答である。別の態様において、応答はB細胞応答であり、特異的抗体の産生をもたらす。
「Th1」偏向性免疫応答は、IL-2およびIFN-γを産生するCD4+Tヘルパー細胞の存在を、ゆえにIL-2およびIFN-γの分泌または存在を特徴とする。対照的に、「Th2」偏向性免疫応答は、IL-4、IL-5、およびIL-13を産生するCD4+ヘルパー細胞の優位性を特徴とする。
免疫原性組成物:抗原を発現するウイルスに対する測定可能なCTL応答、または抗原に対する測定可能なB細胞応答(抗体の産生など)など、免疫応答を誘導する抗原を含む組成物。そのようなものとして、免疫原性組成物は、1種または複数種の抗原(例えば、ポリペプチド抗原)または抗原エピトープを含む。免疫原性組成物は、賦形剤、担体、および/またはアジュバントなど、免疫応答を誘発し得るまたは増強させ得る1種または複数種のさらなる構成要素も含み得る。ある特定の場合には、免疫原性組成物を投与して、病原体によって誘導された症状または病状に対して対象を防御する免疫応答を誘発する。ある場合には、病原体への対象の曝露後に病原体(例えば、RSV)の複製を阻害することによって、病原体によって引き起こされる症状または疾患を阻止する(または低下させるまたは改善する)。一例において、「免疫原性組成物」は、RSV Fタンパク質を発現するウイルスに対する測定可能なCTL応答を誘導する、またはRSV Fタンパク質に対する測定可能なB細胞応答(抗体の産生など)を誘導する、融合前立体構造に安定化された組換えRSV Fタンパク質を含む。それは、抗原を発現させるために用いられ得る(ゆえに、このポリペプチドに対する免疫応答を誘発するために用いられ得る)核酸など、抗原をコードする単離された核酸をさらに指す。
インビトロ使用に関して、免疫原性組成物は、抗原または抗原をコードする核酸を含み得る。インビボ使用に関して、免疫原性組成物は、典型的に、薬学的に許容される担体中のタンパク質、免疫原性ペプチド、もしくは核酸、および/または他の作用物質を含む。融合前立体構造に安定化された開示されるRSV Fタンパク質などの任意の特定のペプチド、または融合前立体構造に安定化された開示されるRSV Fタンパク質をコードする核酸を、当技術分野において認められているアッセイによって、CTL応答またはB細胞応答を誘導し得るその能力について容易に試験することができる。免疫原性組成物は、当業者に周知であるアジュバントを含み得る。
免疫学的に反応性の高い条件:特定のエピトープに対して作り上げられた抗体が、実質的に他のすべてのエピトープへの結合よりも検出可能なほどに大きな程度まで、および/または実質的に他のすべてのエピトープへの結合を実質的に除外して、そのエピトープに結合するのを可能にする条件への言及を含む。免疫学的に反応性の高い条件は、抗体結合反応の形式に依存的であり、かつ典型的に、免疫アッセイプロトコールにおいて利用されるものでありまたはインビボで遭遇するそうした条件である。方法において採用される免疫学的に反応性の高い条件は、典型的に、生きた哺乳類または哺乳類細胞の内部にある条件(温度、モル浸透圧濃度、pHなど)への言及を含む「生理的条件」である。一部の臓器は極端な条件に供されることが認識されているものの、生物内(intra-organismal)および細胞内環境は、通常約pH7(pH6.0~pH8.0、より典型的にはpH6.5~7.5など)であり、優勢溶媒として水を含有し、そして0℃より上かつ50℃より下の温度に存在する。モル浸透圧濃度は、細胞の生存能力および増殖を支援する範囲内にある。
免疫プローブ:特異的なエピトープまたは抗原に対して向けられている、ヒト患者血清からを含む、血清からの抗体の選択に用いられ得る分子。一部の例において、融合前立体構造に安定化された開示されるRSV Fタンパク質を、融合前立体構造の状態にあるRSV Fタンパク質に特異的な抗体についてのポジティブおよびネガティブ選択の両方において免疫プローブとして用いることができる。
免疫原表面:免疫応答を誘発し得る分子、例えばRSV Fタンパク質の表面。免疫原表面は、その表面について規定する特質、例えば三次元形状および表面電荷を含む。一部の例において、タンパク質と抗体とが一緒に結合している場合、免疫原表面は、中和抗体などの抗体と接触しているタンパク質またはペプチドの表面上のアミノ酸によって規定される。標的エピトープには、免疫原表面が含まれる。免疫原表面は、抗原表面と同義である。
疾患を阻害するまたは治療する:例えばRSV感染症などの疾患の危険性がある対象における、疾患または病状の完全な発症を阻害すること。「治療」とは、疾患または病的状況の兆候または症状を、それが発症し始めた後に、改善する治療的介入を指す。疾患または病的状況に関する「改善する」という用語は、治療についての任意の観察可能な有益な効果を指す。有益な効果は、罹患しやすい(susceptible)対象における疾患の臨床症状の発生の遅延、疾患の一部もしくはすべての臨床症状の重症度の低下、疾患のよりゆっくりとした進行、対象の健康全般もしくは幸福の向上によって、または特定の疾患に特異的である、当技術分野において周知の他のパラメーターによって証明され得る。「予防的な」治療とは、病変を発症する危険性を減少させる目的で、疾患の兆候を呈していないまたは初期兆候のみを呈する対象に施される治療である。
「低下させる」という用語は、参照作用物質と比較して、作用物質の投与後に応答もしくは病状が定量的に減退した場合、または作用物質の投与後にそれが減退した場合、作用物質は応答または病状を低下させるというような相対的用語である。同様に、「阻止する」という用語は、応答または病状の少なくとも1つの特徴が排除されさえすれば、必ずしも作用物質が応答または病状を完全に排除することを意味するわけではない。ゆえに、感染症、または病的応答などの応答、例えばワクチン増強性ウイルス疾患を低下させるまたは阻止する免疫原性組成物は、そのような感染症または応答を完全に排除し得るが、感染症または応答が測定可能な程度に、例えば作用物質の非存在下でまたは参照作用物質と比較して、感染症または応答の少なくとも約70%、または約80%、またはさらに約90%(すなわち、10%またはそれ未満まで)など、少なくとも約50%減退しさえすれば、必ずしもそのような感染症または応答を完全に排除するわけではない。
単離された:「単離された」生物学的構成要素(タンパク質、例えば開示されるPreF抗原、またはそのような抗原をコードする核酸など)は、該構成要素が天然に存在する、他の染色体および染色体外のDNA、RNA、およびタンパク質などの他の生物学的構成要素など、他の生物学的構成要素から実質的に分離されているまたは精製されている。「単離され」ているタンパク質、ペプチド、および核酸には、標準的な精製法によって精製されたタンパク質が含まれる。該用語は、宿主細胞内での組換え発現によって調製されたタンパク質またはペプチド、ならびに化学的に合成されたタンパク質、ペプチド、および核酸分子も包含する。単離されたとは、絶対純度を要求するわけではなく、少なくとも75%、80%、90%、95%、98%、99%、またはさらに99.9%単離など、少なくとも50%単離であるタンパク質、ペプチド、または核酸分子を含み得る。本明細書において開示されるPreF抗原(例えば、融合前立体構造に安定化された単離された組換えRSV Fタンパク質)は、融合後立体構造の状態にあるRSV Fタンパク質から単離されており、例えば融合後立体構造の状態にあるRSV Fタンパク質からの少なくとも80%単離、少なくとも90%、95%、98%、99%、またはさらに99.9%単離である。いくつかの態様において、PreF抗原は、抗原部位φを含まずかつ/または融合前特異的モノクローナル抗体(D25またはAM22など)によって特異的に結合されないRSV Fタンパク質から実質的に分離されており、例えばPreF抗原は、抗原部位φを含まずかつ/またはD25もしくはAM22などの融合前特異的モノクローナル抗体によって特異的に結合されないRSV Fタンパク質からの少なくとも80%単離、少なくとも90%、95%、98%、99%、またはさらに99.9%単離であり得る。
Kd:ポリペプチド-リガンド相互作用または抗体-抗原相互作用など、所定の相互作用に対する解離定数。例えば、抗体(D25など)および抗原(RSV Fタンパク質など)の二分子相互作用に関して、それは、複合体の濃度で割った、二分子相互作用の個々の構成要素の濃度である。抗体:抗原相互作用のKdを決定する方法は、当業者によく知られている。
標識:別の分子に直接的または間接的に抱合させてその分子の検出を容易にする、検出可能な化合物または組成物。標識の具体的な非限定的な例には、蛍光タグ、酵素的連結、および放射性同位体が含まれる。一部の例において、開示されるPreF抗原は、検出可能な標識で標識されている。一部の例において、標識は、開示される抗原またはそのような抗原をコードする核酸に接着している。
リンカー:2個またはそれを上回る数の分子を1個の連続分子に連結させる、例えば担体分子を免疫原性ポリペプチドに連結させるために用いられ得る二機能性分子。ペプチドリンカーの非限定的な例には、(G4S)1、(G4S)2、または(G4S)3ペプチドリンカーが含まれる。
「抱合する」、「接合する」、「付着させる」、または「連結させる」という用語は、2個の分子を1個の連続分子にすること、例えば2つの他のポリペプチドを1つの連続ポリペプチドに連結させること、または担体分子もしくは他の分子を、本明細書において開示される組換えRSV Fタンパク質などの免疫原性ポリペプチドに共有結合で接着させることを指し得る。連結は、化学的手段または組換え手段によるいずれかであり得る。「化学的手段」とは、2個の分子間に形成される共有結合が存在して1個の分子を形成するような、例えば免疫原性ポリペプチド部分と担体分子との間の反応を指す。
MPE8:RSV Fタンパク質の融合前立体構造に特異的に結合するが、RSV Fタンパク質の融合後立体構造には結合しない、中和モノクローナル抗体。Corti et al.(Nature, 501(7467)439-443, 2013、参照によりその全体として本明細書に組み入れられる)に記載されているように、MPE8抗体は、RSV Fタンパク質の融合前立体構造上に見出されるが、融合後立体構造には見出されないエピトープに結合する。MPE8エピトープは、抗原部位φの一部ではない。重鎖および軽鎖の可変領域配列は、それぞれSEQ ID NO: 1472および1473として明示されている。
天然抗原または天然配列:選択的変異、例えば抗原の抗原性を標的エピトープに集中させる選択的変異によって改変されていない抗原または配列。天然抗原または天然配列は、野生型抗原または野生型配列とも称される。
核酸:ホスホジエステル結合を介して連結されたヌクレオチド単位(リボヌクレオチド、デオキシリボヌクレオチド、天然に存在する関連する構造変種、および天然には存在しないその合成類似体)から構成されるポリマー、天然に存在する関連する構造変種、および天然には存在しないその合成類似体。ゆえに、該用語は、ヌクレオチドおよびそれらの間の連結が、例えばかつ限定することなく、ホスホロチオエート、ホスホラミデート(phosphoramidate)、メチルホスホネート、キラルメチルホスホネート、2-O-メチルリボヌクレオチド、ペプチド核酸(PNA)など、天然には存在しない合成類似体を含む、ヌクレオチドポリマーを含む。そのようなポリヌクレオチドは、例えば自動DNA合成器を用いて合成され得る。「オリゴヌクレオチド」という用語は、典型的に、短いポリヌクレオチド、一般的に約50個以下ののヌクレオチドを指す。ヌクレオチド配列がDNA配列(すなわち、A、T、G、C)によって表される場合、これには、「U」が「T」を置き換えるRNA配列(すなわち、A、U、G、C)も含まれる。
「ヌクレオチド」には、ピリミジン、プリン、もしくはそれらの合成類似体など、糖類に連結された塩基、またはペプチド核酸(PNA)にあるような、アミノ酸に連結された塩基を含む単量体が含まれるが、それらに限定されるわけではない。ヌクレオチドは、ポリヌクレオチド中の1個の単量体である。ヌクレオチド配列とは、ポリヌクレオチドにおける塩基の配列を指す。
ヌクレオチド配列を記載するために従来的表記法が本明細書において用いられており、すなわち、一本鎖ヌクレオチド配列の左側端は5'末端であり;二本鎖ヌクレオチド配列の左側方向は5'方向と称される。新生RNA転写産物への5'から3'へのヌクレオチドの付加の方向は、転写方向と称される。mRNAと同じ配列を有するDNA鎖は「コード鎖」と称され;そのDNAから転写されるmRNAと同じ配列を有しかつ該RNA転写産物の5'末端に対して5'に位置する、DNA鎖上の配列は「上流配列」と称され;該RNAと同じ配列を有しかつコードRNA転写産物の3'末端に対して3'である、DNA鎖上の配列は「下流配列」と称される。
「cDNA」とは、一本鎖または二本鎖形態のいずれかの、mRNAに相補的または同一であるDNAを指す。
「コードする」とは、ヌクレオチドの規定配列(例えば、rRNA、tRNA、およびmRNA)またはアミノ酸の規定配列のいずれか、およびそれからもたらされる生物学的特性を有する、生物学的過程において他のポリマーおよび高分子の合成のための鋳型として働く、遺伝子、cDNA、またはmRNAなどのポリヌクレオチドにおけるヌクレオチドの特異的配列の固有の特性を指す。ゆえに、遺伝子は、その遺伝子によって産生されるmRNAの転写および翻訳により、細胞または他の生物学的システムにおいてタンパク質が産生される場合、タンパク質をコードする。mRNA配列と同一でありかつ配列表において通常提供されるヌクレオチド配列であるコード鎖、および遺伝子またはcDNAの転写のための鋳型として用いられる非コード鎖の両方は、その遺伝子またはcDNAのタンパク質または他の産物をコードすると称され得る。別様に指定されていない限り、「アミノ酸配列をコードするヌクレオチド配列」には、互いの縮重バージョンでありかつ同じアミノ酸配列をコードする、すべてのヌクレオチド配列が含まれる。タンパク質およびRNAをコードするヌクレオチド配列は、イントロンを含み得る。一部の例において、核酸は、開示されるPreF抗原をコードする。
機能的に連結された:第1の核酸配列が、第2の核酸配列と機能的な関係に配置されている場合、第1の核酸配列は、第2の核酸配列と機能的に連結されている。例えば、プロモーターがコード配列の転写または発現に影響を及ぼす場合、プロモーターはコード配列に機能的に連結されている。一般的に、機能的に連結されたDNA配列は連続しており、2つのタンパク質コード領域を接合するために必要な場合には、同じリーディングフレーム内にある。
融合前特異的抗体:融合前立体構造の状態にあるRSV Fタンパク質に特異的に結合するが、融合後立体構造の状態にあるRSV Fタンパク質には特異的に結合しない抗体。例示的な融合前特異的抗体には、D25、AM22、5C4、およびMPE8抗体が含まれる。
ポリペプチド:長さまたは翻訳後修飾(グリコシル化またはリン酸化など)にかかわらない、アミノ酸の任意の鎖。「ポリペプチド」は、天然に存在するアミノ酸ポリマーおよび天然には存在しないアミノ酸ポリマーを含むアミノ酸ポリマー、ならびに1個または複数個のアミノ酸残基が、非天然アミノ酸、例えば対応する天然に存在するアミノ酸の人工的な化学的模倣体であるアミノ酸ポリマーに適用される。「残基」とは、アミド結合またはアミド結合模倣体によって、ポリペプチド内に組み入れられたアミノ酸またはアミノ酸模倣体を指す。ポリペプチドは、アミノ末端(N末端)およびカルボキシ末端(C末端)を有する。「ポリペプチド」は、ペプチドまたはタンパク質と代替可能に用いられ、アミノ酸残基のポリマーを指すために本明細書において代替可能に用いられる。
アミノ酸残基の1本の連続ポリペプチド鎖は、多数のポリペプチドを含み得る。例えば、RSV F0ポリペプチドは、N末端シグナルペプチド、F2ポリペプチド、pep27ポリペプチド、ならびにF1細胞外ドメイン、膜貫通ドメイン、および細胞質テールを含むF1ポリペプチドを含む。さらに、一部の例において、組換えRSV Fタンパク質は、ペプチドリンカーによってRSV F1ポリペプチドに連結されたRSV F2ポリペプチドを含む一本鎖RSV Fタンパク質である。
多くの場合、ポリペプチドは特異的三次元構造に折り畳まれ、かつ表面に曝露されたアミノ酸残基および表面に曝露されていないアミノ酸残基を含み得る。ある場合には、タンパク質は、機能的単位に一緒に折り畳まれる多数のポリペプチドを含み得る。例えば、RSV Fタンパク質は、多量体タンパク質に三量体化する、F1/F2ヘテロ二量体から構成される。「表面に曝露されたアミノ酸残基」とは、例えばタンパク質が溶液中にある場合に、それらが溶媒に接触し得るような、タンパク質の表面である程度の曝露を有するそうしたアミノ酸である。対照的に、表面に曝露されていないアミノ酸とは、タンパク質が溶液中にある場合に、それらが溶液に接触しないような、タンパク質の表面で曝露されていないそうしたアミノ酸残基である。一部の例において、表面に曝露されていないアミノ酸残基は、タンパク質コアの部分である。
「タンパク質コア」とは、溶液中で水分子の形態の溶媒などの溶媒曝露が実質的にない、折り畳まれたタンパク質の内部である。典型的に、タンパク質コアは、疎水性または極性のアミノ酸から主として構成される。一部の例において、タンパク質コアは、荷電アミノ酸、例えばアスパラギン酸、グルタミン酸、アルギニン、および/またはリジンを含有し得る。タンパク質コアへの非相殺性(uncompensated)荷電アミノ酸(相殺性荷電アミノ酸は塩橋の形態にあり得る)の包含は、不安定なタンパク質につながり得る。つまり、タンパク質コアに非相殺性荷電アミノ酸を有しない類似タンパク質よりも低いTmを有するタンパク質。他の例において、タンパク質コアは、該タンパク質コア内に空洞を有し得る。空洞は、アミノ酸またはアミノ酸側鎖が存在していない、折り畳まれたタンパク質内の本質的に虚空である。そのような空洞は、空洞を有しない類似タンパク質と比べて、タンパク質を不安定化し得る。ゆえに、タンパク質の安定化形態を創出する場合、コア内のアミノ酸残基を置換して、野生型タンパク質に存在している空洞を充填することが有利であり得る。
ペプチド、ポリペプチド、またはタンパク質におけるアミノ酸は、一般的に、アミド連結(CONH)を介して化学的に一緒に結合している。加えて、アミノ酸は、他の化学的結合によって一緒に結合し得る。例えば、アミノ酸またはアミノ酸類似体に対する連結には、CH2NH-、-CH2S-、-CH2-CH2-、-CH=CH--(シスおよびトランス)、-COCH2--、-CH(OH)CH2-、および-CHH2SO-が含まれ得る(これらおよび他のものは、Spatola, Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, B. Weinstein, eds., Marcel Dekker, New York, p. 267 (1983);Spatola, A. F., Vega Data (1983年3月), Vol.1, Issue 3, Peptide Backbone Modifications (総説);Morley, Trends Pharm Sci pp. 463-468, 1980;Hudson, et al., Int J Pept Prot Res 14:177-185, 1979;Spatola et al. Life Sci 38:1243-1249, 1986;Harm J. Chem. Soc Perkin Trans. 1307-314, 1982;Almquist et al. J. Med. Chem. 23:1392-1398, 1980;Jennings-White et al. Tetrahedron Lett 23:2533, 1982;Holladay et al. Tetrahedron. Lett 24:4401-4404, 1983;およびHruby Life Sci 31:189-199, 1982に見出され得る)。
ペプチド改変:例えば、天然RSVタンパク質配列と比較してアミノ酸置換を含むように、または多様な化学的技術によって、非改変ペプチドと本質的に同じ活性および立体構造を有し、かつ任意で他の望ましい特性を有する誘導体を産生するように、融合前立体構造に安定化された開示されるRSV Fタンパク質などのペプチドを改変することができる。例えば、タンパク質のカルボン酸基は、カルボキシル末端または側鎖にかかわらず、薬学的に許容される陽イオンの塩の形態で提供され得、またはC1~C16エステルを形成するようにエステル化され得、またはR1およびR2がそれぞれ独立してHもしくはC1~C16アルキルである式NR1R2のアミドに変換され得、または5員環もしくは6員環などの複素環を形成するように組み合わされ得る。ペプチドのアミノ基は、アミノ末端または側鎖にかかわらず、HCl、HBr、酢酸、安息香酸、トルエンスルホン酸、マレイン酸、酒石酸、および他の有機酸の塩など、薬学的に許容される酸付加塩の形態であり得、またはC1~C16アルキルもしくはジアルキルアミノに改変され得、またはアミドにさらに変換され得る。
ペプチド側鎖のヒドロキシル基は、十分に認められた技術を用いて、C1~C16アルコキシまたはC1~C16エステルに変換され得る。ペプチド側鎖のフェニル環およびフェノール環(phenolic ring)は、F、Cl、Br、もしくはIなどの1個もしくは複数個のハロゲン原子で、またはC1~C16アルキル、C1~C16アルコキシ、カルボン酸、およびそれらのエステル、もしくはそのようなカルボン酸のアミドで置換され得る。ペプチド側鎖のメチレン基は、同族C2~C4アルキレンに伸長され得る。チオールは、アセトアミド基など、十分に認められた多数の保護基のうちのいずれか1種で保護され得る。
薬学的に許容される担体:有用な薬学的に許容される担体は従来的である。E. W. MartinによるRemington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 19th Edition, 1995は、開示される免疫原の薬学的送達に適した組成物および製剤を記載している。
一般的に、担体の性質は、採用されている特定の投与様態に依存する。例えば、非経口製剤は、通常、水、生理的食塩水、平衡塩類溶液、水性デキストロース、グリセロールなどの薬学的および生理学的に許容される流体を含む、注入可能な流体をビヒクルとして含む。固体組成物(例えば、粉末、丸薬、錠剤、またはカプセルの形態)に関して、従来的な非毒性固体担体には、例えば薬学的グレードのマンニトール、ラクトース、デンプン、またはステアリン酸マグネシウムが含まれ得る。生物学的に中性の担体に加えて、投与される対象となる薬学的組成物は、湿潤剤または乳化剤、防腐剤、およびpH緩衝剤などの少量の非毒性補助物質、例えば酢酸ナトリウムまたはソルビタンモノラウレートを含有し得る。特定の態様において、対象への投与に適した担体は無菌であり得、かつ/または所望の抗RSV免疫応答を誘導するのに適した、1回もしくは複数回の測定用量の組成物を含有する単位剤形中に懸濁され得るもしくは別様に含有され得る。それは、治療目的のためのその使用のための医薬も伴い得る。単位剤形は、例えば、無菌内容物を含有する密封バイアル中もしくは対象への注射用のシリンジ中にあり得、または後続の可溶化および投与のために凍結乾燥され得、または固体もしくは制御放出性の投薬物(dosage)の状態にあり得る。
プライム-ブーストワクチン接種:免疫応答を誘導するための、対象への第1の免疫原性組成物(プライマーワクチン)の投与、それに続く第2の免疫原性組成物(ブースターワクチン)の投与を含む免疫療法。プライマーワクチンおよび/またはブースターワクチンは、免疫応答が向けられる抗原を発現するベクター(ウイルスベクター、RNAベクター、またはDNAベクターなど)を含む。プライマーワクチンの後に、ブースターワクチンが対象に投与され;当業者であれば、プライマーワクチンおよびブースターワクチンの投与間の適切な時間間隔を理解すると考えられ;そのような時間枠の例は、本明細書において開示される。一部の態様において、プライマーワクチン、ブースターワクチン、またはプライマーワクチンおよびブースターワクチンの両方は、アジュバントをさらに含む。非限定的な一例において、プライマーワクチンはDNAベースのワクチン(または遺伝子送達に基づく他のワクチン)であり、かつブースターワクチンはタンパク質サブユニットまたはタンパク質ナノ粒子ベースのワクチンである。
タンパク質ナノ粒子:マルチサブユニットの、タンパク質ベースの、多面体形状の構造。サブユニットはそれぞれ、タンパク質またはポリペプチド(例えば、グリコシル化ポリペプチド)、および任意で、核酸、補欠分子族(prosthetic group)、有機化合物、および無機化合物の単一または多数の特質から構成される。タンパク質ナノ粒子の非限定的な例には、フェリチンナノ粒子(例えば、参照により本明細書に組み入れられる、Zhang, Y. Int. J. Mol. Sci., 12:5406-5421, 2011を参照されたい)、エンカプスリンナノ粒子(例えば、参照により本明細書に組み入れられる、Sutter et al., Nature Struct. and Mol. Biol., 15:939-947, 2008を参照されたい)、硫黄オキシゲナーゼレダクターゼ(SOR)ナノ粒子(例えば、参照により本明細書に組み入れられる、Urich et al., Science, 311:996-1000, 2006を参照されたい)、ルマジンシンターゼナノ粒子(例えば、Zhang et al., J. Mol. Biol., 306:1099-1114, 2001を参照されたい)、またはピルビン酸デヒドロゲナーゼナノ粒子(例えば、参照により本明細書に組み入れられる、Izard et al., PNAS 96:1240-1245, 1999を参照されたい)が含まれる。フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、およびピルビン酸デヒドロゲナーゼは、ある場合には、それぞれ24、60、24、60、および60個のタンパク質サブユニットからなる球状タンパク質複合体に自己会合する単量体タンパク質である。一部の例において、フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼの単量体は、開示される抗原(例えば、融合前立体構造に安定化された組換えRSV Fタンパク質)に連結され、かつ開示される抗原をその表面に提示するタンパク質ナノ粒子に自己会合し、それを対象に投与して、該抗原に対する免疫応答を刺激することができる。
組換え:組換え核酸は、天然には存在しない配列を有する、または配列のそうでなければ分離した2つのセグメントの人工的組み合わせによって作製される配列を有するものである。この人工的組み合わせは、化学的合成によって、またはより一般には、核酸の単離されたセグメントの人工的操縦によって、例えば遺伝子操作技術によって達成され得る。組換えタンパク質は、天然には存在しない配列を有する、または配列のそうでなければ分離した2つのセグメントの人工的組み合わせによって作製される配列を有するものである。いくつかの態様において、組換えタンパク質は、細菌または真核細胞などの宿主細胞内に導入されている異種(例えば、組換え)核酸によってコードされる。核酸を、例えば導入された核酸によってコードされるタンパク質を発現し得る、シグナルを有する発現ベクターに導入することができ、または核酸を宿主細胞染色体に組み込むことができる。
再パッキング(repacking)アミノ酸置換:例えば疎水性相互作用もしくは水素結合形成を増強させることによって、または近隣残基の好ましくないもしくは反発性の相互作用を低下させることによって、例えば同様に帯電した残基のクラスターを排除することによって、タンパク質における近隣残基の相互作用を増加させるアミノ酸置換。いくつかの態様において、再パッキングアミノ酸置換を導入して、RSV F融合後立体構造では接近していない、RSV Fタンパク質融合前立体構造における近隣残基の相互作用を増加させる。典型的に、再パッキングアミノ酸置換の導入は、RSV Fタンパク質の融合前立体構造のTmを増加させ、かつRSV Fタンパク質の融合後立体構造のTmを下げると考えられる。
呼吸器合胞体ウイルス(RSV):パラミクソウイルス科の、エンベロープを有する非分節型マイナスセンス一本鎖RNAウイルス。それは、子どもの間での彼らの生後1年以内における細気管支炎および肺炎の最も一般的な原因であり、3歳までにほぼすべての子どもに感染する。RSVは、任意の年齢で、とりわけ高齢者、または心臓系、肺系、もしくは免疫系の欠陥を有する人の間で起こり得る、重度の下気道疾患を含む反復性感染症も引き起こす。米国では、RSV細気管支炎は、乳児における入院原因の第1位であり、小児期を通じた喘息および喘鳴の主な原因である(Shay et al., JAMA, 282, 1440 (1999);Hall et al., N. Engl. J. Med., 360, 588 (2009))。世界的に、RSVは、5歳よりも幼い子どもに関する毎年66,000~199,000人の死亡に関与しており(Nair et al., Lancet, 375, 1545 (2010))、マラリアを除く他の任意の単一病原体よりも多い、生後1ヶ月~1歳の乳児の間での死亡の6.7%を占める(Lozano et al., Lancet, 380, 2095 (2013))。
RSVゲノムは長さが約15,000個のヌクレオチドであり、糖タンパク質SH、G、およびFを含む、11種のタンパク質をコードする10種の遺伝子を含む。Fタンパク質は融合を仲介し、細胞の細胞質内へのウイルスの侵入を可能にしかつ合胞体の形成も促進し得る。G糖タンパク質の抗原性の差異に基づく、サブタイプAおよびBという2つのサブタイプのヒトRSV系統が記載されている。ウシRSVを含む、他の種に対するRSV系統も公知である。例示的なRSV系統配列は、当業者に公知である。さらに、hRSVに感染したモデル生物、ならびに畜牛におけるbRSV感染の使用など、種特異的RSVに感染したモデル生物を含む、ヒトRSV感染症のいくつかのモデルが入手可能である(例えば、Bern et al., Am J, Physiol. Lung Cell Mol. Physiol., 301:L148-L156, 2011を参照されたい)。
直接蛍光抗体検出(DFA)、クロマトグラフィー迅速抗原検出、およびRT PCRを用いたウイルスRNAの検出の使用を含む、RSV感染症を診断するいくつかの方法が公知である。ウイルス負荷の定量化は、例えばプラークアッセイ、抗原捕捉酵素免疫アッセイ(EIA)、またはPCRによって判定され得る。抗体レベルの定量化は、サブタイプ特異的中和アッセイまたはELISAによって実施され得る。現在のRSV治療は、RSV Fタンパク質を認識し(Johnson et al., J. Infect. Dis., 176, 1215 (1997);Beeler and van Wyke Coelingh, J. Virol., 63, 2941 (1989))、かつ重度の疾患の出現率を低下させる(The IMpact-RSV Study Group, Pediatrics, 102, 531 (1998))モノクローナル抗体パリビズマブ(SYNAGIS(登録商標))の受動投与である。(例えば、Nam and Kun (Eds.). Respiratory Syncytial Virus: Prevention, Diagnosis and Treatment. Nova Biomedical Nova Science Publisher, 2011;およびCane (Ed.) Respiratory Syncytial Virus. Elsevier Science, 2007も参照されたい。)
ヒトサブタイプA、ヒトサブタイプB、およびウシサブタイプを含む、RSVのいくつかのサブタイプがある。RSVのサブタイプ内には、各サブタイプについての個々の系統がある。例えば、本明細書において提供されるSEQ ID NO: 1~128には、(下記の表3に示されるように)高度に相同である、サブタイプA RSVの多くの系統に対するRSV Fタンパク質配列が含まれる。
RSV融合(F)タンパク質:ウイルス膜と細胞膜との融合を促すRSVエンベロープ糖タンパク質。天然では、RSV Fタンパク質は、F0と呼ばれる、長さがおよそ574個のアミノ酸の単一ポリペプチド前駆体としてまず合成される。F0は、小胞体への局在を指揮するN末端シグナルペプチドを含み、そこでシグナルペプチド(F0の最初のおよそ25個の残基)はタンパク質分解により切断される。残りのF0残基はオリゴマー化して三量体を形成し、それは、2つの保存されたフーリンコンセンサス切断配列(F0のおよそ位置109および136;例えば、RARR109(SEQ ID NO: 124、残基106~109)およびRKRR136(SEQ ID NO: 124、残基133~136)において、細胞内プロテアーゼによって再びタンパク質分解によりプロセシングされて、2つのジスルフィド連結フラグメントであるF1およびF2を生成する。これらフラグメントのうちより小さいものであるF2は、F0前駆体のN末端部分に由来し、F0のおよそ残基26~109を含む。これらフラグメントのうちより大きいものであるF1は、C末端に細胞外/内腔領域(約残基137~524)、膜貫通ドメイン(約残基525~550)、および細胞質ドメイン(約残基551~574)を含む、F0前駆体のC末端部分(およそ残基137~574)を含む。
3つのF2-F1プロトマーは、成熟Fタンパク質の状態にオリゴマー化し、それは、標的細胞膜との接触があると、(「融合後」立体構造への)立体構造変化を起こすよう誘発される準安定性「融合前」立体構造をとる。この立体構造変化により、F1ポリペプチドのN末端に位置し、そして宿主細胞膜と関連し、かつウイルスまたは感染細胞の膜と標的細胞膜との融合を促進する、融合ペプチドとして知られる疎水性配列が曝露される。
RSV Fタンパク質上の抗原部位に特異的に結合する、多数の中和抗体が同定されている。これらには、抗原部位I(残基P389を中心とする)に結合するモノクローナル抗体131-2aおよび2F;抗原部位II(残基254~277を中心とする)に結合するモノクローナル抗体パリビズマブおよびモタビズマブ;ならびに抗原部位IV(残基429~437を中心とする)に結合するモノクローナル抗体101FおよびmAb19が含まれる。
一本鎖RSV Fタンパク質:RSV F1ポリペプチドおよびRSV F2ポリペプチドを含む単一ポリペプチド鎖として発現される組換えRSV Fタンパク質。一本鎖RSV Fタンパク質は三量体化して、RSV Fタンパク質エクトドメインを形成する。一本鎖RSV Fタンパク質は、RSV Fタンパク質のpep27ポリペプチドに隣接するフーリン切断部位を含まず、したがって、細胞内で産生された場合に、F0ポリペプチドは、別個のF1およびF2ポリペプチドに切断されない。一部の態様において、一本鎖RSV Fタンパク質は、2つのフーリン切断部位、pep27ポリペプチド、および融合ペプチドの欠失を含む。一態様において、位置103または105をRSVタンパク質の位置145に連結させて、一本鎖構築物を生成する。いくつかの態様において、F1およびF2ポリペプチドの残りの部分を、ペプチドリンカーなどのリンカーによって接合する。
RSV F0ポリペプチド(F0):N末端シグナルペプチド、F2ポリペプチド、pep27ポリペプチド、ならびにF1細胞外ドメイン、膜貫通ドメイン、および細胞質テールを含むF1ポリペプチドのアミノ酸を含む、RSV Fタンパク質の前駆体。天然F0ポリペプチドは、シグナル配列切断部位および2つのフーリン切断部位(F0のおよそ位置109および136;例えば、RARR109(SEQ ID NO: 124、残基106~109)およびRKRR136(SEQ ID NO: 124、残基133~136)においてタンパク質分解によりプロセシングされ、F1およびF2フラグメントがもたらされる。A、B、およびウシサブグループ由来のものを含む、多くの異なるRSVサブグループ由来のF0ポリペプチドの例が公知であり、その例は、それぞれSEQ ID NO: 1~128、129~177、および178~184として本明細書において明示されている。
RSV F1ポリペプチド(F1):RSV Fタンパク質のペプチド鎖。本明細書において使用するとき、「F1ポリペプチド」とは、天然F1ポリペプチド、および天然配列からの改変(例えば、アミノ酸の置換、挿入、または欠失)、例えば組換えFタンパク質(改変F1ポリペプチドを含む)をRSV Fタンパク質融合前立体構造に安定化させるように設計された改変を含むF1ポリペプチドの両方を指す。天然F1は、RSV F0前駆体のおよそ残基137~574を含み、(N末端からC末端に)細胞外/内腔領域(約残基137~524)、膜貫通ドメイン(約残基525~550)、および細胞質ドメイン(約残基551~574)を含む。いくつかの態様は、天然F1配列から改変されたF1ポリペプチド、例えば膜貫通ドメインおよび細胞質ドメインを欠き、かつ/または組換えFタンパク質(F1ポリペプチドを含有する)を融合前立体構造に安定化させる1個もしくは複数個のアミノ酸置換を含むF1ポリペプチドを含む。一例において、開示されるRSV Fタンパク質は、膜貫通ドメインおよび細胞質ドメインの欠失、ならびに位置155および290におけるシステイン置換を有するF1ポリペプチドを含む。別の例において、開示されるRSV Fタンパク質は、膜貫通ドメインおよび細胞質ドメインの欠失、位置155および290におけるシステイン置換、ならびに位置190におけるフェニルアラニン置換を有するF1ポリペプチドを含む。別の例において、開示されるRSV Fタンパク質は、膜貫通ドメインおよび細胞質ドメインの欠失、位置155および290におけるシステイン置換、位置190におけるフェニルアラニン置換、ならびに位置207におけるロイシン置換を有するF1ポリペプチドを含む。いくつかの態様において、F1ポリペプチドは、三量体化ドメインへのC末端連結を含む。SEQ ID NO: 1~184のおよそ位置137~524として本明細書において提供される、天然F1配列の多くの例が公知である。
RSV F2ポリペプチド(F2):RSV Fタンパク質のポリペプチド鎖。本明細書において使用するとき、「F2ポリペプチド」とは、天然F2ポリペプチド、および天然配列からの改変(例えば、アミノ酸置換)、例えば組換えFタンパク質(改変F2ポリペプチドを含む)をRSV Fタンパク質融合前立体構造に安定化させるように設計された改変を含むF2ポリペプチドの両方を指す。天然F2は、RSV F0前駆体のおよそ残基26~109を含む。天然RSV Fタンパク質において、F2ポリペプチドは、2つのジスルフィド結合によってF1ポリペプチドに連結されている。SEQ ID NO: 1~184のおよそ位置26~109として本明細書において提供される、天然F2配列の多くの例が公知である。
RSV pep27ポリペプチド(pep27):RSV Fタンパク質の成熟の間に、F0前駆体から切除される27アミノ酸のポリペプチド。pep27は2つのフーリン切断部位によって隣接されており、それは、Fタンパク質成熟の間に細胞内プロテアーゼによって切断されて、F1およびF2ポリペプチドを生成する。SEQ ID NO: 1~184のおよそ位置110~136として本明細書において提供される、天然pep27配列の例が公知である。
RSV Fタンパク質融合前立体構造:RSV Fの融合後立体構造への移行につながる融合事象の誘引、およびそれに続く分泌システムにおける成熟RSV Fタンパク質へのプロセシングに先行して、RSV Fタンパク質によってとられる構造上の立体構造。融合前立体構造の状態にある例示的なRSV Fタンパク質の三次元構造は本明細書において開示されており(実施例1を参照されたい)、融合前特異的抗体D25によって結合される、融合前立体構造の状態にある例示的なRSV Fタンパク質の構造座標は表1に提供されている。本明細書において示されるように、RSV Fの融合前立体構造は、他のパラミクソウイルスの融合前立体構造と、いくらかの重大な差異を有するものの、全体的構造が類似している(PIVなど、図7を参照されたい)。融合前状態において、RSV Fタンパク質は、膜遠位先端に抗原部位(「抗原部位φ」、実施例1を参照されたい)を含み、それは、RSV Fの残基62~69および196~209を含みかつD25およびAM22抗体のエピトープも含む。本明細書において使用するとき、融合前立体構造に安定化された組換えRSV Fタンパク質は、抗原部位φ内のエピトープに特異的に結合する抗体、例えばD25またはAM22抗体など、RSV Fタンパク質の融合前立体構造に特異的である抗体によって特異的に結合され得る。さらなる融合前特異的抗体には、5C4およびMPE8抗体が含まれる。
RSV Fタンパク質融合後立体構造:融合前立体構造ではなく、かつRSV Fタンパク質のN末端およびC末端が安定したコイル-コイルの状態で接近している、RSV Fタンパク質によってとられる構造上の立体構造。RSV Fタンパク質の融合後立体構造は、原子レベルで記載されている(例えば、McLellan et al., J. Virol., 85, 7788, 2011;Swanson et al., Proc. Natl. Acad. Sci. U.S.A., 108, 9619, 2011;および寄託された構造座標PDBアクセッション番号3RRRを参照されたい。そのそれぞれは参照により本明細書に組み入れられる)。RSV Fタンパク質の融合後立体構造は、PIV5 Fタンパク質を含む、他のパラミクソウイルス糖タンパク質に対して公知であるものと類似している。融合後立体構造において、RSV Fタンパク質は抗原部位φを含まず、したがってD25エピトープを含まずかつD25またはAM22によって特異的に結合されない。RSV融合後立体構造は、例えばFタンパク質と細胞膜との融合後に生じる。発現した場合に融合後立体構造に折り畳まれ得るRSV Fタンパク質の配列は、SEQ ID NO: 1469として提供されている。
表面再構成(resurfaced)抗原または表面再構成免疫原:標的エピトープの外部または外のアミノ酸残基が、抗原の免疫原性が選択した標的エピトープに集中するように体系的に変異させられている、野生型抗原に由来するポリペプチド免疫原。一部の例において、表面再構成抗原は、抗原的に覆い隠された免疫原または抗原的に覆い隠された抗原と称される。
平均二乗偏差(RMSD):平均からの偏差の二乗の算術平均の平方根。いくつかの態様において、RMSDは、参照三次元構造の構造座標からの偏差または変動を表現する手段として用いられる。この数値は、典型的に、等価Cα原子間の平均二乗距離の平方根として、2つの構造の最適な重ね合わせ後に算出される。一部の態様において、参照三次元構造には、本明細書において表1に明示されるモノクローナル抗体D25に結合しているRSV Fタンパク質の構造座標が含まれる。
配列同一性/類似性:2種もしくはそれを上回る種類の核酸配列間、または2種もしくはそれを上回る種類のアミノ酸配列間の同一性/類似性は、該配列間の同一性または類似性という観点で表現される。配列同一性は、同一性パーセンテージという観点で測定され得、パーセンテージが高ければ高いほど、配列はより同一である。核酸またはアミノ酸の配列のホモログまたはオルソログは、標準的方法を用いて整列させた場合、比較的高度な配列同一性/類似性を保有する。
比較のための配列のアラインメントの方法は、当技術分野において周知である。様々なプログラムおよびアラインメントアルゴリズムが、Smith & Waterman, Adv. Appl. Math. 2:482, 1981;Needleman & Wunsch, J. Mol. Biol. 48:443, 1970;Pearson & Lipman, Proc. Natl. Acad. Sci. USA 85:2444, 1988;Higgins & Sharp, Gene, 73:237-44, 1988;Higgins & Sharp, CABIOS 5:151-3, 1989;Corpet et al., Nuc. Acids Res. 16:10881-90, 1988;Huang et al. Computer Appls. in the Biosciences 8, 155-65, 1992;およびPearson et al., Meth. Mol. Bio. 24:307-31, 1994に記載されている。Altschul et al., J. Mol. Biol. 215:403-10, 1990は、配列アラインメント法および相同性算出についての詳細な考察を提示している。
いったん整列させると、同一のヌクレオチドまたはアミノ酸残基が両配列に存在している位置の数をカウントすることによって、合致の数が決定される。配列同一性パーセントは、同定された配列において明示される配列の長さ、または連接した(articulated)長さ(同定された配列において明示される配列からの、100個の連続的なヌクレオチドまたはアミノ酸残基など)のいずれかで合致の数を割り、それに続き結果として生じた値に100を掛けることによって決定される。例えば、1554個のアミノ酸を有する試験配列と整列させた場合に1166個の合致を有するペプチド配列は、該試験配列と75.0パーセント同一である(1166÷1554*100=75.0)。配列同一性パーセントの値は、最も近い小数第1位に丸められる。例えば、75.11、75.12、75.13、および75.14は75.1に端数を切り捨てられ、一方で75.15、75.16、75.17、75.18、および75.19は75.2に端数を切り上げられる。長さの値は、常に整数である。
NCBIの基本ローカルアラインメント検索ツール(Basic Local Alignment Search Tool)(BLAST)(Altschul et al., J. Mol. Biol. 215:403, 1990)は、配列解析プログラムblastp、blastn、blastx、tblastn、およびtblastxと関連した使用のために、国立生物工学情報センター(National Center for Biotechnology Information)(NCBI, Bethesda, MD)を含むいくつかの供給元からおよびインターネットで利用可能である。このプログラムを用いて配列同一性を決定する方法の説明は、インターネットでのNCBIウェブサイトで入手可能である。
ポリペプチドのホモログおよび変種は、典型的に、関心対象のアミノ酸配列との全長アラインメントにわたってカウントされる、少なくとも約75%、例えば少なくとも約80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%の配列同一性の保有を特徴とする。参照配列とさらにより大きな類似性を有するタンパク質は、この方法によって査定される場合、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも98%、または少なくとも99%の配列同一性など、増加する同一性パーセンテージを示すと考えられる。全配列に満たないものが配列同一性について比較される場合、ホモログおよび変種は、典型的に、10~20個のアミノ酸という短いウィンドウにわたって少なくとも80%の配列同一性を保有すると考えられ、参照配列とのそれらの類似性に応じて、少なくとも85%、または少なくとも90%もしくは95%の配列同一性を保有し得る。そのような短いウィンドウにわたる配列同一性を決定するための方法は、インターネットでのNCBIウェブサイトで利用可能である。当業者であれば、これらの配列同一性範囲は、単なるガイダンスのために提供されるものであることを解すると考えられ、提供される範囲に入らない、強く有意なホモログが獲得され得ることは全く起こり得る。
核酸配列の配列比較に関して、典型的に、1種の配列が、試験配列を比較する参照配列として働く。配列比較アルゴリズムを用いる場合、試験配列および参照配列をコンピューターに入力し、必要な場合には部分配列座標を指定し、かつ配列アルゴリズムプログラムのパラメーターを指定する。初期設定プログラムパラメーターが用いられる。比較のための配列のアラインメントの方法は、当技術分野において周知である。比較のための配列の最適なアラインメントは、例えばSmith & Waterman, Adv. Appl. Math. 2:482, 1981の局所的相同性アルゴリズムによって、Needleman & Wunsch, J. Mol. Biol. 48:443, 1970の相同性アラインメントアルゴリズムによって、Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444, 1988の類似性検索法によって、これらのアルゴリズムのコンピューターによる実行(Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WIにおける、GAP、BESTFIT、FASTA、およびTFASTA)によって、または手作業アラインメントおよび目視検査(例えば、Sambrook et al.(Molecular Cloning: A Laboratory Manual, 4th ed, Cold Spring Harbor, New York, 2012)およびAusubel et al.(Current Protocols in Molecular Biology, John Wiley & Sons, New York, supplement 104を通して, 2013)を参照されたい)によって行われ得る。有用なアルゴリズムの一例はPILEUPである。PILEUPは、Feng & Doolittle, J. Mol. Evol. 35:351-360, 1987の進歩的アラインメント法の単純化を用いる。用いられた方法は、Higgins & Sharp, CABIOS 5:151-153, 1989によって記載されている方法と類似している。PILEUPを用いて、参照配列を他の試験配列と比較して、以下のパラメーター:初期設定ギャップ重み付け(default gap weight)(3.00)、初期設定ギャップ長重み付け(default gap length weight)(0.10)、および重み付けされたエンドギャップ(weighted end gap)を用いて、配列同一性関係性パーセントを決定する。GCGの配列解析ソフトウェアパッケージ、例えばバージョン7.0(Devereaux et al., Nuc. Acids Res. 12:387-395, 1984)からPILEUPを獲得することができる。
配列同一性および配列類似性パーセントを決定するのに適しているアルゴリズムの別の例は、BLASTおよびBLAST 2.0アルゴリズムであり、それはAltschul et al., J. Mol. Biol. 215:403-410, 1990およびAltschul et al., Nucleic Acids Res. 25:3389-3402, 1977に記載されている。BLAST解析を実施するためのソフトウェアは、国立生物工学情報センター(ncbi.nlm.nih.gov)を通じて公的に入手可能である。(ヌクレオチド配列のための)BLASTNプログラムは、11というワード長(W)、50というアラインメント(B)、10という期待値(E)、M=5、N=-4、および両鎖の比較を初期設定として用いる。(アミノ酸配列のための)BLASTPプログラムは、3というワード長(W)および10という期待値(E)、ならびにBLOSUM62スコア行列を初期設定として用いる(Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915, 1989を参照されたい)。オリゴヌクレオチドとは、長さが約100個までのヌクレオチド塩基の直線状のポリヌクレオチド配列である。
2種の核酸間の配列類似性の別のしるしは、ハイブリダイズし得る能力である。2種の核酸の配列が類似していれば類似しているほど、それらがハイブリダイズする条件はよりストリンジェントである。ハイブリダイゼーション条件のストリンジェンシーは配列依存的であり、異なる環境パラメーター下で異なる。ゆえに、特定の程度のストリンジェンシーをもたらすハイブリダイゼーション条件は、選出されたハイブリダイゼーション方法の性質、ならびにハイブリダイズする核酸配列の組成および長さに応じて変動する。一般的に、洗浄時間もストリンジェンシーに影響するものの、ハイブリダイゼーションの温度およびハイブリダイゼーションバッファーのイオン強度(とりわけ、Na+および/またはMg++濃度)が、ハイブリダイゼーションのストリンジェンシーを決定する。一般的に、ストリンジェントな条件は、規定のイオン強度およびpHにおける特異的配列に対する熱融点(Tm)よりも約5℃~20℃下回るように選択される。Tmとは、標的配列の50%が、完全に合致したプローブにハイブリダイズする温度(規定のイオン強度およびpH下において)である。核酸ハイブリダイゼーションのための条件およびストリンジェンシーの算出は、例えばSambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001;Tijssen, Hybridization With Nucleic Acid Probes, Part I: Theory and Nucleic Acid Preparation, Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Ltd., NY, NY, 1993;およびAusubel et al. Short Protocols in Molecular Biology, 4th ed., John Wiley & Sons, Inc., 1999に見出され得る。
本明細書において使用するとき、「少なくとも80%の同一性」への言及は、指定された参照配列に対して、「少なくとも80%、少なくとも85%、少なくとも90%、少なくとも91%、少なくとも92%、少なくとも93%、少なくとも94%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、少なくとも99%、またはさらに100%の同一性」を指す。
シグナルペプチド:新たに合成される分泌タンパク質または膜タンパク質を、膜へまたは膜を通り抜けて(例えば、小胞体膜)向かわせる短いアミノ酸配列(例えば、長さがおよそ18~25個のアミノ酸)。シグナルペプチドは、典型的に、ポリペプチドのN末端に位置し、該ポリペプチドが膜を横断した後にシグナルペプチダーゼによって除去される。シグナルペプチド配列は、典型的に、3つの共通した構造特質:N末端の極性塩基性領域(n領域)、疎水性コア、および親水性c領域を含有する。例示的なシグナルペプチド配列は、SEQ ID NO: 1~182の残基1~25として明示されている(A、B、およびウシRSV由来のRSV Fタンパク質シグナルペプチド)。
特異的に結合する:抗体:抗原タンパク質複合体の形成に言及する場合、タンパク質および他の生物製剤(biologics)の異種集団の存在下で、標的タンパク質、ペプチド、または多糖(例えば、糖タンパク質)の存在を判定する結合反応を指す。ゆえに、指定された条件下で、抗体は、特定の標的タンパク質、ペプチド、または多糖(病原体の表面に存在している抗原、例えばRSV Fなど)に優先的に結合し、かつサンプルまたは対象中に存在している他のタンパク質または多糖には相当量で結合しない。RSV Fタンパク質の融合前立体構造に特異的に結合する抗体(例えば、抗原部位φに特異的に結合する抗体)は、RSV Fタンパク質の融合後立体構造には特異的に結合しない。特異的結合は、当技術分野において公知の方法によって判定され得る。抗体:抗原またはFab:抗原複合体に関して、抗原と抗体との特異的結合は、約10-7M、10-8M、10-9未満、またはさらに約10-10M未満など、約10-6M未満のKd(または見かけのKd)を有する。
可溶性タンパク質:室温で水性液体中に溶解し得かつ溶解したままであり得るタンパク質。タンパク質の溶解度は、水ベースの液体中におけるタンパク質の濃度、液体の緩衝条件、液体中における他の溶質の濃度、例えば塩およびタンパク質の濃度、ならびに液体の加熱に応じて変化し得る。いくつかの態様において、可溶性タンパク質は、室温でリン酸緩衝生理食塩水(pH7.4)中に少なくとも0.5mg/mlの濃度まで溶解し、かつ少なくとも48時間溶解したままであるものである。
治療用作用物質:対象に適正に投与された場合に、所望の治療効果または予防効果を誘導し得る、化学的化合物、小分子、または核酸分子などの他の組成物。
治療上有効量または有効量:障害または疾患のいずれかの症状および/または根底にある原因を阻止し、治療し(予防を含む)、低下させ、かつ/または改善する、例えばRSV感染症を阻止し、阻害し、かつ/または治療するのに十分である、開示される抗原または開示される抗原を含有する免疫原性組成物などの作用物質の量。一部の態様において、治療上有効量は、RSV感染症などの疾患の症状を低下させるまたは排除するのに十分である。例えば、これは、ウイルス複製を阻害するために、またはウイルス感染症の外面的症状を測定可能な程度に変更するために必要な量であり得る。一般的に、この量は、ウイルス(例えば、RSV)の複製または感染性を測定可能な程度に阻害するのに十分であると考えられる。対象に投与する場合、ウイルス複製のインビトロ阻害を達成することが示されている、標的組織濃度を達成すると考えられる投薬量が一般的に用いられる。病原体に対する防御免疫応答を獲得するために、免疫原性組成物の多数回投与を必要とし得ることが理解される。ゆえに、治療上有効量には、以前のまたは後続の投与と組み合わせて、防御免疫応答を達成することに寄与する分画用量が包含される。
膜貫通ドメイン:細胞またはウイルスまたはウイルス様粒子の脂質二重層など、脂質二重層内に挿入されるアミノ酸配列。膜貫通ドメインを用いて、抗原を膜に固定することができる。一部の例において、膜貫通ドメインは、RSV Fタンパク質膜貫通ドメインである。例示的なRSV F膜貫通ドメインは当業者によく知られており、かつ本明細書において提供されている。例えば、例示的なRSV F膜貫通ドメインのアミノ酸配列は、SEQ ID NO: 1~183のおよそ位置525~550として提供されている。
形質転換された:形質転換された細胞は、分子生物学技術によって核酸分子が導入されている細胞である。本明細書において使用するとき、形質転換という用語には、ウイルスベクターを用いたトランスフェクション、プラスミドベクターを用いた形質転換、ならびにエレクトロポレーション、リポフェクション、およびパーティクルガン加速によるDNAの導入を含む、核酸分子をそのような細胞内に導入し得るすべての技術が包含される。
ワクチン:対象において予防的または治療的な免疫応答を誘発する薬学的組成物。ある場合には、免疫応答は防御免疫応答である。典型的に、ワクチンは、病原体、例えばウイルス病原体の抗原に対して、または病的状況と相関した細胞構成成分に対して、抗原特異的免疫応答を誘発する。ワクチンは、ポリヌクレオチド(開示される抗原をコードする核酸など)、ペプチドもしくはポリペプチド(開示される抗原など)、ウイルス、細胞、または1種もしくは複数種の細胞構成成分を含み得る。
ベクター:宿主細胞内に導入され、それによって形質転換された宿主細胞を産生する核酸分子。組換えDNAベクターとは、組換えDNAを有するベクターである。ベクターは、複製起点など、それが細胞内で複製するのを可能にする核酸配列を含み得る。ベクターは、1種または複数種の選択可能なマーカー遺伝子、および当技術分野において公知の他の遺伝子要素も含み得る。ウイルスベクターとは、1種または複数種のウイルスに由来する少なくとも一部の核酸配列を有する組換えDNAベクターである。
複製欠損ウイルスベクターは、例えば複製に必須の少なくとも1つの遺伝子機能の欠損の結果として、複製に必要とされる、ウイルスゲノムの1つまたは複数の領域の補完を必要とする。例えば、典型的宿主細胞内で複製しないようなウイルスベクター、とりわけ治療法の経過中にウイルスベクターに感染し得るヒト患者におけるウイルスベクターである。複製欠損ウイルスベクターの例およびそれらの使用のためのシステムは、当技術分野において公知であり、例えば複製欠損LCMVベクター(例えば、参照によりその全体として本明細書に組み入れられる、米国特許公報第2010/0297172号を参照されたい)および複製欠損アデノウイルスベクター(例えば、参照により本明細書に組み入れられる、PCT出願公報WO2000/00628を参照されたい)を含む。
ウイルス:ウイルスは、タンパク質外被によって取り囲まれた核酸のコアから本質的になり、生きた細胞の内部でのみ複製し得る能力を有する。「ウイルス複製」とは、少なくとも1回のウイルス生活環の出現によるさらなるウイルスの産生である。ウイルスは、宿主細胞の正常機能を転覆させ得、ウイルスによって決定される様式で該細胞を挙動させる。例えば、非感染細胞が通常ではそうしない場合、ウイルス感染により、サイトカインを産生するまたはサイトカインに応答する細胞がもたらされ得る。一部の例において、ウイルスは病原体である。
ウイルス様粒子(VLP):いくつかのウイルスのいずれかに由来する、非複製型のウイルス殻。VLPは、一般的に、カプシド、外被、殻、表面、および/もしくはエンベロープタンパク質と称されるそうしたタンパク質、またはこれらのタンパク質に由来する粒子形成ポリペプチドなどだがそれらに限定されない1種または複数種のウイルスタンパク質から構成される。適当な発現系における該タンパク質の組換え発現があると、VLPは自発的に形成され得る。特定のVLPを産生するための方法は、当技術分野において公知である。ウイルスタンパク質の組換え発現後のVLPの存在は、電子顕微鏡法、生物物理学的特徴付けによってなど、当技術分野において公知の従来的技術を用いて検出され得る。さらに、VLPは、公知の技術、例えば密度勾配遠心分離によって単離され得、かつ特徴的な密度バンドによって同定され得る。例えば、Baker et al. (1991) Biophys. J. 60:1445-1456;およびHagensee et al. (1994) J. Virol. 68:4503-4505;Vincente, J Invertebr Pathol., 2011;Schneider-Ohrum and Ross, Curr. Top. Microbiol. Immunol., 354:53073, 2012を参照されたい。
II. いくつかの態様の説明
RSV Fタンパク質は、その融合前および融合後の立体構造間で劇的な構造再編成を受けることが本明細書において開示される(下記の実施例1を参照されたい)。図2Bに示されるように、融合前立体構造におけるF1ポリペプチドのN末端領域(図2Aに示される膜遠位ローブに部分的に対応する)は、表示されるα2、α3、β3、β4、およびα4のヘリックスおよびβシート構造を含み、一方で融合後構造におけるF1ポリペプチドのN末端の対応する領域は、伸長したα5ヘリックス構造を含む。さらに、融合前立体構造におけるF1ポリペプチドのC末端領域(図2Aに示される膜近位ローブに部分的に対応する)は、表示されるβ22、α9、およびβ23のβシートおよびヘリックス構造を含み、一方で融合後立体構造の構造におけるF1ポリペプチドの対応するC末端領域は、伸長したα10ヘリックス構造を含む。ゆえに、その融合前立体構造の状態にあるRSV Fタンパク質の膜遠位および膜近位ローブは、その融合後立体構造の状態にあるRSV Fタンパク質の対応する領域には欠如しているいくつかの個別の構造要素を含む。図2において、F1ポリペプチドの位置137~216および461~513を含む、これらの領域に対応するアミノ酸位置(および配列)は灰色で強調表示されている。
「PreF抗原」と称される、融合前立体構造に安定化されているまたは「ロック」されているRSV Fタンパク質抗原が提供される。構造をガイドとした設計を用いて、RSV F1およびF2ポリペプチドの位置を改変(例えば、アミノ酸置換)のための標的にして、融合前立体構造から融合後立体構造へのRSV Fタンパク質の移行を妨げるまたは阻止する。そのような抗原は、例えばRSV Fタンパク質に対する中和応答を誘導する免疫原としての実用性を有する。
A. 天然RSV Fタンパク質
種々のRSVグループ由来の天然RSV Fタンパク質、ならびにそのようなタンパク質をコードする核酸配列および方法は公知である。例えば、いくつかのサブタイプA、B、およびウシ前駆体RSV F0タンパク質の配列は、SEQ ID NO: 1~184として提供されている。これらの配列のそれぞれに対するGenInfo Identifier(gi)および対応するアクセッション番号、ならびに対応するRSVグループは、表3に提供されている。
(表3)例示的なサブタイプA、B、およびウシのRSV Fタンパク質配列
RSV Fタンパク質は、RSVサブタイプにわたって顕著な配列保存性を呈する(サブタイプおよびFタンパク質セグメントにわたる対配列同一性の平均を示している表3を参照されたい)。例えば、F0前駆体分子にわたって、RSV サブタイプAおよびBは90%の配列同一性を共有し、RSVサブタイプAおよびBはそれぞれ、bRSV Fタンパク質と81%の配列同一性を共有する。RSVサブタイプ内でF0配列同一性はさらにより大きく、例えばRSV A、B、およびウシサブタイプのそれぞれの中で、RSV F0前駆体タンパク質は、約98%の配列同一性を有する。ほぼすべての同定されたRSV F0前駆体タンパク質は、長さがおよそ574個のアミノ酸であり、典型的にC末端細胞質テールの長さにより、長さのわずかな差異を有する。RSV Fタンパク質にわたる配列同一性は、表4に例証されている。
RSV F配列の保存性を考慮して、当業者であれば、種々の天然RSV F配列間のアミノ酸位置を容易に比較して、種々のRSV系統およびサブタイプ間での対応するRSV Fアミノ酸位置を同定することができる。例えば、ほぼすべての同定された天然RSV F0前駆体タンパク質にわたって、フーリン切断部位は、同じアミノ酸位置に入る。ゆえに、系統およびサブタイプにわたるRSV Fタンパク質配列の保存性により、RSV Fタンパク質の特定の位置におけるアミノ酸の比較のために、参照RSV F配列の使用が可能となる。本開示の目的のために(文脈で別様に示されていない限り)、RSV F タンパク質のアミノ酸位置は、(2013年2月28日にGENBANK(登録商標)に存在しているものとして参照により本明細書に組み入れられる、GENBANK(登録商標)アクセッション番号P03420に対応する)SEQ ID NO: 124として明示される参照F0タンパク質前駆体ポリペプチドを参照して与えられている。
B. PreF抗原
融合前立体構造に安定化された組換えRSV Fタンパク質を含む、単離された抗原が本明細書において開示される(「PreF抗原」)。PreF抗原には、免疫原性を増加させるように天然形態から改変されている組換えRSV Fタンパク質またはそのフラグメントが含有される。例えば、開示される組換えRSV Fタンパク質は、融合前立体構造に安定化するように天然RSV配列から改変されている。当業者であれば、開示されるPreF抗原は、脊椎動物(哺乳類、例えばヒトおよび畜牛など)において、RSV(例えば、RSV A、RSV B、またはウシRSV)に対する免疫原性応答を誘導するのに有用であることを解するであろう。ゆえに、いくつかの態様において、開示される抗原は免疫原である。
D25抗体は、RSV Fタンパク質の複数のプロトマーを含む四次的エピトープを認識する。それが融合前立体構造にある場合、このエピトープは、RSV F糖タンパク質の膜遠位先端に位置する抗原部位(「抗原部位φ」)内に含有される(例えば、図1Cを参照されたい)。このエピトープの二次構造要素は、融合前および融合後のF立体構造の間でほぼ不変のままであるが、それらの相対的配向は実質的に変化し、α4ヘリックスは、融合前および融合後の立体構造において、β2ストランドに対して約180°旋回している(例えば、図3Bを参照されたい)。融合前および融合後の立体構造間でのRSV Fタンパク質の構造の立体構造変化は、RSV Fタンパク質上でのD25エピトープの存在を決定する。したがって、いくつかの態様において、融合前立体構造に安定化された組換えRSV Fタンパク質を含むPreF抗原は、該抗原へのD25モノクローナル抗体の特異的結合を判定することによって同定され得る。当業者であれば、RSV Fタンパク質の抗原部位φに特異的に結合する他の抗体(AM22抗体または5C4抗体など)、または融合前特異的であるが、抗原部位φには結合しない他の抗体(MPE8など)を用いても、融合前立体構造に安定化されたRSV Fタンパク質を含むPreF抗原を同定し得ることを解するであろう。
ゆえに、本明細書において開示されるPreF抗原は、RSV F融合前立体構造に特異的であるが、融合後立体構造には特異的でない抗体によって特異的に結合される。いくつかの態様において、PreF抗原は、(本明細書において開示されるように)RSV Fタンパク質の融合前立体構造に特異的であるが、融合後立体構造には特異的でない抗体であるD25および/またはAM22抗体によって特異的に結合される。いくつかの例において、融合前特異的抗体(D25またはAM22など)は、約10-7M、10-8M未満、または10-9M未満など、約10-6M未満の解離定数でPreF抗原と特異的に結合する。特異的結合は、当技術分野において公知の方法によって判定され得る。特異的結合の判定は、ELISA、免疫競合(immunocompetition)、表面プラズモン共鳴、また他の免疫吸着アッセイなど、ルーチン的手順を用いるまたは適応させることによって容易になされ得る(Harlow and Lane, Using Antibodies: A Laboratory Manual, CSHL, New York, 1999を含む、多くの標準的テキストに記載されている)。
さらなる態様において、PreF抗原は、RSV Fタンパク質の融合後立体構造に結合する抗体によっては特異的に結合されない。例えば、RSV Fタンパク質の融合後立体構造にのみ見出される6ヘリックスバンドルに特異的な抗体(例えば、Magro et al., Proc. Nat'l. Acad. Sci. U.S.A., 109:3089-3094, 2012に記載されているもの)。いくつかの例において、PreF抗原に結合するRSV F融合後特異的抗体に対する解離定数は、少なくとも10-5M、10-4M、または10-3など、10-5Mを上回る。
いくつかの態様において、PreF抗原のいずれかは、RSV Fタンパク質融合前特異的抗体結合立体構造(D25またはAM22結合立体構造など)の状態にあるRSV Fタンパク質融合前エピトープ(D25またはAM22エピトープ)を含む。例えば、いくつかの態様において、PreF抗原がD25またはAM22によって結合されない、つまりPreF抗原が、D25またはAM22結合立体構造に安定化されている場合、PreF抗原のいずれかは、D25またはAM22エピトープ結合立体構造(例えば、表1に提供される構造座標によって規定される立体構造)の状態にあるエピトープを含む。開示されるPreF抗原が、RSV Fタンパク質融合前特異的モノクローナル抗体結合立体構造(D25またはAM22結合立体構造など)の状態にあるRSV Fタンパク質融合前エピトープ(D25またはAM22エピトープなど)を含むかどうかを判定する方法は当業者に公知であり、かつ本明細書においてさらに開示されている(例えば、McLellan et al., Nature, 480:336-343, 2011;および米国特許出願公報第2010/0068217号を参照されたい。そのそれぞれは参照によりその全体として本明細書に組み入れられる)。例えば、RSV Fタンパク質と複合したD25 Fabフラグメントについての開示される三次元構造を、開示されるPreF抗原のいずれかの三次元構造と比較することができる。
当業者であれば、開示されるPreF抗原は、たとえ抗原の構造座標が、本明細書において開示される融合前Fタンパク質のものと厳密には同一でないとしても、融合前特異的モノクローナル抗体結合立体構造の状態にあるエピトープを含み得ることを解するであろう。例えば、いくつかの態様において、開示されるPreF抗原のいずれかは、RSV F融合前特異的モノクローナル抗体の非存在下において、1個の残基あたり1.0、0.75、0.5、0.45、0.4、0.35、0.3、または0.25Å未満というそれらの座標の平均二乗偏差(RMSD)を伴って、RSV F融合前特異的モノクローナル抗体と複合した対応するエピトープ上に構造的に重ね合わせることができるRSV F融合前特異的エピトープ(D25またはAM22エピトープなど)を含み、該RMSDは、ポリペプチド骨格原子であるN、Cα、C、Oに関して、少なくとも3個の連続的アミノ酸について測定される。
いくつかの態様において、PreF抗原は、水溶液中で可溶性である。例えば、一部の態様において、PreF抗原は、界面活性剤を欠いている溶液中で可溶性である。一部の態様において、PreF抗原は、室温(例えば、20~22セ氏温度)でリン酸緩衝生理食塩水(pH7.4)中に少なくとも0.5mg/ml(少なくとも1.0mg/ml、1.5mg/ml、2.0mg/ml、3.0mg/ml、4.0mg/ml、または少なくとも5.0mg/mlなど)の濃度まで溶解し、かつ少なくとも12時間(少なくとも24時間、少なくとも48時間、少なくとも1週間、少なくとも2週間、またはそれを上回る期間)溶解したままである。一態様において、リン酸緩衝生理食塩水は、pH7.4でNaCl(137mM)、KCl(2.7mM)、Na2HPO4(10mM)、KH2PO4(1.8mM)を含む。一部の態様において、リン酸緩衝生理食塩水は、CaCl2(1mM)およびMgCl2(0.5mM)をさらに含む。当業者であれば、タンパク質が経時的に溶液のままであるかどうかを判定する方法を熟知している。例えば、水溶液中に溶解したタンパク質の濃度を、標準的方法を用いて経時的に試験することができる。
いくつかの態様において、開示されるPreF抗原のいずれかを用いて、対象においてRSVに対する免疫応答を誘導することができる。いくつかのそのような態様において、免疫応答の誘導には、RSVに対する中和抗体の産生が含まれる。中和活性についてアッセイする方法は当業者に公知であり、かつ本明細書においてさらに記載されており、かつプラーク減少中和(plaque reduction neutralization)(PRNT)アッセイ、マイクロ中和アッセイ(例えば、Anderson et al., J. Clin. Microbiol., 22: 1050-1052, 1985を参照されたい)、またはフローサイトメトリーに基づくアッセイ(例えば、Chen et al., J. Immunol. Methods., 362:180-184, 2010を参照されたい)を含むが、それらに限定されるわけではない。さらなる中和アッセイが、本明細書において記載されておりかつ当業者によく知られている。
一部の態様において、PreF抗原には、水溶液中に溶解された場合に、融合前立体構造に安定化された組換えRSV Fタンパク質の集団を形成する組換えRSV Fタンパク質が含まれる。水溶液は、例えばpH7.4などの生理的pHにおけるリン酸緩衝生理食塩水であり得る。一部の態様において、集団は、例えばすべてが融合前立体構造に安定化されている、1種または複数種の組換えRSV Fタンパク質を含む均質集団である。一部の態様において、均質集団における組換えRSV Fタンパク質の少なくとも約90%(RSV Fタンパク質の少なくとも約91%、92%、93%、94%、95%、96%、97%、98%、99%、または99.9%など)は、融合前立体構造に安定化されている。一部の態様において、均質集団における組換えRSV Fタンパク質の少なくとも約90%(RSV Fタンパク質の少なくとも約91%、92%、93%、94%、95%、96%、97%、98%、99%、または99.9%など)は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。特定の立体構造の状態にあるRSV Fタンパク質の均質集団が、該RSV Fタンパク質の該立体構造状態を変更しない変動(タンパク質改変による変動など、例えばグリコシル化状態)を含み得ることは理解されるであろう。いくつかの態様において、組換えRSV Fタンパク質の集団は、経時的に均質なままである。例えば、PreF抗原には、水溶液中に溶解した場合に、少なくとも24時間、少なくとも48時間、少なくとも1週間、少なくとも2週間、またはそれを上回る期間など、少なくとも12時間、融合前立体構造に安定化されている組換えRSV Fタンパク質の集団を形成する組換えRSV Fタンパク質が含まれ得る。
いくつかの態様において、単離されたPreF抗原は、融合後立体構造の状態にあるRSV Fタンパク質から実質的に分離される。ゆえに、PreF抗原は、融合後立体構造の状態にあるRSV Fタンパク質から、例えば少なくとも80%単離され得、少なくとも90%、95%、98%、99%、またはさらに99.9%分離され得る。いくつかの態様において、PreF抗原は、抗原部位φを含まず、かつ/または融合前特異的モノクローナル抗体(D25またはAM22など)によって特異的に結合されないRSV Fタンパク質からも分離される。例えば、PreF抗原は、抗原部位φを含まず、かつ/または融合前特異的モノクローナル抗体(D25またはAM22など)によって特異的に結合されないRSV Fタンパク質から、少なくとも80%単離され得、少なくとも90%、95%、98%、99%、またはさらに99.9%分離され得る。
一部の態様において、PreF抗原には、水溶液中でインキュベートされた場合に、融合前立体構造に安定化された組換えRSV Fタンパク質の集団を形成する組換えRSV Fタンパク質が含まれ、該集団における単離された抗原の少なくとも70%(少なくとも80%または少なくとも90%または少なくとも95%または少なくとも98%など)は、
(a)50℃にて、350mM NaCl pH7.0中で1時間のインキュベーション;
(b)25℃にて、350mM NaCl pH3.5中で1時間のインキュベーション;
(c)25℃にて、350mM NaCl pH10中で1時間のインキュベーション;
(d)25℃にて、10mMモル浸透圧濃度、pH7.0中で1時間のインキュベーション;
(e)25℃にて、3000mMモル浸透圧濃度、pH7.0中で1時間のインキュベーション;
(g)(a)~(e)のうちの2つもしくはそれ以上の組み合わせ;または
(a)および(b);(a)および(c);(a)および(d);(a)および(e);(b)および(d);(b)および(e);(c)および(d);(c)および(e);(a)、(b)および(d);(a)、(c)および(d);(a)、(b)および(e);もしくは(a)、(c)および(e)の組み合わせ
の後に、RSV Fタンパク質融合前特異的抗体(D25またはAM22など)に特異的に結合する。
さらなる態様において、PreF抗原には、水溶液中でインキュベートされた場合に、融合前立体構造に安定化された組換えRSV Fタンパク質の集団を形成する組換えRSV Fタンパク質が含まれ、該集団における単離された抗原の少なくとも60%(少なくとも70%、少なくとも80%、または少なくとも90%など)は、350mM NaCl pH7.0中で10回の凍結融解サイクルの後に、融合前特異的抗体に特異的に結合する。
一部の態様において、PreF抗原は、融合後立体構造の状態にある検出可能なRSV Fタンパク質を含まない均質集団として提供される。RSV Fタンパク質は、ネガティブ染色電子顕微鏡および/または融合後抗体による特異的結合によって検出可能である。
1. 融合前立体構造に安定化された組換えRSV Fタンパク質
本明細書において開示されるPreF抗原は、融合前立体構造に安定化された組換えRSV Fタンパク質を含み、かつF1ポリペプチドおよびF2ポリペプチドを含む。F1ポリペプチド、F2ポリペプチド、またはその両方は、組換えRSV Fタンパク質をその融合前立体構造に安定化させる少なくとも1つの改変(例えば、アミノ酸置換)を含み得る。いくつかの態様において、F2ポリペプチドおよびF1ポリペプチドは、ペプチドリンカーによって連結している(例えば、一本鎖RSV Fタンパク質を含む態様において)。融合前立体構造での組換えRSV Fタンパク質の安定化により、RSV F融合前特異的モノクローナル抗体(すなわち、融合前立体構造の状態にあるRSV Fタンパク質に特異的に結合するが、融合後立体構造には結合しない抗体)に特異的に結合する少なくとも1種の融合前特異的エピトープ(すなわち、RSV Fタンパク質の融合前(融合後ではない)立体構造に存在しているエピトープ)が維持される。ゆえに、開示されるPreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の例において、PreF抗原には、組換えRSV Fタンパク質を融合前立体構造に安定化させるように改変されている、RSV Aウイルス由来のF1および/またはF2ポリペプチド、例えばSEQ ID NO: 1~128または370のうちの1つとして提供される、RSV F0タンパク質由来のF1および/またはF2ポリペプチドを含む組換えRSV Fタンパク質が含まれる。一部の例において、PreF抗原には、組換えRSV Fタンパク質を融合前立体構造に安定化させるように改変されている、RSV Bウイルス由来のF1および/またはF2ポリペプチド、例えばSEQ ID NO: 129~177のうちの1つとして提供される、RSV F0タンパク質由来のF1および/またはF2ポリペプチドを含む組換えRSV Fタンパク質が含まれる。一部の例において、PreF抗原には、組換えRSV Fタンパク質を融合前立体構造に安定化させるように改変されている、RSVウシウイルス由来のF1および/またはF2ポリペプチド、例えばSEQ ID NO: 178~184のうちの1つとして提供される、RSV F0タンパク質由来のF1および/またはF2ポリペプチドを含む組換えRSV Fタンパク質が含まれる。他のRSVサブタイプ由来のF1および/またはF2ポリペプチドも用いることができる。PreF抗原が、融合前立体構造に安定化された組換えRSV Fタンパク質を保持する限り、組換えRSV Fタンパク質は、アミノ酸の置換、欠失、もしくは挿入、グリコシル化、および/または非関連タンパク質(例えば、タンパク質タグ)への共有結合性連結など、天然RSV配列の改変を含み得る。種々のRSVサブグループ由来のRSV Fタンパク質、それだけでなくそのようなタンパク質をコードする核酸配列、ならびにそのような核酸配列の操縦およびベクター内への挿入のための方法は、本明細書において開示されておりかつ当技術分野において公知である(例えば、Tan et al., PLOS one, 7:e51439, 2011;Sambrook et al., Molecular Cloning, a Laboratory Manual, 2d edition, Cold Spring Harbor Press, Cold Spring Harbor, N. Y. (1989);Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley & Sons, New York, N. Y. (1994)を参照されたい)。
一部の態様において、組換えRSV Fタンパク質は、SEQ ID NO: 124など、SEQ ID NO: 1~184のうちのいずれか1つとして明示される天然RSV Fタンパク質配列の、それぞれアミノ酸26~103および145~310と少なくとも80%同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる。
一部の態様において、組換えRSV Fタンパク質は、SEQ ID NO: 124など、SEQ ID NO: 1~184のうちのいずれか1つとして明示される天然RSV Fタンパク質配列の、それぞれアミノ酸26~103および145~513と少なくとも80%(少なくとも90%、少なくとも95%、少なくとも98%、またはさらに100%など)同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる。
一部の態様において、組換えRSV Fタンパク質は、SEQ ID NO: 124など、SEQ ID NO: 1~184のうちのいずれか1つとして明示される天然RSV Fタンパク質配列の、それぞれアミノ酸26~103および145~529と少なくとも80%(少なくとも90%、少なくとも95%、少なくとも98%、またはさらに100%など)同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる。
一部の態様において、組換えRSV Fタンパク質は、SEQ ID NO: 124など、SEQ ID NO: 1~184のうちのいずれか1つとして明示される天然RSV Fタンパク質配列の、それぞれアミノ酸26~103および145~551と少なくとも80%(少なくとも90%、少なくとも95%、少なくとも98%、またはさらに100%など)同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる。
一部の例において、PreF抗原には、RSV Aウイルス由来のRSV F1および/またはF2ポリペプチドと少なくとも75%(例えば、少なくとも85%、90%、95%、96%、97%、98%、または99%)の配列同一性を有するポリペプチド配列を含むF1および/またはF2ポリペプチド、例えばSEQ ID NO: 1~128または370のうちの1つとして提供されるRSV F0タンパク質由来のF1および/またはF2ポリペプチドを含む組換えRSV Fタンパク質が含まれる。さらなる例において、PreF抗原には、RSV Bウイルス由来のRSV F1および/またはF2ポリペプチドと少なくとも75%(例えば、少なくとも85%、90%、95%、96%、97%、98%、または99%)の配列同一性を有するポリペプチド配列を含むF1および/またはF2ポリペプチド、例えばSEQ ID NO: 129~177のうちの1つとして提供されるRSV F0タンパク質由来のF1および/またはF2ポリペプチドを含む組換えRSV Fタンパク質が含まれる。さらなる例において、PreF抗原には、RSVウシウイルス由来のRSV F1および/またはF2ポリペプチドと少なくとも75%(例えば、少なくとも85%、90%、95%、96%、97%、98%、または99%)の配列同一性を有するポリペプチド配列を含むF1および/またはF2ポリペプチド、例えばSEQ ID NO: 178~184のうちの1つとして提供されるRSV F0タンパク質由来のF1および/またはF2ポリペプチドを含む組換えRSV Fタンパク質が含まれる。
いくつかの態様において、PreF抗原には、SEQ ID NO: 1~184または370のうちのいずれか1つの位置137~513など、天然F1ポリペプチド配列と少なくとも75%(例えば、少なくとも80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%)の配列同一性を有する任意のポリペプチド配列を含む、SEQ ID NO: 1~184または370のうちの1つにある位置137~513など、天然F1ポリペプチド配列由来の少なくとも300個の連続的アミノ酸(少なくとも310、320、330、340、350、360、370、380、390、400、410、420、または430個の連続的アミノ酸など)を含むかまたはそれらからなるF1ポリペプチドを含む、組換えRSV Fタンパク質が含まれる。例えば、一部の態様において、PreF抗原には、SEQ ID NO: 1~184または370のうちのいずれか1つの位置137~513、または位置137~C末端、または位置137~膜貫通ドメインなど、天然F1ポリペプチド配列と少なくとも75%(例えば、少なくとも85%、90%、95%、96%、97%、98%、または99%)の配列同一性を有する任意のポリペプチド配列を含む、SEQ ID NO: 1~184または370のうちのいずれか1つの位置137~513、137~481、137~491、または位置137~C末端、または位置137~膜貫通ドメインを含むかまたはそれらからなるF1ポリペプチドを含む、組換えFタンパク質が含まれる。当業者であれば、PreF抗原が、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む限り、組換えRSV Fタンパク質を含むPreF抗原は、天然F1ポリペプチドの細胞外領域(例えば、位置137~524)と比較して、N末端またはC末端の切り取り(例えば、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、もしくは50個、またはそれを上回る数のアミノ酸の欠失)を有するF1ポリペプチドを含み得ることを解するであろう。
一部の態様において、PreF抗原は、最大の長さを含む、例えば長さが300、310、320、330、340、350、360、370、380、390、400、410、420、430個以下、または440個以下のアミノ酸を含むF1ポリペプチドを含む。F1ポリペプチドは、開示される配列を含み得る、それらからなり得る、または本質的にそれらからなり得る。開示される連続F1ポリペプチド配列は、他の非関連配列(例えば、非RSV F1タンパク質配列、非RSV Fタンパク質配列、非RSV、非ウイルスエンベロープ、または非ウイルスタンパク質配列)にいずれかの末端で接合されていてもよい。
いくつかの態様において、PreF抗原には、SEQ ID NO: 1~184または370のうちのいずれか1つの位置26~109などの、天然F1ポリペプチド配列と少なくとも75%(例えば、少なくとも85%、90%、95%、96%、97%、98%、または99%)の配列同一性を有するポリペプチド配列を含む、SEQ ID NO: 1~184または370のうちのいずれか1つの位置26~109などの、天然F2ポリペプチド配列由来の少なくとも60個の連続的アミノ酸(少なくとも60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、または109個の連続的アミノ酸など)を含むかまたはそれらからなるF2ポリペプチドを含む、組換えRSV Fタンパク質が含まれる。例えば、一部の態様において、PreF抗原には、SEQ ID NO: 1~184または370のうちのいずれか1つの位置137~513などの、天然F2ポリペプチド配列と少なくとも75%(例えば、少なくとも85%、90%、95%、96%、97%、98%、または99%)の配列同一性を有する任意のポリペプチド配列を含む、SEQ ID NO: 1~184または370のうちのいずれか1つの位置26~109などの、天然F2ポリペプチド配列由来の70~109個の連続的アミノ酸(60~100、75~95、80~90、75~85、80~95、81~89、82~88、83~87、83~84、または84~85個の連続的アミノ酸など)を含むかまたはそれらからなるF2ポリペプチドを含む、組換えFタンパク質が含まれる。
一部の態様において、PreF抗原は、同じく最大の長さである、例えば長さが60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、または100個以下のアミノ酸であるF2ポリペプチドを含む。F2ポリペプチドは、開示される配列を含み得る、それらからなり得る、または本質的にそれらからなり得る。開示される連続F2ポリペプチド配列は、他の非関連配列(例えば、非RSV F2タンパク質配列、非RSV Fタンパク質配列、非RSV、非ウイルスエンベロープ、または非ウイルスタンパク質配列)にいずれかの末端で接合されていてもよい。
一部の態様において、PreF抗原には、SEQ ID NO: 1~184または370のうちのいずれか1つの位置26~109などの、天然F2ポリペプチド配列と少なくとも75%(例えば、少なくとも85%、90%、95%、96%、97%、98%、または99%)の配列同一性を有するポリペプチド配列を含む、SEQ ID NO: 1~184または370のうちのいずれか1つの位置26~109などの、天然F2ポリペプチド配列由来の少なくとも60個の連続的アミノ酸(少なくとも60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、または109個の連続的アミノ酸など)を含むかまたはそれらからなるF2ポリペプチドを含み、かつ、SEQ ID NO: 1~184または370のうちのいずれか1つの位置137~513などの、天然F1ポリペプチド配列と少なくとも75%(例えば、少なくとも80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%)の配列同一性を有する任意のポリペプチド配列を含む、SEQ ID NO: 1~184または370のうちの1つにある位置137~513などの、天然F1ポリペプチド配列由来の少なくとも300個の連続的アミノ酸(少なくとも310、320、330、340、350、360、370、380、390、400、410、420、または430個の連続的アミノ酸など)を含むかまたはそれらからなるF1ポリペプチドをさらに含む、組換えRSV Fタンパク質が含まれる。
非限定的な一例において、PreF抗原には、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ、これらのポリペプチドは、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513と少なくとも75%(例えば、少なくとも85%、90%、95%、96%、97%、98%、または99%)の配列同一性を有するポリペプチド配列を含む。
上述のように、RSV Fタンパク質は、F0前駆体タンパク質としてまず合成され、真核細胞における成熟の間に複数の部位(2つの保存されたフーリン切断部位を含む)で切断される。ゆえに、天然RSV Fタンパク質は、F0前駆体タンパク質のN末端シグナルペプチドおよびpep27ペプチド(またはそれらの一部)を欠いている。いくつかの態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質は、シグナルペプチド(またはその一部)を含まず、かつ/またはpep27ペプチド(またはその一部)を含まない。当業者であれば、RSV Fシグナルペプチドおよび/またはpep27ペプチドを欠く組換えRSV Fタンパク質は、シグナルペプチドおよびpep27ペプチドが細胞内プロテアーゼによってF0前駆体から切除される細胞内で組換えF0ポリペプチドを発現させることによって生成され得ることを解するであろう。
いくつかの態様は、開示される組換えRSV Fタンパク質のいずれかの多量体、例えば開示される組換えRSV Fタンパク質の2、3、4、5、6、7、8、9、もしくは10個、またはそれを上回る数を含む多量体を含むPreF抗原を含む。いくつかの例において、開示される組換えRSV Fタンパク質のいずれかを、別の組換えRSV Fタンパク質に連結させて(例えば、ペプチドリンカーを介して)、多量体を形成することができる。
いくらかの変動が、タンパク質の活性に影響を及ぼすことなく、タンパク質のアミノ酸配列において生じ得ることが当技術分野において理解される。そのような変動には、アミノ酸残基の挿入、アミノ酸残基の欠失、およびアミノ酸残基の置換が含まれる。配列におけるこれらの変動は、天然に存在する変動であり得、またはそれらは、当業者に公知の遺伝子操作技術の使用により操作され得る。そのような技術の例は、Sambrook J, Fritsch E F, Maniatis T et al., Molecular Cloning-A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, pp. 9.31-9.57)、またはCurrent Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1~6.3.6に見出され、その両方は参照によりそれらの全体として本明細書に組み入れられる。ゆえに、一部の態様において、PreF抗原は、対応する天然RSV配列と比較して1個または複数個のアミノ酸置換を含むF1ポリペプチド、F2ポリペプチド、またはF1およびF2ポリペプチドの両方を含む。例えば、一部の態様において、F1ポリペプチド、F2ポリペプチド、またはF1ポリペプチドおよびF2ポリペプチドの両方は、SEQ ID NO: 1~184または370のうちのいずれか1つとして明示される天然RSV配列など、天然F1ポリペプチド配列と比較して20個まで(1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、または19個までなど)のアミノ酸置換を含み、該PreF抗原は、RSV F融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。付加的な態様において、F1ポリペプチド、F2ポリペプチド、またはF1ポリペプチドおよびF2ポリペプチドの両方は、SEQ ID NO: 1~184または370のうちのいずれか1つとして明示される天然RSV配列など、天然F1ポリペプチド配列と比較して20個まで(1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、または19個までなど)の保存的アミノ酸置換を含み、該PreF抗原は、RSV F融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。例えば、一部の態様において、PreF抗原には、例えばRSV Fタンパク質に存在している1つまたは複数の核局在化シグナルの排除によって、タンパク質産生目的のためにタンパク質の発現を増加させるように改変されている、融合前立体構造の状態にある組換えRSV Fタンパク質が含まれる。具体的な非限定的な一態様における部位指向性突然変異誘発、または別の具体的な非限定的な態様におけるPCRを含む標準的手順を用いた、F1またはF2ポリペプチド配列をコードするヌクレオチド配列(F1およびF2ポリペプチドを含むF0ポリペプチドをコードするヌクレオチド配列など)の操縦を用いて、そのような変種を産生することができる。あるいは、F1およびF2ポリペプチドは、標準的方法を用いて合成され得る。最も簡単な改変は、類似した生化学的特性を有するアミノ酸に対する、1個または複数個のアミノ酸の置換を伴う。これらのいわゆる保存的置換は、結果として生じるタンパク質の活性に対して最小限の影響しか有しない可能性がある。
a. 膜遠位安定化改変
本明細書において開示されるように、RSV Fタンパク質は、その融合前および融合後の立体構造間で構造再編成を受ける。図2Bに示されるように、融合前立体構造におけるF1ポリペプチドのN末端領域(図2Aに示される膜遠位ローブに部分的に対応する)は、表示されるα2、α3、β3、β4、およびα4のヘリックスおよびβシート構造を含み、一方で融合後構造におけるF1ポリペプチドのN末端の対応する領域は、伸長したα5ヘリックス構造を含み、該α2、α3、β3、β4、およびα4のヘリックスおよびβシート構造は欠如している。さらに、融合前立体構造におけるF1ポリペプチドのC末端領域(図2Aに示される膜近位ローブに部分的に対応する)は、表示されるβ22、α9、およびβ23のβシートおよびヘリックス構造を含み、一方で融合後立体構造の構造におけるF1ポリペプチドの対応するC末端領域は、伸長したα10ヘリックス構造および伸長したコイルを含み、該β22、α9、およびβ23のβシートおよびヘリックス構造は欠如している。ゆえに、その融合前立体構造の状態にあるRSV Fタンパク質の膜遠位および膜近位ローブは、その融合後立体構造の状態にあるRSV Fタンパク質の対応する領域には欠如しているいくつかの個別の構造要素を含む。
RSV Fタンパク質の融合前および融合後の立体構造において同定された構造特質に導かれて、1つまたは複数の非天然ジスルフィド結合を導入する、RSV Fタンパク質内の空洞を充填する、RSV Fタンパク質における残基のパッキングを変更する、N結合型グリコシル化部位を導入するアミノ酸置換、およびそれらの組み合わせを含む、RSV Fタンパク質を融合前立体構造に安定化させるいくつかの様態が利用可能である。本明細書において提供される安定化改変は、組換えRSV Fタンパク質を融合前立体構造に安定化させる標的型改変である。いくつかの態様において、RSV Fタンパク質は、グルタルアルデヒド架橋、例えば膜結合型RSV F三量体のグルタルアルデヒド架橋などの非特異的架橋によっては安定化されない。
一部の非限定的な態様において、PreF抗原には、ジスルフィド結合の導入によって融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該組換えRSV Fタンパク質は、S155CおよびS290C;G151CおよびI288C;A153CおよびK461C;A149CおよびY458C;G143CおよびS404S置換;またはY33CおよびV469Cアミノ酸置換を含む。そのような組換えRSV Fタンパク質の前駆体タンパク質(F1ポリペプチドのC末端に連結されたフォルドンドメインを含む)の非限定的な例は、SEQ ID NO: 185、SEQ ID NO: 189、SEQ ID NO: 205、SEQ ID NO: 207、SEQ ID NO: 209、およびSEQ ID NO: 211として本明細書において明示されている。さらなる非限定的な態様において、PreF抗原には、ジスルフィド結合の導入および1個または複数個の空洞充填置換によって融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該組換えRSV Fタンパク質は、S155C、S290C置換、ならびに位置190および/または207における大きな疎水性残基(例えば、S190F、S190W、もしくはS190L置換、および/またはV207L、V207F、もしくはV207W置換)を含む。そのような組換えRSV Fタンパク質の前駆体タンパク質(F1ポリペプチドのC末端に連結されたフォルドンドメインを含む)の非限定的な例は、SEQ ID NO: 371、SEQ ID NO: 372、SEQ ID NO: 373、SEQ ID NO: 374、SEQ ID NO: 375、およびSEQ ID NO: 376として本明細書において明示されている。
本明細書において開示される組換えRSV Fタンパク質の配列の多くは、対象における免疫応答の誘導などのRSV Fタンパク質の機能に必須ではない、プロテアーゼ切断部位(トロンビン部位など)、タンパク質タグ(Hisタグ、Strep Tag II、Aviタグなど)の配列を含む。当業者であれば、そのような配列を認識し、かつ適当な場合には、これらのタグまたはプロテアーゼ切断部位は、開示される組換えRSV Fタンパク質に含まれないことを理解するであろう。
i. 非天然ジスルフィド結合
いくつかの態様において、PreF抗原には、架橋システイン残基のペアを含む少なくとも1つの非天然ジスルフィド結合によって融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。非天然ジスルフィド結合は、天然RSV Fタンパク質には存在せず、タンパク質操作によって(例えば、非天然ジスルフィド結合を形成する、1個または複数個の置換されたシステイン残基を含めることによって)導入されるものである。例えば、一部の態様において、開示される組換えRSV Fタンパク質のいずれかは、架橋システイン残基のペアを含む、1、2、3、4、5、6、7、8、9、または10個のジスルフィド結合のうちのいずれか1つによって融合前立体構造に安定化されている。具体的な非限定的な一例において、組換えRSV Fタンパク質は、架橋システイン残基の単一ペアによって融合前立体構造に安定化されている。別の非限定的な例において、開示される組換えRSV Fタンパク質のいずれかは、架橋システイン残基の2つのペアによって融合前立体構造に安定化されている。
ジスルフィド結合を形成するシステイン残基を、1個または複数個のアミノ酸置換によって、天然RSV Fタンパク質配列内に導入することができる。例えば、一部の態様において、単一アミノ酸置換により、天然RSV Fタンパク質配列に存在しているシステイン残基とジスルフィド結合を形成するシステインが導入される。付加的な態様において、2個のシステイン残基を天然RSV配列内に導入して、ジスルフィド結合を形成する。RSV Fタンパク質を融合前立体構造に安定させるジスルフィド結合の1個のシステイン(または複数個のシステイン)の位置は、その融合前立体構造の状態にあるRSV Fタンパク質の開示される構造、およびその融合後立体構造の状態にあるRSV Fタンパク質の以前に同定された構造を用いて、当業者によって容易に決定され得る。
例えば、システインのアミノ酸位置は、典型的に、RSV Fタンパク質の融合前立体構造におけるジスルフィド結合の形成にとって十分に近い距離内にある。2個の残基がジスルフィド結合形成にとって互いに十分に近い距離内にあるかどうかを判定するために、三次元構造データを用いる方法は公知である(例えば、Peterson et al., Protein engineering, 12:535-548, 1999およびDombkowski, Bioinformatics, 19:1852-1853, 3002(DISULFIDE BY DESIGN(商標)を開示している)を参照されたい。そのそれぞれは参照により本明細書に組み入れられる)。例えば、本明細書において提供される、融合前立体構造の状態にあるRSV Fタンパク質の三次元構造に基づいて手作業で残基を選択することができ、またはDISULFIDEBYDESIGN(商標)などのソフトウェアを用いることができる。理論によって拘束されることなく、ジスルフィド結合の形成に理想的な距離は、一般的に、Cα-Cα距離に関して約5.6Å、Sγ-Sγ距離に関して約2.02Å、およびCβ-Cβ距離に関して3.5~4.25Åであると見なされる(最適な回転異性体を用いた際)。当業者であれば、ジスルフィド結合の導入のために、システインに対して置換され得る三次元構造内の残基を選択する場合、これらの距離からの変動が含まれることを解するであろう。例えば、一部の態様において、選択された残基は、7.0Å未満のCα-Cα距離および/または4.7Å未満のCβ-Cβ距離を有する。一部の態様において、選択された残基は、2.0~8.0ÅのCα-Cα距離および/または2.0~5.5ÅのCβ-Cβ距離を有する。いくつかの態様において、システインのアミノ酸位置は、RSV Fタンパク質の融合前立体構造におけるジスルフィド結合の形成にとって十分に近い距離内にあるが、融合後立体構造においてはそうでない。
当業者であれば、例えば表1に提供される構造座標によって本明細書において規定される融合前構造を、PDBアクセッション番号3RRRとして寄託された構造座標を有する、McLellan et al., J. Virol., 85, 7788, 2011に記載されている以前に同定された融合後構造と比較することによって、RSV Fタンパク質の融合前および融合後の立体構造間の特定のアミノ酸の相対的位置を容易に決定することができる。2つのタンパク質構造間(例えば、融合前および融合後RSV Fタンパク質の三次元構造間)の特定のアミノ酸の相対的位置を決定する方法は公知である。例えば、当業者であれば、公知の重ね合わせ法を用いて、2つの構造を比較することができる(例えば、LSQKABプログラム(Kabsch W. Acta. Cryst. A32 922-923 (1976))を用いた方法)。一例において、LSQKABを用いて、表1に提供される構造座標によって規定されるFタンパク質の位置26~60、77~97、220~322、および332~459と、PDBアクセッション番号3RRRとして寄託された構造座標によって規定されるFタンパク質の位置26~60、77~97、220~322、および332~459とを整列させ、かつ融合前および融合後の構造における各残基に対するCα原子間の距離を比較して、2つの構造間の特定の残基についての偏差を割り出すことによって、融合前および融合後の構造を重ね合わせることができる。
いくつかの態様において、PreF抗原には、それぞれ融合前および融合後の構造間で立体構造を変化させるアミノ酸位置に導入されたシステインと、立体構造を変化させないアミノ酸位置に導入されたシステインとの間のジスルフィド結合によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。例えば、一部の態様において、PreF抗原には、システインのペアを導入するアミノ酸置換を含む組換えRSV Fタンパク質が含まれ、第1のシステインは、RSV Fタンパク質の融合前および融合後の立体構造の三次元構造間で少なくとも5Å(少なくとも6、少なくとも7、少なくとも8、少なくとも9、または少なくとも10Åなど)の平均二乗偏差を有するRSV Fタンパク質アミノ酸位置にあり、かつ第2のシステインは、RSV Fタンパク質の融合前および融合後の立体構造の三次元構造間で4Å未満(3、2、または1Å未満など)の平均二乗偏差を有するRSV Fタンパク質アミノ酸位置にあり、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
融合前および融合後のRSV F構造の比較に基づくと、F1サブユニットのN末端およびC末端(それぞれ、残基137~216および461~513)に位置する、大きな立体構造変化を起こす少なくとも2つの領域がある。例えば、図2Bに図解されるように、F1ポリペプチドの位置137~216および461~513は、融合前および融合後のFタンパク質立体構造間で構造再編成を受けるが、一方でF1ポリペプチドの位置217~460は比較的不変のままである。ゆえに、一部の態様において、PreF抗原には、F1ポリペプチドの位置137~216または461~513の中の1箇所における第1のシステインと、F1ポリペプチドの位置217~460の中の1箇所における第2のシステインとの間のジスルフィド結合によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。さらなる態様において、PreF抗原には、F1ポリペプチドの位置137~216または461~513の中の1箇所における第1のシステインと、F2ポリペプチドの位置26~109の中の1箇所(例えば、位置26~61または77~97の中の1箇所)など、F2ポリペプチドの位置における第2のシステインとの間のジスルフィド結合によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。
付加的な態様において、PreF抗原には、融合前および融合後の構造間の立体構造を変化させるアミノ酸位置に導入されるシステイン間のジスルフィド結合によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。例えば、一部の態様において、PreF抗原には、システインのペアを導入するアミノ酸置換を含む組換えRSV Fタンパク質が含まれ、第1のシステインおよび第2のシステインは、RSV Fタンパク質の融合前および融合後の立体構造の三次元構造間で少なくとも5Å(少なくとも6、少なくとも7、少なくとも8、少なくとも9、または少なくとも10Åなど)の平均二乗偏差を有する、RSV Fタンパク質のアミノ酸位置にあり、該PreF抗原は、RSV F融合前特異的抗体(例えば、D25またはAM22抗体)に対する特異的結合活性を含み、かつ/またはRSV F融合前特異的エピトープ(例えば、D25またはAM22エピトープ)を含む。一部のそのような態様において、PreF抗原には、F1ポリペプチドの位置137~216における第1のシステインと第2のシステインとの間のジスルフィド結合によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。付加的な態様において、PreF抗原には、F1ポリペプチドの位置461~513における第1のシステインと第2のシステインとの間のジスルフィド結合によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。さらなる態様において、PreF抗原には、F1ポリペプチドのそれぞれ位置137~216および461~513における第1のシステインと第2のシステインとの間のジスルフィド結合によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。
当業者であれば、(表1に明示されている)融合前立体構造の状態にあるRSV Fタンパク質の三次元構造の構造座標、および(蛋白質構造データバンクアクセッション番号3RRRに明示されている)融合後立体構造の状態にあるRSV Fタンパク質の三次元構造の構造座標を用いて、RSV Fタンパク質の融合前および融合後の立体構造における特定のアミノ酸の位置(および2つの立体構造間の位置における任意の差異)を容易に決定することができる。例えば、そのような比較法は実施例1に記載されている。表5には、RSV Fタンパク質を融合前立体構造に安定化させるために用いられ得るシステインペアおよびアミノ酸置換の例が提供されている。
(表5)ジスルフィド結合による安定化のための、例示的なシステインペア
一部の態様において、PreF抗原には、表5の2列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、または54のうちの1つまたは複数において挙げられたRSV F位置に位置するシステイン残基間のジスルフィド結合を含む、1つまたは複数(2、3、4、5、6、7、8、9、または10個など)のジスルフィド結合を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
さらなる態様において、PreF抗原には、表5の3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、または54のうちの1つまたは複数において挙げられたシステインアミノ酸置換によって導入されるシステイン残基間のジスルフィド結合を含む、1つまたは複数(2、3、4、5、6、7、8、9、または10個など)のジスルフィド結合を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
表5の4列目に挙げられたSEQ ID NOは、表示される置換、ならびにシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。
ゆえに、付加的な態様において、PreF抗原には、表5の4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、または54のうちの1つにおいて挙げられたSEQ ID NOなど、表5の4列目に挙げられたSEQ ID NOのうちのいずれか1つに明示されるF1ポリペプチドおよびF2ポリペプチドを含むRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。例えば、PreF抗原には、F1ポリペプチドおよびF2ポリペプチドを含むRSV Fタンパク質が含まれ得、該F2およびF1ポリペプチドは、表5の4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、または54のうちの1つにおいて挙げられたSEQ ID NOなど、表5の4列目に挙げられたSEQ ID NOのうちのいずれか1つの、それぞれ位置26~109および137~513として明示されるアミノ酸配列を含み、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
さらなる態様において、PreF抗原には、表5の2列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、または21のうちの1つまたは複数において挙げられた、F1ポリペプチドのRSV F位置に位置するシステイン残基間のジスルフィド結合を含む、1つまたは複数(2、3、4、5、6、7、8、9、または10個など)のプロトマー内ジスルフィド結合を含む組換えRSV Fタンパク質が含まれる。例えば、PreF抗原には、表5の3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、または21のうちの1つまたは複数において挙げられた、F1ポリペプチドアミノ酸置換によって導入されるシステイン残基間のジスルフィド結合を含む、1つまたは複数(2、3、4、5、6、7、8、9、または10個など)のプロトマー内ジスルフィド結合を含む組換えRSV Fタンパク質が含まれ得る。これらの態様のいずれにおいても、PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
さらなる態様において、PreF抗原には、表5の2列目の行22、23、24、25、26、27、または28のうちの1つまたは複数において挙げられた、F2およびF1ポリペプチドのRSV F位置に位置するシステイン残基間のジスルフィド結合を含む、1つまたは複数(2、3、4、5、6、または7個など)のプロトマー内ジスルフィド結合を含む組換えRSV Fタンパク質が含まれる。例えば、PreF抗原には、表5の3列目の行22、23、24、25、26、27、または28のうちの1つまたは複数において挙げられた、F2およびF1ポリペプチドアミノ酸置換によって導入されるシステイン残基間のジスルフィド結合を含む、1つまたは複数(2、3、4、5、6、または7個など)のプロトマー内ジスルフィド結合を含む組換えRSV Fタンパク質が含まれ得る。これらの態様のいずれにおいても、PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
さらなる態様において、PreF抗原には、表5の2列目の行29、30、31、32、33、34、35、36、37、38、または39のうちの1つまたは複数において挙げられた、F1ポリペプチドのRSV F位置に位置するシステイン残基間のジスルフィド結合を含む、1つまたは複数(2、3、4、5、6、7、8、9、または10個など)のプロトマー間ジスルフィド結合を含む組換えRSV Fタンパク質が含まれる。例えば、PreF抗原には、表5の3列目の行29、30、31、32、33、34、35、36、37、38、または39のうちの1つまたは複数において挙げられた、F1ポリペプチドアミノ酸置換によって導入されるシステイン残基間のジスルフィド結合を含む、1つまたは複数(2、3、4、5、6、7、8、9、または10個など)のプロトマー間ジスルフィド結合を含む組換えRSV Fタンパク質が含まれ得る。これらの態様のいずれにおいても、PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
さらなる態様において、PreF抗原には、表5の行40の2列目に挙げられた、F2およびF1ポリペプチドのRSV F位置に位置するシステイン残基間のプロトマー間ジスルフィド結合を含む組換えRSV Fタンパク質が含まれる。さらなる態様において、PreF抗原には、表5の行40の3列目に挙げられた、F2およびF1ポリペプチドにおけるアミノ酸置換によって導入されるシステイン残基間のプロトマー間ジスルフィド結合を含む組換えRSV Fタンパク質が含まれる。これらの態様のいずれにおいても、PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、特定の残基ペアが、融合前立体構造においてプロトマー内またはプロトマー間ジスルフィド結合を形成するのに十分に近い距離内にあるが、融合後立体構造においてはそうでないように、アミノ酸をFタンパク質配列に挿入して(またはそこから欠失させて)、Fタンパク質構造における残基のアラインメントを調整することができる。いくつかのそのような態様において、PreF抗原には、表5の2列目の行41、42、または43のうちの1つまたは複数において挙げられた、F1ポリペプチドのRSV F位置に位置するシステイン残基間のジスルフィド結合、およびアミノ酸挿入を含む、組換えRSV Fタンパク質が含まれる。さらなる態様において、PreF抗原には、表5の3列目の行41、42、または43のうちの1つまたは複数において挙げられた、F1ポリペプチドアミノ酸置換によって導入されるシステイン残基間のジスルフィド結合、およびアミノ酸挿入を含む組換えRSV Fタンパク質が含まれる。
一例において、PreF抗原には、S155CおよびS290C置換を有する組換えF1ポリペプチドタンパク質など、F1の位置155および290におけるシステイン間のジスルフィド結合を含む、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。
一部の態様において、PreF抗原には、表5または表5bに挙げられた、システイン残基間の2つまたはそれを上回る数のジスルフィド結合の組み合わせを含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。一部の組み合わせは、融合前立体構造に安定化されたRSV Fタンパク質をもたらさないと考えられ、そのような組み合わせは、本明細書において開示される方法によって、例えばそのようなポリペプチドを含有する抗原が、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含むことを確認することによって同定され得ることが理解される。
さらなる態様において、PreF抗原には、Fタンパク質を融合前立体構造に安定化させる非天然ジスルフィド結合を含む組換えRSV Fタンパク質が含まれ、該Fタンパク質は、表5bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、または16のうちの1つにおいて挙げられた置換を含み、非天然ジスルフィド結合の形成のためにFタンパク質内にシステイン残基が挿入されている。これらの態様のいずれにおいても、PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
表5bの4列目に挙げられたSEQ ID NOは、表示される置換、ならびにシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。ゆえに、付加的な態様において、PreF抗原には、表5bの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、または16のうちの1つにおいて挙げられたSEQ ID NOなど、表5bの4列目に挙げられたSEQ ID NOのうちのいずれか1つに明示されるF1ポリペプチドおよびF2ポリペプチドを含むRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。例えば、PreF抗原には、F1ポリペプチドおよびF2ポリペプチドを含むRSV Fタンパク質が含まれ得、該F2およびF1ポリペプチドは、表5bの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、または16のうちの1つにおいて挙げられたSEQ ID NOなど、表5bの4列目に挙げられたSEQ ID NOのうちのいずれか1つの、それぞれ位置26~109および137~513として明示されるアミノ酸配列を含み、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
(表5b)例示的な安定化Fタンパク質の置換および配列
ii. 空洞充填アミノ酸置換
融合後RSV Fタンパク質の構造(例えば、McLellan et al., J. Virol., 85, 7788, 2011に開示されるものに開示される)に対する、RSV Fタンパク質の融合前立体構造(例えば、本明細書において開示されるD25 Fabと複合した)の構造比較により、Fが融合後立体構造に移行するために崩壊するに違いない、融合前立体構造におけるいくつかの内部空洞またはポケットが同定される。これらの空洞には、表6に挙げられるものが含まれる。
したがって、いくつかの態様において、PreF抗原には、RSV Fタンパク質の融合後立体構造では崩壊する内部空洞の容積を低下させるアミノ酸を導入する1個または複数個のアミノ酸置換によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。例えば、空洞は、小さな側鎖を有するものの代わりに大きな側鎖を有するアミノ酸で置換することによって充填される。空洞は、プロトマー内の空洞またはプロトマー間の空洞であり得る。RSVタンパク質をその融合前立体構造に安定化させるRSV F空洞充填アミノ酸置換の一例は、S190FおよびV207L置換を有するRSV Fタンパク質である。別の態様において、RSVタンパク質をその融合前立体構造に安定化させる空洞充填アミノ酸置換には、S190F、S190L、S190W、S190H、S190M、またはS190Y置換が含まれる。
当業者であれば、本明細書において提供される方法を用いて、RSV Fタンパク質の融合前および融合後立体構造の構造を比較して適切な空洞を同定し、かつ同定された空洞を充填するためのアミノ酸置換を同定することができる。例示的な空洞、およびこれらの空洞の容積を低下させるための例示的なアミノ酸置換は、表6に提供されている。
表示される空洞は、空洞を充填するより大きな残基に変異され得る、空洞に接している小さな残基によって言及されている。同じ空洞を充填するために、他の残基(空洞と名付けられるもの以外)を変異させることもできることが理解されるであろう。
ゆえに、一部の態様において、PreF抗原には、表6の2列目に挙げられた空洞のうちの1つまたは複数の容積を低下させる1個または複数個のアミノ酸置換を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。付加的な態様において、PreF抗原には、表6の3列目の行1、2、3、4、5、6、7、8、または9に挙げられたアミノ酸置換のうちの1個または複数個を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
表6に挙げられたSEQ ID NOは、表示される置換、ならびにシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。ゆえに、付加的な態様において、PreF抗原には、表6の4列目の行1、2、3、4、5、6、7、または8に挙げられたSEQ ID NOのうちのいずれか1つに明示されるF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。例えば、PreF抗原には、表6の4列目の行1、2、3、4、5、6、7、または8に挙げられたSEQ ID NOのうちのいずれか1つに明示される、それぞれ位置26~109および137~513として明示されるF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ得、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
付加的な態様において、PreF抗原には、表6bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、または84のうちの1つにおいて挙げられたアミノ酸置換を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
表6aに挙げられたSEQ ID NOは、表示される置換、シグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。ゆえに、付加的な態様において、PreF抗原には、表6bの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、または84のうちの1つにおいて挙げられたSEQ ID NOのうちのいずれか1つに明示されるF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。例えば、PreF抗原には、表6bの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、または84のうちの1つにおいて挙げられたSEQ ID NOのうちのいずれか1つに明示される、それぞれ位置26~109および137~513として明示されるF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ得、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
iii. 再パッキング置換
一部の態様において、PreF抗原には、1個または複数個の再パッキングアミノ酸置換によって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。再パッキング置換は、タンパク質におけるアミノ酸間の引力的相互作用(疎水性相互作用または水素結合形成など)を増加させる、または反発性相互作用(同様に帯電した残基のクラスター間の反発力など)を減少させる。
当業者であれば、本明細書において提供される方法を用いて、RSV Fタンパク質の融合前および融合後立体構造の構造を比較して、RSV Fタンパク質残基間の反発性および/または引力的な相互作用の適切な部位、ならびにこれらの相互作用をそれぞれ低下させるまたは増加させるためのアミノ酸置換を同定することができる。例えば、本明細書において提供される、融合前立体構造の状態にあるRSV Fタンパク質の構造における反発性相互作用を同定し、かつこれらの反発性相互作用を低下させる置換を導入することによる。あるいは、RSV Fタンパク質は、RSV Fタンパク質の融合前立体構造においてRSV Fタンパク質残基間の引力的相互作用を増加させるが、RSV Fタンパク質の融合後立体構造においてはそうでない置換を含み得る。例示的なアミノ酸置換は、表7に提供されている。
ゆえに、一部の態様において、PreF抗原には、表7の2列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、または47のうちの1つにおいて挙げられたアミノ酸置換を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
表7に挙げられたSEQ ID NOは、表示される置換、ならびにシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。ゆえに、付加的な態様において、PreF抗原には、表7の3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、または47のうちの1つに明示されるF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。例えば、PreF抗原には、表7の3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、または47のうちの1つにおいて挙げられたSEQ ID NOのうちのいずれか1つに明示される、それぞれ位置26~109および137~513として明示されるF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ得、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
いくつかの態様は、上記で挙げられたアミノ酸置換の組み合わせを含む。
iv. N結合型グリコシル化部位
融合後RSV Fタンパク質の構造(例えば、McLellan et al., J. Virol., 85, 7788, 2011に開示されるものに開示される)に対する、RSV Fタンパク質の融合前立体構造(例えば、本明細書において開示されるD25またはAM22と複合した)の構造比較により、本明細書において記載される融合前RSV F立体構造において溶媒接触可能であるが、融合後RSV F立体構造(McLellan et al., J. Virol., 85, 7788, 2011に開示される)においては溶媒接触不能である、RSV Fタンパク質のいくつかの領域が同定される。
ゆえに、一部の態様において、PreF抗原には、本明細書において記載される融合前RSV F立体構造において溶媒接触可能であるが、融合後RSV F立体構造(McLellan et al., J. Virol., 85, 7788, 2011に開示される)においては溶媒接触不能である位置にN結合型グリコシル化部位を導入するアミノ酸置換を含む組換えRSV Fタンパク質が含まれる。これらのアミノ酸置換は、該タンパク質が融合後状態をとるために必要とするエネルギーを増加させることによって、組換えRSV Fタンパク質を融合前立体構造に安定化させる。
N結合型グリコシル化部位を創出するために、Asn-X-Ser/Thrという配列(式中、Xは、Proを除く任意のアミノ酸である)が導入される必要がある。これは、天然Asn残基に対して2残基C末端側でのSer/Thrアミノ酸の置換によって、または天然Ser/Thr残基に対して2残基N末端側でのAsnアミノ酸の置換によって、または1個の非プロリンアミノ酸によって分離されたAsnおよびSer/Thr残基の両方の置換によって達成され得る。ゆえに、いくつかの態様において、開示される組換えRSV Fタンパク質のいずれかは、グリコシル化されている。例えば、RSV Fタンパク質は、本明細書において開示される融合前RSV F立体構造において溶媒接触可能であるが、McLellan et al., J. Virol., 85, 7788, 2011に開示されるRSV Fの融合後立体構造においては溶媒接触不能である、RSV Fタンパク質においてN結合型グリコシル化部位を導入するアミノ酸置換を含む。例示的なN結合型グリコシル化部位改変は、表8に提供されている。
一部の態様において、PreF抗原には、F1ポリペプチドの位置506、175、178、276、476、185、160、503、または157のうちの1つまたは複数(2、3、4、5、6、7、8、または9箇所など)におけるN結合型グリコシル化部位によって融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。例えば、F1ポリペプチドは、F1ポリペプチドの位置506、175、178、276、476、185、160、503、または157のうちの1つまたは複数(2、3、4、5、6、7、8、または9箇所など)にN結合型グリコシル化部位を導入するアミノ酸置換を含み得る。
表8に挙げられたSEQ ID NOは、表示される置換、ならびにシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。一部の態様において、PreF抗原は、位置506にN結合型グリコシル化部位を導入するI506NおよびK508T置換を含むF1ポリペプチドを含む。一部の態様において、PreF抗原は、位置175にN結合型グリコシル化部位を導入するA177S置換を含むF1ポリペプチドを含む。一部の態様において、PreF抗原は、位置178にN結合型グリコシル化部位を導入するV178N置換を含むF1ポリペプチドを含む。一部の態様において、PreF抗原は、位置276にN結合型グリコシル化部位を導入するV278T置換を含むF1ポリペプチドを含む。一部の態様において、PreF抗原は、位置476にN結合型グリコシル化部位を導入するY478T置換を含むF1ポリペプチドを含む。一部の態様において、PreF抗原は、位置185にN結合型グリコシル化部位を導入するV185NおよびV187T置換を含むF1ポリペプチドを含む。一部の態様において、PreF抗原は、位置160にN結合型グリコシル化部位を導入するL160NおよびG162S置換を含むF1ポリペプチドを含む。一部の態様において、PreF抗原は、位置503にN結合型グリコシル化部位を導入するL503NおよびF505S置換を含むF1ポリペプチドを含む。一部の態様において、PreF抗原は、位置157にN結合型グリコシル化部位を導入するV157N置換を含むF1ポリペプチドを含む。これらの態様のいずれにおいても、PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
付加的な態様において、F1ポリペプチドは、SEQ ID NO: 198(位置506におけるN結合型グリコシル化部位);SEQ ID NO: 199(位置175におけるN結合型グリコシル化部位);SEQ ID NO: 200(位置178におけるN結合型グリコシル化部位);SEQ ID NO: 203(位置276におけるN結合型グリコシル化部位);SEQ ID NO: 204(位置476におけるN結合型グリコシル化部位);SEQ ID NO: 214(位置185におけるN結合型グリコシル化部位);SEQ ID NO: 215(位置160におけるN結合型グリコシル化部位);SEQ ID NO: 216(位置503におけるN結合型グリコシル化部位);またはSEQ ID NO: 217(位置157におけるN結合型グリコシル化部位)の残基137~513を含み、PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
グリコシル化ポリペプチドを作製する方法は、本明細書において開示されておりかつ当業者によく知られている。例えば、そのような方法は、米国特許出願公報第2007/0224211号、米国特許第7,029,872号、第7,834,159号、第7,807,405号、Wang and Lomino, ACS Chem. Biol., 7:110-122, 2011、およびNettleship et al., Methods Mol. Biol, 498:245-263, 2009に記載されており、そのそれぞれは参照により本明細書に組み入れられる。一部の態様において、グリコシル化PreF抗原は、HEK293細胞、またはGnTI-/-細胞(ATCC(登録商標)番号CRL-3022)などのその誘導体など、哺乳類細胞内で組換えRSV Fタンパク質を発現させることによって産生される。一部の態様において、RSV Fタンパク質抗原は、グリコシル化機構のある局面を阻害するために、例えばハイブリッド型グリカンの産生を促進するために培地に添加されるスワインソニンを用いて、HEK293細胞またはその誘導体などの哺乳類細胞内でRSV Fタンパク質抗原を発現させることによって産生される。
いくつかの態様において、F1ポリペプチドは、表8に挙げられたN結合型グリコシル化部位のうちの2つまたはそれを上回る位置を含む。
v. 例示的な安定化改変
当業者であれば、PreF抗原には、1つまたは複数のジスルフィド結合を導入する、RSV Fタンパク質内の空洞を充填する、RSV Fタンパク質における残基のパッキングを変更する、N結合型グリコシル化部位を導入するアミノ酸置換の組み合わせなど、本明細書において記載される安定化アミノ酸置換のうちの1つまたは複数の組み合わせによって、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ得ることを解するであろう。例えば、いくつかの態様において、組換えRSV Fタンパク質は、ジスルフィド結合を導入するアミノ酸置換、およびRSV Fタンパク質内の空洞を充填するアミノ酸置換を含む。
一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、位置155および290におけるシステインペア間のジスルフィド結合、ならびに位置190における空洞充填アミノ酸置換;または位置155および290におけるシステインペア間のジスルフィド結合、位置190における空洞充填アミノ酸置換、ならびに位置207における空洞充填アミノ酸置換を含む。例えば、位置190および/または位置207における空洞充填置換は、大きな芳香族または疎水性のアミノ酸置換(チロシン、ロイシン、フェニルアラニン、ヒスチジン、またはトリプトファンなど)であり得る。
一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、およびS190Fアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、およびS190Wアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、およびS190Lアミノ酸置換を含む。
一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190F、およびV207Lアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190W、およびV207Lアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190L、およびV207Lアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190F、およびV207Fアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190W、およびV207Fアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190L、およびV207Fアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190F、およびV207Wアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190W、およびV207Wアミノ酸置換を含む。一部の態様において、組換えRSV Fタンパク質のF1ポリペプチドは、S155C、S290C、S190L、およびV207Wアミノ酸置換を含む。
いくつかの態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、ヒトRSV Aサブタイプ、ヒトRSV Bサブタイプ、またはウシRSV由来のF1ポリペプチドおよびF2ポリペプチドを含み、該F1ポリペプチドは、安定化置換の上記組み合わせのうちの1つを含む。
一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、およびS190Fアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、およびS190Wアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、およびS190Lアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、およびS190Hアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、およびS190Mアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、およびS190Yアミノ酸置換をさらに含む。
一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190F、およびV207Lアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190W、およびV207Lアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190L、およびV207Lアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190H、およびV207Lアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190M、およびV207Lアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190Y、およびV207Lアミノ酸置換をさらに含む。
一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190F、およびV207Fアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190W、およびV207Fアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190L、およびV207Fアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190H、およびV207Fアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190M、およびV207Fアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190Y、およびV207Fアミノ酸置換をさらに含む。
一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190F、およびV207Wアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190W、およびV207Wアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190L、およびV207Wアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190H、およびV207Wアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190M、およびV207Wアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190Y、およびV207Wアミノ酸置換をさらに含む。
一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190F、V207L、およびF488Wアミノ酸置換をさらに含む。一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 1~184または370のうちのいずれか1つの、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含み、かつS155C、S290C、S190F、およびF488Wアミノ酸置換をさらに含む。
一部の態様において、融合前立体構造に安定化された組換えRSV Fタンパク質は、SEQ ID NO: 371(S155C、S290C、S190F、およびV207L置換を有するRSV A)、SEQ ID NO: 372(S155C、S290C、S190F、およびV207L置換を有するRSV B)、SEQ ID NO: 373(S155C、S290C、S190F、およびV207L置換を有するウシRSV)、SEQ ID NO: 374(S155C、S290C、およびS190F置換を有するRSV A)、SEQ ID NO: 375(S155C、S290C、およびS190F置換を有するRSV B)、またはSEQ ID NO: 376(S155C、S290C、およびS190F置換を有するウシRSV)の、それぞれ位置26~109および137~513を含むF2ポリペプチドおよびF1ポリペプチドを含む。
一部の態様において、PreF抗原には、表8bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、または54のうちの1つにおいて挙げられたアミノ酸置換を含む、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。該安定化されたRSV Fタンパク質は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され得、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含み得る。
(表8b)例示的な組換えRSV Fタンパク質置換、ならびにトロンビンにより切断可能なC末端フォルドンドメインを有するおよび有しない配列
表8bに挙げられたSEQ ID NOは、表示される置換、シグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))、またはトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、三量体化ドメイン(フォルドンドメイン)、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。ゆえに、一部の態様において、PreF抗原には、表8bの4列目(フォルドンドメインを有しない)または5列目(切断可能なフォルドンドメインを有する)の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、または54のうちの1つに記載されるSEQ ID NOに明示されるF1ポリペプチド(例えば、およそ位置137~513)およびF2ポリペプチド(例えば、およそ位置26~109)を含む組換えRSV Fタンパク質が含まれる。
一部の態様において、PreF抗原には、表8cの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、または13のうちの1つにおいて挙げられたアミノ酸置換を含む、融合前立体構造に安定化された組換えRSV Fタンパク質が含まれる。該安定化されたRSV Fタンパク質は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され得、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含み得る。
表8cに挙げられたSEQ ID NOは、表示される置換、シグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、トロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。ゆえに、付加的な態様において、PreF抗原には、表8cの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、または13のうちの1つに記載されるSEQ ID NOに明示されるF1ポリペプチド(例えば、およそ位置137~513)およびF2ポリペプチド(例えば、およそ位置26~109)を含む組換えRSV Fタンパク質が含まれる。
(表8c)例示的な組換えRSV Fタンパク質の置換および配列
b. 膜近位安定化改変
いくつかの態様において、PreF抗原には、膜に固定された形態の組換えRSV Fタンパク質(例えば、膜貫通ドメインを有する)が含まれる。他の態様において、PreF抗原には、可溶性形態の組換えRSV Fタンパク質(例えば、膜貫通ドメインまたは他の膜アンカーを有しない)が含まれる。下記に論じられるものを含む、可溶性のまたは膜に固定された組換えRSV Fタンパク質を生成するためのいくつかの異なる手法があることは理解されるであろう。例には、三量体化ドメインの導入、F1のC末端領域を安定化させるジスルフィド結合を形成し得るシステインペアの導入、および膜貫通ドメインの導入(例えば、膜に固定されたPreF抗原を含む適用のための)が含まれる。
さらに、本明細書において開示されるように、融合後RSV Fタンパク質の構造(PDBアクセッション番号3RRRとして寄託された座標を有する、例えばMcLellan et al., J. Virol., 85, 7788, 2011に開示される)と比較した、D25 Fabと複合した(すなわち、融合前立体構造の状態にある)RSV Fタンパク質の構造は、膜近位および膜遠位ローブの両方において、融合前および融合後の立体構造間の構造再編成を示す。いくつかの態様は、RSV Fタンパク質融合前立体構造の膜近位ローブの安定化ために標的とされる改変を含む。これらの改変は、組換えRSV Fタンパク質を融合前立体構造に安定化させるために厳密に必要であるわけではないこと、しかしながらある場合には、それらは、上記で記載されるものなど、他の融合前安定化改変と組み合されることが理解されるであろう。
i. 三量体化ドメイン
いくつかの態様において、PreF抗原は三量体化ドメインに連結されており、例えばPreF抗原には、そのC末端に連結された三量体化ドメインを有するF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ得る。一部の態様において、三量体化ドメインは、組換えRSV Fタンパク質における3つのF1/F2単量体の三量体化を促進する。いくつかの外因性多量体化ドメイン:GCN4ロイシンジッパー(Harbury et al. 1993 Science 262:1401-1407)、肺サーファクタントタンパク質由来の三量体化モチーフ(Hoppe et al. 1994 FEBS Lett 344:191-195)、コラーゲン(McAlinden et al. 2003 J Biol Chem 278:42200-42207)、およびファージT4フィブリチンフォルドン(Miroshnikov et al. 1998 Protein Eng 11:329-414)は、可溶性組換えタンパク質の安定した三量体を促進し、PreF抗原が融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合されかつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む限り、そのうちのいずれかをPreF抗原におけるF1ポリペプチドに連結させて、組換えFタンパク質の三量体化を促進することができる。
一部の例において、PreF抗原をGCN4ロイシンジッパードメインに連結させることができ、例えばPreF抗原には、そのC末端に連結されたGCN4ロイシンジッパードメインを有するF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ得る。具体的な例において、GCN4ロイシンジッパードメインは、本明細書において記載される構築物のCSGJシリーズで提供される。
一部の例において、PreF抗原をフォルドンドメインに連結させることができ、例えばPreF抗原には、そのC末端に連結されたフォルドンドメインを有するF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ得る。具体的な例において、フォルドンドメインは、アミノ酸配列:
などのT4フィブリチンフォルドンドメインであり、それはβプロペラ立体構造をとり、自律的に折り畳まれ得かつ三量体化し得る(Tao et al. 1997 Structure 5:789-798)。
一部の具体的な例において、PreF抗原には、SEQ ID NO: 185、189~303、または371~376のうちの1つに明示される、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドを含む、T4フィブリチンフォルドンドメインに連結された組換えRSV Fタンパク質が含まれる。典型的に、異種多量体化ドメインは、F1ドメインに対してC末端側に位置付けされる。任意で、多量体化ドメインは、GGという配列などのアミノ酸リンカーなどのリンカーを介して、F1ポリペプチドに接続される。リンカーは、より長いリンカーであってもよい(例えば、アミノ酸配列:GGSGGSGGS;SEQ ID NO: 352など、GGという配列を含む)。PreF抗原の立体構造を妨害することなく、この背景で用いられ得る数々の立体構造的に中性のリンカーが当技術分野において公知である。一部の態様は、F1ポリペプチドとフォルドンドメインとの間のトロンビン部位など、しかしながらそれに限定されない、F1ポリペプチドからフォルドンドメインを除去するためのプロテアーゼ切断部位を含む。
一部の態様において、PreF抗原には、II.B.1.a.の節において挙げられた改変のいずれかと組み合わせた、上記で挙げられた三量体化ドメイン改変のいずれかを含む組換えRSV Fタンパク質が含まれる。例えば、一部の態様において、PreF抗原には、表5の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、もしくは51のうちの1つにおいて挙げられたジスルフィド結合改変の1つもしくは複数、および/または表6の行1、2、3、4、5、6、7、もしくは8のうちの1つにおいて挙げられた空洞充填改変の1つもしくは複数、および/または表7の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、もしくは47のうちの1つにおいて挙げられた再パッキング改変の1つもしくは複数、および/または表8の1、2、3、4、5、6、7、8、もしくは9のうちの1つにおいて挙げられたグリコシル化改変の1つもしくは複数と組み合わせた、上記で挙げられた三量体化ドメイン改変のいずれかを含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、PreF抗原には、位置155および290におけるシステインペア間のジスルフィド結合、ならびに位置190における空洞充填アミノ酸置換;または位置155および290におけるシステインペア間のジスルフィド結合、位置190における空洞充填アミノ酸置換、ならびに位置207における空洞充填アミノ酸置換を含むF1ポリペプチドに連結された、上記で挙げられた三量体化ドメイン改変のいずれかを含む組換えRSV Fタンパク質が含まれる。
一部の態様において、PreF抗原には、S155C、S290C、およびS190Fアミノ酸置換、S155C、S290C、およびS190Wアミノ酸置換、またはS155C、S290C、およびS190Lアミノ酸置換を含むF1ポリペプチドに連結された、上記で挙げられた三量体化ドメイン改変のいずれかを含む組換えRSV Fタンパク質が含まれる。さらなる態様において、PreF抗原には、S155C、S290C、S190F、およびV207Lアミノ酸置換、S155C、S290C、S190W、およびV207Lアミノ酸置換、S155C、S290C、S190L、およびV207Lアミノ酸置換、S155C、S290C、S190F、およびV207Fアミノ酸置換、S155C、S290C、S190W、およびV207Fアミノ酸置換、S155C、S290C、S190L、およびV207Fアミノ酸置換、S155C、S290C、S190F、およびV207Wアミノ酸置換、S155C、S290C、S190W、およびV207Wアミノ酸置換、またはS155C、S290C、S190L、およびV207Wアミノ酸置換を含むF1ポリペプチドに連結された、上記で挙げられた三量体化ドメイン改変のいずれかを含む組換えRSV Fタンパク質が含まれる。
例えば、一部の態様において、PreF抗原には、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドが、SEQ ID NO: 185、SEQ ID NO: 189、SEQ ID NO: 201、SEQ ID NO: 202、SEQ ID NO: 205、SEQ ID NO: 207、SEQ ID NO: 209、SEQ ID NO: 213、SEQ ID NO: 244、SEQ ID NO: 245、SEQ ID NO: 247、SEQ ID NO: 257、SEQ ID NO: 264、SEQ ID NO: 265、SEQ ID NO: 266、SEQ ID NO: 267、SEQ ID NO: 268、SEQ ID NO: 269、SEQ ID NO: 270、SEQ ID NO: 271、SEQ ID NO: 272、SEQ ID NO: 273、SEQ ID NO: 274、SEQ ID NO: 275、SEQ ID NO: 277、SEQ ID NO: 278、SEQ ID NO: 279、SEQ ID NO: 280、SEQ ID NO: 281、SEQ ID NO: 282、SEQ ID NO: 284、SEQ ID NO: 302、SEQ ID NO: 303、SEQ ID NO: 190、SEQ ID NO: 211、SEQ ID NO: 212、SEQ ID NO: 243、SEQ ID NO: 246、SEQ ID NO: 276、SEQ ID NO: 283、SEQ ID NO: 285、もしくはSEQ ID NO: 263のうちのいずれか1つの、それぞれ位置26~109および137~544;またはSEQ ID NO: 258、SEQ ID NO: 259、SEQ ID NO: 260、SEQ ID NO: 261、SEQ ID NO: 262、SEQ ID NO: 296、SEQ ID NO: 297、SEQ ID NO: 298、もしくはSEQ ID NO: 299のうちのいずれか1つの、それぞれ位置26~109および137~545として明示されるアミノ酸配列を含む、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、PreF抗原には、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドが、SEQ ID NO: 371(S155C、S290C、S190F、およびV207L置換を有するRSV A)、SEQ ID NO: 372(S155C、S290C、S190F、およびV207L置換を有するRSV B)、SEQ ID NO: 373(S155C、S290C、S190F、およびV207L置換を有するウシRSV)、SEQ ID NO: 374(S155C、S290C、およびS190F置換を有するRSV A)、SEQ ID NO: 375(S155C、S290C、およびS190F置換を有するRSV B)、またはSEQ ID NO: 376(S155C、S290C、およびS190F置換を有するウシRSV)のうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、PreF抗原には、ヒトRSV Aサブタイプ、ヒトRSV Bサブタイプ、またはウシRSV由来のF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該F1ポリペプチドは、上記で挙げられた三量体化ドメイン改変のいずれかに連結されており、かつ該F1ポリペプチドは、本明細書において記載される安定化改変のいずれか(例えば、S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など、安定化置換の上記組み合わせのうちの1つ)をさらに含む。
一部の態様において、PreF抗原は、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質を含み、かつ1個または複数個の空洞充填アミノ酸置換およびフォルドンドメインを含み、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドは、SEQ ID NO: 191、SEQ ID NO: 193、SEQ ID NO: 196、SEQ ID NO: 197、SEQ ID NO: 248、SEQ ID NO: 192、SEQ ID NO: 195、またはSEQ ID NO: 194のうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含み、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、PreF抗原は、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質を含み、かつ1個または複数個の再パッキングアミノ酸置換およびフォルドンドメインを含み、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドは、SEQ ID NO: 249、SEQ ID NO: 250、SEQ ID NO: 251、SEQ ID NO: 252、SEQ ID NO: 253、SEQ ID NO: 254、SEQ ID NO: 255、SEQ ID NO: 256、SEQ ID NO: 288、SEQ ID NO: 289、SEQ ID NO: 290、SEQ ID NO: 291、SEQ ID NO: 292、SEQ ID NO: 293、SEQ ID NO: 294、SEQ ID NO: 295、SEQ ID NO: 296、SEQ ID NO: 297、SEQ ID NO: 326、SEQ ID NO: 327、SEQ ID NO: 328、SEQ ID NO: 329、SEQ ID NO: 330、SEQ ID NO: 331、SEQ ID NO: 332、SEQ ID NO: 333、SEQ ID NO: 334、SEQ ID NO: 335、SEQ ID NO: 336、またはSEQ ID NO: 337のうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含み、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、PreF抗原は、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質を含み、かつ1つまたは複数のN結合型グリコシル化部位およびフォルドンドメインを含み、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドは、SEQ ID NO: 198、SEQ ID NO: 199、SEQ ID NO: 200、SEQ ID NO: 203、SEQ ID NO: 204、SEQ ID NO: 214、SEQ ID NO: 215、SEQ ID NO: 216、またはSEQ ID NO: 217からなる群より選択されるSEQ ID NOのうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含み、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、PreF抗原には、表5bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、または16のうちの1つにおいて挙げられたアミノ酸置換を含む組換えRSV Fタンパク質が含まれ、該組換えRSV Fタンパク質のF1ポリペプチドは、フォルドンドメインに連結されている。一部の態様は、F1ポリペプチドからフォルドンドメインを除去するためのプロテアーゼ切断部位、例えばトロンビン切断部位を含む。
一部の態様において、PreF抗原には、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドを含む、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドは、表5bの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、または16のうちの1つにおいて挙げられたSEQ ID NOのうちの1つにある、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む。いくつかの態様において、フォルドンドメインに連結されたF1ポリペプチドは、F1ポリペプチドとフォルドンドメインとの間のトロンビン部位など、しかしながらそれに限定されないプロテアーゼ切断部位をさらに含む。
一部の態様において、PreF抗原には、表6bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、または84のうちの1つにおいて挙げられたアミノ酸置換を含む組換えRSV Fタンパク質が含まれ、該組換えRSV Fタンパク質のF1ポリペプチドは、フォルドンドメインに連結されている。
一部の態様において、PreF抗原には、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドを含む、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドは、表6bの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、または84のうちの1つにおいて挙げられたSEQ ID NOのうちの1つにある、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む。
さらなる態様において、PreF抗原には、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該組換えRSV Fタンパク質は、表8bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、または54のうちの1つにおいて挙げられたアミノ酸置換を含み、該組換えRSV Fタンパク質のF1ポリペプチドは、フォルドンドメインに連結されている。一部の態様において、PreF抗原には、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドを含む、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドは、表8bの5列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、または54のうちの1つにおいて挙げられたSEQ ID NOのうちの1つにある、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む。これらの配列は、F1ポリペプチドとフォルドンドメインとの間にトロンビン切断部位を含む。
さらなる態様において、PreF抗原には、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該組換えRSV Fタンパク質は、表8cの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、または13に挙げられたアミノ酸置換を含み、該組換えRSV Fタンパク質のF1ポリペプチドは、フォルドンドメインに連結されている。一部の態様において、PreF抗原には、F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドを含む、RSV Fタンパク質融合前立体構造に安定化された組換えRSV Fタンパク質が含まれ、該F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドは、表8cの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、または13に挙げられたSEQ ID NOの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む。
として明示されるアミノ酸配列を含むフォルドンドメインなど、改変フォルドンドメインも用いることができる。これらの改変フォルドンドメインは、安定化ジスルフィド結合の形成のための2個のシステイン残基を付加するアミノ酸置換を含む。改変フォルドンドメインに連結されたDSCav1アミノ酸置換を含む例示的なRSV Fタンパク質配列には、SEQ ID NO: 651、SEQ ID NO: 652、SEQ ID NO: 653、およびSEQ ID NO: 654として明示されるものが含まれる。一部の態様において、開示される組換えRSV Fタンパク質のいずれかを、本明細書において記載される改変フォルドンドメインに連結させることができる。
ii. ジスルフィド結合
一部の態様において、PreF抗原には、組換えRSV Fタンパク質の膜近位ローブを安定化させるために用いられる1つまたは複数のジスルフィド結合を含むF1ポリペプチドを含む組換えRSV Fタンパク質が含まれる。ジスルフィド結合を形成するシステイン残基を、1個または複数個のアミノ酸置換によって、組換えRSV Fタンパク質内に導入することができる。
RSV Fタンパク質の膜近位ローブを融合前立体構造に安定化させるジスルフィド結合の1個のシステイン(または複数個のシステイン)の位置は、本明細書において記載されるおよび当業者によく知られている方法を用いて、当業者によって容易に決定され得る。一部の態様において、α10ヘリックスのアミノ酸をシステイン残基で置換することによって、F1ポリペプチドのC末端にジスルフィド結合の環が導入される。コイル-コイルのための、RSV Fエクトドメインの3つのα10ヘリックスは、該タンパク質の膜近位部分を安定化させる。細胞内で発現させた場合、α10ヘリックス内に導入されたシステインの間でプロトマー間ジスルフィド結合が形成され、それによって3つのα10ヘリックスがごく接近して「ロック」され、かつ融合前立体構造から融合後立体構造への膜近位ドメインの移動が阻止される。RSV Fタンパク質のα10ヘリックスは、残基492~膜貫通ドメイン(残基529)を含む。
一部の態様において、PreF抗原には、RSV Fの位置486および487に位置するシステイン残基間、またはRSV Fの位置512および513に位置するシステイン残基間のジスルフィド結合を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。一部のそのような態様において、F1ポリペプチドは、それぞれD486CおよびE487C置換、L512CおよびL513C置換、またはそれぞれD486C、E487C、L512C、およびL513C置換を含む。
一部の態様において、特定の残基ペアが、ジスルフィド結合を形成するのに十分に近い距離内にあるように、アミノ酸をFタンパク質配列に挿入して(またはそこから欠失させて)、Fタンパク質構造における残基のアラインメントを調整することができる。一部のそのような態様において、PreF抗原には、位置486と487との間のプロリン挿入とともに、486および487に位置するシステイン残基間のジスルフィド結合を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。一部のそのような態様において、F1ポリペプチドは、D486CおよびE487C置換、ならびに位置486と487との間のプロリン挿入を含む。
付加的な態様において、PreF抗原には、位置493に位置するシステイン残基と、位置329および330の間に挿入されたシステイン残基との間のジスルフィド結合を含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。一部のそのような態様において、F1ポリペプチドは、S493C置換、および位置329と330との間に挿入されたシステイン残基を含む。
付加的な態様において、PreF抗原には、位置493に位置するシステイン残基と、位置329および330の間に挿入されたシステイン残基との間のジスルフィド結合を含み、かつ残基492と493との間のグリシン挿入をさらに含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。一部のそのような態様において、F1ポリペプチドは、S493C置換、位置329と330との間に挿入されたシステイン残基、ならびに残基492と493との間のグリシン挿入を含む。
付加的な態様において、組換えRSV Fタンパク質は、F1ポリペプチドのC末端領域を安定化させるプロトマー間ジスルフィド結合を形成し得る、α10ヘリックスにおける位置525および526、512および513、ならびに/または519および520でのシステイン置換を含む。例えば、一部の態様において、組換えRSV Fタンパク質は、表23に挙げられた「モチーフ」のいずれかを含む。付加的な態様において、組換えRSV Fタンパク質は、任意で、これらの配列に含まれる精製タグまたは三量体化ドメインを含まずに、SEQ ID NO: 829~1025または1456~1468のうちのいずれか1つとして明示されるアミノ酸配列と少なくとも80%(少なくとも90%、少なくとも95%、または少なくとも98%など)同一なアミノ酸配列を含む。
一部の態様において、組換えRSV Fタンパク質は、位置512からC末端側に伸長する、
(SEQ ID NO: 844の残基512~524)または
(SEQ ID NO: 849の残基X~Y)、または
(SEQ ID NO: 853の残基512~529)
のうちの1つとして明示されるアミノ酸配列を含む。
一部の態様において、PreF抗原には、II.B.1.a.の節において挙げられた安定化改変のいずれかと組み合わせた、RSV Fタンパク質の膜近位ローブを安定化させるための上記ジスルフィド結合改変のいずれかを含む組換えRSV Fタンパク質が含まれる。一部の態様において、PreF抗原には、表5の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、もしくは51、または表5bの行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、もしくは16のうちの1つにおいて挙げられたジスルフィド結合置換、あるいは表6の行1、2、3、4、5、6、7、もしくは8のうちの1つ、または表6bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、もしくは84のうちの1つにおいて挙げられた空洞充填置換、あるいは表7の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、もしくは47のうちの1つにおいて挙げられた再パッキング置換、あるいは表8の行1、2、3、4、5、6、7、8、もしくは9のうちの1つにおいて挙げられたグリコシル化改変、あるいは表8bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、もしくは54に挙げられた置換、あるいは表8cの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、もしくは13に挙げられた置換と組み合わせた、上記で挙げられた、RSV Fタンパク質の膜近位ローブを安定化させるためのジスルフィド結合改変のいずれかを含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、PreF抗原には、上記で挙げられた、RSV Fタンパク質の膜近位ローブを安定化させるためのジスルフィド結合改変のいずれかを含み、かつ位置155および290におけるシステインペア間のジスルフィド結合、ならびに位置190における空洞充填アミノ酸置換;または位置155および290におけるシステインペア間のジスルフィド結合、位置190における空洞充填アミノ酸置換、ならびに位置207における空洞充填アミノ酸置換を含むF1ポリペプチドをさらに含む、組換えRSV Fタンパク質が含まれる。
一部の態様において、PreF抗原には、上記で挙げられた、RSV Fタンパク質の膜近位ローブを安定化させるためのジスルフィド結合改変のいずれかを含み、かつS155C、S290C、およびS190Fアミノ酸置換、S155C、S290C、およびS190Wアミノ酸置換、またはS155C、S290C、およびS190Lアミノ酸置換を含むF1ポリペプチドをさらに含む、組換えRSV Fタンパク質が含まれる。さらなる態様において、PreF抗原には、上記で挙げられた、RSV Fタンパク質の膜近位ローブを安定化させるためのジスルフィド結合改変のいずれかを含み、かつS155C、S290C、S190F、およびV207Lアミノ酸置換、S155C、S290C、S190W、およびV207Lアミノ酸置換、S155C、S290C、S190L、およびV207Lアミノ酸置換、S155C、S290C、S190F、およびV207Fアミノ酸置換、S155C、S290C、S190W、およびV207Fアミノ酸置換、S155C、S290C、S190L、およびV207Fアミノ酸置換、S155C、S290C、S190F、およびV207Wアミノ酸置換、S155C、S290C、S190W、およびV207Wアミノ酸置換、またはS155C、S290C、S190L、およびV207Wアミノ酸置換を含むF1ポリペプチドをさらに含む、組換えRSV Fタンパク質が含まれる。
一部の態様において、PreF抗原には、SEQ ID NO: 371(S155C、S290C、S190F、およびV207L置換を有するRSV A)、SEQ ID NO: 372(S155C、S290C、S190F、およびV207L置換を有するRSV B)、SEQ ID NO: 373(S155C、S290C、S190F、およびV207L置換を有するウシRSV)、SEQ ID NO: 374(S155C、S290C、およびS190F置換を有するRSV A)、SEQ ID NO: 375(S155C、S290C、およびS190F置換を有するRSV B)、またはSEQ ID NO: 376(S155C、S290C、およびS190F置換を有するウシRSV)のうちのいずれか1つの、それぞれ位置26~109および137~513として明示されるアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該組換えRSV Fタンパク質は、上記で挙げられた、RSV Fタンパク質の膜近位ローブを安定化させるためのジスルフィド結合改変のいずれかをさらに含み、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
いくつかの態様において、PreF抗原には、ヒトRSV Aサブタイプ、ヒトRSV Bサブタイプ、またはウシRSV由来のF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該組換えRSV Fタンパク質は、上記で挙げられた、RSV Fタンパク質の膜近位ローブを安定化させるためのジスルフィド結合改変のいずれかをさらに含み、かつ該F1ポリペプチドは、本明細書において記載される安定化改変のいずれか(例えば、S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など、安定化置換の上記組み合わせのうちの1つ)をさらに含む。
iii. 膜貫通ドメイン
一部の態様において、組換えRSV Fタンパク質は、例えば膜に固定されたPreF抗原を含む適用のために、F1ポリペプチドに連結された膜貫通ドメインを含む。例えば、膜貫通配列の存在は、膜小胞調製ための膜貫通タンパク質としての発現に有用である。膜貫通ドメインを、本明細書において提供される安定化変異のいずれかを含有するF1タンパク質、例えばS155C/S290Cシステイン置換を有するF1タンパク質など、上記で記載されるものに連結させることができる。加えて、膜貫通ドメインを、RSV F1細胞質テールにさらに連結させることができる。シグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、RSV膜貫通ドメインを含む例は、SEQ ID NO: 323(細胞質ドメインを有しない)およびSEQ ID NO: 324(細胞質ドメインを有する)として提供されている。
一部の態様において、PreF抗原には、II.B.1a.の節において挙げられた安定化改変のいずれかと組み合わせた、膜貫通ドメインに連結されたF1ポリペプチドを含む組換えRSV Fタンパク質が含まれる。例えば、一部の態様において、PreF抗原には、膜貫通ドメイン連結されたF1ポリペプチドを含み、かつ表5の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、もしくは51、または表5bの行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、もしくは16のうちの1つにおいて挙げられたジスルフィド結合置換、あるいは表6の行1、2、3、4、5、6、7、もしくは8のうちの1つ、または表6bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、もしくは84のうちの1つにおいて挙げられた空洞充填置換、あるいは表7の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、もしくは47のうちの1つにおいて挙げられた再パッキング置換、あるいは表8の行1、2、3、4、5、6、7、8、もしくは9のうちの1つにおいて挙げられたグリコシル化改変、あるいは表8bの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、59、50、51、52、53、もしくは54に挙げられた置換、あるいは表8cの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、もしくは13に挙げられた置換をさらに含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
一部の態様において、PreF抗原には、膜貫通ドメインに連結されたF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該F1ポリペプチドは、位置155および290におけるシステインペア間のジスルフィド結合、ならびに位置190における空洞充填アミノ酸置換;または位置155および290におけるシステインペア間のジスルフィド結合、位置190における空洞充填アミノ酸置換、ならびに位置207における空洞充填アミノ酸置換をさらに含む。
一部の態様において、PreF抗原には、膜貫通ドメインに連結されたF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該F1ポリペプチドは、S155C、S290C、およびS190Fアミノ酸置換、S155C、S290C、およびS190Wアミノ酸置換、またはS155C、S290C、およびS190Lアミノ酸置換をさらに含む。さらなる態様において、PreF抗原には、膜貫通ドメインに連結されたF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該F1ポリペプチドは、S155C、S290C、S190F、およびV207Lアミノ酸置換、S155C、S290C、S190W、およびV207Lアミノ酸置換、S155C、S290C、S190L、およびV207Lアミノ酸置換、S155C、S290C、S190F、およびV207Fアミノ酸置換、S155C、S290C、S190W、およびV207Fアミノ酸置換、S155C、S290C、S190L、およびV207Fアミノ酸置換、S155C、S290C、S190F、およびV207Wアミノ酸置換、S155C、S290C、S190W、およびV207Wアミノ酸置換、またはS155C、S290C、S190L、およびV207Wアミノ酸置換をさらに含む。
一部の態様において、PreF抗原には、F2ポリペプチド、および膜貫通ドメインに連結されたF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該F2ポリペプチド、および膜貫通ドメインに連結されたF1ポリペプチドは、SEQ ID NO: 371(S155C、S290C、S190F、およびV207L置換を有するRSV A)、SEQ ID NO: 372(S155C、S290C、S190F、およびV207L置換を有するRSV B)、SEQ ID NO: 373(S155C、S290C、S190F、およびV207L置換を有するウシRSV)、SEQ ID NO: 374(S155C、S290C、およびS190F置換を有するRSV A)、SEQ ID NO: 375(S155C、S290C、およびS190F置換を有するRSV B)、またはSEQ ID NO: 376(S155C、S290C、およびS190F置換を有するウシRSV)のうちのいずれか1つの、それぞれ位置26~109および137~513として明示されるアミノ酸配列を含み、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
いくつかの態様において、PreF抗原には、ヒトRSV Aサブタイプ、ヒトRSV Bサブタイプ、またはウシRSV由来のF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該F1ポリペプチドは、上記で挙げられた膜貫通ドメインのいずれかに連結されており、かつ該F1ポリペプチドは、本明細書において記載される安定化改変のいずれか(例えば、S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など、安定化置換の上記組み合わせのうちの1つ)をさらに含む。
iv. 空洞充填置換
一部の態様において、PreF抗原には、組換えRSV Fタンパク質の膜近位ローブを安定化させるために用いられる1個または複数個の空洞充填置換を含むF1ポリペプチドを含む組換えRSV Fタンパク質が含まれる。一部の態様において、PreF抗原には、V207L、ならびにL512F;L513F;L512FおよびL513F;L512YおよびL513Y;L512FおよびL513Y;L512WおよびL513W;L5132WおよびL513Y;S509W;S509F;S509WおよびL512F;またはS509W、L512F、およびL513F置換を有するF1ポリペプチドを含む組換えRSV Fタンパク質が含まれ、該PreF抗原は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。そのような置換を有する例示的な配列には、SEQ ID NO: 672~682が含まれる。
c. 抗原部位
一部の態様において、PreF抗原には、融合前立体構造に安定化されており、かつ抗原部位φ以外の公知の抗原部位を排除するさらなる改変を含む組換えRSV Fタンパク質が含まれる。例えば、組換えRSV Fタンパク質は、抗原部位I、II、またはIVを妨害する改変を含み得る。そのような改変は、例えばこれらの部位に特異的な抗体の結合によって同定され得る。
一部の態様において、抗原部位φを排除する改変を含む組換えRSV Fタンパク質を含む抗原が提供される。そのような抗原は、例えば対照試薬として有用である。
抗原部位φおよび/または抗原部位IIを除去するための例示的な改変は、表8c1に挙げられている。
(表8c1)例示的な組換えRSV Fタンパク質の置換および配列
d. 一本鎖RSV Fタンパク質
一部の態様において、組換えRSV Fタンパク質は、RSV F1ポリペプチドおよびRSV F2ポリペプチドを含む単一ポリペプチド鎖を含む、一本鎖RSV Fタンパク質である。開示される一本鎖RSV Fタンパク質は、RSV Fタンパク質のpep27ポリペプチドに隣接するフーリン切断部位を含まず、したがって、細胞内で産生された場合に、Fポリペプチドは、別個のF1およびF2ポリペプチドに切断されない。いくつかの態様において、F1およびF2ポリペプチドの残りの部分は、ペプチドリンカーなどのリンカーによって接合されている。
いくつかの態様において、F2、pep27、およびF1配列を含む単一ポリペプチド鎖を産生する。一本鎖RSV Fタンパク質はpep27配列を含み得、またはこの配列は欠失され得る。さらに、pep27配列が欠失される例では、リンカー(ペプチドリンカーなど)を、任意で、組換え一本鎖RSV Fタンパク質におけるF2およびF1ポリペプチドの間に配置することができる。一部の態様において、一本鎖RSV Fタンパク質は、2つのフーリン切断部位と、pep27ポリペプチドと、融合ペプチドとを除去する、RSV Fの位置98~149または106~149の欠失を含む。一部の態様において、一本鎖RSV Fタンパク質は、RSV Fの位置98~136、98~144、98~149、106~136、104~144、または106~144の欠失を含む。
いくつかの態様において、本明細書において(例えば、上記(B.1.a)~(B.1.c)の節において)開示される安定化変異は、一本鎖RSV Fタンパク質内に含まれ得る。例えば、一部の態様において、一本鎖RSV Fタンパク質は、S155CおよびS290C置換;S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換を含む。一部の態様において、PreF抗原には、表8dの3列目の行1、2、3、4、5、6、または7のうちの1つにおいて挙げられたアミノ酸置換を含む、融合前立体構造に安定化された一本鎖形式の組換えRSV Fタンパク質が含まれる。該安定化されたRSV Fタンパク質は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され得、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含み得る。
例示的な配列は、表8dに挙げられている。表8dに挙げられたSEQ ID NOは、表示される置換、シグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))、またはトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、三量体化ドメイン(フォルドンドメイン)、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含むアミノ酸配列を明示している。ゆえに、付加的な態様において、PreF抗原には、表8dの4列目(フォルドンドメインを有しない)または5列目(切断可能なフォルドンドメインを有する)の行1、2、3、4、5、6、7、8、9、10、11、12、13、または14のうちの1つにおいて挙げられたSEQ ID NOに明示されるF1ポリペプチド(例えば、およそ位置137~513)およびF2ポリペプチド(例えば、およそ位置26~109)を含む組換えRSV Fタンパク質が含まれる。さらなる例示的な一本鎖RSV Fタンパク質の変異および配列は、例えば表8e(例えば、行34~43)および表18に開示されるように、本明細書において記載されている。
切断不能なフォルドンドメインを有する、切断可能なフォルドンドメインを有する、およびタンパク質ナノ粒子サブユニットに連結された一本鎖RSV Fタンパク質を含む、融合前立体構造に安定化されているさらなる一本鎖RSV Fタンパク質の配列は、表19に提供されている。
2. 最小部位φ免疫原
RSV Fの部位φエピトープは、三量体スパイクの先端に位置し、3種の中和抗体D25、AM22、および5C4によって認識される領域を含む。より具体的には、RSV F/D25複合体の結晶構造によって描出されるように、このエピトープは、ヘリックスα4の外表面(残基196~209)、ならびにβ2およびα1間の近接ループ(残基63~68)を含む。RSV Fタンパク質のこれらの最小局面を含み、そして例えばRSVに対する免疫応答を誘導するのに有用であり、かつRSV Fタンパク質抗体への特異的結合にも、例えばそのような抗体を同定するまたは検出するプローブとして有用である免疫原が本明細書において提供される。
したがって、一部の態様において、組換えRSV Fタンパク質は、RSVに対する免疫応答を刺激するために必要な最小領域を含む。一部の態様において、RSV Fタンパク質は、表20に明示される配列と少なくとも80%同一なアミノ酸配列を含むかまたはそれらからなる。付加的な態様において、組換えRSV Fタンパク質は、SEQ ID NO: 1027~1052に明示されるものなど、表20に明示される抗原部位φの円順列変異を含む。
エピトープを抗原性立体構造に安定化させる足場タンパク質に、最小エピトープ領域を連結させることができる。例えば、本明細書において挙げられる最小部位φ抗原のいずれかを、2KNO、2A90、2W59、3U2E、2VJ1、1CHD、1PQZ、または2MOE足場タンパク質に連結させることができる。これらは、PDBデータベースに位置する特異的配列に対する参照識別子であり、2014年3月11日にデータベースに存在しているものとして参照により本明細書に組み入れられる。足場タンパク質に連結された最小部位φ抗原の具体的な例は、本明細書において表20に提供されている。
最小部位φ抗原のいずれかを、タンパク質ナノ粒子サブユニット、例えばフェリチンサブユニットまたはルマジンシンターゼサブユニットに連結させて、タンパク質ナノ粒子を生成することができる。タンパク質ナノ粒子サブユニットに連結された最小部位φ抗原の具体的な例は、本明細書において表21に提供されている。
いくつかの態様において、PreF抗原には、融合前特異的立体構造の状態にあるRSV Fタンパク質融合前特異的エピトープを含むエピトープ-足場タンパク質が含まれる。一部の例において、エピトープ足場タンパク質には、本明細書において開示される、融合前立体構造に安定化された組換えRSV Fタンパク質のいずれかが含まれる。エピトープ足場タンパク質を含むPreF抗原が、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む限り、融合前特異的エピトープを、足場タンパク質のどこにでも(例えば、N末端、C末端、または内部ループに)配置することができる。
足場を同定するおよび選択するための方法は、本明細書において開示されておりかつ当業者に公知である。例えば、エピトープ-足場の重ね合わせ、接ぎ合わせ、およびデノボ設計のための方法は、参照によりその全体として本明細書に組み入れられる、米国特許出願公報第2010/0068217号に開示されている。
エピトープ-足場の「重ね合わせ」は、この「重ね合わせ-領域」における標的エピトープ--骨格原子と類似した立体構造を備えた、曝露セグメントを有する足場タンパク質に基づき、それらの座標の最小平均二乗偏差(RMSD)で標的エピトープ上に構造的に重ね合わせられ得る。適切な足場は、タンパク質結晶構造のライブラリーをコンピューターで検索することによって同定され、エピトープ-足場は、重ね合わせ領域にエピトープ残基を置き、かつ足場の周囲面にさらなる変異を作製して、抗体との衝突または他の相互作用を阻止することによって設計される。
エピトープ-足場の「接ぎ合わせ」は、標的エピトープの結晶化立体構造での曝露セグメントの置き換えを順応させ得る足場タンパク質を利用する。すべてのタンパク質結晶構造をコンピューターで検索することによって同定されたそれぞれの適切な足場に対して、曝露セグメントは標的エピトープによって置き換えられ、周囲側鎖は、挿入されたエピトープを順応させかつ安定化させるように再設計(変異)される。最後に、エピトープ-足場の重ね合わせと同様に、足場の表面およびエピトープの外部に変異を作製して、抗体との衝突または他の相互作用を阻止する。足場の接ぎ合わせは、置き換えられたセグメントおよび挿入されたエピトープが、それらのN末端およびC末端の間で類似した移転および回転転換を有すること、ならびに周囲ペプチド骨格が、挿入されたエピトープと衝突しないことを必要とする。接ぎ合わせおよび重ね合わせの間の1つの差異は、接ぎ合わせがエピトープ立体構造を正確に模倣しようと試みるのに対し、重ね合わせは小さな構造偏差を容認することである。
「デノボ」エピトープ-足場は、エピトープの結晶化立体構造を最適に提示するように、ゼロからコンピューターによって設計される。この方法は、新規な折り畳みのコンピューターによる設計に基づく(Kuhlman, B. et al. 2003 Science 302:1364-1368)。デノボは、両方ともサイズが最小であり、そのためそれらが不要なエピトープを提示せず、かつ熱的または化学的な変性に対して高度に安定でもある、免疫原の設計を可能にする。
足場は異種足場であり得る。いくつかの態様において、天然足場タンパク質(エピトープ挿入を有しない)はウイルスエンベロープタンパク質ではない。付加的な態様において、足場タンパク質はRSVタンパク質ではない。なおさらなる態様において、足場タンパク質はウイルスタンパク質ではない。
付加的な態様において、エピトープ-足場タンパク質は、SEQ ID NO: 341~343のうちのいずれか1つとして明示されるアミノ酸配列、またはSEQ ID NO: 341~343のうちのいずれか1つと少なくとも80%の配列同一性(少なくとも85%、少なくとも90%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、または少なくとも99%の配列同一性など)を有するポリペプチドを含み、該エピトープ-足場タンパク質は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。付加的な態様において、RSV Fタンパク質はSEQ ID NO: 341~343のうちのいずれか1つであり、該RSV Fタンパク質のアミノ酸配列は20個までのアミノ酸置換を有し、そして該エピトープ足場タンパク質は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/または対応する融合前特異的抗体(例えば、D25またはAM22抗体)による結合の非存在下でRSV F融合前特異的立体構造(抗原部位φなど)を含む。あるいは、該ポリペプチドは、アミノ酸置換を有しない、または1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、もしくは19個までのアミノ酸置換を有し得る。
結果として生じたエピトープ-足場タンパク質が、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/または対応する融合前特異的抗体(例えば、D25またはAM22抗体)による結合の非存在下でRSV F融合前特異的立体構造(抗原部位φなど)を含む限り、融合前立体構造に安定化された組換えRSV Fタンパク質を、足場のどこにでも配置することができる。特定のエピトープ-足場タンパク質が、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合されるかどうかを判定するための方法は、本明細書において開示されておりかつ当業者に公知である(例えば、国際出願公報WO 2006/091455およびWO 2005/111621を参照されたい)。加えて、抗体-抗原複合体の形成は、抗原特異的抗体を検出するおよび/または定量する従来的免疫アッセイ形式を含む、多数の十分に規定された診断アッセイを用いてアッセイされ得る。そのようなアッセイには、例えば酵素免疫アッセイ、例えばELISA、細胞ベースアッセイ、フローサイトメトリー、放射免疫アッセイ、および免疫組織化学染色が含まれる。数々の競合的および非競合的なタンパク質結合アッセイが当技術分野において公知であり、多くは市販されている。特定のエピトープ-足場タンパク質が、対応する融合前特異的抗体(例えば、D25またはAM22抗体)による結合の非存在下でRSV F融合前特異的立体構造(抗原部位φなど)を含むかどうかを判定するための方法も、本明細書において開示されておりかつ当業者にさらに公知である。
3. ウイルス様粒子
一部の態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質を含む、ウイルス様粒子(VLP)が提供される。VLPは、ウイルス複製に必要とされるウイルス構成要素を欠いており、ゆえにウイルスの高度に弱毒化された形態に相当する。VLPは、対象に投与された場合に、RSVに対する免疫応答を誘発し得るポリペプチド(例えば、融合前立体構造に安定化された組換えRSV Fタンパク質)を呈示し得る。ウイルス様粒子およびそれらの産生の方法は公知でありかつ当業者によく知られており、そしてヒトパピローマウイルス、HIV(Kang et al., Biol. Chem. 380:353-64 (1999))、セムリキ森林ウイルス(Notka et al., Biol. Chem. 380:341-52 (1999))、ヒトポリオーマウイルス(Goldmann et al., J. Virol. 73:4465-9 (1999))、ロタウイルス(Jiang et al., Vaccine 17:1005-13 (1999))、パルボウイルス(Casal, Biotechnology and Applied Biochemistry, Vol 29, Part 2, pp 141-150 (1999))、イヌパルボウイルス(Hurtado et al., J. Virol. 70:5422-9 (1996))、E型肝炎ウイルス(Li et al., J. Virol. 71:7207-13 (1997))、およびニューカッスル病ウイルスを含む、いくつかのウイルス由来のウイルスタンパク質はVLPを形成することが知られている。例えば、RSV抗原を含有するキメラVLPは、ニューカッスル病ウイルスベースのVLPであり得る。ニューカッスル病ベースのVLPは、マウスにおいて、RSVに対する中和免疫応答を誘発することが以前に示されている。そのようなVLPの形成は、任意の適切な技術によって検出され得る。培地中のVLPの検出のための、当技術分野において公知の適切な技術の例には、例えば電子顕微鏡法技術、動的光散乱(DLS)、選択的クロマトグラフィー分離(例えば、VLPのイオン交換、疎水性相互作用、および/またはサイズ排除クロマトグラフィー分離)、および密度勾配遠心分離が含まれる。
一部の態様において、ウイルス様粒子は、F2ポリペプチドおよびF1ポリペプチド(膜貫通ドメインに連結されたF1ポリペプチドなど)を含む組換えRSV Fタンパク質を含み、該F1ポリペプチドは、位置155および290におけるシステインペア間のジスルフィド結合、ならびに位置190における空洞充填アミノ酸置換;または位置155および290におけるシステインペア間のジスルフィド結合、位置190における空洞充填アミノ酸置換、ならびに位置207における空洞充填アミノ酸置換を含む。
一部の態様において、ウイルス様粒子は、F2ポリペプチドおよびF1ポリペプチド(膜貫通ドメインに連結されたF1ポリペプチドなど)を含む組換えRSV Fタンパク質を含み、該F1ポリペプチドは、S155C、S290C、およびS190Fアミノ酸置換、S155C、S290C、およびS190Wアミノ酸置換、またはS155C、S290C、およびS190Lアミノ酸置換を含む。さらなる態様において、ウイルス様粒子は、F2ポリペプチドおよびF1ポリペプチド(膜貫通ドメインに連結されたF1ポリペプチドなど)を含む組換えRSV Fタンパク質を含み、該F1ポリペプチドは、S155C、S290C、S190F、およびV207Lアミノ酸置換、S155C、S290C、S190W、およびV207Lアミノ酸置換、S155C、S290C、S190L、およびV207Lアミノ酸置換、S155C、S290C、S190F、およびV207Fアミノ酸置換、S155C、S290C、S190W、およびV207Fアミノ酸置換、S155C、S290C、S190L、およびV207Fアミノ酸置換、S155C、S290C、S190F、およびV207Wアミノ酸置換、S155C、S290C、S190W、およびV207Wアミノ酸置換、またはS155C、S290C、S190L、およびV207Wアミノ酸置換を含む。
一部の態様において、ウイルス様粒子は、F2ポリペプチドおよびF1ポリペプチド(膜貫通ドメインに連結されたF1ポリペプチドなど)を含む組換えRSV Fタンパク質を含み、該F2ポリペプチドおよびF1ポリペプチドは、SEQ ID NO: 371(S155C、S290C、S190F、およびV207L置換を有するRSV A)、SEQ ID NO: 372(S155C、S290C、S190F、およびV207L置換を有するRSV B)、SEQ ID NO: 373(S155C、S290C、S190F、およびV207L置換を有するウシRSV)、SEQ ID NO: 374(S155C、S290C、およびS190F置換を有するRSV A)、SEQ ID NO: 375(S155C、S290C、およびS190F置換を有するRSV B)、またはSEQ ID NO: 376(S155C、S290C、およびS190F置換を有するウシRSV)のうちのいずれか1つの、それぞれ位置26~109および137~513として明示されるアミノ酸配列を含む。
いくつかの態様において、ウイルス様粒子は、ヒトRSV Aサブタイプ、ヒトRSV Bサブタイプ、またはウシRSV由来のF1ポリペプチド(膜貫通ドメインに連結されたF1ポリペプチドなど)およびF2ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドは、本明細書において記載される安定化改変のいずれか(例えば、S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など、安定化置換の上記組み合わせのうちの1つ)を含む。
4. タンパク質ナノ粒子
一部の態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質のうちの1種または複数種を含むタンパク質粒子が提供され、該タンパク質ナノ粒子は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。ナノ粒子の非限定的な例には、フェリチンナノ粒子、エンカプスリンナノ粒子、および硫黄オキシゲナーゼレダクターゼ(SOR)ナノ粒子が含まれ、それらは、それぞれフェリチンタンパク質、エンカプスリンタンパク質、およびSORタンパク質を含む単量体サブユニットの会合体から構成される。融合前立体構造に安定化された開示される組換えRSV Fタンパク質を含むタンパク質ナノ粒子を構築するために、抗原をタンパク質ナノ粒子(フェリチンタンパク質、エンカプスリンタンパク質、またはSORタンパク質など)のサブユニットに連結させる。融合タンパク質は、適当な条件下でナノ粒子に自己会合する。
フェリチンナノ粒子、および免疫目的のための(例えば、インフルエンザ抗原に対する免疫のための)それらの使用は、当技術分野において開示されている(例えば、参照によりその全体として本明細書に組み入れられる、Kanekiyo et al., Nature, 499:102-106, 2013を参照されたい)。
一部の態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質のいずれかを、フェリチンポリペプチドまたは種々のフェリチンポリペプチドの混成物に連結させて、フェリチンタンパク質ナノ粒子を構築する。該フェリチンナノ粒子は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。フェリチンは、すべての動物、細菌、および植物に見出される球状タンパク質であり、それは、ミネラル化したコアへのおよびそこからの水和鉄イオンおよびプロトンの輸送を通じて、多核Fe(III)2O3形成の速度および位置を制御するように主に作用する。フェリチンの球状形態は、およそ17~20kDaの分子量を有するポリペプチドである単量体サブユニットから作り上げられる。1つのそのような単量体サブユニットの配列の例が、SEQ ID NO: 353によって表されている。各単量体サブユニットは、4ヘリックスバンドルの長軸と大体垂直にある第5のより短いヘリックス(c末端ヘリックス)とともに、4本逆平行ヘリックスモチーフを含むヘリックスバンドルのトポロジーを有する。従来に従って、複数のヘリックスは、それぞれN末端から「A、B、C、D、およびE」と標識される。N末端配列は、カプシドの3回軸(fold axis)に近接して在りかつ表面に伸長しており、一方で複数のEヘリックスは、カプシドコア内に伸長しているC末端とともに4回軸で一緒にパッキングされる。このパッキングの結果、カプシド表面に2つの細孔が創出される。これらの細孔の一方または両方は、カプシド内へおよびそこから水和鉄が拡散する場所に相当すると予想される。産生後、これらの単量体サブユニットは、球状フェリチンタンパク質に自己会合する。ゆえに、球状形態のフェリチンは、24個の単量体のサブユニットタンパク質を含み、かつ432種の対称性を有するカプシド様構造を有する。フェリチンナノ粒子を構築する方法は、当業者に公知でありかつ本明細書においてさらに記載されている(例えば、Zhang, Int. J. Mol. Sci., 12:5406-5421, 2011を参照されたい。それは参照によりその全体として本明細書に組み入れられる)。
具体的な例において、フェリチンポリペプチドは、大腸菌(E. coli)フェリチン、ヘリコバクター・ピロリフェリチン、ヒト軽鎖フェリチン、ウシガエルフェリチン、または大腸菌-ヒト混成型フェリチン、大腸菌-ウシガエル混成型フェリチン、またはヒト-ウシガエル混成型フェリチンなどのそれらの混成物である。融合前立体構造に安定化された開示されるRSV Fタンパク質抗原における使用のための、フェリチンポリペプチドの例示的なアミノ酸配列およびフェリチンポリペプチドをコードする核酸配列は、例えばアクセッション番号ZP_03085328、ZP_06990637、EJB64322.1、AAA35832、NP_000137、AAA49532、AAA49525、AAA49524、およびAAA49523でGENBANK(登録商標)において見出され得、それらは、2013年2月28日に入手可能なものとして参照によりそれらの全体として本明細書に組み入れられる。一態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質のいずれかを、SEQ ID NO: 353として明示されるアミノ酸配列と少なくとも80%(少なくとも85%、少なくとも90%、少なくとも95%、または少なくとも97%など)同一なアミノ酸配列を含むフェリチンタンパク質に連結させる。フェリチンタンパク質に連結された、融合前立体構造に安定化された開示される組換えRSV Fタンパク質の具体的な例には、SEQ ID NO: 350として明示されるアミノ酸配列が含まれる。
一部の態様において、フェリチンポリペプチドは、ヘリコバクター・ピロリフェリチン(SEQ ID NO: 353として明示されるフェリチンポリペプチドなど)であり、C31S、C31A、またはC31V置換など、位置31におけるシステイン残基の置換を含む。開示される組換えRSV Fタンパク質のいずれか(例えば、S155C、S290C、およびS190F置換を有する、またはS155C、S290C、S190F、およびV207L置換を有するRSV Fポリペプチド)を、C31S、C31A、またはC31V置換など、フェリチンポリペプチドの位置31におけるシステイン残基の置換をさらに含むヘリコバクター・ピロリフェリチン(SEQ ID NO: 353として明示されるフェリチンポリペプチドなど)に連結させることができる。
一部の態様において、フェリチンタンパク質ナノ粒子は、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドはフェリチンタンパク質に連結されており、かつ該F1ポリペプチドは、位置155および290におけるシステインペア間のジスルフィド結合、ならびに位置190における空洞充填アミノ酸置換;または位置155および290におけるシステインペア間のジスルフィド結合、位置190における空洞充填アミノ酸置換、ならびに位置207における空洞充填アミノ酸置換を含む。
一部の態様において、フェリチンタンパク質ナノ粒子は、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドはフェリチンタンパク質に連結されており、かつ該F1ポリペプチドは、S155C、S290C、およびS190Fアミノ酸置換、S155C、S290C、およびS190Wアミノ酸置換、またはS155C、S290C、およびS190Lアミノ酸置換を含む。さらなる態様において、フェリチンタンパク質ナノ粒子は、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドはフェリチンタンパク質に連結されており、かつ該F1ポリペプチドは、S155C、S290C、S190F、およびV207Lアミノ酸置換、S155C、S290C、S190W、およびV207Lアミノ酸置換、S155C、S290C、S190L、およびV207Lアミノ酸置換、S155C、S290C、S190F、およびV207Fアミノ酸置換、S155C、S290C、S190W、およびV207Fアミノ酸置換、S155C、S290C、S190L、およびV207Fアミノ酸置換、S155C、S290C、S190F、およびV207Wアミノ酸置換、S155C、S290C、S190W、およびV207Wアミノ酸置換、またはS155C、S290C、S190L、およびV207Wアミノ酸置換を含む。
フェリチンナノ粒子上に含まれるRSV Fタンパク質は、融合前安定化のための本明細書において開示される置換を含むヒトサブタイプA、ヒトサブタイプB、またはウシのRSV Fタンパク質であり得る。
一部の態様において、フェリチンタンパク質ナノ粒子は、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドはフェリチンタンパク質に連結されており、かつ該F2ポリペプチドおよびF1ポリペプチドは、SEQ ID NO: 371(S155C、S290C、S190F、およびV207L置換を有するRSV A)、SEQ ID NO: 372(S155C、S290C、S190F、およびV207L置換を有するRSV B)、SEQ ID NO: 373(S155C、S290C、S190F、およびV207L置換を有するウシRSV)、SEQ ID NO: 374(S155C、S290C、およびS190F置換を有するRSV A)、SEQ ID NO: 375(S155C、S290C、およびS190F置換を有するRSV B)、またはSEQ ID NO: 376(S155C、S290C、およびS190F置換を有するウシRSV)のうちのいずれか1つの、それぞれ位置26~109および137~513として明示されるアミノ酸配列を含む。
いくつかの態様において、フェリチンタンパク質ナノ粒子は、ヒトRSV Aサブタイプ、ヒトRSV Bサブタイプ、またはウシRSV由来のF1ポリペプチドおよびF2ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドは、本明細書において記載される安定化改変のいずれか(例えば、S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など、安定化置換の上記組み合わせのうちの1つ)を含む。
一部の態様において、フェリチンナノ粒子は、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドはフェリチンタンパク質に連結されており、かつ該F2ポリペプチド、およびフェリチンタンパク質に連結されたF1ポリペプチドは、SEQ ID NO: 377(C末端フェリチンドメインとともに、S155C、S290C、S190F、V207Lアミノ酸置換を含むRSV A)またはSEQ ID NO: 378~382の、それぞれ位置26~109および137~679として明示されるアミノ酸配列を含む。
一部の態様において、フェリチンナノ粒子は、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドはフェリチンに連結されており、かつ該F2ポリペプチド、およびフェリチンに連結されたF1ポリペプチドは、表8eの3列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、または49に挙げられたアミノ酸置換を含む。一部の態様において、フェリチンナノ粒子は、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含み、該F1ポリペプチドはフェリチンタンパク質に連結されており、かつ該F2ポリペプチド、およびフェリチンタンパク質に連結されたF1ポリペプチドは、表8eの4列目の行1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、または49に挙げられたSEQ ID NOに明示される、F1およびF2ポリペプチドのアミノ酸配列を含む。表8eに挙げられたSEQ ID NO: 602~617および620~634および645~650は、対応するFタンパク質が真核細胞内で作製された場合にタンパク質分解によるプロセシングによって除去されるシグナル配列およびpep27ポリペプチド配列、ならびにC末端タンパク質タグを含むことが解されるであろう。
(表8e)フェリチンナノ粒子の産生のための例示的なRSV Fタンパク質の変異および配列
付加的な態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質抗原のいずれかを、エンカプスリンポリペプチドに連結させて、エンカプスリンナノ粒子を構築する。該エンカプスリンナノ粒子は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。エンカプスリンタンパク質は、酵素をパッケージする最小区画として機能する大きなタンパク質会合体を形成するリノシン(linocin)様タンパク質としても知られる保存された細菌タンパク質ファミリーである。エンカプスリン会合体は、およそ30kDaの分子量を有するポリペプチドである単量体サブユニットから作り上げられる。1つのそのような単量体サブユニットの配列の例が、SEQ ID NO: 354として提供されている。産生後、該単量体サブユニットは、60個の単量体サブユニットを含む球状エンカプスリン会合体に自己会合する。エンカプスリンナノ粒子を構築する方法は、当業者に公知でありかつ本明細書においてさらに記載されている(例えば、Sutter et al., Nature Struct. and Mol. Biol., 15:939-947, 2008を参照されたい。それは参照によりその全体として本明細書に組み入れられる)。具体的な例において、エンカプスリンポリペプチドは、大腸菌またはサーモトガ・マリティマ(Thermotoga maritime)エンカプスリンなどの細菌エンカプスリンである。融合前立体構造に安定化された開示されるRSV Fタンパク質抗原との使用のための例示的なエンカプスリン配列は、SEQ ID NO: 354として明示されている。
付加的な態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質のいずれかを、硫黄オキシゲナーゼレダクターゼ(SOR)ポリペプチドに連結させて、SORナノ粒子を構築する。該SORナノ粒子は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。SORタンパク質は、24個のサブユニットのタンパク質会合体を形成する、例えば好熱酸性古細菌アシディアヌス・アムビバレンス(Acidianus ambivalens)由来の微生物タンパク質である。SORナノ粒子を構築する方法は、当業者に公知である(例えば、Urich et al., Science, 311:996-1000, 2006を参照されたい。それは参照によりその全体として本明細書に組み入れられる)。SORタンパク質に連結された、融合前立体構造に安定化された開示される組換えRSV Fタンパク質の具体的な例には、SEQ ID NO: 344およびSEQ ID NO: 345として明示されるアミノ酸配列が含まれる。
付加的な態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質のいずれかを、ルマジンシンターゼポリペプチドに連結させて、ルマジンシンターゼナノ粒子を構築する。該ルマジンシンターゼナノ粒子は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。ルマジンシンターゼタンパク質に連結された、融合前立体構造に安定化された開示される組換えRSV Fタンパク質の具体的な例には、SEQ ID NO: 346~348として明示されるアミノ酸配列が含まれる。
付加的な態様において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質のいずれかを、ピルビン酸デヒドロゲナーゼポリペプチドに連結させて、ピルビン酸デヒドロゲナーゼナノ粒子を構築する。該ピルビン酸デヒドロゲナーゼナノ粒子は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。ピルビン酸デヒドロゲナーゼタンパク質に連結された、融合前立体構造に安定化された開示される組換えRSV Fタンパク質の具体的な例には、SEQ ID NO: 349として明示されるアミノ酸配列が含まれる。
一部の例において、融合前立体構造に安定化された開示される組換えRSV Fタンパク質のいずれかを、フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼタンパク質のN末端またはC末端に、例えばSer-Glyリンカーなどのリンカーで連結させる。構築物がHEK 293 Freestyle細胞内で作製された場合、融合タンパク質は細胞から分泌されかつナノ粒子に自己会合する。公知の技術を用いて、例えば数種の異なるクロマトグラフィー手順、例えばMonoQ(陰イオン交換)、それに続くサイズ排除(SUPEROSE(登録商標)6)クロマトグラフィーによって、ナノ粒子を精製することができる。
いくつかの態様は、単量体サブユニットの自己会合を球状形態のタンパク質に向かわせることが可能な、フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、もしくはピルビン酸デヒドロゲナーゼタンパク質、またはそれらの任意の部分の単量体サブユニットを含む。単量体サブユニットが、融合前立体構造に安定化された組換えRSV Fタンパク質をその表面に呈示するナノ粒子に自己会合し得る限り、任意の公知のフェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼタンパク質の単量体サブユニット由来のアミノ酸配列を用いて、融合前立体構造に安定化された開示される組換えRSV Fタンパク質との融合タンパク質を産生することができる。
融合タンパク質は、フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼタンパク質の単量体サブユニットポリペプチドの全長配列を含む必要はない。一部が、単量体サブユニットの自己会合を球状形態のタンパク質に向かわせるアミノ酸配列を含む限り、単量体サブユニットポリペプチドの一部または領域を利用することができる。
一部の態様において、単量体フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼサブユニットのアミノ酸配列に変異を操作することは有用であり得る。例えば、酵素認識部位またはグリコシル化部位などの部位を変更して、融合タンパク質に有益な特性(例えば、半減期)を与えることは有用であり得る。
フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼタンパク質への、融合前立体構造に安定化された開示される組換えRSV Fタンパク質のいずれかの融合は、該融合タンパク質のうちの融合前立体構造に安定化された開示される組換えRSV Fタンパク質部分が、単量体フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼサブユニットの球状タンパク質への自己会合に干渉しないように、かつ該融合タンパク質のうちのフェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼタンパク質部分が、融合前立体構造に安定化された開示される組換えRSV Fタンパク質抗原の、RSVに対する免疫応答を誘発し得る能力に干渉しないようになされるべきであることは、当業者によって理解されるであろう。一部の態様において、フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼタンパク質と、融合前立体構造に安定化された開示される組換えRSV Fタンパク質とを、いずれの部分の活性にも影響を及ぼすことなく直接一緒に接合することができる。他の態様において、フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼタンパク質と、融合前立体構造に安定化された組換えRSV Fタンパク質とを、リンカー(スペーサーとも称される)配列を用いて接合させる。融合タンパク質が、ナノ粒子に会合し得る能力およびRSVに対する免疫応答を誘発し得る能力も維持するように、該融合タンパク質のうちのフェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼ部分と、該融合タンパク質のうちの融合前立体構造に安定化された開示される組換えRSV Fタンパク質部分とを互いに関して位置付けするよう、リンカー配列を設計する。いくつかの態様において、リンカー配列はアミノ酸を含む。用いるための好ましいアミノ酸は、小さな側鎖を有するもの、および/または帯電していないものである。そのようなアミノ酸は、融合タンパク質の適正な折り畳みおよび活性に干渉する可能性が低い。したがって、リンカー配列において用いるための好ましいアミノ酸は、単独または組み合わせのいずれかでの、セリン、グリシン、およびアラニンである。そのようなリンカー配列の一例はSGGである。必要に応じて、アミノ酸を付加するまたは差し引くことができる。当業者であれば、タンパク質ナノ粒子の構築のための適当なリンカー配列を決定し得る能力がある。
ある特定の態様において、タンパク質ナノ粒子は、およそ500~4600kDaなど、100~5000kDaの分子量を有する。一部の態様において、タンパク質ナノ粒子が、融合前立体構造に安定化された組換えRSV Fタンパク質を含む場合、フェリチンナノ粒子は650kDaのおよその分子量を有し、エンカプスリンナノ粒子は2100kDaのおよその分子量を有し、SORナノ粒子は1000kDaのおよその分子量を有し、ルマジンシンターゼナノ粒子は4000kDaのおよその分子量を有し、かつピルビン酸デヒドロゲナーゼナノ粒子は4600kDaのおよその分子量を有する。
フェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼタンパク質に連結された、融合前立体構造に安定化された開示される組換えRSV Fタンパク質は、それぞれフェリチンナノ粒子、エンカプスリンナノ粒子、SORナノ粒子、ルマジンシンターゼナノ粒子、およびピルビン酸デヒドロゲナーゼナノ粒子と称される、マルチサブユニットのタンパク質ナノ粒子に自己会合し得る。融合前立体構造に安定化された開示される組換えRSV Fタンパク質を含むナノ粒子は、融合前立体構造に安定化された開示される組換えRSV Fタンパク質を含まない天然のフェリチン、エンカプスリン、SOR、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼナノ粒子と実質的に同じ構造特徴を有する。つまり、それらは、(それぞれ)24、60、24、60、または60個のサブユニットを含有し、かつ同様の対応する対称性を有する。融合前立体構造に安定化された開示される組換えRSV Fタンパク質を含む単量体サブユニットから構築されたナノ粒子の場合、そのようなナノ粒子は、融合前特異的抗体(例えば、D25またはAM22抗体)によって特異的に結合され、かつ/またはRSV F融合前特異的立体構造(抗原部位φなど)を含む。
C. 抗原をコードするポリヌクレオチド
開示されるPreF抗原(例えば、融合前立体構造に安定化された組換えRSV Fタンパク質、もしくはエピトープ-足場タンパク質、またはそのようなタンパク質を含有するウイルス様粒子もしくはタンパク質ナノ粒子)をコードするポリヌクレオチドも提供される。これらのポリヌクレオチドには、該抗原をコードするDNA、cDNA、およびRNA配列が含まれる。
一部の態様において、核酸分子は、適当な細胞内で発現させた場合に、開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードする。一部の態様において、核酸分子は、適当な細胞内で発現させた場合に、開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、該前駆体F0ポリペプチドは、N末端からC末端方向に、シグナルペプチド、F2ポリペプチド、Pep27ポリペプチド、およびF1ポリペプチドを含む。一部の態様において、Pep27ポリペプチドは、SEQ ID NO: 1~184または370のうちのいずれか1つの位置110~136として明示されるアミノ酸配列を含み、該アミノ酸位置は、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する。一部の態様において、シグナルペプチドは、SEQ ID NO: 1~184または370のうちのいずれか1つの位置1~25として明示されるアミノ酸配列を含み、該アミノ酸位置は、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する。
一部の態様において、核酸分子は、適当な細胞内で発現させた場合に、開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、該前駆体F0ポリペプチドは、SEQ ID NO: 185または189~303のうちのいずれか1つとして明示されるアミノ酸配列を含む。一部の態様において、核酸分子は、適当な細胞内で発現させた場合に、開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、該前駆体F0ポリペプチドは、SEQ ID NO: 185または189~303のうちのいずれか1つの残基1~513として明示されるアミノ酸配列を含む。
一部の態様において、核酸分子は、適当な細胞内で発現させた場合に、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含む開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、かつ該F1ポリペプチドは、位置155および290におけるシステインペア間のジスルフィド結合、ならびに位置190における空洞充填アミノ酸置換;または位置155および290におけるシステインペア間のジスルフィド結合、位置190における空洞充填アミノ酸置換、ならびに位置207における空洞充填アミノ酸置換を含む。
一部の態様において、核酸分子は、適当な細胞内で発現させた場合に、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含む開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、かつ該F1ポリペプチドは、S155C、S290C、およびS190Fアミノ酸置換、S155C、S290C、およびS190Wアミノ酸置換、またはS155C、S290C、およびS190Lアミノ酸置換を含む。さらなる態様において、核酸分子は、適当な細胞内で発現させた場合に、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含む開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、かつ該F1ポリペプチドは、S155C、S290C、S190F、およびV207Lアミノ酸置換、S155C、S290C、S190W、およびV207Lアミノ酸置換、S155C、S290C、S190L、およびV207Lアミノ酸置換、S155C、S290C、S190F、およびV207Fアミノ酸置換、S155C、S290C、S190W、およびV207Fアミノ酸置換、S155C、S290C、S190L、およびV207Fアミノ酸置換、S155C、S290C、S190F、およびV207Wアミノ酸置換、S155C、S290C、S190W、およびV207Wアミノ酸置換、またはS155C、S290C、S190L、およびV207Wアミノ酸置換を含む。
一部の態様において、核酸分子は、適当な細胞内で発現させた場合に、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含む開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、該F2ポリペプチドおよびF1ポリペプチドは、SEQ ID NO: 371(S155C、S290C、S190F、およびV207L置換を有するRSV A)、SEQ ID NO: 372(S155C、S290C、S190F、およびV207L置換を有するRSV B)、SEQ ID NO: 373(S155C、S290C、S190F、およびV207L置換を有するウシRSV)、SEQ ID NO: 374(S155C、S290C、およびS190F置換を有するRSV A)、SEQ ID NO: 375(S155C、S290C、およびS190F置換を有するRSV B)、またはSEQ ID NO: 376(S155C、S290C、およびS190F置換を有するウシRSV)のうちのいずれか1つの、それぞれ位置26~109および137~513として明示されるアミノ酸配列を含む。
いくつかの態様において、核酸分子は、適当な細胞内で発現させた場合に、ヒトRSV Aサブタイプ、ヒトRSV Bサブタイプ、またはウシRSV由来のF2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含む開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、該F1ポリペプチドは、本明細書において記載される安定化改変のいずれか(例えば、S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など、安定化置換の上記組み合わせのうちの1つ)を含む。
非限定的な一例において、核酸分子は、適当な細胞内で発現させた場合に、F2ポリペプチドおよびF1ポリペプチドを含む組換えRSV Fタンパク質を含む開示されるPreF抗原にプロセシングされる前駆体F0ポリペプチドをコードし、該F1ポリペプチドはフェリチンタンパク質に連結されており、かつ該F2ポリペプチド、およびフェリチンタンパク質に連結されたF1ポリペプチドは、SEQ ID NO: 377(C末端フェリチンドメインとともに、S155C、S290C、S190F、V207Lアミノ酸置換を含むRSV A)またはSEQ ID NO: 378~382の、それぞれ位置26~109および137~679として明示されるアミノ酸配列を含む。
非限定的な一例において、核酸分子は、SEQ ID NO: 383(C末端フォルドンドメイン、トロンビン切断部位、6×Hisタグ、およびStrepTag IIに融合した、S155C、S290C、S190F、およびV207Lアミノ酸置換を含む、ヒトサブタイプA由来のRSV Fタンパク質)として明示される配列を含む。
別の非限定的な例において、核酸分子は発現ベクターであり、SEQ ID NO: 384(C末端フォルドンドメイン、トロンビン切断部位、6×Hisタグ、およびStrepTag IIに融合した、S155C、S290C、S190F、およびV207Lアミノ酸置換を含む、ヒトサブタイプA由来のRSV Fタンパク質)として明示される配列を含む。
本開示の核酸の操縦およびベクター内への挿入のための方法は、当技術分野において周知である(例えば、Sambrook et al., Molecular Cloning, a Laboratory Manual, 2d edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1989、およびAusubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley & Sons, New York, N.Y., 1994を参照されたい)。
PreF抗原(例えば、融合前立体構造に安定化された組換えRSV Fタンパク質、もしくはエピトープ-足場タンパク質、またはそのようなタンパク質を含有するウイルス様粒子もしくはタンパク質ナノ粒子)をコードする核酸を、ポリメラーゼ連鎖反応(PCR)、リガーゼ連鎖反応(LCR)、転写に基づく増幅システム(TAS)、自己持続性配列複製システム(3SR)、およびQβレプリカーゼ増幅システム(QB)など、インビトロ方法によってクローニングしかつ増幅することができる。例えば、該タンパク質をコードするポリヌクレオチドを、該分子のDNA配列に基づくプライマーを用いた、cDNAのポリメラーゼ連鎖反応によって単離することができる。多種多様なクローニングおよびインビトロ増幅方法論が当業者に周知である。PCR法は、例えば米国特許第4,683,195号;Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263, 1987;およびErlich, ed., PCR Technology(Stockton Press, NY, 1989)に記載されている。ストリンジェントなハイブリダイゼーション条件下で、所望のポリヌクレオチドの配列より選択されたプローブを用いて、ゲノムライブラリーまたはcDNAライブラリーをスクリーニングすることによっても、ポリヌクレオチドを単離することができる。
PreF抗原(例えば、融合前立体構造に安定化された組換えRSV Fタンパク質、もしくはエピトープ-足場タンパク質、またはそのようなタンパク質を含有するウイルス様粒子もしくはタンパク質ナノ粒子)をコードするポリヌクレオチドには、ベクター内、自律複製型のプラスミドもしくはウイルス内、または原核生物もしくは真核生物のゲノムDNA内に組み入れられる、あるいは他の配列から独立して別個の分子(cDNAなど)として存在する組換えDNAが含まれる。ヌクレオチドは、リボヌクレオチド、デオキシリボヌクレオチド、またはいずれかのヌクレオチドの改変形態であり得る。該用語は、DNAの一本および二本形態を含む。
PreF抗原(例えば、融合前立体構造に安定化された組換えRSV Fタンパク質、もしくはエピトープ-足場タンパク質、またはそのようなタンパク質を含有するウイルス様粒子もしくはタンパク質ナノ粒子)をコードするDNA配列を、適切な宿主細胞内へのDNA移入によってインビトロで発現させることができる。細胞は、原核生物または真核生物のものであり得る。該用語は、対象宿主細胞の任意の子孫も含む。複製中に生じる変異があり得るため、すべての子孫が親細胞と同一ではない可能性があることが理解される。外来DNAが宿主内で継続的に維持されることを意味する安定移入の方法は、当技術分野において公知である。
PreF抗原(例えば、融合前立体構造に安定化された組換えRSV Fタンパク質、もしくはエピトープ-足場タンパク質、またはそのようなタンパク質を含有するウイルス様粒子もしくはタンパク質ナノ粒子)をコードするポリヌクレオチド配列を、発現制御配列に機能的に連結させることができる。コード配列に機能的に連結された発現制御配列は、該発現制御配列と適合する条件下で該コード配列の発現が達成されるようにライゲーションされる。発現制御配列には、適当なプロモーター、エンハンサー、転写ターミネーター、タンパク質コード遺伝子の前の開始コドン(すなわち、ATG)、イントロンに対するスプライシングシグナル、mRNAの適正な翻訳を可能にするためのその遺伝子の正しいリーディングフレームの維持、および終止コドンが含まれるが、それらに限定されるわけではない。
宿主には、微生物、酵母、昆虫、および哺乳類生物が含まれ得る。原核生物内で真核生物配列またはウイルス配列を有するDNA配列を発現させる方法は、当技術分野において周知である。適切な宿主細胞の非限定的な例には、細菌、古細菌、昆虫、真菌(例えば、酵母)、植物、および動物(例えば、ヒトなどの哺乳類細胞)の細胞が含まれる。有用な例示的な細胞には、大腸菌(Escherichia coli)、バチルス・サブティリス(Bacillus subtilis)、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、サルモネラ・ティフィムリウム(Salmonella typhimurium)、SF9細胞、C129細胞、293細胞、ニューロスポーラ(Neurospora)、ならびに不死化した哺乳類の骨髄細胞株およびリンパ細胞株が含まれる。培養下の哺乳類細胞を繁殖させるための技術は周知である(Jakoby and Pastan (eds), 1979, Cell Culture. Methods in Enzymology, volume 58, Academic Press, Inc., Harcourt Brace Jovanovich, N.Y.を参照されたい)。一般に用いられる哺乳類宿主細胞株の例は、VEROおよびHeLa細胞、CHO細胞、ならびにWI38、BHK、およびCOS細胞株であるが、とはいえより高い発現、望ましいグリコシル化パターン、または他の特質を提供するように設計された細胞などの細胞株が用いられ得る。一部の態様において、宿主細胞には、HEK293細胞、またはGnTI-/-細胞(ATCC(登録商標)番号CRL-3022)などのその誘導体が含まれる。
組換えDNAによる宿主細胞の形質転換は、当業者に周知である従来的技術によって行われ得る。宿主が、大腸菌など、しかしながらそれに限定されない原核生物である場合、DNA取り込みが可能であるコンピテント細胞を、指数関数的成長期の後に回収された細胞から調製し、かつその後に当技術分野において周知の手順を用いたCaCl2法によって処理することができる。あるいは、MgCl2またはRbClを用いることができる。形質転換は、必要な場合には宿主細胞のプロトプラストを形成した後に、またはエレクトロポレーションによって実施され得る。
宿主が真核生物である場合、リン酸カルシウム共沈殿、マイクロインジェクション、エレクトロポレーションなどの従来的な機械的手順、リポソームで包み込まれたプラスミドの挿入、またはウイルスベクターのようなDNAのトランスフェクションの方法を用いることができる。真核細胞を、開示される抗原をコードするポリヌクレオチド配列と、単純ヘルペスチミジンキナーゼ遺伝子など、選択可能な表現型をコードする第2の外来DNA分子とを用いて共形質転換することもできる。別の方法は、真核細胞を一過性に感染させもしくは形質転換しかつタンパク質を発現させる、シミアンウイルス40(SV40)またはウシパピローマウイルスなどの真核生物ウイルスベクターを用いることである(例えば、Eukaryotic Viral Vectors, Cold Spring Harbor Laboratory, Gluzman ed., 1982を参照されたい)。
D. ウイルスベクター
融合前立体構造に安定化された組換えRSV Fタンパク質をコードする核酸分子を、例えば宿主細胞内での抗原の発現のために、または本明細書において開示される、対象の免疫のために、ウイルスベクター内に含めることができる。一部の態様において、ウイルスベクターを、プライム-ブーストワクチン接種の一部として対象に投与する。いくつかの態様において、ウイルスベクターを、プライム-ブーストワクチン接種における使用のためのプライマーワクチンまたはブースターワクチンなどのワクチン内に含める。
いくつかの例において、融合前立体構造に安定化された組換えRSV Fタンパク質をコードするウイルスベクターは、複製能を有するものであってよい。例えば、ウイルスベクターは、宿主細胞内でのウイルス複製を阻害しない、ウイルスゲノムにおける変異(例えば、PreF抗原をコードする核酸の挿入)を有し得る。ウイルスベクターは、条件付き複製能を有するものであってもよい。他の例において、ウイルスベクターは、宿主細胞内で複製欠損である。
いくつかの態様において、融合前立体構造に安定化された組換えRSV Fタンパク質を、気道を介して送達され得るウイルスベクターによって発現させる。例えば、ウシパラインフルエンザウイルス(BPIV)ベクター(例えば、BPIV-1、BPIV-2、またはBPV-3ベクター)またはヒトPIVベクターなどのパラミクソウイルス(PIV)ベクター、メタニューモウイルス(MPV)ベクター、センダイウイルスベクター、または麻疹ウイルスベクターを用いて、開示される抗原を発現させる。RSV FおよびhPIV Fタンパク質を発現するBPIV3ウイルスベクター(MEDI-534)は、現在RSVワクチンとして臨床試験中である。抗原を発現させるためのパラミクソウイルス(PIV)ベクターの例は、当業者に公知である(例えば、米国特許出願公報第2012/0045471号、第2011/0212488号、第2010/0297730号、第2010/0278813号、第2010/0167270号、第2010/0119547号、第2009/0263883号、第2009/0017517号、第2009/0004722号、第2008/0096263号、第2006/0216700号、第2005/0147623号、第2005/0142148号、第2005/0019891号、第2004/0208895号、第2004/0005545号、第2003/0232061号、第2003/0095987号、および第2003/0072773号を参照されたい。そのそれぞれは参照によりその全体として本明細書に組み入れられる)。別の例において、ニューカッスル病ウイルスベクターを用いて、開示される抗原を発現させる(例えば、参照によりその全体として組み入れられる、ニューカッスル病様粒子上に発現されるRSV FおよびGタンパク質を記載している、McGinnes et al., J. Virol., 85:366-377, 2011を参照されたい)。別の例において、センダイウイルスベクターを用いて、開示される抗原を発現させる(例えば、参照によりその全体として本明細書に組み入れられる、Jones et al., Vaccine, 30:959-968, 2012を参照されたい。それは、霊長類において免疫応答を誘導する、センダイウイルスベースのRSVワクチンの使用を開示している)。
ポリオーマ、すなわちSV40(Madzak et al., 1992, J. Gen. Virol., 73:15331536)、アデノウイルス(Berkner, 1992, Cur. Top. Microbiol. Immunol., 158:39-6;Berliner et al., 1988, Bio Techniques, 6:616-629;Gorziglia et al., 1992, J. Virol., 66:4407-4412;Quantin et al., 1992, Proc. Natl. Acad. Sci. USA, 89:2581-2584;Rosenfeld et al., 1992, Cell, 68:143-155;Wilkinson et al., 1992, Nucl. Acids Res., 20:2233-2239;Stratford-Perricaudet et al., 1990, Hum. Gene Ther., 1:241-256)、ワクシニアウイルス(Mackett et al., 1992, Biotechnology, 24:495-499)、アデノ随伴ウイルス(Muzyczka, 1992, Curr. Top. Microbiol. Immunol., 158:91-123;On et al., 1990, Gene, 89:279-282)、HSVおよびEBVおよびCMVを含むヘルペスウイルス(Margolskee, 1992, Curr. Top. Microbiol. Immunol., 158:67-90;Johnson et al., 1992, J. Virol., 66:29522965;Fink et al., 1992, Hum. Gene Ther. 3:11-19;Breakfield et al., 1987, Mol. Neurobiol., 1:337-371;Fresse et al., 1990, Biochem. Pharmacol., 40:2189-2199)、シンドビスウイルス(H. Herweijer et al., 1995, Human Gene Therapy 6:1161-1167;米国特許第5,091,309号および第5,2217,879号)、アルファウイルス(S. Schlesinger, 1993, Trends Biotechnol. 11:18-22;I. Frolov et al., 1996, Proc. Natl. Acad. Sci. USA 93:11371-11377)、ならびにトリ起源のレトロウイルス(Brandyopadhyay et al., 1984, Mol. Cell Biol., 4:749-754;Petropouplos et al., 1992, J. Virol., 66:3391-3397)、マウス起源のレトロウイルス(Miller, 1992, Curr. Top. Microbiol. Immunol., 158:1-24;Miller et al., 1985, Mol. Cell Biol., 5:431-437;Sorge et al., 1984, Mol. Cell Biol., 4:1730-1737;Mann et al., 1985, J. Virol., 54:401-407)、およびヒト起源のレトロウイルス(Page et al., 1990, J. Virol., 64:5370-5276;Buchschalcher et al., 1992, J. Virol., 66:2731-2739)を含むさらなるウイルスベクターも、開示される抗原の発現に利用可能である。バキュロウイルス(オートグラファ・カリフォルニカ(Autographa californica)多核多角体病ウイルス;AcMNPV)ベクターも当技術分野において公知であり、商業的供給元(PharMingen, San Diego, Calif.;Protein Sciences Corp., Meriden, Conn.;Stratagene, La Jolla, Calif.)から入手され得る。さらなるウイルスベクターが、当業者によく知られている。
いくつかの態様において、本明細書において開示される方法および組成物は、融合前立体構造に安定化された組換えRSV Fタンパク質を発現するアデノウイルスベクターを含む。様々な起源、サブタイプ、またはサブタイプの混合物由来のアデノウイルスを、アデノウイルスベクターのためのウイルスゲノムの供給源として用いることができる。非ヒトアデノウイルス(例えば、サル、チンパンジー、ゴリラ、トリ、イヌ、ヒツジ、またはウシのアデノウイルス)を用いて、アデノウイルスベクターを生成することができる。例えば、サルアデノウイルスを、アデノウイルスベクターのウイルスゲノムの供給源として用いることができる。サルアデノウイルスは、血清型1、3、7、11、16、18、19、20、27、33、38、39、48、49、50型、または他の任意のサルアデノウイルス血清型のものであり得る。サルアデノウイルスは、例えばSV、SAdV、SAV、またはsAVなど、当技術分野において公知の任意の適切な略語を用いて言及され得る。一部の例において、サルアデノウイルスベクターは、血清型3、7、11、16、18、19、20、27、33、38、または39型のサルアデノウイルスベクターである。一例において、チンパンジー血清型のC Ad3ベクターが用いられる(例えば、Peruzzi et al., Vaccine, 27:1293-1300, 2009を参照されたい)。ヒトアデノウイルスを、アデノウイルスベクターのためのウイルスゲノムの供給源として用いることができる。ヒトアデノウイルスは、様々なサブグループまたは血清型のものであり得る。例えば、アデノウイルスは、サブグループA(例えば、血清型12、18、および31型)、サブグループB(例えば、血清型3、7、11、14、16、21、34、35、および50型)、サブグループC(例えば、血清型1、2、5、および6型)、サブグループD(例えば、血清型8、9、10、13、15、17、19、20、22、23、24、25、26、27、28、29、30、32、33、36~39、および42~48型)、サブグループE(例えば、血清型4型)、サブグループF(例えば、血清型40および41型)、未分類血清群(例えば、血清型49および51型)、または他の任意のアデノウイルス血清型のものであり得る。当業者であれば、複製能を有するアデノウイルスベクターおよび複製欠損アデノウイルスベクター(単一におよび多重に複製欠損のアデノウイルスベクターを含む)を熟知している。多重複製欠損アデノウイルスベクターを含む、複製欠損アデノウイルスベクターの例は、米国特許第5,837,511号;第5,851,806号;第5,994,106号;第6,127,175号;第6,482,616号;および第7,195,896号、ならびに国際特許出願WO 94/28152、WO 95/02697、WO 95/16772、WO 95/34671、WO 96/22378、WO 97/12986、WO 97/21826、およびWO 03/022311に開示されている。
E. 組成物
開示されるPreF抗原、ウイルスベクター、および核酸分子を、治療的および予防的製剤を含む薬学的組成物中に含めることができ、かつ1種または複数種のアジュバント、および任意で、抗ウイルス薬などの他の治療用成分と一緒に組み合わせることができる。いくつかの態様において、開示されるPreF抗原、ウイルスベクター、または核酸分子のうちの1つまたは複数を含む組成物は、免疫原性組成物である。組成物は、本明細書において開示される組換えRSV Fタンパク質、(本明細書において開示される組換えRSV Fタンパク質のいずれかを含むタンパク質ナノ粒子など)、本明細書において開示される組換えRSV Fタンパク質のいずれかを含むウイルス様粒子、本明細書において開示される組換えRSV Fタンパク質のいずれかをコードする核酸分子、または本明細書において開示される組換えRSV Fタンパク質のいずれかをコードするもしくは含むベクターを含む、PreF抗原のいずれかを含み得る。
一部の態様において、組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第1の単離された抗原を含み、該安定化されたRSV Fタンパク質はサブタイプA RSV Fタンパク質に基づき、かつ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第2の単離された抗原を含み、該安定化されたRSV Fタンパク質はサブタイプB RSV Fタンパク質に基づく。
一部の態様において、組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第1のタンパク質ナノ粒子を含み、該安定化されたRSV Fタンパク質はサブタイプA RSV Fタンパク質に基づき、かつ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第2のタンパク質ナノ粒子を含み、該安定化されたRSV Fタンパク質はサブタイプB RSV Fタンパク質に基づく。
一部の態様において、組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第1のウイルスベクターを含み、該安定化されたRSV Fタンパク質はサブタイプA RSV Fタンパク質に基づき、かつ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第2のウイルスベクターを含み、該安定化されたRSV Fタンパク質はサブタイプB RSV Fタンパク質に基づく。
一部の態様において、組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第1のウイルス様粒子を含み、該安定化されたRSV Fタンパク質はサブタイプA RSV Fタンパク質に基づき、かつ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第2のウイルス様粒子を含み、該安定化されたRSV Fタンパク質はサブタイプB RSV Fタンパク質に基づく。
一部の態様において、組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質をコードする第1の核酸分子(発現ベクターなど)を含み、該安定化されたRSV Fタンパク質はサブタイプA RSV Fタンパク質に基づき、かつ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第2の核酸分子(発現ベクターなど)を含み、該安定化されたRSV Fタンパク質はサブタイプB RSV Fタンパク質に基づく。
そのような薬学的組成物を、当業者に公知の多様な投与様態、例えば経鼻、経肺、筋肉内、皮下、静脈内、腹腔内、または非経口の経路によって、対象に投与することができる。
組成物を製剤化するために、開示されるPreF抗原、ウイルスベクター、または核酸分子を、様々な薬学的に許容される添加物、ならびに抱合物の分散のための基剤またはビヒクルと組み合わせることができる。所望の添加物には、アルギニン、水酸化ナトリウム、グリシン、塩酸、クエン酸などのpH制御剤が含まれるが、それらに限定されるわけではない。加えて、局所麻酔薬(例えば、ベンジルアルコール)、等張化剤(isotonizing agent)(例えば、塩化ナトリウム、マンニトール、ソルビトール)、吸着阻害剤(例えば、TWEEN(登録商標)80)、溶解度増強剤(例えば、シクロデキストリンおよびその誘導体)、安定剤(例えば、血清アルブミン)、および還元剤(例えば、グルタチオン)が含まれ得る。当技術分野において周知の他の多くの適切なアジュバントの中でも、水酸化アルミニウム(Brenntag Biosector, Copenhagen, Denmarkから入手可能なALHYDROGEL(登録商標)およびAmphogel(登録商標)、Wyeth Laboratories, Madison, NJ)、フロイントアジュバント、MPL(商標)(3-O-脱アシル化モノホスホリル脂質A;Corixa, Hamilton, IN)、IL-12(Genetics Institute, Cambridge, MA)、TLRアゴニスト(TLR-9アゴニストなど)などのアジュバントが該組成物中に含まれ得る。
組成物が液体である場合、不変であるもの(unity)として捉えられる0.9%(w/v)生理食塩溶液の張性を参照して測定される製剤の張性は、典型的に、投与の部位で実質的な不可逆的組織損傷が誘導されないと考えられる値に調整される。一般的に、溶液の張性は、約0.5~約2.0または約0.8~約1.7など、約0.3~約3.0の値に調整される。
開示されるPreF抗原、ウイルスベクター、または核酸分子を、該抗原および任意の所望の添加物を分散させる能力を有する親水性化合物を含み得る基剤またはビヒクル中に分散させることができる。基剤は、ポリカルボン酸またはその塩のコポリマー、他の単量体(例えば、メチル(メタ)アクリレート、アクリル酸など)とのカルボン酸無水物(例えば、無水マレイン酸)、ポリビニルアセテート、ポリビニルアルコール、ポリビニルピロリドンなどの親水性ビニルポリマー、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体、およびキトサン、コラーゲン、アルギン酸ナトリウム、ゼラチン、ヒアルロン酸などの天然ポリマー、ならびにそれらの非毒性の金属塩を含むが、それらに限定されない広範な適切な化合物より選択され得る。多くの場合、生分解性ポリマー、例えばポリ乳酸、ポリ(乳酸-グリコール酸)コポリマー、ポリヒドロキシ酪酸、ポリ(ヒドロキシ酪酸-グリコール酸)コポリマー、およびそれらの混合物が、基剤またはビヒクルとして選択される。あるいはまたは加えて、ポリグリセリン脂肪酸エステル、スクロース脂肪酸エステルなどの合成脂肪酸エステルが、ビヒクルとして採用され得る。親水性ポリマーおよび他のビヒクルを単独でまたは組み合わせて用いることができ、かつ部分的結晶化、イオン結合、架橋などによって、ビヒクルに増強した構造的完全性を添えることができる。ビヒクルは、例えば粘膜表面への直接適用のために、流体または粘性溶液、ゲル、ペースト、粉末、ミクロスフェア、およびフィルムを含む多様な形態で提供され得る。
開示されるPreF抗原、ウイルスベクター、または核酸分子を、多様な方法に従って基剤またはビヒクルと組み合わせることができ、かつ抗原の放出は、分散、ビヒクルの崩壊、または水路の付随形成によるものであってよい。一部の状況において、開示される抗原、または該抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターを、適切なポリマー、例えばイソブチル2-シアノアクリレートから調製されたマイクロカプセル(ミクロスフェア)またはナノカプセル(ナノスフェア)中に分散させ(例えば、Michael et al., J. Pharmacy Pharmacol. 43:1-5, 1991を参照されたい)、かつ長時間にわたる持続性送達および生物学的活性をもたらす生体適合性分散媒質中に分散させる。
薬学的組成物は、薬学的に許容されるビヒクルとして、pH調整剤および緩衝剤、張性調整剤、湿潤剤、例えば酢酸ナトリウム、乳酸ナトリウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、ソルビタンモノラウレート、およびトリエタノールアミンオレエートなど、生理的条件に近づけるために必要とされる物質を含有し得る。固体組成物に関して、例えば薬学的グレードのマンニトール、ラクトース、デンプン、ステアリン酸マグネシウム、サッカリンナトリウム、滑石、セルロース、グルコース、スクロース、炭酸マグネシウムなどを含む、従来的な非毒性の薬学的に許容されるビヒクルを用いることができる。
開示されるPreF抗原、ウイルスベクター、または核酸分子を投与するための薬学的組成物を、溶液、マイクロエマルション、または高濃度の活性成分に適した他の規則的構造としても製剤化することができる。ビヒクルは、例えば水、エタノール、ポリオール(例えば、グリセロール、プロピレングリコール、液体ポリエチレングリコールなど)、およびそれらの適切な混合物を含有する溶媒または分散媒質であり得る。溶液の適正な流動性は、例えばレシチンなどのコーティングの使用によって、分散性製剤の場合には所望の粒子サイズの維持によって、および界面活性剤の使用によって維持され得る。多くの場合、等張剤、例えば糖類、マンニトールおよびソルビトールなどのポリアルコール、または塩化ナトリウムを組成物中に含めることが望ましいであろう。開示される抗原の長期的吸収は、吸収を遅延させる作用物質、例えばモノステアリン酸塩およびゼラチンを組成物中に含めることによってもたらされ得る。
ある特定の態様において、開示されるPreF抗原、ウイルスベクター、または核酸分子を、持続放出性(time-release)製剤、例えば徐放性ポリマーを含む組成物の状態で投与することができる。これらの組成物は、急速放出を防ぐと考えられるビヒクル、例えばポリマー、マイクロカプセル化送達システム、または生体接着性ゲルなどの制御放出性ビヒクルを用いて調製され得る。本開示の様々な組成物での長期的送達は、吸収を遅延させる作用物質、例えばモノステアリン酸アルミニウムヒドロゲル、およびゼラチンを組成物中に含めることによってもたらされ得る。制御放出性製剤が望まれる場合、本開示に従った使用に適した制御放出性結合剤には、活性物質に対して不活性であり、かつ開示される抗原および/または他の生物学的に活性な作用物質を組み入れ得る、任意の生体適合性制御放出性材料が含まれる。数々のそのような材料が、当技術分野において公知である。有用な制御放出性結合剤は、(例えば、粘膜表面で、または体液の存在下で)それらの送達後に生理的条件下でゆっくりと代謝される材料である。適当な結合剤には、持続放出性製剤における使用のための、当技術分野において周知の生体適合性ポリマーおよびコポリマーが含まれるが、それらに限定されるわけではない。そのような生体適合性化合物は、非毒性かつ周囲組織に対して不活性であり、そして鼻の刺激、免疫応答、炎症などの重大な有害な副作用を誘引しない。それらは、また生体適合性でありかつ身体から容易に排除される代謝産物に代謝される。治療用タンパク質の制御送達のための数々のシステムが公知である(例えば、米国特許第5,055,303号;米国特許第5,188,837号;米国特許第4,235,871号;米国特許第4,501,728号;米国特許第4,837,028号;米国特許第4,957,735号;および米国特許第5,019,369号;米国特許第5,055,303号;米国特許第5,514,670号;米国特許第5,413,797号;米国特許第5,268,164号;米国特許第5,004,697号;米国特許第4,902,505号;米国特許第5,506,206号;米国特許第5,271,961号;米国特許第5,254,342号;および米国特許第5,534,496号)。
使用のための例示的なポリマー材料には、加水分解性エステル連結を有するコポリマー性およびホモポリマー性ポリエステルに由来するポリマーマトリックスが含まれるが、それらに限定されるわけではない。これらのうちのいくつかは、生分解性であること、および毒性を有しないまたは低い毒性を有する分解産物につながることが当技術分野において公知である。例示的なポリマーには、ポリグリコール酸およびポリ乳酸、ポリ(DL-乳酸-コ-グリコール酸)、ポリ(D-乳酸-コ-グリコール酸)、ならびにポリ(L-乳酸-コ-グリコール酸)が含まれる。他の有用な生分解性または生浸食性(bioerodable)ポリマーには、ポリ(ヒドロキシエチルメタクリレート)、ポリアミド、ポリ(アミノ酸)(例えば、L-ロイシン、グルタミン酸、L-アスパラギン酸など)、ポリ(エステルウレア)、ポリ(2-ヒドロキシエチルDL-アスパルトアミド)、ポリアセタールポリマー、ポリオルトエステル、ポリカーボネート、ポリマレアミド、多糖、およびそれらのコポリマーなど、ポリ(ε-カプロラクトン)、ポリ(ε-アプロラクトン-コ-乳酸)、ポリ(ε-アプロラクトン-コ-グリコール酸)、ポリ(β-ヒドロキシ酪酸)、ポリ(アルキル-2-シアノアクリレート(cyanoacrilate))、ヒドロゲルのようなポリマーが含まれるが、それらに限定されるわけではない。そのような製剤を調製するための多くの方法が、当業者に周知である(例えば、Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978を参照されたい)。他の有用な製剤には、制御放出性マイクロカプセル(米国特許第4,652,441号および第4,917,893号)、マイクロカプセルおよび他の製剤を作製する際に有用な乳酸-グリコール酸コポリマー(米国特許第4,677,191号および第4,728,721号)、ならびに水溶性ペプチドのための持続放出性組成物(米国特許第4,675,189号)が含まれる。
薬学的組成物は、典型的に、無菌でありかつ製造、保管、および使用の条件下で安定である。無菌溶液は、本明細書において列挙される成分の1つまたは組み合わせとともに、開示されるPreF抗原、ウイルスベクター、または核酸分子を、適当な溶媒中に必要とされる量で組み入れ、必要に応じて、その後に濾過滅菌が続くことによって調製され得る。一般的に、分散物は、開示される抗原および/または他の生物学的に活性な作用物質を、基本的分散媒質および本明細書において列挙されるものからの必要とされる他の成分を含有する無菌ビヒクル中に組み入れることによって調製される。無菌粉末の場合、調製の方法には、開示される抗原+任意のさらなる所望の成分の粉末を、事前に濾過滅菌されたそれらの溶液から産出する、真空乾燥および凍結乾燥が含まれる。微生物の作用の防止は、様々な抗菌剤および抗真菌剤、例えばパラベン、クロロブタノール、フェノール、ソルビン酸、チロメサールなどによって達成され得る。
投与可能な組成物を調製するための実際の方法は、当業者に公知でありまたは明白であり、かつRemingtons Pharmaceutical Sciences, 19th Ed., Mack Publishing Company, Easton, Pennsylvania, 1995のような刊行物においてより詳細に記載されている。
いくつかの態様において、組成物はアジュバントを含む。当業者であれば、アジュバント、例えば免疫原性組成物中に含まれ得るそうしたものを熟知している。いくつかの態様において、アジュバントは、該アジュバントおよび開示される抗原、または該抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターを含有する免疫原性組成物を投与された対象において、Th1偏向性免疫応答を誘発するように選択される。
1つの適切なアジュバントは、非毒性の細菌リポ多糖誘導体である。脂質Aの適切な非毒性誘導体の例は、モノホスホリル脂質A、またはよりとくに3-脱アシル化モノホスホリル脂質A(3D-MPL)である。例えば、米国特許第4,436,727号;第4,877,611号;第4,866,034号;および第4,912,094号を参照されたい。3D-MPLは、IFN-y(Th1)表現型を有するCD4+T細胞応答を主に促進する。3D-MPLは、GB2220211 Aに開示される方法に従って産生され得る。化学的には、それは、3、4、5、または6本のアシル化鎖を有する3-脱アシル化モノホスホリル脂質Aの混合物である。組成物では、小粒子3D-MPLが用いられ得る。小粒子3D-MPLは、それが0.22μmフィルターを通して濾過滅菌され得るような粒子サイズを有する。そのような調製物は、WO94/21292に記載されている。
他の態様において、リポ多糖は、米国特許第6,005,099号およびEP 0 729 473 B1に記載されているような、β(1-6)グルコサミン二糖であり得る。当業者であれば、これらの参考文献の教示に基づき、3D-MPLなどの様々なリポ多糖を容易に産生し得るであろう。(LPSまたはMPLまたは3D-MPLのものと構造が類似している)前述の免疫刺激剤に加えて、MPLの上記構造の一部分であるアシル化単糖および二糖の誘導体も、適切なアジュバントである。
いくつかの態様において、トール様受容体(TLR)アゴニストがアジュバントとして用いられる。例えば、RSVに対する中和免疫応答の誘発のために用いられる免疫原性組成物において、開示されるPreF抗原をTLRアゴニストと組み合わせることができる。例えば、TLRアゴニストは、脂質Aの合成誘導体(例えば、WO 95/14026およびWO 01/46127を参照されたい)のアルキルグルコサミニドホスフェート(AGP;例えば、WO 98/50399、または米国特許第6,303,347号;第6,764,840号を参照されたい)など、TLR-4アゴニストであり得る。TLR-4を通じてシグナル伝達応答を引き起こし得る他の適切なTLR-4リガンドは、例えばグラム陰性細菌由来のリポ多糖およびその誘導体、またはそれらのフラグメント、とくにLPSの非毒性誘導体(3D-MPLなど)である。他の適切なTLRアゴニストは、熱ショックタンパク質(HSP)10、60、65、70、75、または90、サーファクタントタンパク質A、ヒアルロン酸オリゴ糖、ヘパランサルフェートフラグメント、フィブロネクチンフラグメント、フィブリノーゲンペプチド、およびβ-ディフェンシン-2、およびムラミルジペプチド(MDP)である。一態様において、TLRアゴニストはHSP 60、70、または90である。他の適切なTLR-4リガンドは、WO 2003/011223およびWO 2003/099195に記載されているものである。
TLR2、TLR3、TLR7、TLR8、および/またはTLR9に対するアゴニストなど、さらなるTLRアゴニスト(TLRシグナル伝達経路を通じてシグナル伝達応答を引き起こし得る作用物質など)も、アジュバントとして有用である。したがって、一態様において、組成物は、TLR-1アゴニスト、TLR-2アゴニスト、TLR-3アゴニスト、TLR-4アゴニスト、TLR-5アゴニスト、TLR-6アゴニスト、TLR-7アゴニスト、TLR-8アゴニスト、TLR-9アゴニスト、またはそれらの組み合わせからなる群より選択されるアジュバントをさらに含む。
一態様において、TLR-1を通じてシグナル伝達応答を引き起こし得るTLRアゴニスト、例えば、トリアシル化リポペプチド(LP)、フェノール可溶性モジュリン、マイコバクテリウム・ツベルクローシス(Mycobacterium tuberculosis)LP、S-(2,3-ビス(パルミトイルオキシ)-(2-RS)-プロピル)-N-パルミトイル-(R)-Cys-(S)-Ser-(S)-L- ys(4)--OH、細菌リポタンパク質のアセチル化アミノ末端を模倣するトリヒドロクロライド(Pam3Cys)LP、およびボレリア・バーグドルフェリ(Borrelia burgdorferi)由来のOspA LPからの1種または複数種が用いられる。別の態様において、リポタンパク質、ペプチドグリカン、M. ツベルクローシス、Bバーグドルフェリ、またはTパリダム(T pallidum)由来の細菌リポペプチド、スタフィロコッカス・アウレウス(Staphylococcus aureus)を含む種由来のペプチドグリカン、リポテイコ酸、マンヌロン酸、ナイセリア(Neisseria)ポーリン、細菌線毛、エルシニア(Yersina)病原因子、CMVビリオン、麻疹ヘマグルチニン、および酵母由来のザイモサンのうちの1種または複数種など、TLR-2を通じてシグナル伝達応答を引き起こし得るTLRアゴニストが用いられる。一部の態様において、ウイルス感染に伴う分子的な核酸パターンである二本鎖RNA(dsRNA)のうちの1種または複数種、つまりポリイノシン酸-ポリシチジン酸(Poly IC)など、TLR-3を通じてシグナル伝達応答を引き起こし得るTLRアゴニストが用いられる。さらなる態様において、細菌フラジェリンなど、TLR-5を通じてシグナル伝達応答を引き起こし得るTLRアゴニストが用いられる。付加的な態様において、マイコバクテリアリポタンパク質、ジアシル化LP、およびフェノール可溶性モジュリンのうちの1種または複数種など、TLR-6を通じてシグナル伝達応答を引き起こし得るTLRアゴニストが用いられる。さらなるTLR6アゴニストは、WO 2003/043572に記載されている。ある態様において、一本鎖RNA(ssRNA)、ロキソリビン、位置N7およびC8におけるグアノシン類似体、もしくはイミダゾキノリン化合物、またはそれらの誘導体のうちの1種または複数種など、TLR-7を通じてシグナル伝達応答を引き起こし得るTLRアゴニストが用いられる。一態様において、TLRアゴニストはイミキモドである。さらなるTLR7アゴニストは、WO 2002/085905に記載されている。一部の態様において、TLR-8を通じてシグナル伝達応答を引き起こし得るTLRアゴニストが用いられる。適切には、TLR-8を通じてシグナル伝達応答を引き起こし得るTLRアゴニストは、一本鎖RNA(ssRNA)、抗ウイルス活性を有するイミダゾキノリン分子、例えばレシキモド(R848)であり、レシキモドはTLR-7による認識も可能である。用いられ得る他のTLR-8アゴニストには、WO 2004/071459に記載されているものが含まれる。
さらなる態様において、アジュバントには、TLR-9を通じてシグナル伝達応答を誘導し得るTLRアゴニストが含まれる。例えば、アジュバントには、HSP90、細菌もしくはウイルスDNA、および/または非メチル化CpGヌクレオチド(例えば、CpGオリゴヌクレオチド)を含有するDNAが含まれ得る。例えば、CpG含有オリゴヌクレオチドは、主にTh1応答を誘導する。そのようなオリゴヌクレオチドは周知であり、かつ例えばWO 95/26204、WO 96/02555、WO 99/33488、ならびに米国特許第5,278,302号、第5,666,153号、および第6,008,200号、および第5,856,462号に記載されている。したがって、開示される組成物におけるアジュバントとしての使用のためのオリゴヌクレオチドには、例えば2つまたはそれを上回る数のジヌクレオチドCpGモチーフを含有するCpG含有オリゴヌクレオチドが含まれる。混合ヌクレオチド間連結を有するオリゴヌクレオチドも含まれる。
免疫原性組成物において、抗原、または抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターとともに、例えばそれら単独で、または3D-MPLもしくは本明細書において記載される別のアジュバントと組み合わせて用いられ得る他のアジュバントは、QS21などのサポニンである。一部の例において、PreF抗原の全身投与のために、サポニンがアジュバントとして用いられる。アジュバントとしてのサポニンの使用(例えば、南アメリカ産の木であるキラヤ・サポナリア・モリナ(Quillaja Saponaria Molina)の樹皮に由来するQuil Aの使用)は、当業者によく知られている(例えば、米国特許第5,057,540号、およびEP 0 362 279 B1、EP 0 109 942 B1;WO 96/11711;WO 96/33739を参照されたい)。溶血性サポニンQS21およびQS17(Quil AのHPLC精製画分)は、強力な全身性アジュバントとして記載されており、かつそれらの産生の方法は、米国特許第5,057,540号およびEP 0 362 279 B1に開示されている。
アジュバントには、アルミニウムまたはカルシウム塩、とくに水酸化アルミニウム、リン酸アルミニウム、およびリン酸カルシウムなどの鉱物塩も含まれ得る。
組成物における使用のための適切なTh1偏向性アジュバントの別のクラスには、外膜タンパク質(OMP)ベースの免疫刺激性組成物が含まれる。OMPベースの免疫刺激性組成物は、例えば鼻腔内投与のための粘膜アジュバントとしてとくに適している。OMPベースの免疫刺激性組成物は、グラム陰性細菌、例えばナイセリア種由来の(OMP、一部のポーリンを含む)の調製物の属(genus)であり、それは、細菌またはウイルス抗原などの免疫原に対する担体としてまたは組成物において有用である(例えば、米国特許第5,726,292号;米国特許第4,707,543号を参照されたい)。さらに、プロテオソームは、約20nm~約800nmの小胞または小胞様OMPクラスターに自己会合する能力、およびタンパク質抗原(Ag)、とくに疎水性部分を有する抗原を非共有結合で組み入れる、統合する、結合する(例えば、静電的にまたは疎水的に)、または別様に協調する能力を有する。例えば当技術分野において記載されているように(例えば、米国特許第5,726,292号または米国特許第5,985,284号;2003/0044425を参照されたい)、プロテオソームを調製することができる。
プロテオソームは、界面活性剤によって溶液の状態に維持される、ナイセリア・メニンギティディス(Neisseria meningitidis)由来の化学的に抽出された外膜タンパク質(OMP)(ほとんどはポーリンAおよびB、ならびにクラス4のOMP)から主に構成される(Lowell G H. Proteosomes for Improved Nasal, Oral, or Injectable Vaccines. In: Levine M M, Woodrow G C, Kaper J B, Cobon G S, eds, New Generation Vaccines. New York: Marcel Dekker, Inc. 1997; 193-206)。プロテオソームを、本明細書において開示されるPreFポリペプチドを含む、ウイルス供給源に由来する精製されたまたは組換えのタンパク質など、多様な抗原とともに製剤化することができる。界面活性剤の段階的除去により、直径がおよそ100~200nmの微粒子状疎水性複合体の形成が可能となる(Lowell G H. Proteosomes for Improved Nasal, Oral, or Injectable Vaccines. In: Levine M M, Woodrow G C, Kaper J B, Cobon G S, eds, New Generation Vaccines. New York: Marcel Dekker, Inc. 1997; 193-206)。
種々のアジュバントの組み合わせも、組成物における開示されるPreF抗原、ウイルスベクター、または核酸分子とともに組成物において用いられ得る。例えば、すでに述べたように、QS21は3D-MPLと一緒に製剤化され得る。QS21:3D-MPLの比率は、典型的に、1:5~5:1などの1:10~10:1程度、しばしば実質的に1:1である。典型的に、該比率は、2.5:1~1:1の3D-MPL:QS21の範囲内にある(AS01など(GlaxoSmithKline))。別の組み合わせアジュバント製剤は、3D-MPL、および水酸化アルミニウムなどのアルミニウム塩を含む(AS04など(GlaxoSmithKline))。組み合わせて製剤化された場合、この組み合わせは、抗原特異的なTh1免疫応答を増強させ得る。
ある場合には、アジュバント製剤は、カルシウムまたはアルミニウム(alum)塩などの鉱物塩、例えばリン酸カルシウム、リン酸アルミニウム、または水酸化アルミニウムである。一部の態様において、アジュバントには、油および水のエマルション、例えば水中油型エマルション(MF59(Novartis)またはAS03(GlaxoSmithKline)など)が含まれる。水中油型エマルションの一例は、水性担体中に、スクアレンなどの代謝可能な油、トコフェロール、例えばα-トコフェロールなどのトコール、およびソルビタントリオレエート(Span 85)またはポリオキシエチレンソルビタンモノオレエート(Tween 80)などの界面活性剤を含む。
薬学的組成物は、典型的に、開示されるPreF抗原、ウイルスベクター、または核酸分子の治療上有効量を含有し、従来的技術によって調製され得る。ヒト対象への投与のためのものを含む、免疫原性組成物の調製は、概して、Pharmaceutical Biotechnology, Vol.61 Vaccine Design-the subunit and adjuvant approach, edited by Powell and Newman, Plenum Press, 1995、New Trends and Developments in Vaccines, edited by Voller et al., University Park Press, Baltimore, Maryland, U.S.A. 1978に記載されている。リポソーム内へのカプセル化は、例えばFullerton、米国特許第4,235,877号によって記載されている。高分子へのタンパク質の抱合は、例えばLikhite、米国特許第4,372,945号によって、およびArmorら、米国特許第4,474,757号によって開示されている。典型的に、免疫原性組成物の各投薬における抗原の量は、重大な有害な副作用なしで免疫応答を誘導する量として選択される。
開示されるPreF抗原、ウイルスベクター、または核酸分子の量は、例えば採用される特異的抗原、投与の経路およびプロトコール、ならびに標的集団に応じて変動し得る。典型的に、各ヒト用量は、約1μg~約100μg、例えば約1μg、約2μg、約5μg、約10μg、約15μg、約20μg、約25μg、約30μg、約40μg、または約50μgなどの約1μg~約50μgなど、1~1000μgのタンパク質を含む。免疫原性組成物において利用される量は、対象集団(例えば、乳児または高齢者)に基づいて選択される。特定の組成物に対する最適な量は、抗体力価および対象における他の応答の観察を伴う標準的調査によって確定され得る。免疫原性組成物における抗原の治療上有効量には、単回用量の投与によっては免疫応答を誘発するのに無効であるが、例えばプライム-ブースト投与プロトコールにおいて、複数回投薬量の投与があると有効である量が含まれ得ることが理解される。
いくつかの例において、ヒトにおいてRSVに対する免疫応答を誘発するための薬学的組成物は、乳児患者対象(例えば、初回投薬の年齢で、生後0~6ヶ月など、出生~1年の間の乳児)または高齢者患者対象(65歳を上回る対象など)への投与のための、開示されるPreF抗原、ウイルスベクター、または核酸分子の治療上有効量を含む。アジュバントの選出は、これら種々の適用において異なり得ること、ならびに各状況に対する最適なアジュバントおよび濃度は、当業者によって経験的に決定され得ることが解されるであろう。
ある特定の態様において、薬学的組成物は、RSVによる感染を低下させるまたは阻止するワクチンである。一部の態様において、免疫原性組成物は、RSVによる感染後の病的応答を低下させるまたは阻止するワクチンである。任意で、開示されるPreF抗原、ウイルスベクター、または核酸分子を含有する薬学的組成物は、RSV以外の病原性生物の少なくとも1種のさらなる抗原とともに製剤化される。例えば、該病原性生物は、気道の病原体(呼吸器感染症を引き起こすウイルスまたは細菌など)であり得る。ある特定の場合において、薬学的組成物は、インフルエンザまたはパラインフルエンザなどの気道の感染症を引き起こすウイルスなど、RSV以外の病原性ウイルスに由来する抗原を含有する。他の態様において、さらなる抗原は、複数の感染性生物から対象を防御するために必要とされる投与を容易にするまたは接種の回数を低下させるように選択される。例えば、抗原は、他の中でもとりわけ、インフルエンザ、B型肝炎、ジフテリア、破傷風、百日咳、ヘモフィルス・インフルエンザ(Hemophilus influenza)、ポリオウイルス、ストレプトコッカス(Streptococcus)、またはニューモコッカス(Pneumococcus)のうちのいずれか1種または複数種に由来し得る。
F. 治療の方法
いくつかの態様において、開示されるPreF抗原、またはPreF抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターを用いて、対象においてRSVに対する免疫応答を誘導する。ゆえに、いくつかの態様において、開示されるPreF抗原、または該抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターのうちの1つまたは複数を含む免疫原性組成物の治療上有効量を対象に投与して、RSVに対する免疫応答を生じさせることができる。
本明細書における開示に従って、PreF抗原、または該抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターを含む免疫原性組成物の予防上または治療上有効量を、対象におけるRSV感染症を阻止し、阻害し、かつ/または改善するのに十分な期間かつ条件下で、そのような治療を必要としている対象に投与する。免疫原性組成物を、対象においてRSV Fタンパク質などのRSV抗原に対する免疫応答を誘発するのに十分な量で投与する。
一部の態様において、対象に投与される組成物は、融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である第1の組換えRSV Fタンパク質、および融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である第2の組換えRSV Fタンパク質を含む(またはコードする)。いくつかの態様において、対象に投与される組成物は、融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である第1の組換えRSV Fタンパク質、および融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である第2の組換えRSV Fタンパク質の混合物(約1:1、1:2、2:1、2:3、3:2、1:3、3:1、1:4、4:1、3:5、5:3、1:5、5:1、5:7、7:5の混合物など)を含む。
一部の態様において、対象に投与される組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第1のタンパク質ナノ粒子を含み、該安定化されたRSV Fタンパク質はサブタイプA RSV Fタンパク質に基づき、かつ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第2のタンパク質ナノ粒子を含み、該安定化されたRSV Fタンパク質はサブタイプB RSV Fタンパク質に基づく。
一部の態様において、対象に投与される組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質をコードする第1の核酸分子(発現ベクターなど)を含み、該安定化されたRSV Fタンパク質はサブタイプA RSV Fタンパク質に基づき、かつ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第2の核酸分子(発現ベクターなど)を含み、該安定化されたRSV Fタンパク質はサブタイプB RSV Fタンパク質に基づく。
一部の態様において、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含むフェリチンナノ粒子を含む組成物を、対象に投与する。一部の態様において、対象に投与される組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第1のフェリチンナノ粒子を含み、該安定化されたRSV Fタンパク質はサブタイプA RSV Fタンパク質に基づき、かつ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された組換えRSV Fタンパク質を含む第2のフェリチンナノ粒子を含み、該安定化されたRSV Fタンパク質はサブタイプB RSV Fタンパク質に基づく。ウイルス抗原を含むフェリチンナノ粒子を作製する方法、および免疫目的のための(例えば、インフルエンザ抗原に対する免疫のための)それらの使用は、当技術分野において開示されている(例えば、参照によりその全体として本明細書に組み入れられる、Kanekiyo et al., Nature, 499:102-106, 2013を参照されたい)。
一部の態様において、治療には、例えばRSVへの曝露または曝露の可能性が原因で、RSV感染症を有するまたは発症する危険性がある対象が選択される。開示される治療用組成物の治療上有効量の投与後に、RSV感染症、RSV感染症と関連した症状、またはその両方について、対象をモニターすることができる。ほぼすべての人は3歳までにRSVに感染するため、全出生コホートが、免疫のための関連集団として含まれる。これは、例えば、出生~生後6ヶ月、生後6ヶ月~5歳のいつでも、抗体の受動移入によって彼女らの乳児を防御するために妊娠女性(または出産可能な年齢の女性)において、新生児またはまだ子宮内にいる者の家族において、および50歳を上回る対象において、免疫レジメンを始めることによってなされ得る。
重度の症状を有する(例えば、入院を必要とする)RSV感染症の危険性が最も高い対象には、重度の疾患に最も罹患しやすい未成熟性、気管支肺異形成症、および先天性心疾患を有する子どもが含まれる。アトピーまたはアトピーの家族歴も、乳児期における重度の疾患と関連付けられている。小児期および成人期の間、疾患はより軽度であるが、下気道疾患と関連し得、かつ副鼻腔炎を合併することがよくある。疾患重症度は、施設入居高齢者(例えば、65歳を上回るヒト)において増加する。重度の疾患は、重度の複合免疫不全疾患を有する人、または骨髄もしくは肺の移植後の人においても生じる。(例えば、Shay et al., JAMA,282:1440-6, 1999;Hall et al., N Engl J Med. 2009;360:588-598;Glezen et al., Am J Dis Child., 1986;140:543-546;およびGraham, Immunol. Rev., 239:149-166, 2011を参照されたい。そのそれぞれは参照により本明細書に組み入れられる)。ゆえに、これらの対象を、開示されるPreF抗原、またはPreF抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターの投与に選択することができる。
本開示の組成物および方法を用いた治療に意図される典型的な対象には、ヒト、ならびに非ヒト霊長類、および畜牛などの他の動物が含まれる。本開示の方法に従った予防または治療に対して対象を同定するために、標的とするもしくは疑わしい疾患もしくは病状と関連した危険因子を判定する、または対象における既存の疾患もしくは病状の状態を判定するスクリーニング法が採用される。これらのスクリーニング法には、例えば、標的とするもしくは疑わしい疾患もしくは病状と関連し得る環境的、家族的、職業的な危険因子、および他のそのような危険因子を判定する従来的検査、ならびにRSV感染症を検出するおよび/または特徴付けするための、利用可能でありかつ当技術分野において周知である様々なELISAおよび他の免疫アッセイ法などの診断法が含まれる。これらおよび他のルーチン的方法により、臨床医が、本開示の方法および薬学的組成物を用いた療法を必要としている患者を選択することが可能となる。免疫原性組成物は、独立した予防もしくは治療プログラムとして、または追跡調査、他の治療に対する付属的もしくは協調的な治療レジメンとして投与され得る。
免疫原性組成物を、協調的なワクチン接種プロトコールまたは組み合わせ製剤において用いることができる。ある特定の態様において、組み合わせ免疫原性組成物および協調的免疫プロトコールは、それぞれが、RSV Fタンパク質に対する免疫応答など、RSV抗原に対する免疫応答を誘発することに向けられた、別個の免疫原または製剤を採用する。RSV抗原に対する免疫応答を誘発する別個の免疫原性組成物を、単回免疫工程において対象に投与される多価免疫原性組成物に組み合わせることができ、またはそれらを、協調的免疫プロトコールにおいて(一価免疫原性組成物で)別個に投与することができる。
免疫原性組成物の投与は、予防目的または治療目的のいずれかのためであり得る。予防的に提供される場合、免疫原性組成物は、任意の症状に先立って、例えば感染に先立って提供される。免疫原性組成物の予防的投与は、その後の任意の感染を阻止するまたは改善する働きをする。治療的に提供される場合、免疫原性組成物は、疾患または感染症の症状の発生時にまたは発生後に、例えばRSV感染症の症状の発症後に、またはRSV感染症の診断後に提供される。ゆえに、免疫原性組成物をRSVへの予期される曝露に先行して提供して、該ウイルスへの曝露もしくは疑わしい曝露後の、または感染症の実際の開始後の、感染症および/または関連する疾患症状の予期される重症度、継続期間、または程度を緩和することができる。
投与により、病原性感染症を治療するまたは阻止する、例えば感染症を阻害しかつ/または感染症の兆候および/もしくは症状を低下させるのに十分な免疫応答が誘導される。この使用にとって有効な量は、疾患の重症度、対象の健康の全般的状態、および対象の免疫系の堅牢性に依存する。開示される免疫原性組成物の治療上有効量は、症状の主観的軽減、または臨床医もしくは他の有資格観察者によって気づかれる客観的に識別可能な向上のいずれかを提供する量である。
予防目的および治療目的のために、単回ボーラス送達で、長期間にわたる継続的送達(例えば、継続的な経皮送達、粘膜送達、または静脈内送達)により、または反復的投与プロトコール(例えば、1時間に1回、1日に1回、または週に1回の反復的投与プロトコール)で、免疫原性組成物を対象に投与することができる。本明細書において明示される標的とする疾患または病状と関連した1つまたは複数の症状または検出可能な病状を和らげる臨床上重大な結果をもたらすと考えられる長期的な予防または治療レジメン内で、免疫原性組成物の治療上有効投薬量を反復投薬として提供することができる。この背景における有効投薬量の決定は、典型的に、動物モデル調査、それに続くヒト臨床試験に基づき、かつ対象における標的とする疾患症状または病状の出現または重症度を有意に低下させる投与プロトコールによって導かれる。これに関して適切なモデルには、例えばマウス、ラット、ブタ、ネコ、フェレット、非ヒト霊長類、および当技術分野において公知の他の認められている動物モデル対象が含まれる。あるいは、インビトロモデル(例えば、免疫学的および組織病理学的なアッセイ)を用いて、有効投薬量を決定することができる。そのようなモデルを用いると、適当な濃度および用量を決定して、治療上有効量(例えば、所望の免疫応答を誘発する、または標的とする疾患の1つもしくは複数の症状を和らげるのに有効である量)の免疫原性組成物を投与するために、通常の算出および調整のみが必要とされる。代替的な態様において、有効量または有効用量の免疫原性組成物は、治療目的または診断目的のいずれかのために、本明細書において明示される、疾患または病状と相関した1つまたは複数の選択された生物学的活性を単に阻害し得るまたは増強させ得る。
一態様において、適切な免疫レジメンは、1種または複数種の免疫原性組成物による少なくとも3回の別個の接種を含み、第1の接種の約2週間、約3~8週間、または約4週間を上回る後に、第2の接種が施される。概して、第3の接種は、第2の接種の数ヶ月後、具体的な態様においては、第1の接種後約5ヶ月を上回って、第1の接種後約6ヶ月~約2年を上回って、または第1の接種の約8ヶ月~約1年後に施される。第3を超える周期的接種も、対象の「免疫記憶」を増強させるために望ましい。選出されたワクチン接種パラメーター、例えば製剤、用量、レジメンなどの妥当性は、免疫プログラムの経過中に、対象由来の血清のアリコートを採取しかつ抗体力価をアッセイすることによって判定され得る。そのようなモニタリングにより、ワクチン接種が準最適であると示された場合、対象は、さらなる用量の免疫原性組成物でブーストされ得、かつワクチン接種パラメーターは、免疫応答を強化することが予想される形で改変され得る。いくつかのブーストがあり得ること、および各ブーストは、同じまたは異なるPreF抗原を含み得ることが企図される。
プライム-ブーストプロトコールに関して、プライムは、単回投薬または複数回投薬として投与され得、例えば2回投薬、3回投薬、4回投薬、5回投薬、6回投薬、またはそれを上回る回数が、数日間、数週間、または数ヶ月間にわたって対象に投与され得る。ブーストは、単回投薬または複数回投薬として投与され得、例えば2~6回投薬、またはそれを上回る回数が、1日、1週間、または数ヶ月にわたって対象に投与され得る。1~5回またはそれを上回る回数など、複数回ブーストも与えられ得る。種々の投薬量が一連の逐次的接種において用いられ得る。例として、一次接種において相対的に多い量、次いで相対的により少ない用量でのブーストが挙げられる。選択された抗原表面に対する免疫応答は、本明細書において開示される免疫原性組成物による対象の1回または複数回の接種によって生じ得る。
一部の態様において、対象に投与されるプライム組成物は、融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である組換えRSV Fタンパク質を含み(または、コードし)、かつ対象に投与されるブースト組成物は、融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である組換えRSV Fタンパク質を含む(または、コードする)。一部の態様において、対象に投与されるプライム組成物は、融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である組換えRSV Fタンパク質を含み(または、コードし)、かつ対象に投与されるブースト組成物は、融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である組換えRSV Fタンパク質を含む(または、コードする)。
一部の態様において、方法は、融合前立体構造に安定化された組換えサブタイプA RSV Fタンパク質と融合前立体構造に安定化された組換えサブタイプB RSV Fタンパク質とを含む組成物を、1回、または一連の注入として(プライム-ブーストプロトコールにおいてなど)1回を上回る回数、投与する工程を含む。
一部の態様において、方法は、融合前立体構造に安定化された組換えサブタイプA RSV Fタンパク質を含むフェリチンナノ粒子と融合前立体構造に安定化された組換えサブタイプB RSV Fタンパク質を含むフェリチンナノ粒子とを含む組成物を、1回、または一連の注入として(プライム-ブーストプロトコールにおいてなど)1回を上回る回数、投与する工程を含む。
一部の態様において、方法は、融合前立体構造に安定化された組換えサブタイプA RSV Fタンパク質をコードするベクターと融合前立体構造に安定化された組換えサブタイプB RSV Fタンパク質をコードするベクターとを含む組成物を、1回、または一連の注入として(プライム-ブーストプロトコールにおいてなど)1回を上回る回数、投与する工程を含む。一部の態様において、方法は、融合前立体構造に安定化された組換えサブタイプA RSV Fタンパク質と融合前立体構造に安定化された組換えサブタイプB RSV Fタンパク質とを含む組成物、および/または融合前立体構造に安定化された組換えサブタイプA RSV Fタンパク質を含むフェリチンナノ粒子と融合前立体構造に安定化された組換えサブタイプB RSV Fタンパク質を含むフェリチンナノ粒子とを含む組成物の投与をさらに含み得る。
一部の態様において、方法は、融合前立体構造に安定化された組換えサブタイプA RSV Fタンパク質をコードする核酸分子と融合前立体構造に安定化された組換えサブタイプB RSV Fタンパク質をコードする核酸分子とを含む組成物を、1回、または一連の注入として(プライム-ブーストプロトコールにおいてなど)1回を上回る回数、投与する工程を含む。一部の態様において、方法は、融合前立体構造に安定化された組換えサブタイプA RSV Fタンパク質と融合前立体構造に安定化された組換えサブタイプB RSV Fタンパク質とを含む組成物、および/または融合前立体構造に安定化された組換えサブタイプA RSV Fタンパク質を含むフェリチンナノ粒子と融合前立体構造に安定化された組換えサブタイプB RSV Fタンパク質を含むフェリチンナノ粒子とを含む組成物の投与をさらに含み得る。
一部の態様において、対象に投与されるプライムおよびブースト組成物はそれぞれ、融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である第1の組換えRSV Fタンパク質、および融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である第2の組換えRSV Fタンパク質を含む(または、コードする)。いくつかの態様において、対象に投与されるプライムおよびブースト組成物はそれぞれ、融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である第1の組換えRSV Fタンパク質、および融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である第2の組換えRSV Fタンパク質の混合物(約1:1、1:2、2:1、2:3、3:2、1:3、3:1、1:4、4:1、3:5、5:3、1:5、5:1、5:7、7:5の混合物など)を含む(または、コードする)。
一部の態様において、対象に投与されるプライムおよびブースト組成物はそれぞれ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である組換えRSV Fタンパク質、および本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である第2の組換えRSV Fタンパク質を含む。
一部の態様において、対象に投与されるプライムおよびブースト組成物はそれぞれ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である組換えRSV Fタンパク質をコードする核酸分子、および本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である組換えRSV Fタンパク質をコードする核酸分子を含む。
一部の態様において、対象に投与されるプライムおよびブースト組成物はそれぞれ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である組換えRSV Fタンパク質を含む第1のタンパク質ナノ粒子(フェリチンナノ粒子など)、および本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である組換えRSV Fタンパク質を含む第2のタンパク質ナノ粒子(フェリチンナノ粒子など)を含む。
一部の態様において、対象に投与されるプライムおよびブースト組成物はそれぞれ、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である組換えRSV Fタンパク質を含むまたはコードするベクター、および本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である組換えRSV Fタンパク質を含むまたはコードするベクターを含む。
一部の態様において、対象に投与されるプライム組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である組換えRSV Fタンパク質をコードする第1の核酸分子(DNAプラスミド発現ベクターなど)、および本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である組換えRSV Fタンパク質を含む第2の核酸分子(発現ベクターなど)を含み、かつ対象に投与されるブースト組成物は、本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプA RSV Fタンパク質である組換えRSV Fタンパク質を含む第1のタンパク質ナノ粒子(フェリチンナノ粒子など)、および本明細書において開示される置換(S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換など)のいずれかによって融合前立体構造に安定化された、サブタイプB RSV Fタンパク質である組換えRSV Fタンパク質を含む第2のタンパク質ナノ粒子(フェリチンナノ粒子など)を含む。
DNAプラスミドのプライムおよびフェリチンナノ粒子のブーストを用いた免疫プロトコールは、当業者に公知である(例えば、Wei et al., Science, 329(5995):1060-4, 2010を参照されたい。それは参照によりその全体として本明細書に組み入れられる)。
免疫原性組成物の実際の投薬量は、対象の疾患徴候および特定の状態(例えば、対象の年齢、サイズ、適応度、症状の程度、感受性因子など)、投与の時間および経路、同時に施されている他の薬物または治療、ならびに対象における所望の活性または生物学的応答を誘発することに対する該免疫原性組成物の特異的薬理などの因子に従って変動する。最適な予防的また治療的応答を提供するように、投薬レジメンを調整することができる。前述の用語の一覧において上記で記載されるように、有効量とは、臨床的な観点において、治療上有益な効果が、開示される抗原および/または他の生物学的に活性な作用物質の任意の有毒なまたは有害な副作用に勝る量でもある。
本開示の方法および免疫原性組成物の範囲内での、開示されるPreF抗原の治療上有効量に対する非限定的な範囲は、約0.01mg/kg、約0.02mg/kg、約0.03mg/kg、約0.04mg/kg、約0.05mg/kg、約0.06mg/kg、約0.07mg/kg、約0.08mg/kg、約0.09mg/kg、約0.1mg/kg、約0.2mg/kg、約0.3mg/kg、約0.4mg/kg、約0.5mg/kg、約0.6mg/kg、約0.7mg/kg、約0.8mg/kg、約0.9mg/kg、約1mg/kg、約1.5mg/kg、約2mg/kg、約2.5mg/kg、約3mg/kg、約4mg/kg、約5mg/kg、または約10mg/kgなどの約0.0001mg/kg体重~約10mg/kg体重、例えば0.01mg/kg~約1mg/kg体重、約0.05mg/kg~約5mg/kg体重、約0.2mg/kg~約2mg/kg体重、または約1.0mg/kg~約10mg/kg体重である。
一部の態様において、一定の、開示されるPreF抗原、またはPreF抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターの投薬量には、子ども、成人、高齢者などに対する、約1~300μgなど、例えば約1、2、3、4、5、6、7、8、9、10、15、20、30、40、50、60、70、80、90、100、150、200、250、または約300μgのPreF抗原、またはPreF抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターの投薬量が含まれる。投薬量および投薬の回数は、例えば先行するRSVの感染または免疫によってプライムされた成人または任意の人における状況に依存し、単回投薬は十分なブースターであり得る。未処置(naive)乳児では、一部の例において、少なくとも2回投薬、例えば少なくとも3回投薬が与えられる。一部の態様において、例えば毎年のインフルエンザワクチン接種とともに、毎年のブーストが高齢者対象(例えば、60歳を上回るヒト)に1年あたり1回与えられる。投与可能な組成物を調製するための方法は、当業者に公知でありまたは明白であり、かつRemingtons Pharmaceutical Sciences, 19th Ed., Mack Publishing Company, Easton, Pennsylvania, 1995のような刊行物においてより詳細に記載されている。
投薬量は、標的部位(例えば、体循環)において所望の濃度を維持するように主治医によって変動され得る。送達の様態、例えば経表皮、直腸、経口、経肺、または鼻腔内送達対静脈内または皮下送達に基づき、より高濃度またはより低濃度を選択することができる。投与される製剤の放出速度、例えば肺内スプレー製剤対粉末製剤、持続放出性経口製剤対注入による微粒子または経皮送達製剤などの放出速度に基づき、投薬量を調整することもできる。同じ血清濃度レベル達成するために、例えば(標準的条件下で)5nMの放出速度を有する徐放性粒子は、10nMの放出速度を有する粒子の投薬量の約2倍投与される。
本開示の免疫原性組成物の投与があると、対象の免疫系は、典型的に、RSV Fタンパク質の融合前立体構造に特異的な抗体を産生することによって、該免疫原性組成物に応答する。そのような応答は、該免疫原性組成物の有効用量が送達されたことの表れである。
いくつかの態様において、本明細書において開示される免疫原性組成物を、タンパク質、ペプチド、抗体、および抗RSV剤などの他の抗ウイルス剤など、他の作用物質とともに投与することが有益であり得る。抗RSV剤の非限定的な例には、モノクローナル抗体パリビズマブ(SYNAGIS(登録商標);MedImmune, Inc.)および小分子抗ウイルス薬リバビリン(多くの供給元によって製造されている、例えばWarrick Pharmaceuticals, Inc.)が含まれる。ある特定の態様において、免疫原性組成物は、他の抗RSV剤と同時に投与される。ある特定の態様において、免疫原性組成物は、他の作用物質の前または後など、他の抗RSV治療用作用物質と逐次的に投与される。当業者であれば、逐次的投与とは、直後、または数時間、数日間、数週間、数ヶ月間、もしくはさらに数年後などの適当な期間の後を意味し得ることを承知しているであろう。
付加的な態様において、免疫応答を生じさせるために、開示されるPreF抗原をコードする核酸を含む薬学的組成物の治療上有効量を対象に投与する。具体的な非限定的な一例において、RSV感染症を治療するまたは阻止するまたは阻害するために、開示される抗原をコードする核酸の治療上有効量を対象に投与する。
核酸の投与のための一手法は、哺乳類発現プラスミドなどによる、プラスミドDNAによる直接免疫である。上記で記載されるように、開示される抗原をコードするヌクレオチド配列を、該分子の発現を増加させるプロモーターの制御下に配置することができる。別の手法は、RNAを用いる(自己増幅型RNAワクチンの非ウイルス性送達など、例えばGeall et al., Proc Natl Acad Sci U S A, 109:14604-9, 2012を参照されたい)。
核酸構築物による免疫は、当技術分野において周知であり、かつ例えば米国特許第5,643,578号(所望の抗原をコードするDNAを導入して、細胞介在性または体液性応答を誘発することによって、脊椎動物を免疫する方法を記載している)、ならびに米国特許第5,593,972号および米国特許第5,817,637号(発現を可能にする調節配列に、抗原をコードする核酸配列を機能的に連結させることを記載している)に教示されている。米国特許第5,880,103号は、免疫原性ペプチドまたは他の抗原をコードする核酸の生物への送達についてのいくつかの方法を記載している。該方法には、核酸(または合成ペプチド自体)、およびコレステロールとQuil A(商標)(サポニン)とを混合する際に自発的に形成される、サイズが30~40nmの負に帯電したケージ様構造物である免疫刺激構築物、つまりISCOMS(商標)のリポソーム性送達が含まれる。抗原の送達用ビヒクルとしてISCOMS(商標)を用いた、トキソプラズマ症およびエプスタイン・バールウイルス誘導性腫瘍を含む感染症の多様な実験モデルにおいて、防御免疫が生じている(Mowat and Donachie, Immunol. Today 12:383, 1991)。ISCOMS(商標)内にカプセル化された1μgほどの少ない抗原の用量が、クラスI介在性CTL応答を産生することが見出されている(Takahashi et al., Nature 344:873, 1990)。
免疫のために核酸を用いる別の手法では、開示される抗原を、弱毒化されたウイルス宿主またはベクターまたは細菌ベクターによっても発現させることができる。組換えワクシニアウイルス、アデノウイルス、アデノ随伴ウイルス(AAV)、ヘルペスウイルス、レトロウイルス、サイトメガロウイルス、または他のウイルスベクターを用いて、ペプチドまたはタンパク質を発現させることができ、それによってCTL応答が誘発される。例えば、免疫プロトコールにおいて有用なワクシニアベクターおよび方法は、米国特許第4,722,848号に記載されている。BCG(バチルス・カルメット・ゲラン(Bacillus Calmette Guerin))は、ペプチドの発現のための別のベクターを提供する(Stover, Nature 351:456-460, 1991を参照されたい)。
一態様において、開示されるPreF抗原をコードする核酸を、細胞内に直接導入する。例えば、核酸を標準的方法によって金ミクロスフェア上に搭載し、かつBio-Rad製のHELIOS(商標)遺伝子銃などの装置によって皮膚内に導入することができる。核酸は「むき出し」であり得、強力なプロモーターの制御下でプラスミドから構成される。典型的に、DNAは筋肉内に注入されるが、とはいえそれを、転移に接近した組織を含む他の部位に直接注入することもできる。注入のための投薬量は、通常0.5μg/kg前後~約50mg/kgであり、典型的には約0.005mg/kg~約5mg/kgである(例えば、米国特許第5,589,466号を参照されたい)。
上記で提供される治療法に加えて、開示されるPreF抗原のいずれかを利用して、例えば血清監視(serosurveillance)のための、抗原特異的な免疫診断用試薬を産生することができる。免疫診断用試薬を、本明細書において記載される抗原のいずれかから設計することができる。例えば、開示される抗原の場合、RSV感染症を検出する、および/またはRSV Fタンパク質の融合前立体構造に特異的に結合する抗体の存在を検出するなど、本明細書において開示される単離された抗原を用いて、RSVに対する血清抗体の存在をモニターする。
一般的に、方法は、対象由来の血液、血清、血漿、尿、または痰サンプルなど、しかしながらそれらに限定されない対象由来のサンプルと、本明細書において開示される融合前立体構造に安定化されたRSV Fタンパク質抗原のうちの1つまたは複数とを接触させる工程、および開示される免疫原へのサンプル中の抗体の結合を検出する工程を含む。結合は、サンプル由来の抗体に特異的に結合する標識二次抗体の使用を含む、当業者に公知の任意の手段によって検出され得る。標識には、放射性標識、酵素標識、および蛍光標識が含まれる。
加えて、融合前RSV F結合抗体の検出により、開示される抗原による免疫に対する対象の応答をモニターすることも可能となる。さらに他の態様において、融合前RSV F抗体結合抗体の力価を判定する。結合は、サンプル由来の抗体に特異的に結合する標識二次抗体の使用を含む、当業者に公知の任意の手段によって検出され得る。標識には、放射性標識、酵素標識、および蛍光標識が含まれる。他の態様において、開示される免疫原を用いて、対象または対象から得られた生物学的サンプル中に存在している抗体を単離する。
G. キット
キットも提供される。例として、対象におけるRSV感染症を治療するもしくは阻止するためのキット、または対象の血清におけるRSV Fタンパク質融合前特異的抗体の存在を検出するためのキットが挙げられる。キットは、典型的に、PreF抗原、または該抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターのうちの1つまたは複数を含む。
キットは、容器、および該容器上のまたはそれに伴うラベルまたは添付文書を含み得る。適切な容器には、例えば瓶、バイアル、シリンジなどが含まれる。容器は、ガラスまたはプラスチックなど、多様な材料から形成され得る。容器には、典型的に、RSV感染症を治療するまたは阻止するのに有効である、開示されるPreF抗原、または該抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターのうちの1つまたは複数を含む組成物が入れられる。いくつかの態様において、容器は、無菌のアクセス部分を有し得る(例えば、容器は、静脈注射用溶液バック、または皮下注射用ニードルによって貫通可能な栓を有するバイアルであり得る)。ラベルまたは添付文書は、組成物が特定の病状を治療するために用いられることを表示する。
ラベルまたは添付文書は、典型的に、例えばRSV感染症を治療するまたは阻止する方法における、PreF抗原、または該抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターの使用のための指示をさらに含む。添付文書は、典型的に、徴候、使用法、投薬量、投与、禁忌についての情報、および/またはそのような治療用産物の使用に関する警告を包含する、治療用産物の商業的パッケージに慣例上含まれる指示を含む。使用説明書は、電子形態(コンピューターディスケットまたはコンパクトディスクなど)で書かれていてよく、または視覚的(ビデオファイルなど)であってよい。キットは、それに対して該キットが設計された特定の適用を容易にする、さらなる構成要素も含み得る。キットは、特定の方法の実践にルーチン的に用いられるバッファーおよび他の試薬をさらに含み得る。そのようなキットおよび適当な内容物は、当業者に周知である。
H. ある特定の態様
さらなる態様が、2013年8月8日に提出された、優先米国仮出願第61/863,909号の135~158ページのH節において開示されており、それは参照によりその全体が本明細書に具体的に組み入れられる。
条項1.
RSV F融合前特異的抗体に特異的に結合する融合前立体構造に組換えRSV Fタンパク質を安定化させる、天然RSV Fタンパク質と比較して少なくとも1個のアミノ酸置換を含む組換えRSV Fタンパク質またはそのフラグメント
を含む単離された免疫原であって、該抗体が、融合後立体構造の状態にあるRSV Fタンパク質には特異的に結合しない、単離された免疫原。
条項2.
抗体の非存在下で少なくとも24時間生理的pHでリン酸緩衝生理食塩水における20℃でのインキュベーション後に該抗体に特異的に結合する免疫原。
条項3.
組換えRSV Fタンパク質またはそのフラグメントの融合前立体構造が、融合前特異的抗体に特異的に結合する抗原部位φを含み、かつ該抗原部位φが、SEQ ID NO: 1~184のうちの1つとして明示される天然RSV Fタンパク質配列の残基62~69および196~209を含む、条項1または条項2の免疫原。
条項4.
D25、AM22、5C4、またはMPE8融合前特異的抗体に特異的に結合する、条項1~3のいずれか一項の免疫原。
条項5.
天然RSV Fタンパク質が、ヒトサブタイプA、ヒトサブタイプB、またはウシのRSV Fタンパク質である、条項1~4のいずれか一項の免疫原。
条項6.
組換えRSV Fタンパク質またはそのフラグメントが、F1ポリペプチドおよびF2ポリペプチドを含み、かつ任意で、pep27ポリペプチドまたはその一部を含まない、条項1~5のいずれか一項の免疫原。
条項7.
F2およびF1ポリペプチドが、それぞれRSV Fの位置62~69および196~209を含み、かつ
F2ポリペプチドが、RSV Fの位置26~109の8~84個の残基を含むかまたはそれらからなり;かつ
F1ポリペプチドが、RSV Fの位置137~529の14~393個の残基を含むかまたはそれらからなり、
該RSV Fの位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、
条項6の免疫原。
条項8.
F2ポリペプチドのC末端残基およびF1ポリペプチドのN末端残基が、それぞれRSV Fの位置97および137;97および145;97および150;102および144;102および145;102および146;102および147;103および144;103および145;103および146;103および147;104および144;104および145;104および146;104および147;105および144;105および145;105および146;105および147;または105および150を含む、条項7の免疫原。
条項9.
F2およびF1ポリペプチドが、それぞれ26~109および137~513;26~107および137~513;26~107および145~513;26~105および137~513;26~105および145~513;26~103および145~513;26~109および137~529;26~107および137~529;26~107および145~529;26~105および137~529;26~105および145~529;26~103および145~529;46~103および147~310;46~104および146~310;50~96および149~306;51~103および146~307;51~103および139~307;50~105および146~306;または53~97および148から305~320の中の1箇所までであるRSV Fの位置を含むかまたはそれらからなる、条項7の免疫原。
条項10.
組換えRSV Fタンパク質が、SEQ ID NO: 1~184のうちのいずれか1つとして明示される天然RSV Fタンパク質配列の、それぞれアミノ酸26~103および145~310と少なくとも80%同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる、前項のいずれか一項の免疫原。
条項11.
組換えRSV Fタンパク質が、SEQ ID NO: 124の、それぞれアミノ酸26~103および145~310と少なくとも80%同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる、前項のいずれか一項の免疫原。
条項12.
組換えRSV Fタンパク質が、SEQ ID NO: 124の、それぞれアミノ酸26~103および145~513と少なくとも80%同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる、前項のいずれか一項の免疫原。
条項13.
組換えRSV Fタンパク質が、SEQ ID NO: 124の、それぞれアミノ酸26~103および145~529と少なくとも80%同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる、前項のいずれか一項の免疫原。
条項14.
組換えRSV Fタンパク質が、SEQ ID NO: 124の、それぞれアミノ酸26~103および145~551と少なくとも80%同一なアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチドを含むかまたはそれらからなる、前項のいずれか一項の免疫原。
条項15.
組換えRSV Fタンパク質が一本鎖RSV Fタンパク質であり、かつF2およびF1ポリペプチドが異種ペプチドリンカーによって連結しているかまたは直接連結している、前項のいずれか一項の免疫原。
条項16.
F2ポリペプチドの位置105が、F1ポリペプチドの位置145にGly-Serリンカーによって連結している;または
F2ポリペプチドの位置103が、F1ポリペプチドの位置145に直接連結している、
条項15の免疫原。
条項17.
異種ペプチドリンカーが、SEQ ID NO: 356~365もしくは1443~1453のうちの1つとして明示されるアミノ酸配列を含むか、またはG、S、GG、GS、SG、GGG、もしくはGSGリンカーである、条項16または条項16の免疫原。
条項18.
組換えRSV Fタンパク質が、
(a)システインペア間の第1のジスルフィド結合;
(b)空洞充填アミノ酸置換;
(c)再パッキングアミノ酸置換;
(d)N結合型グリコシル化部位;
(e)(a)~(d)のうちの2つもしくはそれ以上の組み合わせ;または
(f)(a)および(b)の組み合わせ
によって、RSV Fタンパク質融合前立体構造に安定化されている、前項のいずれか一項の単離された免疫原。
条項19.
システインのペアが、第1のシステインおよび第2のシステインを含み、かつ
第1のシステインおよび第2のシステインが、F1ポリペプチドの位置137~216にあるか;
第1のシステインおよび第2のシステインが、F1ポリペプチドの位置461~513にあるか;または
第1のシステインおよび第2のシステインが、F1ポリペプチドのそれぞれ位置137~216および461~513にあり;かつ
該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、
条項18の単離された免疫原。
条項20.
第1のシステインが、RSV Fの位置137~216の中の1箇所にアミノ酸置換によって導入されており、かつ第2のシステインが、RSV Fの位置271~460の中の1箇所にアミノ酸置換によって導入されている、条項18の免疫原。
条項21.
システインのペアが、それぞれがCα炭素およびCβ炭素を含む第1のシステインおよび第2のシステインを含み、かつ
(a)第1のシステインが、RSV Fの位置137~216または461~513の中の1箇所にアミノ酸置換によって導入されており、かつ第2のシステインが、RSV Fの位置26~61、77~97、または271~460の中の1箇所にアミノ酸置換によって導入されており;かつ
(b)表1に提供される構造座標によって明示される三次元構造において、各Cβ炭素に対する最適な回転異性体を用いた際、第1のシステイン位置のCα炭素が、第2のシステイン位置のCα炭素から2.0~8.0Åであり、かつ/または第1のシステイン位置のCβ炭素が、第2のシステイン位置のCβ炭素から2.0~5.5Åである、
条項19または条項20の免疫原。
条項22.
システインのペアが、それぞれがCα炭素およびCβ炭素を含む第1のシステインおよび第2のシステインを含み、かつ
(a)第1のシステインおよび第2のシステインが、RSV Fの位置137~216もしくはRSV Fの位置461~513にアミノ酸置換によって導入されているか;または第1のシステインが、RSV Fの位置137~216にアミノ酸置換によって導入されており、かつ第2のシステインが、RSV Fの位置461~513にアミノ酸置換によって導入されており;かつ
(b)表1に提供される構造座標によって明示される三次元構造において、各Cβ炭素に対する最適な回転異性体を用いた際、第1のシステイン位置のCα炭素が、第2のシステイン位置のCα炭素から2.0~8.0Åであり、かつ/または第1のシステイン位置のCβ炭素が、第2のシステイン位置のCβ炭素から2.0~5.5Åである、条項19または条項20の免疫原。
条項23.
ジスルフィド結合が、プロトマー内またはプロトマー間ジスルフィド結合を含む、条項18の免疫原。
条項24.
非天然ジスルフィド結合が、
RSV Fの位置155および290;151および288;137および337;397および487;138および353;341および352;403および420;319および413;401および417;381および388;320および415;319および415;331および401;320および335;406および413;381および391;357および371;403および417;321および334;338および394;288および300;60および194;33および469;54および154;59および192;46および311;48および308;または30および410の間のプロトマー内ジスルフィド結合;
RSV Fの位置400および489;144および406;153および461;149および458;143および404;346および454;399および494;146および407;374および454;369および455;402および141;74および218;183および428の間のプロトマー間ジスルフィド結合であって、組換えRSV Fタンパク質が、位置182/183間のG挿入;183および428を含み、かつ組換えRSV Fタンパク質が、位置427/428間のC挿入;145および460を含み、かつ組換えRSV Fタンパク質が、位置146/147間のAA挿入;183および423を含み、かつ組換えRSV Fタンパク質が、位置182/183間のAAA挿入;または330および430を含み、かつ組換えRSV Fタンパク質が、位置329/330間のCAA挿入を含む、プロトマー間ジスルフィド結合;
RSV Fの位置155および290の間のプロトマー内ジスルフィド結合であって、組換えRSV Fタンパク質が、RSV Fの位置74および218;141および402;146および460の間の非天然ジスルフィド結合、ならびに位置460/461間のG挿入;345および454、ならびに位置453/454間のC挿入;374および454、ならびに位置453/454間のC挿入;239および279、ならびに位置238/239間のC挿入;330および493、ならびに位置329/330間のC挿入;183および428、ならびに位置182/183間のG挿入;または183および428、ならびに位置427/428間のC挿入をさらに含む、プロトマー内ジスルフィド結合
を含む、条項23の免疫原。
条項25.
組換えRSV Fタンパク質が、
プロトマー内ジスルフィド結合、ならびに以下の置換セット:S155CおよびS290C;G151CおよびI288C;F137CおよびT337C;T397CおよびE487C;L138CおよびP353C;W341CおよびF352C;S403CおよびT420C;S319CおよびI413C;D401CおよびY417C;L381CおよびN388C;P320CおよびS415C;S319CおよびS415C;N331CおよびD401C;P320CおよびT335C;V406CおよびI413C;L381CおよびY391C;T357CおよびN371C;S403CおよびY417C;L321CおよびL334C;D338CおよびK394C;I288CおよびV300C;E60CおよびD194C;Y33CおよびV469C;T54CおよびV154C;I59CおよびV192C;S46CおよびT311C;L48CおよびV308C;E30CおよびL410Cのうちの1つもしくは複数;または
プロトマー間ジスルフィド結合、ならびに以下の置換セット:T400CおよびD489C;V144CおよびV406C;A153CおよびK461C;A149CおよびY458C;G143CおよびS404C;S346CおよびN454C;K399CおよびQ494C;S146CおよびI407C;T374CおよびN454C;T369CおよびT455C;もしくはV402CおよびL141C;A74CおよびE218C;S155C、S290C、L141C、およびV402C;S155C、S290C、A74C、およびE218C;N183CおよびN428C、ならびに位置182/183間のG挿入;N183CおよびN427G、ならびに位置427/428間のC挿入;S145Cおよび460C、ならびに位置146/147間のAA挿入;N183CおよびK423C、ならびに位置182/183間のAAA挿入;A329CおよびS430C、ならびに位置329/330間のCAA挿入のうちの1つもしくは複数;または
RSV Fの位置155と290との間のプロトマー内ジスルフィド結合、ならびにさらなる非天然ジスルフィド結合、S155CおよびS290C置換、ならびに以下のアミノ酸置換セット:S146CおよびN460C、ならびに位置460/461間のG挿入;N345CおよびN454G、ならびに位置453/454間のC挿入;T374CおよびN454G、ならびに位置453/454間のC挿入;S238GおよびQ279C、ならびに位置238/239間のC挿入;およびS493C、ならびに位置329/330間のC挿入;N183CおよびN428C、ならびに位置182/183間のG挿入;もしくはN183CおよびN427G、ならびに位置427/428間のC挿入のうちの1つもしくは複数
を含む、条項23の免疫原。
条項26.
組換えRSV Fタンパク質が、
SEQ ID NO: 185、189、201、202、205、207、209、213、244、245、247、257~262、264~275、277~282、284、296~299、302、303、338~340のうちの1つにある残基137~513として明示されるアミノ酸配列を含むF1ポリペプチド;または
SEQ ID NO: 190、211、212、243、246、263、276、283、285のうちの1つにある、それぞれ残基26~109および137~513として明示されるアミノ酸配列を含むF2ポリペプチドおよびF1ポリペプチド
を含み、該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、
条項23の免疫原。
条項27.
非天然ジスルフィド結合が、RSV Fの位置155と290との間のプロトマー内ジスルフィド結合を含む、条項23の免疫原。
条項28.
組換えRSV Fタンパク質が、S155CおよびS290C置換を含む、条項23の免疫原。
条項29.
組換えRSV Fタンパク質が、SEQ ID NO: 185の残基26~109および137~513、残基26~103および145~513、または残基26~105および145~513と少なくとも80%の同一性を含むアミノ酸配列を含むかまたはそれらからなる、条項23の免疫原。
条項30.
位置190、位置207、または位置190および207におけるF、L、W、Y、H、またはM置換を含む空洞充填アミノ酸置換を含む、条項18~29のいずれか一項の免疫原。
条項31.
190F;190L;190W;190Y;190H;190M;190Fおよび207L;190Fおよび207F;190Fおよび207W;190Lおよび207L;190Lおよび207F;190Lおよび207W;190Wおよび207L;190Wおよび207F;190Wおよび207W;190Yおよび207L;190Yおよび207F;190Yおよび207W;190Hおよび207L;190Hおよび207F;190Hおよび207W;190Mおよび207L;190Mおよび207F;190Mおよび207W;207Lおよび220L;296Fおよび190F;220Lおよび153W;203W;83Wおよび260W;58Wおよび298L;または87Fおよび90Lのうちの1つを含む空洞充填アミノ酸置換を含む、条項18~29のいずれか一項の免疫原。
条項32.
組換えRSV Fタンパク質が、SEQ ID NO: 191、193、196~197、もしくは248、もしくは371~376のうちの1つにある位置137~513、またはSEQ ID NO: 192、195、もしくは194のうちの1つにある位置26~109および137~513を含む、条項31の免疫原。
条項33.
組換えRSV Fタンパク質が、SEQ ID NO: 191の残基26~109および137~513、残基26~103および145~513、または残基26~105および145~513と少なくとも80%の同一性を含むアミノ酸配列を含むかまたはそれらからなる、条項30の免疫原。
条項34.
組換えRSV Fタンパク質が、位置155および290におけるシステイン置換間の非天然ジスルフィド結合、ならびに位置190、位置207、または位置190および207におけるF、L、W、Y、H、またはM空洞充填置換を含む、条項18の免疫原。
条項35.
組換えRSV Fタンパク質が、S155C、S290C、およびS190F置換、またはS155C、S290C、S190F、およびV207L置換を含む、条項18の免疫原。
条項36.
組換えRSV Fタンパク質が、
SEQ ID NO: 185(DS、サブタイプA)、371(DS-Cav1、サブタイプA)、372(DSCav1、サブタイプB)、373(DSCav1、ウシ)、374(DS S190F、サブタイプA)、375(DS、S190F、サブタイプB)、または376(DS、S190F、ウシ)のうちの1つにある、それぞれ残基26~109および137~513、またはそれぞれ26~103および145~513、またはそれぞれ26~105および145~513と少なくとも80%の同一性を含むアミノ酸配列
を含むかまたはそれらからなる、条項18の免疫原。
条項37.
組換えRSV Fタンパク質が、再パッキングアミノ酸置換によってRSV Fタンパク質融合前立体構造に安定化されており、F1ポリペプチドが、64L、79V、86W、193V、195F、198F、199F、203F、207L、および214L;64L、79L、86W、193V、195F、198F、199F、203F、および214L;64W、79V、86W、193V、195F、198F、199F、203F、207L、および214L;79V、86F、193V、195F、198F、199F、203F、207L、および214L;64V、79V、86W、193V、195F、198F、199Y、203F、207L、および214L;64F、79V、86W、193V、195F、198F、199F、203F、207L、および214L;64L、79V、86W、193V、195F、199F、203F、207L、および214L;56I、58I、164I、171I、179L、181F、187I、291V、296I、および298I;56I、58I、164I、179L、189F、291V、296I、および298I;56L、58I、158W、164L、167V、171I、179L、181F、187I、291V、および296L;56L、58I、158Y、164L、167V、187I、189F、291V、および296L;56I、58W、164I、167F、171I、179L、181V、187I、291V、および296I;56I、58I、64L、79V、86W、164I、179L、189F、193V、195F、198F、199F、203F、207L、214L、291V、296I、および298I;56I、58I、79V、86F、164I、179L、189F、193V、195F、198F、199F、203F、207L、214L、291V、296I、および298I;56I、58W、64L、79V、86W、164I、167F、171I、179L、181V、187I、193V、195F、198F、199F、203F、207L、214L、291V、および296I;56I、58W、79V、86F、164I、167F、171I、179L、181V、187I、193V、195F、198F、199F、203F、207L、214L、291V、および296I;486N、487Q、489N、および491A;486H、487Q、および489H;400V、486L、487L、および489L;400V、486I、487L、および489I;400V、485I、486L、487L、489L、494L、および498L;400V、485I、486I、487L、489I、494L、および498L;399I、400V、485I、486L、487L、489L、494L、497L、および498L;399I、400V、485I、486I、487L、489I、494L、497L、および498L;375W、391F、および394M;375W、391F、および394W;375W、391F、394M、486N、 487Q、489N、および491A;375W、391F、394M、486H、487Q、および489H;375W、391F、394W、486N、487Q、489N、および491A;375W、391F、394W、486H、487Q、および489H;375W、391F、394M、400V、486L、487L、489L、494L、および498M;375W、391F、394M、400V、486I、487L、489I、494L、および498M;375W、391F、394W、400V、486L、487L、489L、494L、および498M;375W、391F、394W、400V、486I、487L、489I、494L、および498M;137Wおよび339M;137Wおよび140W;137W、140W、および488W;486N、487Q、489N、491A、および488W;486H、487Q、489H、および488W;400V、486L、487L、489L、および488W;400V、486I、487L、489I、および488W;486N、487Q、489N、491A、137W、および140W;486H、487Q、489H、137W、および140W;400V、486L、487L、489L、137W、および140W;375W、391F、394M、137W、および140W;または375W、391F、394M、137W、140W、および339M置換のうちの1つに明示されるアミノ酸置換を含み、かつ該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、条項18の免疫原。
条項38.
組換えRSV Fタンパク質が、再パッキングアミノ酸置換によってRSV Fタンパク質融合前立体構造に安定化されており、F1ポリペプチドが、I64L、I79V、Y86W、L193V、L195F、Y198F、I199F、L203F、V207L、およびI214L;I64L、I79L、Y86W、L193V、L195F、Y198F、I199F、L203F、およびI214L;I64W、I79V、Y86W、L193V、L195F、Y198F、I199F、L203F、V207L、およびI214L;I79V、Y86F、L193V、L195F、Y198F、I199F、L203F、V207L、およびI214L;I64V、I79V、Y86W、L193V、L195F、Y198F、I199Y、L203F、V207L、およびI214L;I64F、I79V、Y86W、L193V、L195F、Y198F、I199F、L203F、V207L、およびI214L;I64L、I79V、Y86W、L193V、L195F、I199F、L203F、V207L、およびI214L;V56I、T58I、V164I、L171I、V179L、L181F、V187I、I291V、V296I、およびA298I;V56I、T58I、V164I、V179L、T189F、I291V、V296I、およびA298I;V56L、T58I、L158W、V164L、I167V、L171I、V179L、L181F、V187I、I291V、およびV296L;V56L、T58I、L158Y、V164L、I167V、V187I、T189F、I291V、およびV296L;V56I、T58W、V164I、I167F、L171I、V179L、L181V、V187I、I291V、およびV296I;V56I、T58I、I64L、I79V、Y86W、V164I、V179L、T189F、L193V、L195F、Y198F、I199F、L203F、V207L、I214L、I291V、V296I、およびA298I;V56I、T58I、I79V、Y86F、V164I、V179L、T189F、L193V、L195F、Y198F、I199F、L203F、V207L、I214L、I291V、V296I、およびA298I;V56I、T58W、I64L、I79V、Y86W、V164I、I167F、L171I、V179L、L181V、V187I、L193V、L195F、Y198F、I199F、L203F、V207L、I214L、I291V、およびV296I;V56I、T58W、I79V、Y86F、V164I、I167F、L171I、V179L、L181V、V187I、L193V、L195F、Y198F、I199F、L203F、V207L、I214L、I291V、およびV296I;D486N、E487Q、D489N、およびS491A;D486H、E487Q、およびD489H;T400V、D486L、E487L、およびD489L;T400V、D486I、E487L、およびD489I;T400V、S485I、D486L、E487L、D489L、Q494L、およびK498L;T400V、S485I、D486I、E487L、D489I、Q494L、およびK498L;K399I、T400V、S485I、D486L、E487L、D489L、Q494L、E497L、およびK498L;K399I、T400V、S485I、D486I、E487L、D489I、Q494L、E497L、およびK498L;L375W、Y391F、およびK394M;L375W、Y391F、およびK394W;L375W、Y391F、K394M、D486N、E487Q、D489N、およびS491A;L375W、Y391F、K394M、D486H、E487Q、およびD489H;L375W、Y391F、K394W、D486N、E487Q、D489N、およびS491A;L375W、Y391F、K394W、D486H、E487Q、およびD489H;L375W、Y391F、K394M、T400V、D486L、E487L、D489L、Q494L、およびK498M;L375W、Y391F、K394M、T400V、D486I、E487L、D489I、Q494L、およびK498M;L375W、Y391F、K394W、T400V、D486L、E487L、D489L、Q494L、およびK498M;L375W、Y391F、K394W、T400V、D486I、E487L、D489I、Q494L、およびK498M;F137WおよびR339M;F137WおよびF140W;F137W、F140W、およびF488W;D486N、E487Q、D489N、S491A、およびF488W;D486H、E487Q、D489H、およびF488W;T400V、D486L、E487L、D489L、およびF488W;T400V、D486I、E487L、D489I、およびF488W;D486N、E487Q、D489N、S491A、F137W、およびF140W;D486H、E487Q、D489H、F137W、およびF140W;T400V、D486L、E487L、D489L、F137W、およびF140W;L375W、Y391F、K394M、F137W、およびF140W;またはL375W、Y391F、K394M、F137W、F140W、およびR339Mのうちの1つに明示されるアミノ酸置換を含み、かつ該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、条項37の免疫原。
条項39.
組換えRSV Fタンパク質が、再パッキングアミノ酸置換によってRSV Fタンパク質融合前立体構造に安定化されており、F1ポリペプチドが、SEQ ID NO: 227~242、249~256、286~295、または326~337のうちの1つにある位置137~513を含む、条項38の免疫原。
条項40.
組換えRSV Fタンパク質が、N結合型グリコシル化部位によってRSV Fタンパク質融合前立体構造に安定化されており、該N結合型グリコシル化部位が、F1ポリペプチドの位置506、175、178、276、476、185、160、503、157のうちの1つ、またはそれらの位置のうちの2つもしくはそれ以上の組み合わせにあり、該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、条項18~39のいずれか一項の免疫原。
条項41.
組換えRSV Fタンパク質が、
(a)I506NおよびK508T;(b)A177S;(c)V178N;(d)V278T;(e)Y478T;(f)V185NおよびV187T;(g)L160NおよびG162S;(h)L503NおよびF505S;(i)V157N;または(j)(a)~(j)のうちの2つもしくはそれ以上の組み合わせ、
のうちの1つを含み、かつ該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、条項40の免疫原。
条項42.
組換えRSV Fタンパク質が、N結合型グリコシル化部位によってRSV Fタンパク質融合前立体構造に安定化されており、かつF1ポリペプチドが、SEQ ID NO: 198~200、203~204、214~217のうちの1つにある位置137~513を含む、条項41の免疫原。
条項43.
組換えRSV Fタンパク質が、RSV Fタンパク質融合前立体構造に安定化されており、S238CおよびE92C;L193CおよびI59C;I59CおよびL297C;L297CおよびI292C;K176CおよびS190C;T189CおよびA177C;T58CおよびK191C;A424CおよびV450C;L171CおよびK191C;K176CおよびS190C;K77CおよびI217C;K427CおよびD448C;G151CおよびN302C;G151CおよびV300C;T189CおよびV56C;L171CおよびK191C;L230F;L158F;L230FおよびL158F;L203F;V187F;Y198F;Y198W;L204F;Y53FおよびL188F;V187FおよびL203F;Y198FおよびL203F;L141W;L142F;L142W;V144F;V144W;V90F;L83F;V185FおよびT54A;I395F;V90F、V185F、およびT54A;L83FおよびV90F;L83F、V185F、およびT54A;L230F、V90F、およびI395F;I395F、V185F、およびT54A;L203F、V90F、L230F、L158F、S509F、I395F、V185F、およびT54A;I221Y;F140W;F137W;S190LおよびV192L;V187F、S190L、およびV192L;V187L、S190L、およびV192L;V185F、V187L、S190L、およびV192L;V154L、V157L、V185L、およびV187L;V154L、V185L、およびV187L;V187F;T58L A298L;T58L、V154L、V185L、V187L、およびA298L;Y458W;L158FおよびI167A;L158WおよびI167A;L158F;L158W;V56L、I167L、およびA298L;V56L、I167L、およびA298M;V56LおよびA167L;I167F;I167M;V154F;V56L、I167L、A298L、およびV154F;I199L、L203F;I199L、L203F、P205Q、およびI206T;I199L、L203F、P205E、およびI206K;I199L、L203F、およびV207F;I199L、L203F、P205Q、I206T、およびV207F;I199L、L203F、P205E、I206K、およびV207F;I199L、L203F、およびL83F;I199L、L203F、P205Q、I206T、およびL83F;I199L、L203F、P205E、I206K、およびL83F;I199L、L203F、S190L、およびV192L;I199L、L203F、P205Q、I206T、V187F、およびS190L、V192L;S55A、S190M、L203F、V207I、およびV296I;Y53F、S55A、K176I、S190L、V207I、S259L、D263L、およびV296I;L158F、V207M、およびV296I;V56L、V207M、およびV296I;V56L、V207I、およびV296I;V56I、V207M 、and V296I;V154L、V207M、およびV296I;Y198F、V207I、T219W、およびV296I;Y198F、V207I、T219I、およびV296I;Y198F、V207M、T219W、およびV296I;198F、V207M、T219I、およびV296I;Y198F、V207M、T219L、およびV296I;S190Y;S190W;I206F、V207M、T219V、およびV296I;Y198F、V207M、T219L、およびK226M;Y198F、V207M、T219L、およびK226W;Y198F、V207M、T219L、およびK226L;L158F、L203F、V207I、およびV296I;F488W;F488R;V207L;S190F; S190M; L503E、I506K、およびS509F;L503E、I506K、S509F、およびF505W;L503E、I506K、S509F、L230F、およびL158F;Q279C、およびS238C;Q501F;E82V、V207M、N227L、およびV296I;E82V、V207I、N227L、およびV296I;L158F、Y198F、V207M、S215G、N216P、およびT219L;L158F、Y198F、V207M、S213G、S215G、およびT219L;V56L、E82V、L203F、V207M、N227L、L230F、およびV296I;E82V、L158F、L203F、V207M、N227L、L230F、およびV296I;E82V、L203F、V207M、K226M、N227L、L230F、およびV296I;またはL203F、V207I、S180C、S186C、およびV296Iのうちの1つとして明示されるアミノ酸置換を含み、該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、条項18のいずれか1項の免疫原。
条項44.
組換えRSV Fタンパク質が、
S155CおよびS290C置換、ならびに以下の置換セット:L513C、514E、および515C;L513C、514E、515E、および516C;L512C、513E、および514C;またはL512C、513E、514E、および515Cのうちの1つをさらに含み;
S155C、S290C、およびS190F置換、ならびに以下の置換セット:F488W、L513C、A514E、およびI515C;F488W、L513C、A514E、G515E、および516C;F488W、L512C、L513E、およびA514C;F488W、L512C、L513E、A514E、およびG515C;A424C、V450C、L171C、K191C、F488W、L513C、A514E、およびI515C;A424C、V450C、L171C、K191C、F488W、L513C、A514E、G515E、および516C;A424C、V450C、L171C、K191C、F488W、L512C、L513E、およびA514C;A424C、V450C、L171C、K191C、F488W、L512C、L513E、A514E、およびG515C;K77C、I217C、A424C、V450C、L171C、K191C、F488W、L513C、L514E、およびA515C;K77C、I217C、A424C、V450C、L171C、K191C、F488W、L513C、L514E、およびA515E; K77C、I217C、A424C、V450C、L171C、K191C、F488W、L512C、L513E、およびA514C;またはK77C、I217C、A424C、V450C、L171C、K191C、F488W、L512C、L513E、A514E、およびG515Cのうちの1つをさらに含み;
S155C、S290、S190F、およびV207L置換、ならびに以下の置換セット:L503E、およびI506K;L503E、I506K、およびF505W;L503E、I506K、L230F、およびL158F;L503E、I506K、S509F、F505W、L230F、およびL158F;L160K、V178T、L258K、V384T、I431S、およびL467Q;F477K、L481Q、V482K、L503Q、およびI506K;L160K、V178T、L258K、V384T、I431S、L467Q、F477K、L481Q、V482K、L503Q、およびI506K;L512C、およびL513C;L512C、L513C、L160K、V178T、L258K、V384T、I431S、およびL467Q;L512C、L513C、F477K、L481Q、V482K、L503Q、およびI506K;L512C、L513C、L160K、V178T、L258K、V384T、I431S、L467Q、F477K、L481Q、V482K、L503Q、およびI506K;F505W; F505W L160K、V178T、L258K、V384T、I431S、およびL467Q;F505W F477K、L481Q、V482K、L503Q、およびI506K;F505W L160K、V178T、L258K、V384T、I431S、L467Q、F477K、L481Q、V482K、L503Q、およびI506K;L512C、L513C、およびF505W;L512C、L513C F505W L160K、V178T、L258K、V384T、I431S、およびL467Q;L512C、L513C F505W F477K、L481Q、V482K、L503Q、およびI506K;L512C、L513C F505W L160K、V178T、L258K、V384T、I431S、L467Q、F477K、L481Q、V482K、L503Q、およびI506K;I506K、S509F、L83F、およびV90F;I506K、S509F、L83F、V90F、L230F、およびL158F;I506K、S509F、F505W、L83F、V90F、L230F、V185F、およびT54A;L83F、V90F、L230F、およびI395F;I506K、S509F、F505W、L83F、V90F、L230F、L158F、I395F、V185F、およびT54A;L512C、およびL513C;または486DEF~CPCのうちの1つをさらに含み、
該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、
条項18の免疫原。
条項45.
組換えRSV Fタンパク質が、RSV Fタンパク質融合前に安定化されており、かつSEQ ID NO: 338~433、434~544、672~682のうちの1つにあるそれぞれ位置26~109および137~513として明示されるアミノ酸配列を含むF2およびF1ポリペプチドを含む、条項18の免疫原。
条項46.
組換えRSV Fタンパク質が、
表5bの行1~16(より新しい鎖間ジスルフィド);
表6bの行1~84(より新しい空洞充填);
表8bの行1~54(DSCav-1とのより新しい組み合わせ);または
表8cの行1~13(より新しい空洞充填+曝露された疎水性残基の置き換え)
のうちの1つに明示されるアミノ酸置換
を含み、かつ
アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、
条項1~18のいずれか一項の免疫原。
条項47.
組換えRSV Fタンパク質が一本鎖タンパク質であり、かつSEQ ID NO: 698~828または1474~1478のうちのいずれか1つと少なくとも80%同一なアミノ酸配列を含む、条項1~18のいずれか一項の免疫原。
条項48.
組換えRSV Fタンパク質が一本鎖タンパク質であり、かつSEQ ID NO: 698~828または1474~1478のうちのいずれか1つと少なくとも80%同一なアミノ酸配列を含み、任意で、対応するSEQ ID NOに挙げられたタンパク質タグまたはリーダー配列を有しない、条項1~18のいずれか一項の免疫原。
条項49.
組換えRSV Fタンパク質が三量体化ドメインを含み、フォルドンドメインと組換えRSV Fタンパク質との間にプロテアーゼ切断部位をさらに含む、条項1~18のいずれか一項の免疫原。
条項50.
組換えRSV Fタンパク質が、SEQ ID NO: 829~1025のうちの1つに対応する表23の行に挙げられたアミノ酸置換を含む、条項1~18のいずれか一項の免疫原。
条項51.
組換えRSV Fタンパク質が、SEQ ID NO: 969~1025のうちの1つに対応する表23の行に挙げられたアミノ酸置換を含む、条項1~18のいずれか一項の免疫原。
条項52.
免疫原が、以下のアミノ酸置換:
DSCav1-F137C、およびR339C;DSCav1-F137CおよびT337C;DSCav1-G139CおよびQ354C;F137C、R339C;F137C、T337C;G139C、Q354C;L260F;L260W;L260Y;L260R;L188F;L188W;L188Y;L188R;I57F;I57W;I57R;L252F;L252W;L252R;V192F;V192W;V192R;S150CおよびY458C;A149CおよびN460C;S146C、およびN460C;A149CおよびY458C;V220F;V220W;V220M;T219F;T219M;T219W; T219R;I221F;I221Y;I221W;Q224D、およびL78K;V278F Q279F N277D、およびS99K;Q361F;V402F;T400F;T400W;H486F;H486W;I217F;I217Y;I217W;F190V;K226L;T58I、およびA298M;F190VおよびK226L;F190V、およびT58I、A298M;K226L、T58I、およびA298M;T58I、A298M、F190VおよびK226L
のうちの1つまたは複数を含み、かつ任意で、S155CおよびS290C置換、またはS155C、S290C、S190F、およびV207L置換をさらに含む、条項1~18のいずれか一項の免疫原。
条項53.
SEQ ID NO: 829~1025のうちの1つであるアミノ酸配列と少なくとも80%同一なアミノ酸配列を含み、任意で、対応するSEQ ID NOに挙げられたタンパク質タグまたはリーダー配列を有しない、条項1~18のいずれか一項の免疫原。
条項54.
組換えRSV Fタンパク質が三量体化ドメインを含み、フォルドンドメインと組換えRSV Fタンパク質との間にプロテアーゼ切断部位をさらに含む、条項53のいずれか1項の免疫原。
条項55.
組換えRSV Fタンパク質が、SEQ ID NO: 901~968のうちの1つに対応する表24の行に挙げられたアミノ酸置換を含む、条項1~18のいずれか一項の免疫原。
条項56.
SEQ ID NO: 901~968のうちの1つであるアミノ酸配列と少なくとも80%同一なアミノ酸配列を含み、任意で、対応するSEQ ID NOに挙げられたタンパク質タグまたはリーダー配列を有しない、条項1~18のいずれか一項の免疫原。
条項57.
組換えRSV Fタンパク質またはそのフラグメントが、SEQ ID NO: 1~184のうちのいずれか1つに明示される以下のRSV F2およびF1位置:
(a)それぞれ56~97および189~211;(b)それぞれ58~97および192~242;(c)それぞれ59~97および194~240;(d)それぞれ60~75および193~218;(e)それぞれ60~94および192~229;(f)それぞれ60~94および192~232;(g)それぞれ60~94および193~237;(h)それぞれ60~95および192~240;(i)それぞれ60~96および192~239;(j)それぞれ60~97および192~242;(k)それぞれ60~97および194~239;(l)それぞれ61~96および192~235;(m)それぞれ61~96および192~240;(n)それぞれ62~69および196~209;または(o)(a)~(m)のうちのいずれか1つに挙げられたF2およびF1位置の円順列変異、
と少なくとも80%同一なアミノ酸配列を含むかまたはそれらからなり、該RSV F2およびF1位置が、異種リンカーによって接合されている、条項7の免疫原。
条項58.
組換えRSV Fタンパク質またはそのフラグメントが、SEQ ID NO: 1~184のうちのいずれか1つに明示される以下のRSV F2およびF1位置:
(a)それぞれ46~103および147~310;(b)それぞれ46~104および146~310;(c)それぞれ50~96および149~306;(d)それぞれ51~103および146~307;(e)それぞれ51~103および139~307;(f)それぞれ50~105および146~306;(g)53~97、および148から305~320の中の1箇所まで;(h)(a)~(g)のうちのいずれか1つに挙げられたF2およびF1位置の円順列変異、
と少なくとも80%同一なアミノ酸配列を含むかまたはそれらからなり、該RSV F2およびF1位置が、異種リンカーによって接合されているかまたは直接連結している、条項7の免疫原。
条項59.
組換えRSV Fタンパク質またはそのフラグメントが、表20に挙げられた最小部位φ免疫原のうちのいずれか1つのアミノ酸配列を含む、条項57または58の免疫原。
条項60.
組換えRSV Fタンパク質またはそのフラグメントが、SEQ ID NO: 1027~1218のうちの1つであるアミノ酸配列と少なくとも80%同一なアミノ酸配列を含む、条項57または58の免疫原。
条項61.
組換えRSV Fタンパク質またはそのフラグメントが、SEQ ID NO: 1027~1218のうちの1つであるアミノ酸配列と少なくとも80%同一なアミノ酸配列を含み、任意で、対応するSEQ ID NOに挙げられたタンパク質タグまたはリーダー配列を有しない、条項57または58の免疫原。
条項62.
組換えRSV Fタンパク質が、位置155および290におけるシステイン置換、ならびに位置190、位置207、または位置190および207におけるF、L、W、Y、H、またはM置換を含む、条項58~61のいずれか一項の免疫原。
条項63.
組換えRSV Fタンパク質が、S155CおよびS290C置換;S155C、S290C、およびS190F置換;またはS155C、S290C、S190F、およびV207L置換を含む、条項58~61のいずれか一項の免疫原。
条項64.
組換えRSV Fタンパク質またはそのフラグメントが、SEQ ID NO: 1027~1218のうちのいずれか1つのF1-リンカー-F2配列またはF2-リンカー-F1配列を含むかまたはそれらからなる、条項58~61のいずれか一項の免疫原。
条項65.
異種リンカーが、SEQ ID NO: 1443~1455のうちのいずれか1つとして明示されるアミノ酸配列、またはG、S、GG、GS、SG、GGG、もしくはGSGリンカーを含むかまたはそれらからなる、条項57~64のいずれか一項の免疫原。
条項66.
組換えRSV Fタンパク質またはそのフラグメントの多量体を含む、前項のいずれか一項の免疫原。
条項67.
組換えRSV Fタンパク質が足場タンパク質に連結している、前項のいずれか一項の免疫原。
条項68.
F1ポリペプチドが、RSVの位置492から位置510~529の中の1箇所までを含むRSV α10ヘリックスを含み、かつF1ポリペプチドが、非天然プロトマー間ジスルフィド結合を形成する少なくとも2個のシステイン置換を含む、条項1~56のいずれか一項の免疫原。
条項69.
F1ポリペプチドの位置512~524が、CCHNVNAGKSTTN(SEQ ID NO: 844の残基512~524)もしくはCCHNVNACCSTTN(SEQ ID NO: 849の残基X~Y)として明示されるアミノ酸配列を含むか;またはF1ポリペプチドの位置512~529が、CCHNVNACCSTTNICCTT(SEQ ID NO: 853の残基512~529)として明示されるアミノ酸配列を含む、条項68の免疫原。
条項70.
組換えRSV Fタンパク質が、F1の位置:
(a)486および487;
(b)512および513;
(c)519および520;
(d)526および527;
(e)486および487、該F1ポリペプチドは、位置486と487との間に挿入されたPをさらに含む;
(f)330および493、該F1ポリペプチドは、位置329と330との間に挿入されたCをさらに含む;または
(g)330および493、該F1ポリペプチドは、位置329と330との間に挿入されたC、ならびに位置492と493との間のG挿入をさらに含む、
における架橋システインのペアを含むさらなるジスルフィド結合をさらに含み、
該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、
前項のいずれか一項の単離された免疫原。
条項71.
組換えRSV Fタンパク質もしくはそのフラグメントまたはエピトープ足場タンパク質が三量体化ドメインに連結している、前項のいずれか一項の免疫原。
条項72.
組換えRSV Fタンパク質のF1ポリペプチドのC末端が三量体化ドメインに連結している、条項71の免疫原。
条項73.
三量体化ドメインがフォルドンドメインである、条項71または条項72の免疫原。
条項74.
F1ポリペプチドと三量体化ドメインとの間にプロテアーゼ切断部位をさらに含む、条項71~73のいずれか一項の免疫原。
条項75.
プロテアーゼ切断部位と三量体化ドメインとの間に膜貫通ドメインをさらに含む、条項74の免疫原。
条項76.
RSV Fタンパク質が、
(a)F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドが、SEQ ID NO: 185、189、190、201、202、205、207、209、211、212、213、244、245、247、257、258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、277、278、279、280、281、282、284、302、303、243、246、276、283、285、296、297、298、もしくは299のうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む、ジスルフィド結合;
(b)F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドが、SEQ ID NO: 191、193、196、197、248、192、195、もしくは194のうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む、空洞充填アミノ酸置換;
(c)F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドが、SEQ ID NO: 249、250、251、252、253、254、255、256、288、289、290、291、292、293、294、295、296、297、326、327、328、329、330、331、332、333、334、335、336、もしくは337のうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む、再パッキングアミノ酸置換;または
(d)F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドが、SEQ ID NO: 198、199、200、203、204、214、215、216、もしくは217からなる群より選択されるSEQ ID NOのうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む、N結合型グリコシル化部位;
(e)F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドが、SEQ ID NO: 371、372、373、374、375、376からなる群より選択されるSEQ ID NOのうちのいずれか1つの、それぞれ位置26~109および137~544として明示されるアミノ酸配列を含む、ジスルフィド結合および空洞充填置換
によってFタンパク質融合前立体構造に安定化されており、かつ
該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、
条項75の単離された免疫原。
条項77.
F2ポリペプチド、およびフォルドンドメインに連結されたF1ポリペプチドが、SEQ ID NO: 552;553;554;555;556;557;558;559;560;561;562;563;564;565;566;567;568;569;570;571;572;573;574;575;576;577;578;579;580;581;582;583;584;585;586;587;588;589;590;591;592;593;および601;683;684;685;686;687;688;689;690;691;692;または693のうちのいずれか1つの、それぞれ位置26~109および137~548として明示されるアミノ酸配列を含み、
該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、
条項75の単離された免疫原。
条項78.
組換えRSV Fタンパク質もしくはそのフラグメントまたはエピトープ足場タンパク質が、タンパク質ナノ粒子サブユニットに連結している、前項のいずれか一項の免疫原。
条項79.
組換えRSV Fタンパク質もしくはそのフラグメントまたはエピトープ足場タンパク質のC末端が、タンパク質ナノ粒子サブユニットに連結している、条項78の免疫原。
条項80.
タンパク質ナノ粒子サブユニットが、フェリチン、エンカプスリン、硫黄オキシゲナーゼレダクターゼ(SOR)、ルマジンシンターゼ、またはピルビン酸デヒドロゲナーゼのナノ粒子サブユニットである、条項78または条項79の免疫原。
条項81.
フェリチンナノ粒子サブユニットが、SEQ ID NO: 350の残基517~679と少なくとも80%の配列同一性を有するアミノ酸配列を含み、かつ任意で、フェリチンポリペプチド内にC31S、C31A、またはC31V置換を含み;
SORサブユニットが、SEQ ID NO: 344またはSEQ ID NO: 345の残基516~825と少なくとも80%の配列同一性を有するアミノ酸配列を含み;
ルマジンシンターゼサブユニットが、SEQ ID NO: 346もしくはSEQ ID NO: 348の残基517~670、またはSEQ ID NO: 347の残基517~669と少なくとも80%の配列同一性を有するアミノ酸配列を含み;または
ピルビン酸デヒドロゲナーゼシンターゼサブユニットが、SEQ ID NO: 349の残基516~757と少なくとも80%の配列同一性を有するアミノ酸配列を含む、
条項78の免疫原。
条項82.
SEQ ID NO: 827~828または1429~1442のうちの1つと少なくとも80%同一なアミノ酸配列を含むフェリチンサブユニットに連結された一本鎖RSV Fタンパク質を含む、条項78の免疫原。
条項83.
組換えRSV Fタンパク質またはそのフラグメントがナノ粒子サブユニットに連結されており、かつ表21に挙げられた、タンパク質ナノ粒子に連結された最小部位φ免疫原のうちのいずれか1つのアミノ酸配列を含む、条項78の免疫原。
条項84.
組換えRSV Fタンパク質またはそのフラグメントがナノ粒子サブユニットに連結されており、SEQ ID NO: 1219~1428のうちの1つであるアミノ酸配列と少なくとも80%同一なアミノ酸配列を含む、条項78の免疫原。
条項85.
組換えRSV Fタンパク質またはそのフラグメントがナノ粒子サブユニットに連結されており、かつSEQ ID NO: 1219~1428のうちの1つであるアミノ酸配列と少なくとも80%同一なアミノ酸配列を含み、任意で、対応するSEQ ID NOに挙げられたタンパク質タグまたはリーダー配列を有しない、条項78の免疫原。
条項86.
組換えRSV Fタンパク質が、室温で生理的pHにおいてリン酸緩衝生理食塩水中で三量体を形成する、前項のいずれか一項の免疫原。
条項87.
免疫原が、水溶液中でインキュベートされた場合に免疫原の均質集団を形成し、該溶液中でインキュベートされた免疫原の少なくとも70%、少なくとも80%、少なくとも90%、および/または少なくとも95%が、
(a)50℃にて、350mM NaCl pH7.0中で1時間のインキュベーション;
(b)25℃にて、350mM NaCl pH3.5中で1時間のインキュベーション;
(c)25℃にて、350mM NaCl pH10中で1時間のインキュベーション;
(d)25℃にて、10mMモル浸透圧濃度、pH7.0中で1時間のインキュベーション;
(e)25℃にて、3000mMモル浸透圧濃度、pH7.0中で1時間のインキュベーション;もしくは
(f)350mM NaCl pH7.0中で10回の凍結融解サイクル;または
(g)(a)~(f)のうちの2つもしくはそれ以上の組み合わせ
の後に融合前特異的抗体に特異的に結合し、該免疫原が融合前特異的抗体の非存在下で該溶液中でインキュベートされる、前項のいずれか一項の免疫原。
条項88.
(a)組換えRSV Fタンパク質またはそのフラグメントが、RSV Fの位置481と489との間またはRSV Fの位置509と510との間にジスルフィド結合を含まず;
(b)組換えRSV Fタンパク質またはそのフラグメントが、RSV Fの位置481、489、509、510、またはそれらの組み合わせにおいてシステイン残基を含まず;
(c)(a)および(b)の組み合わせである、
前項のいずれか一項の免疫原。
条項89.
F1ポリペプチドのC末端が膜貫通ドメインに連結している、条項1~70のいずれか一項の単離された免疫原。
条項90.
膜貫通ドメインがRSV F膜貫通ドメインである、条項89の単離された免疫原。
条項91.
膜貫通ドメインのC末端がRSV F細胞質ドメインに連結している、条項89または90の単離された免疫原。
条項92.
非特異的架橋によっては融合前立体構造に安定化されない、前項のいずれか一項の単離された免疫原。
条項93.
条項1~70のいずれか一項の免疫原を含む、ウイルス様粒子。
条項94.
条項1~85のいずれか一項の免疫原を含む、タンパク質ナノ粒子。
条項95.
フェリチンナノ粒子、エンカプスリンナノ粒子、硫黄オキシゲナーゼレダクターゼ(SOR)ナノ粒子、ルマジンシンターゼナノ粒子、またはピルビン酸デヒドロゲナーゼナノ粒子である、条項94のタンパク質ナノ粒子。
条項96.
モノクローナル抗体D25またはAM22のFabが、1μMまたはそれ未満のKdで免疫原、ウイルス様粒子、またはタンパク質ナノ粒子に特異的に結合する、条項1~92のいずれか一項の免疫原。
条項97.
免疫原が、モノクローナル抗体D25の非存在下において、1個の残基あたり2.0Å未満というそれらの座標の平均二乗偏差(RMSD)を伴って、表1に明示される原子座標によって規定されるモノクローナル抗体D25と複合したSEQ ID NO: 370の残基62~69および196~209を含むD25エピトープの三次元構造上に構造的に重ね合わせることができる三次元構造を含むD25エピトープを含み、該RMSDが、ポリペプチド骨格原子であるN、Cα、C、Oに関して、少なくとも3個の連続的アミノ酸について測定される、条項1~85のいずれか一項の単離された免疫原。
条項98.
条項1~92のいずれか一項の単離された免疫原をコードする、核酸分子。
条項99.
免疫原の前駆体タンパク質をコードする、条項98の核酸分子。
条項100.
前駆体タンパク質が、N末端からC末端方向に、シグナルペプチド、F2ポリペプチド、Pep27ポリペプチド、およびF1ポリペプチドを含む、条項99の核酸分子。
条項101.
Pep27ポリペプチドが、SEQ ID NO: 1~184または370のうちのいずれか1つの位置110~136として明示されるアミノ酸配列を含み、該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、条項100の核酸分子。
条項102.
シグナルペプチドが、SEQ ID NO: 1~184または370のうちのいずれか1つの位置1~25として明示されるアミノ酸配列を含み、該アミノ酸位置が、SEQ ID NO: 124として明示される参照F0ポリペプチドのアミノ酸配列に対応する、条項101の核酸分子。
条項103.
ヒトまたはウシ細胞内での発現にコドン最適化された、条項99~102のいずれか一項の核酸分子。
条項104.
プロモーターに機能的に連結された、条項99~103のいずれか一項の核酸分子。
条項105.
条項104の核酸分子を含む、ベクター。
条項106.
ウイルスベクターである、条項105のベクター。
条項107.
ウシパラインフルエンザウイルスベクター、ヒトパラインフルエンザウイルスベクター、ニューカッスル病ウイルスベクター、センダイウイルスベクター、麻疹ウイルスベクター、弱毒化RSVベクター、パラミクソウイルスベクター、アデノウイルスベクター、アルファウイルスベクター、ベネズエラウマ脳炎ベクター、セムリキ森林ウイルスベクター、シンドビスウイルスベクター、アデノ随伴ウイルスベクター、ポックスウイルスベクター、ラブドウイルスベクター、水疱性口内炎ウイルスベクター、ピコルナウイルスベクター、またはヘルペスウイルスベクターである、条項106のウイルスベクター。
条項108.
細菌ベクターである、条項106のベクター。
条項109.
マイコバクテリアベクター、サルモネラベクター、シゲラ(shigella)ベクター、リステリア・モノサイトゲネス(Listeria monocytogenes)ベクター、またはラクトバチルス(lactobacillus)ベクターである、条項108の細菌ベクター。
条項110.
SEQ ID NO: 383、SEQ ID NO: 384、SEQ ID NO: 385、またはSEQ ID NO: 386として明示されるヌクレオチド配列を含む、条項98~109のいずれか一項の核酸分子またはベクター。
条項111.
条項105~110のいずれか一項のベクターを含む、単離された宿主細胞。
条項112.
条項1~110のいずれか一項の免疫原、ウイルス様粒子、タンパク質ナノ粒子、核酸分子、またはベクターの有効量、および薬学的に許容される担体を含む、免疫原性組成物。
条項113.
アジュバントをさらに含む、条項112の免疫原性組成物。
条項114.
アジュバントが、アルミニウム、水中油型組成物、MF59、AS01、AS03、AS04、MPL、QS21、CpGオリゴヌクレオチド、TLR7アゴニスト、TLR4アゴニスト、またはそれらのうちの2つもしくはそれ以上の組み合わせである、条項113の免疫原性組成物。
条項115.
アジュバントがTh1免疫応答を促進する、条項113の免疫原性組成物。
条項116.
免疫原に特異的に結合するRSV F融合前特異的抗体をさらに含む、条項112のいずれか1項の免疫原性組成物。
条項117.
RSV Fタンパク質サブタイプAおよびBに基づく組換えRSV Fタンパク質またはそのフラグメントの混合物を含む、条項112のいずれか1項の免疫原性組成物。
条項118.
ヒトサブタイプA RSV Fタンパク質がS155C、S290C、およびS190F置換を含み、かつヒトサブタイプB RSV Fタンパク質がS155C、S290C、およびS190F置換を含む;または
ヒトサブタイプA RSV Fタンパク質がS155C、S290C、S190F、およびV207L置換を含み、かつヒトサブタイプB RSV Fタンパク質がS155C、S290C、S190F、およびV207L置換を含む、
条項117の免疫原性組成物。
条項119.
免疫応答を生じさせるために条項112~118のいずれか一項の免疫原性組成物の有効量を対象に投与する工程を含む、対象においてRSV Fに対する免疫応答を生じさせるための方法。
条項120.
免疫応答がTh1免疫応答を含む、条項119の方法。
条項121.
条項112~120のいずれか一項の免疫原性組成物の治療上有効量を対象に投与し、それによって対象におけるRSV感染症を治療するまたは阻止する工程を含む、対象におけるRSV感染症を治療するまたは阻止するための方法。
条項122.
免疫原性組成物のプライム-ブースト投与を含む、条項119~121のいずれか一項の方法。
条項123.
プライムおよびブーストが、RSV Fタンパク質サブタイプAおよびBに基づく組換えRSV Fタンパク質もしくはそのフラグメントまたは核酸分子またはタンパク質ナノ粒子の混合物の投与を含む、条項122の方法。
条項124.
条項1~110のいずれか一項の免疫原、ウイルス様粒子、タンパク質ナノ粒子、核酸分子、またはベクターの有効量を提供する工程;
組換えRSV Fタンパク質またはタンパク質ナノ粒子とRSV F結合抗体との間で免疫複合体を形成するのに十分な条件下で、対象由来の生物学的サンプルを組換えRSV Fタンパク質またはタンパク質ナノ粒子と接触させる工程;および
免疫複合体を検出し、それによって対象におけるRSV F結合抗体を検出するまたは単離する工程
を含む、対象におけるRSV F結合抗体を検出するまたは単離するための方法。
条項125.
対象が、RSV感染症の危険性があるまたはRSV感染症を有する、条項119~124のいずれか一項の方法。
条項126.
RSV感染症が、ヒトRSVサブタイプA、ヒトRSVサブタイプB、またはウシRSVの感染症である、条項125の方法。
条項127.
対象がヒトまたは獣医学的対象である、条項119~126のいずれか一項の方法。
条項129.
条項1~110のいずれか一項の免疫原、ウイルス様粒子、タンパク質ナノ粒子、核酸分子、またはベクター、およびキットを使用するための指示書を含む、キット。
本明細書において使用する場合、「SEQ ID NO: 1~184のうちのいずれか1つ」という言及は、
「
」
を指す。
「SEQ ID NO: 698~828」とは、
「
のうちのいずれか1つ」を指す。
「SEQ ID NO: 1474~1478」とは、「SEQ ID NO: 1474、SEQ ID NO: 1475、SEQ ID NO: 1476、SEQ ID NO: 1477、またはSEQ ID NO: 1478のうちのいずれか1つ」を指す。
「SEQ ID NO: 829~1025」とは、
「
のうちのいずれか1つ」を指す。
「SEQ ID NO: 969~1025」とは、
「
のうちのいずれか1つ」を指す。
「SEQ ID NO: 901~968」とは、
「
のうちのいずれか1つ」を指す。
「SEQ ID NO: 1027~1218」とは、
「
のうちのいずれか1つ」を指す。
「SEQ ID NO: 1429~1442」とは、
「
のうちのいずれか1つ」を指す。
「SEQ ID NO: 1219~1428」とは、
「
のうちのいずれか1つ」を指す。
一部の態様において、開示される組換えRSV Fタンパク質は、
(「配列セットF」)のうちのいずれか1つと少なくとも80%(少なくとも90%、少なくとも95%、もしくは少なくとも98%、または100%など)同一なアミノ酸配列を含み得、該組換えRSV Fポリペプチドは、RSV F融合前特異的抗体(D25など)に特異的に結合し、かつ/またはRSV F融合前特異的抗原部位(抗原部位φなど)を含む。いくつかの態様において、24時間20℃でpH7.4にてPBS中でのインキュベーション後に、免疫原は該抗体に特異的に結合する、または抗原部位を含む。一部の態様において、組換えRSV Fポリペプチドは、配列セットF由来の配列のうちの1つを含み、かつ20個まで(1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、または19個までなど)のアミノ酸置換(保存的アミノ酸置換など)をさらに含み、該組換えRSV Fポリペプチドは、RSV F融合前特異的抗体(D25など)に特異的に結合し、かつ/またはRSV F融合前特異的抗原部位(抗原部位φなど)を含む。当業者であれば、上記で挙げられた配列は、リーダー配列、精製タグ、精製タグを除去するためのプロテアーゼ切断部位、三量体化ドメイン、タンパク質ナノ粒子サブユニットドメイン、または組換えRSV Fタンパク質とは無関係である他の配列を含み得ることを解するであろう。いくつかの態様において、本明細書において提供される免疫原は、上記配列のうちの1つである組換えRSV Fタンパク質を含むが、リーダー配列、精製タグ、精製タグを除去するためのプロテアーゼ切断部位、三量体化ドメイン、タンパク質ナノ粒子サブユニットドメイン、または組換えRSV Fタンパク質とは無関係である他の配列を含まない。組換えRSV Fタンパク質を用いて、対象においてRSVに対する免疫応答を生じさせる方法、または対象におけるRSV感染症を阻止するもしくは治療する方法と、これらのタンパク質配列をコードする核酸分子も提供される。
III. 実施例
以下の実施例は、ある特定の態様の特定の特質を例証するために提供されるが、特許請求の範囲は、例示されるそうした特質に限定されるべきではない。
実施例1
ヒト抗体に結合している呼吸器合胞体ウイルス融合前F三量体の構造
呼吸器合胞体ウイルス(RSV)融合(F)糖タンパク質の融合前立体構造は、ヒト血清中のほとんどのRSV中和抗体の標的であるが、その準安定性により、特徴付けが妨げられてきた。この障壁を克服するために、Fの融合後立体構造に結合せず、かつ予防的抗体パリビズマブ(Synagis(登録商標))よりも>10倍強力である抗体を同定した。F糖タンパク質と複合した、これら抗体のうちの1つであるD25に対する共結晶構造により、D25はFをその融合前状態にロックすることが明らかとなっている。融合前および融合後のF立体構造の比較により、RSV侵入に必要とされる再編成が規定される。D25-F糖タンパク質構造により、融合前特異的でありかつ特徴が四次的である、F糖タンパク質の上部にある新たな脆弱性部位である抗原部位φが明らかとなっている。抗原部位φの規定と合わせた融合前RSV F三量体構造により、向上したワクチン抗原の設計が可能となり、かつRSV介在性疾患の受動的阻止のための新たな手法が導かれるはずである。
呼吸器合胞体ウイルス(RSV)は遍在的であり、3歳までにほぼすべての子どもに感染する(Glezen et al., Am. J. Dis. Child., 140, 543 (1986))。米国では、RSV細気管支炎は、乳児における入院原因の第1位であり、小児期を通じた喘息および喘鳴の主な原因である(Shay et al., JAMA, 282, 1440 (1999);Hall et al., N. Engl. J. Med., 360, 588 (2009))。世界的に、RSVは、5歳よりも幼い子どもに関する毎年66,000~199,000人の死亡に関与しており(Nair et al., Lancet, 375, 1545 (2010))、マラリアを除く他のいずれの単一病原体よりも多い、生後1ヶ月~1歳の乳児の間での死亡の7%を占める(Lozano et al., Lancet, 380, 2095 (2013))。唯一利用可能な介入は、RSV融合(F)糖タンパク質を認識し(Johnson et al., J. Infect. Dis., 176, 1215 (1997);Beeler and van Wyke Coelingh, J. Virol., 63, 2941 (1989))、かつ重度の疾患の出現率を低下させる(The IMpact-RSV Study Group, Pediatrics, 102, 531 (1998))認可モノクローナル抗体パリビズマブ(Synagis(登録商標))の受動投与である。RSV F特異的抗体が疾患を防御し得るという臨床的証拠により、よりよい抗体の探索(Collarini et al., J. Immunol., 183, 6338 (2009);Wu et al., J. Mol. Biol., 368, 652 (2007);Kwakkenbos et al., Nat. Med., 16, 123 (2010))および有効なワクチンを開発するための協調的努力(Graham, Immunol. Rev., 239, 149 (2011))が駆り立てられている。
RSV F糖タンパク質は、ウイルス膜と細胞膜との融合を促し(Walsh and Hruska, J. Virol., 47, 171 (1983));それは、高度に安定した融合後立体構造への構造再編成の間に放出される折り畳みエネルギーを蓄える準安定性融合前立体構造を有したI型融合タンパク質である。3つの抗原部位(I、II、およびIV)は、中和活性を誘発することが見出されており(Arbiza et al., J. Gen. Virol., 73, 2225 (1992);Lopez et al., J. Virol., 72, 6922 (1998);Lopez et al., J. Virol., 64, 927 (1990))、かつすべては、構造的および生物物理学的な調査によって判定されるように、Fの融合後形態上に存在する(McLellan et al., J. Virol., 85, 7788 (2011);Swanson et al., Proc. Natl. Acad. Sci. U.S.A., 108, 9619 (2011))。しかしながら、融合後Fによるヒト血清の吸収は、F特異的中和活性の大部分を除去できず、これにより融合前形態が新規な中和抗原部位を持ち得ることが示唆される(Magro et al., Proc. Natl. Acad. Sci. U.S.A., 109, 3089 (2012))。膨大な努力にもかかわらず、可溶性の融合前RSV Fタンパク質の均質な調製物は得られていない。ゆえに、融合前F構造の決定および新規なF特異的抗原部位の同定は、新たな予防用および治療用抗体およびワクチンの開発のための収束的優先事項となっている。これらの目標に沿って、RSVを中和し得るが融合後Fには結合し得ないF特異的抗体が同定され、これらの抗体によって認識されるRSV Fの構造が規定された。該結果により、RSV Fの融合前立体構造と、著しく強力な抗体のカテゴリーに関する中和のメカニズムと、向上した抗体ベース療法の標的として働きかつ有効なワクチン抗原の開発の基礎を提供するはずである融合前特異的抗原部位とに関する原子レベルでの詳細が明らかとなっている。
2種のヒト抗体D25およびAM22は、RSV Fを中和することについて、パリビズマブよりも約50倍強力であることが判定されており(図1A)、かつそれらは、融合後立体構造に安定化されたRSV Fの可溶性形態に結合もしない(McLellan et al., J. Virol., 85, 7788 (2011))(図1B)。D25およびAM22は、以前に開示された(Kwakkenbos et al., Nat. Med., 16, 123 (2010);米国特許公報第2010/0239593号;米国特許公報第2012/0070446号)。RSV Fの融合後形態へのD25およびAM22結合の欠如は、これらの抗体が、準安定性融合前立体構造を認識し得ることを示唆した。
構造についての努力を、ヒト抗体AM22およびD25に集中させた。96ウェルマイクロタイタープレート発現形式(参照により本明細書に組み入れられる、Pancera et al., PLoS One. 2013;8(2):e55701, 2013)を用いて、Ni2+-NTA ELISAプレート上で、細胞上清から捕捉されたRSV F糖タンパク質変種のパネルに対するこれらの抗体の結合をスクリーニングした。C末端フィブリチン三量体化ドメインに融合した、RSV Fの残基1~513を含むF糖タンパク質構築物(RSV F(+) Fd)への抗体結合が試験された(Frank et al., J. Mol. Biol., 308, 1081 (2001))。しかしながら、精製RSV F(+) Fdと精製D25またはAM22抗体とを混合することによって、複合体は形成されなかった。可溶性F糖タンパク質の精製は、準安定性融合前状態を誘引すると判定され(Chaiwatpongsakorn et al., J. Virol., 85, 3968 (2011));この不安定性を克服するために、RSV F(+) Fdを発現する細胞を、抗原結合フラグメント(Fab)または免疫グロブリン(後者は、ヒンジ領域にHRV3Cプロテアーゼ切断部位を有する(McLellan et al., Nature 480, 336, (2011)))とインキュベートして、Fを融合前状態に捕獲した。あるいは、RSV F(+) Fdを発現する細胞に、抗体重鎖および軽鎖をコードする別個のDNA発現カセットを共トランスフェクトした(図5)。D25 FabをコードするDNAとRSV F(+) FdをコードするDNAとの共トランスフェクションにより、D25-F糖タンパク質複合体の最適な発現が得られ;可溶性Fabの添加により、相当な複合体収量も得られた。
結晶を、単独でのまたはRSV F(+) Fdと複合したFab D25およびAM22についてスクリーニングした。Fab D25それ自体の六方晶に関して、1.6Å分解能に対するX線回折データを獲得し、かつ構造を分子置換によって解明し、かつ24.5/25.7%というRcryst/Rfreeまで精密化した(表9)。RSV F(+) Fdと複合したFab D25の立方晶に関して、3.6Å分解能に対するデータを獲得し、かつこの構造を、金誘導体からの手掛かりとともに、未結合型D25構造および以前に決定された融合後RSV F構造の一部(McLellan et al., J. Virol., 85, 7788 (2011);Swanson et al., Proc. Natl. Acad. Sci. U.S.A., 108, 9619 (2011))をサーチモデルとして用いた分子置換によって解明した。複合体の構造を、21.3/26.7%というRcryst/Rfreeまで精密化した(図1C)(表9)。
RSV F糖タンパク質の1つの分子に結合した1つのD25 Fabの複合体は、立方格子の非対称ユニットで存在していた。3回転(three-fold)格子対称性により、他の2つのD25-RSV F複合体は、2,098Å2という広大なRSV F三量体界面を生じるように位置付けされた。成熟F糖タンパク質のF2およびF1サブユニット(それぞれN末端およびC末端フラグメントに対応する)を形成するために、F0前駆体のタンパク質分解による切断によって除去される27アミノ酸フラグメントを含む残基98~136を除いた残基26~513に対して、連続的電子密度を観察した。N結合型グリコシル化の3つの部位は、電子密度においてアスパラギン残基27、70、および500で検出された(図2A)。
全体として、D25結合型RSV F構造は、7本鎖逆平行の開口型バレルのいずれかの末端にパッキングされた2つのローブ、該2つのローブ間に伸長する2つのストランド(β2およびβ7)、70Å超にわたる水素結合、ならびに両ローブおよび中心バレルの形成不可欠な部分からなる。F2 N末端およびF1 C末端を含有する膜近位ローブは、三重層状βサンドイッチおよび3本のヘリックス(α8、α9、およびα10)からなる。ヘリックスα10はヘリックスの一部を形成し、これはウイルス膜内にまで伸長すると見られ、かつここにフィブリン三量体化ドメインが付随していた。ウイルス膜からおよそ90Åの膜遠位ローブは、三本鎖逆平行シートおよびβヘアピン(β3+β4)の周辺にパッキングされた7本のヘリックスからなる。広大なプロトマー間接触は、近隣プロトマーの膜近位ローブからの、三重βサンドイッチによって包み込まれた三量体構造、とくにF1サブユニット(融合ペプチドとしても知られる)の疎水性N末端を安定化させるように見えた。三量体のそうでなければ中空の空洞内に含有される融合ペプチドは、直径が大体10Åである、プロトマー間の円筒状開口部を通じて、表面に曝露されたα2およびα3ヘリックスに接続しており;この開口部は、誘引中の融合ペプチドのための退出経路として用いられ得る。
D25結合型F糖タンパク質の構造は、関連するパラインフルエンザウイルス5(PIV5)F糖タンパク質の融合前構造と似ていた(Welch et al., Proc. Natl. Acad. Sci. U.S.A., 109, 16672 (2012);Yin et al., Nature, 439, 38 (2006))(図6および7)。ゆえに、RSV FのD25結合型形態は、融合前立体構造の状態にあるように見えた(図2)。融合前および融合後のF間の構造再編成を規定するために、RSV FのD25結合型形態を、最近決定されたその融合後立体構造(McLellan et al., J. Virol., 85, 7788 (2011);Swanson et al., Proc. Natl. Acad. Sci. U.S.A., 108, 9619 (2011))と比較した。
RSV Fの融合前および融合後の立体構造により、110Åの高さを有する相対的に小型の楕円形をした構造から、およそ50%長い(170Å)伸長した円錐体への、全体的形状の劇的な変化が明らかとなった(図2A)。立体構造のこの著しい変化にもかかわらず、F糖タンパク質の二次構造および三次構造の大部分は、融合前および融合後の両方の状態で保たれており、215個の残基が、2つの構造間で2Å未満のCα偏差を示した(図2A、B)。顕著な立体構造変化の2つの領域が存在する。膜遠位ローブにおいて、融合ペプチドおよび5つの二次構造要素(α2、α3、β3、β4、およびα4)は、α5ヘリックスと接合して、長さが100Åを上回る単一の伸長した融合後ヘリックス(α5後)を形成し、それは、そのN末端で該融合ペプチドによってキャッピングされる(明確さを助けるために、融合後構造の二次構造要素は、「後」という下付き文字で標識されている)。膜近位ローブにおいて、融合前構造ではβ1に水素結合している、三重βサンドイッチの唯一の平行鎖(β22)はほどけ、融合前α10ヘリックスがα5後ヘリックスと接合するのを可能にしている。一緒になって、α5後およびα10後ヘリックスは、F1のN末端およびC末端を並置させて、それらの融合後立体構造の状態にあるI型融合タンパク質に特徴的なコイルドコイル構造を形成する(Colman and Lawrence, Nat. Rev. Mol. Cell Biol., 4, 309 (2003))。全体として、α10の一部は、融合前および融合後の立体構造間で170Åを上回って移動する。
インフルエンザヘマグルチニン(Wilson et al., Nature, 289, 366 (1981))、エボラGP(Lee et al., Nature, 454, 177 (2008))、およびPIV5 F(Welch et al., Proc. Natl. Acad. Sci. U.S.A., 109, 16672 (2012))についての以前に報告された、プロテアーゼにより切断された融合前I型構造と比較して、RSV F融合ペプチドの位置は、ヘマグルチニンのものと最も類似しており(図7)、それは、PIV5およびRSVが両方ともパラミクソウイルスであることを考慮すると驚くべきことである。RSV F融合ペプチドは、中空の三量体空洞の中心に埋め込まれ、最後の目に見えるF2残基から40Åを上回って離れて位置する。このことは、融合ペプチドの実質的な構造再編成は、F0前駆体がフーリン様宿主プロテアーゼによって切断されてF1/F2を産生した後に生じることを示唆する。加えて、劇的な構造再編成は、膜近位および膜遠位ローブの両方において、融合前および融合後の立体構造間で生じ、RSV Fの融合前立体構造を安定化させる難しさについての洞察を提供する。C末端にGCN4三量体化モチーフを単に付随させることによって融合前状態に安定化させ得るPIV5 FおよびヒトメタニューモウイルスFとは異なり(Yin et al., Nature, 439, 38 (2006);Wen et al., Nat. Struct. Mol. Biol., 19, 461 (2012))、融合前RSV F立体構造は、膜近位ローブの安定化(フィブリチン三量体化ドメインを付随させることによって達成される(Frank et al., J. Mol. Biol., 308, 1081 (2001)))および膜遠位ローブの安定化(D25抗体の結合を介して生じる)の両方を必要とする。
D25抗体は、RSV F糖タンパク質の膜遠位先端を認識する(図1C)。それは、1つのプロトマー(RSV上の埋め込まれた相互作用性表面エリアの638Å2を伴う)と相互作用するD25重鎖、ならびに同じプロトマー(373Å2)および近隣プロトマー(112Å2)の両方に結合するD25軽鎖を有する四次的エピトープに結合する(図3A)。RSV F接触は、D25の6つの相補性決定ループのうちの5つによってなされ、重鎖の第3のCDR(CDR H3)はα4ヘリックス(F1の残基196~210)と相互作用し、かつβ2ストランドおよびα1ヘリックスの間のループにおいて、F2の残基63、65、66、および68と分子間水素結合を形成する。D25エピトープの二次構造要素はほぼ不変のままであるが、それらの相対的配向は実質的に変化し、α4ヘリックスは、融合前および融合後の立体構造において、β2鎖に対して約180°旋回している(図3B)。この構造再編成は、D25が融合後F分子に結合し得ないことを説明し、かつD25が、三量体F糖タンパク質複合体の融合前立体構造を安定化させることによって膜融合を阻害することを示唆する。ヒトRSV AおよびBサブタイプ由来のFタンパク質は、配列が高度に関連している(成熟F2/F1エクトドメインを含むアミノ酸の447個/472個、つまり94.7%が公知のサブタイプ間で同一である)ものの、RSV配列変動の天然に観察される6つの位置(F2における残基67および74、ならびにF1における残基200、201、209、および213)は、D25によって結合される領域に位置する(図3C)。同様に、ヒトRSV FサブタイプAの成熟エクトドメインとは同一でない、ウシRSV Fにおける56個のアミノ酸のうち、13個はこの同じ領域で見出される(図3C)。ゆえに、融合前RSV F構造の先端にあるD25エピトープは、免疫圧下にあり得、かつサブタイプ特異的免疫の決定基として働き得る(Chambers et al., J. Gen. Virol., 73, 1717 (1992))。例えば、配列解析に基づき、F糖タンパク質におけるループ領域は、免疫圧下にあり得るパラミクソウイルス科の中に存在すると仮定された(Chambers et al., J. Gen. Virol., 73, 1717 (1992))。RSVサブグループ特異的モノクローナル抗体の結合は、F1の残基200と216との間の部位指向性突然変異によって影響を受け得ること(Connor et al., J. Med. Virol., 63, 168 (2001))、ならびに特異的エピトープは規定されなかったものの、F1の残基205~225を含むペプチドは、ウサギにおいて中和活性を誘発し得たこと(Corvaisier et al., Arch. Virol., 142, 1073 (1997))が実証されている。
他のRSV中和抗体によって認識されるエピトープに対するD25エピトープの関係性を理解するために、RSV感染細胞へのD25結合の競合を試験した(図4A)。注目すべきことに、AM22は、RSV F結合に対してD25と競合し、これによりそれらが同じ抗原部位を認識することが示唆された。これらの抗体によって認識される部位をさらに規定するために、Fab-RSV F複合体に対するネガティブ染色EMを実施した。Fab D25-RSV F複合体のEM画像は、Fab D25-RSV Fの結晶構造およびFab AM22-RSV FのEM画像にも似ていた(図4B)。まとめると、これらの結果は、抗体D25およびAM22が同じまたは高度に関連している抗原部位を認識することを示唆し、それを「抗原部位φ」と名付けた。
抗原部位φを認識する抗体を特徴付けするために、それらの機能特性を検討した。それらの並外れた効力および融合前特異性に加えて(図1A)、3種すべての抗体は、接着後に添加された場合に融合を強く阻害し(図4C)、かつ3種すべては細胞表面接着を遮断し得ず(図4D)、RSV F受容体が、これら3種の抗体によって遮断されない、Fの領域に結合することを示唆した。関連するヒトメタニューモウイルスFタンパク質上の受容体結合ドメインは、D25結合によって遮断されない融合前RSV F三量体側面にある、中心バレルのループの端に存在する、RSV Fの残基361~363に対応するRGDモチーフである(Cseke et al., Proc. Natl. Acad. Sci. U.S.A., 106, 1566 (2009))。これらの抗体は接着を阻止しないものの、抗原部位φを含むF2およびF1の両方の領域は、ヘパリン結合に寄与することが公知であり(Feldman et al., J. Virol., 74, 6442 (2000);Crim et al., J. Virol., 81, 261 (2007))、この領域は、G糖タンパク質およびFの他の領域と協調して、グリコサミノグリカン上のヘパリン硫酸部分への非特異的接着に寄与し得る可能性がある。最後に、AM22およびD25抗体は、Fabおよび免疫グロブリン背景の両方で同程度に中和し(図8)、親和性は、それが一部のインフルエンザウイルス抗体に対してそうであるようには(Ekiert et al., Nature, 489, 526 (2012))、支配的な役割を果たさないことを示した。全体として、D25およびAM22は結合特異性および中和表現型を共有しており、これらの特性は、抗原部位φを認識する抗体に特徴的であり得ることが示唆される。それに反して、中和活性と関連したRSV F上の他の抗原部位(部位I、II、およびIV)を認識する抗体のいずれも、中和効力および融合前F特異性の類似特性を共有しない(図9A~9B)。
抗原部位φは、立体構造マスキング(それは準安定性融合前状態にのみ存在している)、四次的会合(該部位はRSVプロトマーによって共有される)、抗原変動(それはRSV Fのほとんどの可変部分の1つである)、およびグリカン遮蔽(Asn70に接着したN結合型グリカンは、融合前F三量体の上部にある)を含めた、多数のメカニズムによる免疫認識から部分的に遮蔽されているにもかかわらず、3種すべての融合前特異的抗体は、同様のエピトープを標的とするように見える。融合前F三量体の先端における抗原部位φの位置は、混雑したビリオン表面上でさえ容易に接近可能であるはずであり、それは、他の融合前特異的抗原部位は除外され得ないものの、天然RSV感染によって誘導される、ヒト血清におけるほとんどの中和活性が、RSV Fの融合前形態に対して向けられているという観察結果(Magro et al., Proc. Natl. Acad. Sci. U.S.A., 109, 3089 (2012))を説明し得る。抗原部位φに対する抗体の高い効力は、それらが、新生児におけるRSV誘導性疾患の受動的予防のために開発される可能性があることを示唆する。また、ワクチンベースの融合前特異的抗体の誘発は、RSV Fの融合前形態の安定化によって支援され得、おそらくRSV F変種についての構造に基づく設計を通じてF構造の可動および不動の部分をジスルフィド結合で連結させることによって促され得る。融合前安定化Fは、以前に特徴付けされた中和エピトープのすべて、ならびに抗原部位φを含有することが留意される。ゆえに、D25-RSV F構造の規定は、RSV誘導性疾患を阻止するための多数の新たな手法の基礎を提供する。
材料および方法
ウイルスおよび細胞。以前に記載されているように、ウイルスストックを調製しかつ維持した(Graham et al., J. Med. Virol., 26, 153 (1988))。以前に報告されているように、RSVを発現する緑色蛍光タンパク質(GFP)RSV-GFPを構築した(Hallak et al., Virology. 271, 264 (2000))。フローサイトメトリーに基づく中和および融合アッセイに用いられたRSV-GFPストックの力価は、2.5×107pfu/mlであった。接着アッセイに用いられたRSV A2ストックの力価は、1.02×108pfu/mlであった。HEp-2細胞を、10%ウシ胎仔血清を含有するイーグル最小必須培地(10%EMEM)中で維持し、かつグルタミン、ペニシリン、およびストレプトマイシンを補給した。
抗体発現プラスミドの創出。抗体重鎖および軽鎖可変領域をコードするDNAを、ヒト発現のためにコドン最適化し、かつ合成した。AM22およびD25重鎖および軽鎖可変領域を、インフレームでヒト定常ドメイン(重鎖に対してIgG1および軽鎖に対してκ)を含有するpVRC8400発現プラスミド内にサブクローニングした。HRV3Cプロテアーゼ部位(GLEVLFQGP;SEQ ID NO: 355)または終止コドンのいずれかをヒンジ領域内に挿入することによって、AM22およびD25重鎖発現プラスミドの変種を作製した。
抗体およびFabフラグメントの発現および精製。37℃で4~5日間、浮遊状態のHEK293F細胞内への重鎖および軽鎖プラスミドの一過性共トランスフェクションによって、抗体を発現させた。細胞上清をプロテインAアガロースに通し、結合している抗体をPBSで洗浄し、かつIgG溶出バッファーを用いて1/10容量の1M Tris-HCl pH8.0中に溶出した。Lys-CでIgGを消化することによって、AM22およびD25 Fabを創出した。コンプリートプロテアーゼインヒビターカクテルタブレットの添加によって消化を阻害し、かつFabおよびFcの混合物をプロテインAアガロースに通し直してFcフラグメントを除去した。カラムを通って流れたFabを、サイズ排除クロマトグラフィーによってさらに精製した。
RSV中和アッセイ。フローサイトメトリー中和アッセイによって、抗体介在性の中和を測定した(Chen et al., J. Immunol. Methods, 362, 180 (2010))。簡潔には、HEp-2細胞にRSV-GFPを感染させ、かつ感染の18時間後におけるGFP発現の関数として、感染をフローサイトメトリーによってモニターした。曲線適合および非線形回帰によって、データを解析した(GraphPad Prism, GraphPad Software Inc., San Diego CA)。
融合後RSV F結合アッセイ。McLellan et al., J. Virol., 85, 7788 (2011)に記載されているように、融合後立体構造の状態にある、精製された可溶性RSV Fタンパク質を調製した。以前に記載されているように、速度論的ELISAを用いて、融合後RSV Fへのモノクローナル抗体の結合を試験した(McLellan et al., J. Mol. Biol., 409, 853 (2011))。簡潔には、96ウェルNi2+-NTAコートプレート(ThermoFisher Scientific)を、100μlの融合後RSV F(1μg/ml)で室温にて1時間コーティングした。100μlの希釈抗体を各ウェルに添加し、かつ室温で1時間インキュベートした。プレートを100μlのHRP抱合型ヤギ抗マウスIgG抗体(Jackson ImmunoResearch Laboratories, West Grove, PA)またはHRP抱合型抗ヒトIgG(Santa Cruz Biolotechnology, Inc, Santa Cruz, CA)と室温で1時間インキュベートすることによって、結合している抗体を検出した。次いで、100μlのSuper AquaBlue ELISA基質(eBioscience, San Diego CA)を各ウェルに添加し、かつDynex Technologies製のマイクロプレートリーダー(Chantilly, VA)を用いて、プレートを405nmで直ちに読み取った。工程の間、プレートをPBS-Tで洗浄した。
未結合型D25 Fabの結晶化およびX線データ収集。Cartesian Honeybee結晶化ロボットを用いて結晶化条件をスクリーニングし、かつ0.2μlのD25 Fabと0.2μlのリザーバー溶液(22%(w/v)PEG 4000、0.1M酢酸ナトリウムpH4.6)とを混合することによる、20℃におけるシッティングドロップでの蒸気拡散法によって初期結晶を成長させた。タンパク質とリザーバー溶液とを2:1の比率で組み合わせることによって、結晶をハンギングドロップで手作業により再現した。結晶を、27.5%(w/v)PEG 4000、0.1M酢酸ナトリウムpH4.5、および15%(v/v)2R,3R-ブタンジオール中に液体窒素で急速冷凍した。1.6Åに対するX線回折データを、SER-CATビームラインID-22(先端放射光施設(Advanced Photon Source)、アルゴンヌ国立研究所(Argonne National Laboratory))において1.00Åの波長で収集した。
未結合型D25 Fabの構造決定および精密化。X線回折データを、HKL2000一式(Otwinowski and Minor, Methods Enzymol. (Academic Press, vol.276, pp.307-326, 1997))で積分しかつスケーリングし、そしてPDB ID: 3GBM(Ekiert et al., Science, 324, 246 (2009))および3IDX(Chen et al., Science, 326, 1123 (2009))からのIgドメインをサーチモデルとして用いた分子置換溶液を、PHASER(McCoy et al., J. Appl. Crystallogr., 40, 658 (2007))を用いて獲得した。手作業によるモデル構築をCOOT(Emsley et al., Acta Crystallogr D Biol Crystallogr, 66, 486 (2010))を用いて行い、かつ個々の部位、TLSパラメーター、および個々のB因子の精密化をPHENIX(Adams et al., Acta Crystallogr D Biol Crystallogr, 66, 213 (2010))で実施した。D25可変ドメインに対する電子密度は良好であったが、定常ドメインに対する電子密度は、おそらく屈曲部角での柔軟性の結果、不十分であった。最終的なデータ収集および精密化統計は、表8に提示されている。
D25 Fabと複合したRSV F(+) Fdの発現および精製。RSV F(+) Fdタンパク質構築物は、発現を増強させる天然に存在する3個の置換(P102A、I379V、およびM447V)を有するA2系統(アクセッションP03420)に由来した。C末端T4フィブリチン三量体化モチーフ(Frank et al., J. Mol. Biol., 308, 1081 (2001))、トロンビン部位、6×Hisタグ、およびStreptagIIを有する、RSV Fの残基1~513をコードする、哺乳類にコドン最適化された遺伝子を合成して、pLEXm(Aricescu et al., Acta Crystallogr D Biol Crystallogr, 62, 1243 (2006))に由来する哺乳類発現ベクター内にサブクローニングした。RSV F(+) Fd、D25軽鎖、およびD25重鎖(ヒンジ領域における終止コドンを有するまたは有しない)を発現するプラスミドを、浮遊状態のHEK293 GnTI-/-細胞(Reeves et al., Proc. Natl. Acad. Sci. U.S.A., 99, 13419 (2002))内に同時にトランスフェクトした。代替として、RSV F(+) Fdプラスミドのみをトランスフェクトし、トランスフェクションの3時間後に精製D25 FabをGnTI-/-細胞に添加することもできる。4~5日後、細胞上清を回収し、遠心分離し、濾過し、かつ濃縮した。まず、複合体を、20mM Tris-HCl pH7.5、200mM NaCl、および250mMイミダゾールpH8.0からなる溶出バッファーを用いて、Ni2+-NTA樹脂(Qiagen, Valencia, CA)により精製した。次いで、複合体を濃縮し、かつメーカーの指示書どおりにStrepTactin樹脂(Novagen, Darmstadt, Germany)でさらに精製した。HisおよびStrepタグを除去するためのトロンビンプロテアーゼ(Novagen)との一晩インキュベーション後に、過剰のD25 Fabを複合体に添加し、次いでそれを、2mM Tris-HCl pH7.5、350mM NaCl、および0.02% NaN3のランニングバッファーを用いてSuperose6ゲル濾過カラム(GE Healthcare)で精製した。溶出された複合体を等量の水で希釈し、かつ約5mg/mlまで濃縮した。同様の手順を用いて、AM22 Fab複合体を発現させ、精製した。
D25 Fabと複合したRSV F(+) Fdの結晶化およびX線データ収集。0.1μlの、D25 Fabに結合したRSV F(+) Fdと0.1μlのリザーバー溶液(40%(w/v)PEG 400、5%(w/v)PEG 3350、および0.1M酢酸ナトリウムpH5.5)とを混合することによる、20℃におけるシッティングドロップでの蒸気拡散法によって初期結晶を成長させた(Majeed et al., Structure, 11, 1061 (2003))。結晶をハンギングドロップで手作業により再現し、3.6Åに対して回折した結晶を、30%(w/v)PEG 400、3.75%(w/v)PEG 3350、0.1M HEPES pH7.5、および1%(v/v)1,2-ブタンジオールを含有するリザーバー溶液を用いて成長させた。結晶をドロップからクライオストリーム内に直接移し、かつX線回折データを、SER-CATビームラインID-22において1.00Åの波長で遠隔収集した。
D25 Fabと複合したRSV F(+) Fdの構造決定および精密化。X線回折データを、HKL2000一式(Otwinowski and Minor, Methods Enzymol. (Academic Press, vol.276, pp.307-326, 1997))で積分しかつスケーリングし、そして未結合型D25 Fab構造、ならびに融合後RSV F構造(PDB ID: 3RRR、McLellan et al., J. Virol., 85, 7788 (2011))からの残基29~42、49~60、78~98、219~306、313~322、333~343、および376~459をサーチモデルとして用いたPHASER(McCoy et al., J. Appl. Crystallogr., 40, 658 (2007))によって、分子置換溶液を獲得した。NaAuCl4誘導体からの6つの部位を、公知の反応性側鎖(Fの残基Met97/His159、Met264/Met274、His317、およびMet396;D25重鎖の残基Met19/His82およびHis59)に対してマッピングした。手作業によるモデル構築をCOOT(Emsley et al., Acta Crystallogr D Biol Crystallogr, 66, 486 (2010))を用いて行い、二次構造要素を最初に構築した。未結合型D25 Fab構造および融合後RSV F構造の一部を精密化の間の参照モデルとして用いて、個々の部位、TLSパラメーター、および個々のB因子の精密化をPHENIX(Adams et al., Acta Crystallogr D Biol Crystallogr, 66, 213 (2010))で実施した。F2のC末端~Met97におけるそれらの残基を除いて、成熟タンパク質におけるすべてのRSV F残基を構築した。最終的なデータ収集および精密化統計は、表9に提示されている。
RSV F競合結合アッセイ。RSV感染させたHEp-2細胞に対して、抗体の競合結合を実施した。HEp-2細胞に、3MOI(感染多重度)のRSVを18~20時間感染させた。感染後、細胞を、細胞解離溶液(Cellstripper、Mediatech Inc., Herndon, VA)を用いて分離し、かつPBSで洗浄した。細胞を、96ウェルU底プレートにPBS中5×104個/ウェルで播種した。モノクローナル抗体AM22、D25、および101Fを、100μg/mlの濃度で始まる希釈をし、HEp-2細胞に添加した。30分後、100ulのAlexa 488抱合型D25を1μg/mlの濃度で添加し、かつ4℃で1時間インキュベートした。細胞をPBSで1回洗浄し、次いで0.5%パラホルムアルデヒドで固定した。細胞に対するD25-Alexa 488の結合を、フローサイトメトリー(LSR II機器、Becton Dickinson, San Jose, CA)によって測定した。データをFlowJoソフトウェア、バージョン8.5(Tree Star, San Carlos, CA)で解析した。
ネガティブ染色電子顕微鏡法解析。サンプルを、新たにグロー放電した炭素コートグリッドに吸着させ、水で短時間リンスし、かつ新たに作製した0.75%ギ酸ウラニルで染色した。Eagle CCDカメラを備えたFEI T20顕微鏡で画像を記録した。画像解析および2D平均化を、Bsoft(Heymann and Belnap, J. Struct. Biol., 157, 3 (2007))およびEMAN(Ludtke et al., J. Struct. Biol., 128, 82 (1999))で実施した。
細胞へのRSVウイルス融合阻害アッセイ。以前に記載されているように、抗体が細胞へのRSVウイルス融合を阻害し得る能力を測定した(McLellan et al., J. Virol., 84, 12236 (2010))。簡潔には、HEp-2細胞を96ウェルプレートに播種し、37℃で24時間培養し、次いでアッセイ前に4℃で1時間冷やした。事前に冷やした細胞にRSV-GFPを4℃で添加し、次いで細胞を冷却PBSで洗浄して未結合ウイルスを除去した。連続希釈した抗体を、冷やした細胞に添加し、かつ4℃で1時間インキュベートし、その後18時間37℃に移した。インキュベーション後、細胞をトリプシン処理し、0.5%パラホルムアルデヒドで固定し、かつフローサイトメトリーによって解析して、GFP発現細胞の頻度を判定した。
RSV接着阻害アッセイ。以前に記載されているように、抗体が細胞へのRSV接着を阻害し得る能力を測定した(McLellan et al., J. Virol., 84, 12236 (2010))。簡潔には、HEp-2細胞を培地中に分散させ、冷却PBSで洗浄し、96ウェルv底プレートに播種し、かつ使用前に4℃で1時間冷やした。抗体、および公知のRSV接着阻害剤であるヘパリンを連続希釈で分配し、次いでRSV A2系統ウイルスと37℃で1時間混合した。遠心分離後に、冷やした細胞から培地を除去し、かつウイルス、またはウイルスと試薬との混合物を、冷やした細胞に添加して、4℃で1時間インキュベートした。インキュベーション後、細胞を冷却PBSで洗浄して未結合ウイルスを除去し、かつ0.5%パラホルムアルデヒドで固定した。細胞に結合したウイルスを、FITC抱合型ヤギ抗RSV抗体で検出した。細胞を冷却PBSで洗浄し、かつフローサイトメトリーによって評価した。結合しているウイルスの蛍光強度中央値を、FlowJoソフトウェア、バージョン8.5(Tree Star, San Carlos, CA)で解析した。
実施例2
RSV Fタンパク質の安定化
本実施例は、融合前立体構造に安定化された例示的なRSV Fタンパク質の設計を例証する。融合後RSV Fタンパク質の構造(PDBアクセッション番号3RRRとして寄託された座標を有する、例えばMcLellan et al., J. Virol., 85, 7788, 2011に開示される)と比較した、D25 Fabと複合した(すなわち、融合前立体構造の状態にある)RSV Fタンパク質の結晶構造は、膜近位および膜遠位ローブの両方において、融合前および融合後の立体構造間の劇的な構造再編成を示し、RSV Fの融合前立体構造の安定化のためのガイダンスを提供する。融合前および融合後のRSV F構造の比較に基づくと、F1サブユニットのN末端およびC末端に位置する、大きな立体構造変化を起こす2つの領域がある。例えば、図2に図解されるように、F1ポリペプチドの位置137~216および461~513は、融合前および融合後のFタンパク質立体構造間で構造再編成を受けるが、一方でF1ポリペプチドの位置271~460は比較的不変のままである。本実施例は、RSV Fタンパク質をその融合前立体構造に安定化させるいくつかのストラテジーを例証する。
抗原部位φの構成要素でありかつ抗体D25への結合に関与する、F1のN末端領域を安定化させるために、プロトマー内ジスルフィド結合の導入、プロトマー間ジスルフィド結合の導入、空洞充填アミノ酸置換の導入、再パッキング置換の導入、N結合型グリコシル化部位の導入、およびそれらの組み合わせを含めた、様々なストラテジーを設計した。
プロトマー内ジスルフィド結合
融合前立体構造においてプロトマー内ジスルフィド結合を形成するのに十分に近い距離内にあるが、融合後立体構造においてはそうでない、2個のシステイン残基の導入は、Fタンパク質を融合前立体構造にロックし得る。分子内ジスルフィド結合は、三量体内の単一F2/F1プロトマー内で形成され得、ゆえに3つのプロトマーを一緒には架橋しないと考えられる。具体的には、融合前および融合後の構造において、立体構造を変化させる領域と立体構造を変化させない領域との間に形成されるジスルフィド結合は、該タンパク質を融合前立体構造にロックするはずである。一例は、Ser155が、立体構造を変化させる領域に位置し、一方でSer290が、立体構造を変化させない領域にある、S155C/S290C変異体のものである。加えて、F1の位置137~216内に位置する2個の残基、またはF1の位置461~513内に位置する2個の残基、またはF1の位置137~216内の1個の残基およびF1の位置461~513内の第2の残基など、両方が立体構造を変化させる2つの領域間でのジスルフィド結合の形成も、該タンパク質を融合前立体構造にロックするのに十分であり得る。
上記で記載される方法を用いて、RSV Fタンパク質のいくつかの残基のペアを、対応する残基ペアの位置にシステインが導入された場合にプロトマー内ジスルフィド結合を形成するのに融合前立体構造においては十分に接近しているが、融合後立体構造においてはそうでないと判定した。これらの残基ペア、ならびにこれらの位置にシステイン残基を導入するために必要とされる、SEQ ID NO: 1に対して対応するアミノ酸置換が、表10に示されている。表10は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
(表10)プロトマー内ジスルフィド結合による安定化のための、例示的な架橋システインペア
分子間ジスルフィド結合
融合前立体構造においてプロトマー間ジスルフィド結合を形成するのに十分に近い距離内にあるが、融合後立体構造においてはそうでない、2個のシステイン残基の導入は、Fタンパク質を融合前立体構造にロックし得る。プロトマー間ジスルフィド結合は、三量体内の近接プロトマー間で形成されると考えられ、ゆえに3つのプロトマーを一緒に架橋すると考えられる。具体的には、融合前および融合後の構造において、立体構造を変化させる領域と立体構造を変化させない領域との間に形成されるジスルフィド結合は、該タンパク質を融合前立体構造にロックするはずである。一例は、Ala153が立体構造を変化させる領域に位置し、一方でLys461が立体構造を変化させない領域にある、A153C/K461C変異体のものである。加えて、F1の位置137~216内に位置する2個の残基、またはF1の位置461~513内に位置する2個の残基、またはF1の位置137~216内の1個の残基とF1の位置461~513内のもう1個の残基など、両方が立体構造を変化させる2つの領域間でのジスルフィド結合の形成も、該タンパク質を融合前立体構造にロックするのに十分であり得る。
上記で記載される方法を用いて、RSV Fタンパク質のいくつかの残基のペアを、対応する残基ペアの位置にシステインが導入された場合にプロトマー間ジスルフィド結合を形成するのに融合前立体構造においては十分に接近しているが、融合後立体構造においてはそうでないと判定した。これらの残基ペア、ならびにこれらの位置にシステイン残基を導入するために必要とされる対応するアミノ酸置換が、表11に示されている。表11は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))も含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
(表11)プロトマー間ジスルフィド結合による安定化のための、例示的な架橋システインペア
加えて、本明細書において記載される多数の安定化変異を組み合わせて、1個を上回る変異を含有するPreF抗原を生成することができる。プロトマー内またはプロトマー間ジスルフィド結合を形成する第1および第2の残基ペアを含有するそのような構築物の例が、表12に提供されている。表12は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))も含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
(表12)プロトマー内およびプロトマー間ジスルフィド結合による安定化のための、例示的な架橋システインペア
さらに、特定の残基ペアが、融合前立体構造においてプロトマー内またはプロトマー間ジスルフィド結合を形成するのに十分に近い距離内にあるが、融合後立体構造においてはそうでないように、アミノ酸をFタンパク質配列に挿入して(またはそこから欠失させて)、Fタンパク質構造における残基のアラインメントを調整することができ、それは、上述のように、Fタンパク質を融合前立体構造に安定化させると考えられる。そのような改変の例が、表13に提供されている。表13は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))も含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
(表13)プロトマー間、プロトマー内ジスルフィド結合、またはそれらの組み合わせを許容するようにFタンパク質を配向するためのアミノ酸挿入の使用
空洞充填置換
融合後RSV Fタンパク質の構造(例えば、McLellan et al., J. Virol., 85, 7788, 2011に開示される;その融合後立体構造の状態にあるRSV Fタンパク質の構造座標は、PDBアクセッション番号3RRRとして蛋白質構造データバンク(PDB)に寄託されている)と比較した、D25 Fabと複合した(すなわち、融合前立体構造の状態にある)RSV Fタンパク質の結晶構造の比較により、Fが融合後立体構造に移行するために崩壊するに違いない、融合前立体構造におけるいくつかの内部空洞またはポケットが同定される。これらの空洞は、表14に挙げられている。したがって、これらの内部空洞を充填することは、融合後立体構造への移行を阻止することによって、Fを融合前状態に安定化させる。空洞は、小さな側鎖を有するものの代わりに大きな側鎖を有するアミノ酸で置換することによって充填される。空洞は、プロトマー内の空洞またはプロトマー間の空洞であり得る。RSVタンパク質をその融合前立体構造に安定化させるRSV F空洞充填改変の一例は、S190F/V207L変異体である。
このストラテジーを用いて、RSV Fタンパク質をその融合前立体構造に安定化させる、いくつかの空洞充填改変を同定した。これらの改変は、表14に示されている。表14は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
表示される空洞は、空洞を充填するより大きな残基に変異され得る、空洞に接している小さな残基によって表わされている。他の残基(空洞と名付けられるもの以外)を変異させても、同じ空洞を充填し得ることが理解されるであろう。
再パッキング置換
加えて、RSV Fタンパク質の融合前立体構造は、疎水性相互作用または水素結合形成を増強させるなどによって、近隣残基の相互作用を増加させることによって安定化し得る。さらに、RSV Fタンパク質の融合前立体構造は、融合前立体構造の準安定性につながる、近隣残基の好ましくないまたは反発性の相互作用を低下させることによって安定化し得る。これは、同様に帯電した残基のクラスターを排除することによって達成され得る。そのような改変の例は、表15に示されている。表15は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
グリコシル化変異
加えて、融合前RSV F立体構造において溶媒接触可能であるが、融合後RSV F立体構造においては溶媒接触不能であると考えられるN結合型グリコシル化部位の導入は、融合後状態をとることを阻止することによって、RSV Fを融合前状態に安定化させ得る。N結合型グリコシル化部位を創出するために、Asn-X-Ser/Thrという配列(式中、Xは、Proを除く任意のアミノ酸である)が導入され得る。これは、天然Asn残基に対して2残基C末端側でのSer/Thrアミノ酸の置換によって、または天然Ser/Thr残基に対して2残基N末端側でのAsnアミノ酸の置換によって、または1個の非プロリンアミノ酸によって分離されたAsnおよびSer/Thr残基の両方の置換によって達成され得る。
このストラテジーを用いて、融合前RSV F立体構造において溶媒接触可能であるが、融合後RSV F立体構造においては溶媒接触不能であると考えられるN結合型グリコシル化部位のためのいくつかの位置を同定した。これらの改変は、表16に示されている。表16は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、三量体化ドメイン(フォルドンドメイン)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
実施例3
PreF抗原の膜近位ローブの安定化
上述のように、融合後RSV Fタンパク質の構造(PDBアクセッション番号3RRRとして寄託された座標を有する、例えばMcLellan et al., J. Virol., 85, 7788, 2011に開示される)と比較した、D25 Fabと複合した(すなわち、融合前立体構造の状態にある)RSV Fタンパク質の結晶構造は、膜遠位ローブにおいて、融合前および融合後の立体構造間の劇的な構造再編成を示す。融合前および融合後のRSV F構造の比較に基づくと、F1サブユニットのN末端およびC末端に位置する、大きな立体構造変化を起こす2つの領域がある。例えば、図2に図解されるように、F1ポリペプチドの位置137~216および461~513は、融合前および融合後のFタンパク質立体構造間で構造再編成を受けるが、一方でF1ポリペプチドの位置271~460は比較的不変のままである。本実施例は、RSV Fタンパク質の膜近位ローブを含む、F1のC末端領域を安定化させるいくつかのストラテジーを例証する。三量体化ドメイン(上述のもの)の導入、F1のC末端領域を安定化させるジスルフィド結合を形成し得るシステインペアの導入、および膜貫通ドメインの導入(例えば、膜結合型PreF抗原を含む適用のための)を含めた、様々なストラテジーを同定した。
ジスルフィド結合
Fタンパク質の膜近位ローブを安定化させるための1つのストラテジーは、F1のC末端部分を安定化させるジスルフィド結合を導入する1個または複数個のシステイン置換を導入することである(例えば、可溶性PreF抗原を含む適用のための)。そのようなストラテジーを、本明細書において提供される安定化改変のいずれか、例えばS155C/S290Cシステイン置換を有するF1タンパク質など、実施例2に記載されるものと組み合わせることができる。1つのストラテジーには、融合前立体構造の状態にあるF1タンパク質のC末端領域を連結させるプロトマー間ジスルフィド結合を形成するのに十分に近い距離内にある2個のシステイン残基の導入が含まれる。プロトマー間ジスルフィド結合は、三量体内の近接プロトマー間で形成されると考えられ、ゆえに3つのプロトマーを一緒に架橋すると考えられる。上記で記載される方法を用いて、RSV Fタンパク質のいくつかの残基のペアを、対応する残基ペアの位置にシステインが導入された場合にプロトマー間ジスルフィド結合を形成するのに融合前立体構造において十分に接近していると判定した。
膜近位ローブを安定化させるジスルフィド結合を生成するために導入され得るシステイン置換の例には、以下の残基ペアにおけるシステイン置換が含まれる:
(a)486および487
(b)486および487;位置486/487間のP挿入を有する
(c)512および513
(d)493;329/330間のC挿入
(e)493;329/330間のC挿入、および492/493間のG挿入。
さらに、F1ポリペプチドの長さは、C末端のシステインペアの位置に応じて変動し得る。例えば、F1ポリペプチドは位置137~481を含むことができ、これはF1ポリペプチドからα10ヘリックスを排除する。
これらの残基ペアにおいてシステインを含む改変を含有する構築物の例、ならびにさらなる説明が表17に挙げられている。表17は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(変動する位置を有する)も含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
(表17)Fタンパク質の膜近位ローブを安定させるジスルフィド結合
膜貫通ドメイン
Fタンパク質の膜近位ローブを安定させるための別のストラテジーは、例えば膜に固定されたPreF抗原を含む適用のために、F1タンパク質に膜貫通ドメインを含めることである。例えば、膜貫通配列の存在は、膜小胞調製のための膜貫通タンパク質としての発現に有用である。膜貫通ドメインを、本明細書において提供される安定化変異のいずれかを含有するF1タンパク質、例えばS155C/S290Cシステイン置換を有するF1タンパク質など、実施例2に記載されるものに連結させることができる。加えて、膜貫通ドメインを、RSV F1細胞質テールにさらに連結させることができる。シグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(位置137~513)、RSV膜貫通ドメインを含む前駆体F0構築物の例は、SEQ ID NO: 323(細胞質ドメインを有しない)および324(細胞質ドメインを有する)として提供されている。
実施例4
一本鎖PreF抗原
本実施例は、Fタンパク質プロトマーが、F2/F1ヘテロ二量体ではなく単一ポリペプチド鎖として形成されるように、天然フーリン切断部位を欠いている組換えRSV Fタンパク質を例証する。
表18は、2つのフーリン切断部位、pep27ポリペプチド、および融合ペプチドを除去する、Fの位置98~149の欠失を含むいくつかの一本鎖PreF抗原を挙げている。F1およびF2ポリペプチドの残りの部分は、リンカーによって接合されている。加えて、上記の実施例2および3に記載されるストラテジーの使用を含めた、いくつかのストラテジーを採用して、一本鎖構築物を融合前立体構造に安定化させることができる。表18は、表示される置換を含有し、かつシグナルペプチド、F2ポリペプチド(位置26~109)、pep27ポリペプチド(位置110~136)、F1ポリペプチド(変動する位置を有する)も含む前駆体F0構築物に対応するSEQ ID NOも挙げている。
実施例5
ジスルフィド結合および三量体化ドメインで安定化されたRSV Fタンパク質
本実施例は、ジスルフィド結合および三量体化ドメインで安定化されたRSV Fタンパク質の産生を例証する。図10に図解されるように、位置155および290におけるセリン残基(リボン図において矢印および赤色の強調表示によって示されている)は、RSV Fタンパク質の融合前立体構造においては互いに近接しているが、RSV Fタンパク質の融合後立体構造においてはそうではない。さらに、これらの残基の側鎖は、互いに向かって配向されている。しかしながら、セリン155、バリン154、およびリジン156に近接した残基の側鎖は、セリン290の側鎖から離れて配向されている。これらの知見を考慮して、S155CおよびS290C置換を有する、組換えRSV Fタンパク質を構築した。この155/290構築物におけるシステイン残基は、組換えRSV Fタンパク質を融合前立体構造にロックすると考えられるジスルフィド結合を形成するであろうこと、しかしながら位置154または156(位置155ではなく)におけるシステインの組み入れは、安定化ジスルフィド結合を産生しないであろうことが予想された。
天然RSV F
0ポリペプチドをコードする核酸分子を、RSVF(+)FdTHS S155C、S290Cと呼ばれかつSEQ ID NO: 185:
として明示されるRSV Fタンパク質をコードするように、標準的な分子生物学技術を用いて変異させた。
RSVF(+)FdTHS S155C、S290Cは、シグナルペプチド(残基1~25)、F2ポリペプチド(残基26~109)、Pep27ポリペプチド(残基110~136)、F1ポリペプチド(残基137~513)、フォルドンドメイン(残基514~544)、およびトロンビン切断部位(LVPRGS(SEQ ID NO: 185の位置547~552))、および精製タグ(hisタグ(HHHHHH(SEQ ID NO: 185の位置553~558))およびStrep Tag II(SAWSHPQFEK(SEQ ID NO: 185の位置559~568)))を含む。S155C置換の代わりにV154CまたはK156C置換を有する対照構築物も生成した。
細胞内で発現させた場合、RSVF(+)FdTHS S155C、S290Cはプロセシングされ、安定しかつ可溶性のRSV Fタンパク質として発現したが、しかしながら、154/290または156/290置換を有する対照構築物は発現しなかった(おそらく、それらが可溶性立体構造に折り畳まれなかったため)(図10を参照されたい)。
RSVF(+)FdTHS S155C、S290C構築物を精製し、かつ融合前特異的抗体AM22およびD25、それだけでなく131-2a抗体(融合前および融合後のRSV F立体構造に存在している抗原部位Iに結合する)、モタビズマブおよびパリビズマブ(融合前および融合後のRSV F立体構造に存在している抗原部位IIに結合する)、ならびに101F抗体(融合前および融合後のRSV F立体構造に存在している抗原部位IVに結合する)への抗体結合について試験した。図11(左のグラフ)に示されるように、これら抗体のすべては、精製RSVF(+)FdTHS S155C、S290C構築物に特異的に結合し、RSVF(+)FdTHS S155C、S290Cが融合前立体構造を維持していることを示した。該結果は、この構築物が、RSV Fの融合前および融合後の立体構造の両方に共通した抗原部位I、II、およびIVを維持していることをさらに示す。
精製RSVF(+)FdTHS S155C、S290Cが三量体立体構造の状態にあることを実証するために、この構築物をサイズ排除クロマトグラフィーカラムに通した。図11(右のグラフ)に示されるように、精製RSVF(+)FdTHS S155C、S290Cの調製物は、三量体Fタンパク質の分子量に相当する単一ピークで溶出された。対照的に、融合前立体構造に安定化されないと予想される、S155CおよびS290C置換を欠く対照構築物の調製物は、誘引されたFタンパク質のロゼットおよび凝集体の存在を示す複数のピークで溶出され、この対照構築物が、均質な融合前立体構造の状態に安定していないことを示した。
RSVF(+)FdTHS S155C、S290C構築物が融合前立体構造に安定化されていることをさらに確認するために、電子顕微鏡法調査が実施され(図12)、RSVF(+)FdTHS S155C、S290Cが、RSV Fの融合前立体構造のものと類似しており、かつ融合後Fタンパク質のもの(右の画像、Martin et al., J. Gen. Virol., 2006より)とはかなり異なる形状を有する、構造の均質集団を形成することが実証された。
結晶学調査を実施して、精製RSVF(+)FdTHS S155C、S290Cが、溶液中で均質であることを実証した。水溶液中での結晶の形成は、溶液中でのタンパク質の均質性についてのストリンジェントな試験である。図15は、pH9.5における0.2M硫酸リチウム、1.64M酒石酸Na/K、および0.1M CHESを含有する水性バッファー中で、精製RSVF(+)FdTHS S155C、S290Cによって形成された結晶の写真を示している。水性バッファー中でのRSVF(+)FdTHS S155C、S290C結晶の形成は、このタンパク質が溶液中で実質的に均質であることを実証している。
実施例6
PreF抗原を用いた、中和免疫応答の誘導
本実施例は、対象においてRSV中和免疫応答を誘発するPreF抗原の使用を例証する。
病原体を含まない8週齢のCB6F1/Jマウス(Jackson Labs)を、それぞれ10匹の5群に分け、かつ以下のレジメンで免疫した:
1)5×106pfuの生きたRSV A2(RSV)を鼻腔内に;
2)ホルマリン不活性化した、alum沈殿させたRSV(FI-RSV)を筋肉内に(IM);
3)polyI:C 50μg中、安定化融合前RSV F(RSVF(+)FdTHS S155C、S290C;融合前F)20μgをIM;
4)polyI:C 50μg中、融合後RSV F三量体(融合後RSV)20μgをIM。
群1(生きたRSV)を0時点で一度感染させ、かつ他のすべての群を0および3週目に免疫した。2回目のIM注入の2週間後である5週目、またはRSV感染の5週間後に血清を獲得した。中和活性を以下の方法によって判定した:血清を1:10~1:40960の4倍希釈物として分配し、A2系統(サブタイプA)または18537系統(サブタイプB)のいずれか由来の原型F遺伝子およびKatushka蛍光タンパク質を発現する、等量の組換えmKate-RSVと混合し、かつ37℃で1時間インキュベートした。次に、384ウェル黒色オプティカルボトムプレートの各ウェルに30μlのMEM(最小必須培地)中1.5×104個の密度で播種してあったHEp-2細胞に、50μlの各血清希釈物/ウイルス混合物を添加し、かつEx 588nmおよびEm 635nm(SpectraMax Paradigm, Molecular Devices, Sunnyvale, CA 94089)での分光光度分析前に20~22時間インキュベートした。各サンプルに対するIC50を、GraphPad Prism(GraphPad Software Inc., San Diego CA)を用いて、曲線適合および非線形回帰によって算出した。P値をスチューデントT検定によって判定した。RSV中和を測定するための上記方法は、読み出しがフローサイトメトリーではなく蛍光プレートリーダーによるものである点を除いて、実質的に以前に記載されているとおりに実施された(例えば、参照により本明細書に組み入れられる、Chen et al. J. Immunol. Methods., 362:180-184, 2010を参照されたい)。
このアッセイを用いると、概して、約100 EC50を上回る抗体応答は防御的であると見なされる。図13および14に示されるように、融合前立体構造に安定化されたRSV Fタンパク質(RSV F(RSVF(+)FdTHS S155C、S290C))を投与されたマウスは、融合後立体構造の状態にあるRSV Fタンパク質を投与されたマウスによって産生されるものよりも約15倍上回るRSV Aに対する中和免疫応答、および融合後立体構造の状態にあるRSV Fタンパク質を投与されたマウスによって産生されるものよりも約5倍上回るRSV Bに対する応答を産生した。図13は初回免疫後5週間後の結果を示しており、図14は免疫後7週間後の結果を示している。導き出された平均IC50値も図13および14に示されている。RSV AおよびBサブグループ間での中和の差異は、RSVF(+)FdTHS S155C、S290C構築物がRSV Aサブグループ由来のFタンパク質に由来するため驚くことではない。RSV B系統に由来する対応する構築物での免疫は、RSV Bにより特異的な中和血清を生成するであろうことが予想される(図41を参照されたい)。
さらに、安定化融合前Fは、alumならびにpolyI:C中に製剤化され得、かつ抗原部位φに対する抗体応答によって付与される免疫原性を保持し得ることが示された。サブタイプAに由来しかつalum(水酸化アルミニウムゲル10mg/ml、Brenntag, Frederikssund, Denmark)またはpolyI:Cとともに製剤化した、20μgの安定化融合前FのDS S155C/S290Cバージョンで、BALB/cマウスを免疫した。マウスを0および3週目に接種し、かつ5週目(2回目の注入の2週間後)の時点で、中和アッセイのために血清を獲得した(図42を参照されたい)。該結果は、融合前立体構造に安定化されたRSV Fタンパク質による免疫が、RSVに対する防御免疫応答を産生することを示している。
実施例7
開示される抗原を用いた対象の治療
本実施例は、開示されるPreF抗原、またはPreF抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターのうちの1つまたは複数の投与によって、RSV感染症を有するまたは有する危険性がある対象を治療するために用いられ得る方法を記載する。特定の例において、該方法は、RSV感染症を有している、有すると考えられる、または有する危険性がある(例えば、損なわれた免疫、生理的状態、またはRSVへの曝露に起因する)対象をスクリーニングする工程を含む。例えば血清学的試験、身体検査、酵素結合免疫吸着アッセイ(ELISA)、放射線学的スクリーニング、または当業者に公知の他の診断技術を用いて、未知の感染状態の対象を検査して、彼らが感染症を有するかどうかを判定することができる。一部の例において、RSV感染症を有するまたはRSV感染症を獲得する危険性がある対象が選択される。RSV感染症を有し、それによって、開示されるPreF抗原、またはPreF抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターの投与によって治療可能であることが見出された(または知られる)対象が、該PreF抗原、またはPreF抗原をコードする、発現する、もしくは含む核酸もしくはウイルスベクターを受けるために選択される。RSV感染症を発症する危険性がある対象、例えば高齢者、免疫欠陥がある人、および乳児などの非常に若い人も選択され得る。
治療のために選択された対象に、開示されるPreF抗原の治療量を投与することができる。PreF抗原を含む免疫原性組成物を、0.1μg/kg体重~約1μg/kg体重、1回の投薬あたり0.1μg/kg体重~約10μg/kg体重、1回の投薬あたり1μg/kg体重~100μg/kg体重、1回の投薬あたり100μg/kg体重~500μg/kg体重、もしくは1回の投薬あたり500μg/kg体重~1000μg/kg体重、またはさらにそれを上回る量など、1回の投薬あたり0.1μg/kg体重~約1mg/kg体重の用量で投与することができる。一部の態様において、約5、10、20、30、40、50、60、70、80、90、または約100μgのPreF抗原が、対象に単回投薬で投与される免疫原性組成物中に含まれる。免疫原性組成物を、数回投薬で、例えば継続的に、1日1回、週1回、または月1回投与することができる。投与の様態は、経鼻投与など、当技術分野において用いられる任意のものであり得る。対象に投与される作用物質の量は、臨床医によって決定され得、かつ治療される特定の対象に依存し得る。具体的な例示的な量は、本明細書において提供されている(しかしながら、開示がそのような用量に限定されるわけではない)。
実施例8
ジスルフィド結合、空洞充填置換、および三量体化ドメインで安定化されたRSV Fタンパク質
本実施例は、ジスルフィド結合および三量体化ドメインで安定化されたRSV Fタンパク質の産生を例証する。
図16は、操作されたジスルフィド結合変異S155CおよびS290C(「DS」と名付けられた)、空洞充填変異S190FおよびV207L(「Cav1」と名付けられた)、ならびにFタンパク質のF1ポリペプチドのC末端に付随した異種三量体化ドメインによって安定化された組換えRSV Fタンパク質の設計を示している。描写される三次元構造は、D25結合型RSV F構造であり、プロトマーの2つがピンク色および黄褐色で色付けされた分子表面として呈示され、第3のプロトマーがリボンとして呈示されるように示されている。融合前および融合後の立体構造間で5Åを上回って移動する、F1のN末端およびC末端残基が示されている。挿入図は、残基S155CおよびS290C間の操作されたジスルフィド結合、ならびに空間充填空洞変異S190FおよびV207Lを示している。T4ファージフィブリチン三量体化ドメインのモデルが、融合前三量体の底部に示されている。
ヒトRSVサブタイプAにおけるS155C、S290C、S190F、およびV207L(Cav1)置換、ならびに付随したC末端異種フォルドンドメインを含むRSV Fタンパク質を、実施例1および5に記載される方法を用いて発現させかつ精製し、RSV_A F(+)FdTHS DSCav1と称する。
RSV_A F(+)FdTHS DSCav1の抗原特徴付けは、図17に示されている。固定化RSV_A F(+)FdTHS DSCav1との、可溶性D25、AM22、5C4、101F、モタビズマブ、およびパリビズマブFabの会合速度および解離速度を、OctetRED 384(商標)機器(ForteBio, Melno Park, CA)を用いて測定した。各抗体に対する平衡解離定数が提供されている。
RSV_A F(+)FdTHS DSCav1の純度は、サイズ排除クロマトグラフィーによって図解されている(図18)。タグを除去するトロンビン切断後に、精製されたタンパク質を16/70 Superose 6サイズ排除カラムに通した。溶出容量は、グリコシル化された三量体と一致している。
一過性に発現させたプラスミドからの収量;様々な抗原部位に対する抗原性;ならびに様々な温度(350mM NaCl pH7.0、50℃、70℃、または90℃で)、pH(350mM NaCl、25℃でpH3.5またはpH10)、およびモル浸透圧濃度(10mMまたは3000mMモル浸透圧濃度、25℃でpH7.0)におけるインキュベーションの1時間後、または10サイクルの凍結融解(350mM NaCl pH7.0中)後のD25結合の保持(画分量として提供される)を含めた、DS、Cav1、またはDSCav1変異によって安定化されたRSV_A F(+)FdTHS変種の抗原特徴および物理的特徴が、図19に示されている。DSCav1変種は、DSまたはCav1変種のいずれかよりも、温度、pH、モル浸透圧濃度、および凍結融解の極限への曝露後の、D25反応性のより高い保持によって判断される、向上した物理的安定性を有する抗原部位φ認識を保持している。
DSCav1変異体の構造特性を調査するために、RSV_A F(+)FdTHS DSCav1の三次元構造をX線結晶学を用いて決定した。図20は、RSV_A F(+)FdTHS DSCav1の3.1Å結晶構造のリボン表示を示している。より暖かい色およびより太いリボンは、増加するB因子に対応する。安定化変異にもかかわらず、三量体先端における抗原部位φは、相当な柔軟性を保持する。図21は、RSV_A F(+)FdTHS DSCav1の構造とD25結合型RSV Fの構造との比較を示している。図22は、RSV_A F(+)FdTHS DSCav1構造における安定化変異を強調表示している。システイン残基155と290との間のジスルフィド結合(左)、ならびに空洞充填Phe190残基(右)に対応する観察された電子密度は、これらの改変が結晶中に存在していることを示す。
RSV_A F(+)FdTHS DSCav1構築物の免疫原性を判定するために、マウスおよび非ヒト霊長類にこの構築物を接種し、かつ接種された動物から得られた血清を、RSVの中和について試験した(図23および24)。上記の実施例6に記載されるように、マウスを免疫し、かつ結果として生じた血清の中和活性を試験した。簡潔には、1群あたり10匹のCB6マウスを、50μgのpolyI:Cアジュバントと混合した、10μgの表示されるRSV Fタンパク質で免疫した。免疫は0および3週目に行い、かつ5週目および7週目からの血清を、RSVサブタイプA(RSV_A)およびB(RSV_B)の中和について試験した。平均値は、赤色の水平線によって示されている。8.76~14.68kgの重量がある、インド起源のマカク・ムラタ動物に、0週目および4週目に免疫原を筋肉内注入した。6週間まで1週間おきに血液を収集した。1群あたり4匹のRSV投薬を受けていないリーサス・マカクに、500μgのpolyI:Cアジュバントと混合した、50μgの表示されるRSV Fタンパク質を筋肉内に免疫した。免疫は0および4週目に行い、かつ6週目からの血清を、RSVサブタイプA(左)およびB(右)の中和について試験した。平均値は、赤色の水平線によって示されている。まとめると、これらの結果は、RSV_A F(+)FdTHS DSCav1構築物が、マウスおよび非ヒト霊長類において中和応答を生じさせるのに成功したことを示している。
実施例9
呼吸器合胞体ウイルスに対する融合糖タンパク質ワクチンについての構造ベースの設計
摘要。呼吸器合胞体ウイルス(RSV)は、5歳を下回る子どもに対する入院原因の第1位である。RSVに対する防御的体液性応答を誘発するために、融合(F)糖タンパク質の融合前状態に特異的な準安定性部位である抗原部位φに対して、この部位は天然感染によって誘発される高度に強力なRSV中和抗体の主要な標的であるため、努力を集中させた。pHおよび温度の極限に対して抗原部位φを保った、Fの安定化バージョンを操作する、構造ベースの設計を用いた。6種の安定化Fの結晶構造は、導入されたシステイン残基および充填された疎水性空洞についての原子レベルでの詳細を提供し、かつわずかに異なる「融合前」F立体構造を明らかにした。マウスおよび非ヒト霊長類の両方において、RSV Fの部位φ安定化変種による免疫は、その融合後状態にあるRSV Fによって誘発されたものよりも3~15倍高いRSV特異的中和活性を誘発した。ゆえに、ウイルス脆弱性の超部位を提示する原子レベルの設計は、ワクチン開発に対して変革的効果を有し得る。
序論。呼吸器合胞体ウイルス(RSV)は、生後1ヶ月~1歳の子どもにおける死亡の6.7%に関与していると概算され、インフルエンザウイルスによる感染症によって引き起こされるものと匹敵するレベルで、高齢者における超過死亡率を引き起こす。RSV感染症は、完全に防御的な免疫を誘導しないものの、RSV融合(F)糖タンパク質に対する抗体は、Fに向けられた抗体であるパリビズマブ(Synagis(登録商標))を用いた受動的予防によって実証されるように、ヒトにおける重度の疾患を阻止し得る。
パリビズマブの証明された成功は、RSV Fに向けられた防御的抗体を誘発することを目標としたワクチンへの努力に拍車をかけている。これらの努力は、少なくとも2つの立体構造:準安定性融合前状態および安定性融合後状態をとるI型融合タンパク質であるRSV Fの構造多様性によって複雑化している。両状態は、パリビズマブのものを含めた、中和抗体によって標的とされるエピトープを共有し、融合後RSV Fは、ワクチン候補として開発されているところである。本明細書において記載されるように、天然感染によって誘発されるRSV中和抗体の支配的標的は、RSV Fの融合前立体構造に主に存在することが見出されており(例えば、U.S. 12/600,950およびU.S. 12/898,325を参照されたい)、かつパリビズマブよりも実質的に強力なAM22およびD25などの抗体は、融合前RSV F三量体の膜遠位先端に位置する、融合前Fに特異的な準安定性部位である抗原部位φを標的とする。
これらの強力な抗体の誘発を増強させるために、RSV Fの操作された可溶性変種を、抗原部位φを安定して曝露するように設計した。これらの変種を、抗原的および結晶学的な両方で特徴付けし、かつマウスおよび非ヒト霊長類において免疫原性について試験した。該結果は、設計、抗原性、構造、および免疫原性の間の相互関係についての洞察を提供しており、かつ適当な抗原性標的を保ちかつ提示する構造ベースの操作が、どのように防御的体液性応答の誘発に対して変革的効果を有し得るかを示している。
本明細書において記載される構造ベースのワクチンストラテジーは、4工程のストラテジー:(1)強力な中和活性を有する抗体によって標的とされるウイルス脆弱性の超部位を同定すること、(2)代表的な抗体と複合した超部位の構造を決定すること、(3)認識抗体の非存在下で超部位の安定した提示を操作すること、および(4)超部位を提示する操作された抗原での免疫により、高力価の防御的応答を誘発すること、を含んだ(図26)。
RSV F抗原の操作
並外れて強力なRSV中和抗体によるその認識が理由で、抗原部位φが標的超部位として選出され、D25抗体と複合したその構造は本明細書において記載されている(図26B)。部位φを安定して提示するRSV Fの変種を操作するために、D25が結合するRSV Fの構造を解析した。機械的には、タンパク質立体構造を安定化させるいくつかの手段がある。その認識に支障をきたすことなく部位φを安定化させるメカニズムを、RSV Fエクトドメイン(McLellan et al., J. Virol. 85, 7788 (2011))のC末端に付随したT4ファージフィブリチン三量体化ドメイン(「フォルドン」)(Efimov et al., J Mol Biol 242, 470 (1994);Boudko et al., European journal of biochemistry / FEBS 269, 833 (2002))と組み合わせてついて試験した。
標的立体構造においてジスルフィド結合を形成すると予測されるが、代替的立体構造においては広く分離したシステインペアを導入することは、選択構造を安定化させる1つの手法である。セリン残基155および290のβ炭素は、D25結合型RSV F構造において4.4Å離れており(実施例1を参照されたい)、かつ融合後構造においては124.2Å離れている(McLellan et al., J. Virol. 85, 7788 (2011);上記で記載される、および図27および32を参照されたい)。「DS」と名付けられて称されるS155C-S290C二重変異体は、安定したRSV F三量体を形成し、1.4mg/Lで発現し、抗原部位φを保持し、かつネガティブ染色EMによって判断されるように均質であった(上記で記載される;図31、図33も参照されたい)。融合前および融合後の状態の両方と適合する、RSV Fの領域間の改変など、他のシステイン改変(例えば、S403CおよびT420C)は、抗原部位φを安定化させなかった(図31)。いくつかの潜在的サブユニット間二重システイン改変も試験したが、試験したサブユニット間二重システイン置換のいずれも、0.1mg/Lを上回っては発現しなかった。
空洞充填疎水性置換は、選択立体構造を安定化させる別の手段を提供する。融合前および融合後のF状態において異なる領域に接する、RSV FのD25結合型立体構造に特有の疎水性空洞について、D25結合型RSV F構造を解析した。いくつかのそのような空洞を、D25の結合部位に近い、融合前構造の膜遠位「頭部」において同定し、かつこれらの空洞を充填する疎水性変更をモデル化した。S190FおよびV207L変更は、最小限の衝突を有するよく見られる側鎖立体構造をとったが、一方でK87F、V90L、V220L、およびV296F変更は、より低い立体適合性を示した。変化するもののペアでこれらの空洞を充填することを査定した。「Cav1」と名付けられたS190F-V207Lペアは(図27)、安定したRSV F三量体を形成し、2.2mg/Lで発現し、かつ抗原部位φを保持した(図31)。一方で、K87F-V90L、S190F-V296F、およびV207L-V220L変種は、増強したD25認識の保持を示したが、0.1mg/l未満のRSV F三量体の収量を示した(図31)。
融合前RSV Fの中心に向かう他の空洞は、融合ペプチド、三量体軸、ならびに残基Asp486、Glu487、およびAsp489を含む酸性パッチ(patch)に近かった。F137W、F140W、およびF488Wを含めた、いくつかの空洞充填変更をモデル化し、かつD486H、E487Q、およびD489Hと組み合わせたこれらの変更を解析した(図31)。試験した6つの組み合わせのうち、2つのみ(F488W、およびD486H-E487Q-F488W-D489H)が、0.1mg/lを上回るレベルの精製RSV F三量体を発現させ、かつD25認識を保持した。「TriC」と呼ばれるD486H-E487Q-F488W-D489H変種は、安定したRSV F三量体を形成し、0.8mg/Lで発現し、かつ抗原部位φを保持した(図31、図27)。
抗原部位φの提示に対する、融合後立体構造を不安定化させる影響も試験した。Fの融合前立体構造と適合するが、Fの融合後立体構造とはそうでないN結合型グリカンを導入すると予測されるV178Nは、抗原部位φを安定化させないように見え、融合後6ヘリックスバンドルの内部にグルタミン酸またはリジンを配置すると考えられるV185EまたはI506Kもそう見えなかった(図31)。これらの変異は、「誘引」されるが融合後立体構造をとることができない、RSV Fのある中間立体構造をもたらす可能性がある。合計で100種を上回るRSV F変種を構築し、96ウェルトランスフェクション形式で発現させ(Pancera et al., PLoS ONE 8, e55701 (2013))、かつD25およびモタビズマブへの結合についてELISAによって試験した。15種の構築物がD25結合と適合し、そのうちの6種は4℃で少なくとも7日間D25認識を保持し、これらのうちの3種を、抗原部位φを保持する均質な三量体に精製することができた(図31)。全体として、96ウェル上清における4℃で少なくとも7日間のD25結合の保持と、大規模な発現および精製からの精製三量体の収量との間に強い相関が観察された(図34)。
部位φ安定性の組み合わせ最適化
DS、Cav1、およびTriC変種は、多様な物理的特性および抗原特性を呈示した。DS変種は、pHおよび温度の極限に対して最も安定性が低かったが、より恒久的に三量体状態に安定化され、一方でCav1およびTriCに関しては、三量体から凝集体への一定の相互変換が観察された。DS、Cav1、およびTriCを組み合わせることによって、RSV Fのより最適な変種が獲得され得るかどうかを査定するために、すべての組み合わせを作製した。
組み合わせは、概して、物理的極限に対するD25反応性の保持を向上させた。ゆえに、例えば、すべての組み合わせは、50℃またはpH10.0でのインキュベーションに対する安定性の向上を示した。しかしながら、TriCによって呈される、凍結融解に対する低い耐性は、Cav1-TriCおよびDS-Cav1-TriCの両方においても観察された。全体として、DS-Cav1組み合わせは、三量体収量、ならびに温度、pH、モル浸透圧濃度、および凍結融解の極限に対する物理的安定性という観点において最適であるように見え(図31、図35)、かつネガティブ染色EMによって判断されるように均質であった(図33)。
結晶学的解析
原子レベルでのフィードバックを提供するために、RSV Fの部位φ安定化変種の結晶構造を決定した(図28)。DS、Cav1、DS-Cav1、およびDS-Cav1-TriC変種すべてを、同様の1.5M酒石酸(tartrate)pH9.5条件で結晶化し、これらの立方晶は、それぞれ3.1Å、3.1Å、3.8Å、および2.8Åの分解能に対してX線を回折した(図40)。D25結合型RSV F構造をサーチモデルとして用いることによって分子置換溶液を獲得し、これらは、結晶学的3回転に沿って整列した三量体F軸を有する、非対称ユニットの状態にある単一RSV Fプロトマーを明らかにした。1.7M硫酸アンモニウムpH5.5条件から、Cav1の正方晶およびDS-Cav1の立方晶も獲得し、これらは、それぞれ2.4Åおよび3.0Åの分解能に対して回折した(図40)。分子置換により、正方格子は、非対称ユニットの状態にある完全なRSV F三量体を有すること、および酒石酸立方格子に高度に関連していることが明らかとなった。全体として、これらの構造は、操作されたRSV F変種が、実質的にD25結合型立体構造の状態にあることを明らかにした(操作されたRSV F変種は、D25結合型立体構造からの0.68~1.5Å、および融合後立体構造からのおよそ30ÅというC-平均二乗偏差を有した)。
DS変種の構造(図28、最左の列)は、融合後状態への誘引を大幅に阻止するジスルフィド結合を実際に形成する、155および290におけるシステイン置換残基を有し、可溶性三量体として安定であるが、抗原部位φを含めた、RSV F三量体の膜遠位部分のほとんどは無秩序であった(残基63~72および169~216)か、または異なる立体構造の状態にあった。ゆえに、例えば、DS構造における残基160~168は、D25結合型F構造において見られるように回旋を形成しかつα3ヘリックスを参入させる代わりに、α2ヘリックスを伸長させる(図28B、最左のパネル)。DS構造とD25結合型RSV F構造との間の差異に関する非限定的な1つの解説は、結晶化DSが、D25には結合しない立体構造の状態にあるというものである。全体として、DS変種は、三量体空洞の内部における融合ペプチドを含めた、RSV Fの融合前状態の特質の多くを保持した。
DSと比較して、Cav1構造(図28、2番目および3番目の列)は、はっきりと規定されたα3ヘリックス、β3/β4ヘアピン、およびα4ヘリックスを有し、膜遠位先端においてより秩序があった。S190F置換を含有する残基137~202は、D25結合型F構造と比較した場合、0.6ÅというCα-rmsdを有した。より高度な構造秩序は、D25結合型F構造において観察される空洞を充填し、かつ残基Ile57、Lys176、Val192、Glu256、Ser259、およびLeu260とのファンデルワールス接触を増加させるS190F変異による可能性があった。Cav1における他の空洞充填変異V207Lは、D25結合型F構造と比較して5.5Åだけシフトし、α4ヘリックスのC末端部分は、Pro205付近でねじれ、かつ2つの結晶化条件において個別の立体構造をとったを有して(図28B、左から2番目および3番目のパネル)。
正方晶格子の状態にあるCav1構造の顕著な特質は、D25結合型F構造においては無秩序であるが、Cav1においては、融合ペプチドに沿って三量体空洞内にトンネルを作るF2のC末端である。驚くべきことに、C末端は、フーリン部位(Arg106-Ala107-Arg108-Arg109)の切断後に予想されるArg109ではなく、Ala107で終わる。Cav1構造において、Arg106の正電荷は、秩序ある硫酸イオンによって相殺される(図28C)。生物学的には、F2 C末端の内部位置は、融合前F立体構造の誘引において役割を果たし得る。
2つの正方晶形態からのDS-Cav1構造(図28、右から2番目および3番目の列)とCav1のものとの比較は、ごくわずかな差異のみを明らかにした(硫酸アンモニウム条件で増大させたCav1およびDS-Cav1間の残基に対して0.86ÅというCα rmsd;立方格子における447個の残基に対して0.47ÅというCα rmsd)。最大の差異は、抗原部位φを含むRSV F先端において、具体的には残基64~73および203~216で生じた。注目すべきことに、原子移動度(B因子)は、部位φ安定化変種のすべてに対してこの先端領域で最も高く、おそらく固有の部位φ柔軟性の指標である。しかしながら、興味深いことに、部位φは、D25によって結合された場合に低い原子移動度を有し、全体的および局所的なRSV F立体構造の両方を安定化させ得るD25の能力が明らかとなっている。
DS-Cav1-TriC三重組み合わせの構造(図28、右端の列)も、他のCav-1含有RSV F変種構造に非常に類似していた。しかしながら、電子密度における1つの差異は、膜近位領域における薄い密度の広がりに相当し、それは、D25結合型構造を含めた、このドメインを含有する他の結晶化RSV F構造においては目に見えない、T4フィブリチン三量体化ドメイン(Stetefeld et al., Structure 11, 339 (2003))の面積(dimension)に相当する。パッキングにおける小さな構造的差異は、DS-Cav1-TriC安定化RSV Fとこの三量体化ドメインとの間の相互作用における差異よりもむしろ、このドメインの部分的秩序化を可能にする可能性がある(かつ、他の立方変種と比べた、DS-Cav1-TriC結晶についてのその増加した回折限度も説明し得る)。
残基486~489のTriC変更に関して、決定的F488W置換を、RSV F三量体の近隣プロトマーのF488W置換に対して直接パッキングした。Trp488のインドール側鎖は三量体先端の方向を指し、かつ融合ペプチドの140Pheの側鎖との環スタッキング相互作用も形成した(図28C、右端のパネル)。Phe488含有構造のいずれにおいても観察されないこの融合ペプチド相互作用は、融合前三量体空洞からの融合ペプチドの引き抜きを阻害する可能性があり、RSV Fの融合前状態を安定化させ得るF488W変更の能力に対する構造的な理論的解釈を提供する(図31)。
抗原部位φ安定化RSV Fの免疫原性
RSV防御的体液性応答の誘発に対する部位φ安定化の効果を査定するために、50μg polyI:Cアジュバントと組み合わせた10μg RSV Fを0週目および3週目に各マウスに注入して、CB6マウスを様々な形態のRSV Fで免疫し、かつ5週目の血清がHEp-2細胞のRSV感染を阻止し得る能力を測定した。DS、Cav1、およびTriCはそれぞれ、高力価の中和活性を誘発した(1826~2422という幾何平均50%有効濃度(EC50))。このレベルは、融合後F(504 EC50)によって誘発されたものよりも約3倍高く、かつ防御的閾値よりも約20倍高かった。比較すると、DS-Cav1は、融合後Fよりも大体7倍高くかつ防御的閾値よりも40倍高い、3937 EC50という中和活性を誘発した(図29A)。(パリビズマブ(Synagis(登録商標))が15mg/kgの濃度で投薬された場合、低値での血清レベルは、乳児において重度の疾患からの防御を提供する約40μg/mlである。中和アッセイにおいて、血清中の40μg/mlのパリビズマブは、100というEC50をもたらす。この力価は、RSVを抗原投与されたマウスおよびコットンラットにおける、下気道感染症からの完全な防御とも関連する。)
融合前RSV F上の異なる部位間での抗体の誘発を定量化するために、抗原部位φを塞いだ形態のRSV Fを利用した。抗原部位φに向けられた抗体(約10μgのRSV F、および約10μgの、抗体の抗原結合フラグメントを含む)が結合した20μg RSV Fで免疫されたCB6マウスは、AM22およびD25の複合体に関してそれぞれ911および1274 EC50という5週目の幾何平均中和力価を示し、これは10μg/mlの融合後のものの大体2倍であり、かつ20μg/mlの融合後によって誘発されるものに匹敵した(図29A)。これらの知見は、融合前状態に安定化されたRSV F変種、とりわけDS-Cav1での免疫によって誘発された非常に高い力価が、抗原部位φを標的とする抗体によるものであったことを示唆する。
部位φ誘発の普遍性を調べるために、500μg polyI:Cアジュバントと混合した50μg RSV Fを0週目および4週目に各マカクに注入し、かつ6週目の血清がRSV感染を阻害し得る能力を測定して、リーサス・マカクをDS-Cav1、DS、および融合後形態のRSV Fで免疫した。製剤化されたタンパク質は、D25結合によって測定されるように、予想される抗原プロフィールを保持した(図38)。DSおよびDS-Cav1は、融合後F(287 EC50)よりも大体5倍および10倍高い、それぞれ1222および2578 EC50という幾何平均力価を誘発し(図29B)、それによってマウスおよび霊長類間での、異なる形態のRSV F免疫原に対する相対的免疫原性の保存性、ならびに霊長類免疫系において高いRSV防御的力価を生じさせ得るDS-Cav1の能力が実証された。
RSV防御的応答の最適化
設計、物理的特性および抗原特性、原子レベルの構造、ならびに免疫原性の間の相互関係によって生み出された情報の行列(図26C)は、さらなる最適化のための基礎を提供する(Nabel, Science 326, 53 (2009))。例えば、操作されたRSV Fの様々な抗原特性および物理的特性と、RSV防御的応答の誘発との間の関係性についての洞察を得るために、特性(図31)と免疫原性(図29)とを相関させることができる。そのような相関により、物理的極限に対する部位φ安定性を増加させる(しかしながら、三量体収量もD25アフィニティーも増加させない)ことは、免疫があると誘発される防御的力価を増加させるはずであることが示され(図30A)、それによってさらなる最適化についての設計洞察が提供される。同様に、RSV Fの様々な立体構造状態または領域(図28)と免疫原性(図29)との間の相関により、最も防御的な応答を提供する、RSV Fの立体構造についての設計洞察が提供される。この場合、結果は、そのD25結合型立体構造における抗原部位φの構造擬態を増強させることにより、防御的力価の向上につながるはずであることを示している(図30B)。
向上のための方向性を提供することに加えて、情報の行列は、そのような向上が生じ得る程度の概算も提供し得る。つまり、例えば物理的安定性または構造擬態と防御的応答との間で相関がいったん確立されると、物理的安定性(例えば、D25結合の100%保持まで)または構造擬態(例えば、D25結合型立体構造の正確な擬態まで)を最大限に高めて、特定のパラメーターに対して、誘発された防御的応答の最大限の向上についての着想を得ることができる。これらの結果(図30A、B)により、さらなる構造擬態は、免疫原性に対して大した効果を有しない可能性があるが、抗原部位φのさらなる物理的安定化は、防御的力価という抗原品質を実質的に向上させ得ることが示唆される。アジュバント、多量体化、または免疫レジームなどの独立したパラメーターは、誘発される応答の向上を可能にする可能性があり、そのようなパラメーターは、独立して解析され得かつ最適化され得る(抗原部位の柔軟性は、該部位を抗体のより広い多様性に従わせることによって、その免疫原性を増加させ得る。本発明者らは、この背景において、抗原部位φの原子移動度因子が、RSV Fエクトドメインにおいて最も高いものの1つであったことに注目する)。
パラメーターを実験的に混合することも、洞察を提供し得る。例えば、RSV Fにより誘発された血清の焦点を判定するために、免疫原性を抗原的に調べることができる(図30C)。種々の形態のRSV Fによって誘発された血清の抗原性を測定するために、種々の形態のRSV FをOctetバイオセンサーチップにカップリングし、かつ誘発された血清、ならびに種々の形態のRSV Fを添加しておいた「事前吸収された」血清の反応性を測定した(図30C)。センサー上にDS-Cav1があると、融合後F、DS、およびDS-Cav1で免疫されたマカクに対するバイオセンサー応答は、増加する応答を示し(図30C、左のパネル);センサー上に融合後Fがあると、同じ血清に対するバイオセンサー応答は、減少する応答を示し(図30C、右のパネル);かつセンサー上に融合後FおよびDS-Cav1で事前吸収された血清があると、融合後F、DS、およびDS-Cav1で免疫されたマカクからの応答は、防御の力価の誘発を有する傾向を示した(図30C、左のパネル)。全体として、誘発されたEC50力価は、RSV Fの融合前または融合後の形態のいずれかに対して測定された抗原応答を有する傾向を示さなかったが、融合前および融合後のRSV Fに向けられた応答間での差異としてまたは比率として測定された(p=0.005)、融合前特異的応答のレベルと相関した(図30D)(RSV Fの「融合前」形態に関しては、RSV FのDS-Cav1安定化変種が用いられた)。これらの結果は、免疫応答の質が、融合後立体構造に対して、融合前の状態にあるRSV F免疫原に関して実質的により良好であることを示唆し、抗原部位φを標的とする融合前特異的抗体に関して観察される優れた中和効力に関係し得る知見である(図39においてD25およびモタビズマブ結合型RSV Fに関して示されるように、誘発された応答を、構造的に規定されたプローブを用いることによってデコンボリューションする(deconvolute)ことが可能であるはずである)。
理論によって拘束されることなく、複数の生殖系列遺伝子に由来する抗体によって標的とされる複数のエピトープを含有する抗原部位は、これらの「超部位」が複数系列の中和抗体を誘発する高い確率を有するため、理想的なワクチン標的であり得る。RSV F上の抗原部位φは、ウイルス脆弱性の部位でもある抗原超部位の一例である。天然のヒト免疫応答を検討する重要性および適当な標的部位を選択する重要性など、本明細書において記載される、RSVに関する努力から習得された教訓の多くは、一般的に適用可能である可能性がある。全体として、脆弱性の超部位に構造ベースの設計を集中させることによって、構造ワクチン学は、ウイルス病原体に対するワクチンの開発におけるパラダイム変更シフトを達成する寸前であり得る。
材料および方法
ウイルスおよび細胞。以前に記載されているように、ウイルスストックを調製しかつ維持した(Graham et al., J. Med. Virol., 26, 153 (1988))。以前に報告されているように、RSVを発現する緑色蛍光タンパク質(GFP)RSV-GFPを構築し、用意した(Hallak et al., Virology. 271, 264 (2000))。フローサイトメトリーに基づく中和および融合アッセイに用いたRSV-GFPストックの力価は、2.5×107pfu/mlであった。接着アッセイに用いたRSV A2ストックの力価は、1.02×108pfu/mlであった。HEp-2細胞を、10%ウシ胎仔血清を含有するイーグル最小必須培地(10%EMEM)中で維持し、かつグルタミン、ペニシリン、およびストレプトマイシンを補給した。
抗体およびFabフラグメントの発現および精製。37℃で4~5日間、浮遊状態のHEK293F細胞内への重鎖および軽鎖プラスミドの一過性共トランスフェクションによって、抗体を発現させた(上記、およびMcLellan et al., Nat Struct Mol Biol 17, 248 (2010);McLellan et al., J Virol 84, 12236 (2010)も参照されたい)。細胞上清をプロテインAアガロースに通し、結合している抗体をPBSで洗浄し、かつIgG溶出バッファーを用いて1/10容量の1M Tris-HCl pH8.0中に溶出した。Lys-CまたはHRV3Cプロテアーゼ(McLellan et al., Nature 480, 336 (2011))でIgGを消化することによってFabを創出し、かつFabおよびFcの混合物をプロテインAアガロースに通し直してFcフラグメントを除去した。カラムを通って流れたFabを、サイズ排除クロマトグラフィーによってさらに精製した。
融合前安定化RSV F構築物のスクリーニング。融合前RSV F変種は、C末端T4フィブリチン三量体化モチーフ(McLellan et al., Nature 480, 336 (2011))、トロンビン部位、6×Hisタグ、およびStreptagIIを有するRSV F残基1~513からなるRSV F (+) Fd(実施例1を参照されたい)に由来した。以前に記載されているように、96ウェルマイクロプレートに形式を合わせた一過性遺伝子発現手法を用いて、様々なRSV Fタンパク質のハイスループット発現を達成した(Pancera et al., PLoS ONE 8, e55701 (2013))。簡潔には、トランスフェクションの24時間前に、HEK 293T細胞を発現培地(10% ultra-low IgGウシ胎仔血清および1×非必須アミノ酸を補給した、高グルコースDMEM)中、2.5×105細胞/mlの密度で96ウェルマイクロプレートの各ウェルに播種し、かつ37℃、5% CO2で20時間インキュベートした。プラスミドDNAとTrueFect-Max(United BioSystems, MD)とを混合し、かつ増殖している細胞に添加し、そして96ウェルプレートを37℃、5% CO2でインキュベートした。トランスフェクションの1日後、富化培地(高グルコースDMEM +25% ultra-low IgGウシ胎仔血清、2×非必須アミノ酸、1×グルタミン)を各ウェルに添加し、かつ継続的培養のためにインキュベーターに戻した。トランスフェクション後の5日目に、上清中の発現したRSV Fタンパク質を回収し、かつNi2+-NTAマイクロプレートを用いて、D25およびモタビズマブ抗体への結合についてELISAによって試験した。回収した上清を4℃で1週間インキュベートした後、ELISAを繰り返した。
RSV F構築物の大規模な発現および精製。以前に記載されているように、可溶性の融合後RSV Fを発現させかつ精製した(McLellan, J Virol 85, 7788 (2011))。TrueFect-Max(United BioSystems, MD)を用いたExpi293F細胞における一過性トランスフェクションによって、融合前変種を発現させた。培養上清をトランスフェクションの5日後に回収し、かつ10,000gで遠心分離して細胞破片を除去した。バッファー置換前に培養上清を濾過滅菌し、かつタンジェンシャルフロー濾過を用いて濃縮した(van Reis, J Membrane Sci 159, 133 (1999))。RSV F糖タンパク質を、固定化ニッケルおよびストレプトアクチン(streptactin)アフィニティークロマトグラフィーによって精製し、そしてRSV F変種を含有する関連画分をプールし、濃縮し、かつサイズ排除クロマトグラフィーに供した(実施例1を参照されたい)。アフィニティータグをトロンビンでの消化によって除去し、その後にサイズ排除クロマトグラフィーが続いた。非ヒト霊長類免疫において用いられる糖タンパク質を、カブトガニ血球抽出成分(limulus amebocyte lysate)アッセイを用いてエンドトキシンについて試験し、かつ必要な場合には、タンパク質をEndoTrap Red(BioVendor)カラムに通して、免疫前にエンドトキシンを除去した。エンドトキシンレベルは、Endpoint Chromogenic Limulus Amebocyte Lysate(LAL)試験キット(Lonza, Basel, Switzerland)によって測定される、<5EU/kg体重/時間であった。
安定化RSV Fの抗原特徴付け。forteBio製のOctet Red384機器を用いて、抗原部位φ(D25、AM22)、部位I(131-2a)、部位II(パリビズマブ、モタビズマブ)、および部位IV(101F)を標的とする抗体へのRSV Fの結合反応速度を測定した。すべてのアッセイを、1%ウシ血清アルブミン(BSA)を補給したリン酸緩衝生理食塩水(PBS)中で1,000rpmに設定された撹拌を用いて実施して、非特異的相互作用を最小限に抑えた。すべての溶液に対する最終容量は100μl/ウェルであった。アッセイを黒一色の96ウェルプレート(Geiger Bio-One)で30℃にて実施した。PBSバッファー中StrepMAB-Immo(35μg/ml)を用いて抗マウスFcプローブを300秒間ロードして、次いでそれを用いて、C末端Strepタグを含有する関連RSV F変種タンパク質を捕捉した。各ロード工程に対する典型的な捕捉レベルは0.7~1nmであり、かつ8チップの行内の変動は、これらの工程のそれぞれに対して0.1nmを超えなかった。次いで、バイオセンサーチップをPBS+1% BSA中で300秒間平衡化し、その後溶液中の抗原結合フラグメント(Fab)(0.002μM~1μM)との会合を300秒間測定し、次いでFabを、観察される解離速度に応じて400秒間~1200秒間解離させた。解離ウェルは、夾雑物混入を阻止するために1回のみ用いられた。PBS+1% BSA中でインキュベートしたロード済みセンサーに対して記録された測定結果を差し引くことによって、体系的ベースラインのドリフトを差し引く平行補正を行った。非特異的結合応答を除去するために、C末端Strepタグを有するHIV-1 gp120分子を抗マウスFcプローブにロードし、かつRSV Fabとインキュベートし、そしてRSV F変種の応答データから非特異的応答を差し引いた。Octetソフトウェア、バージョン7.0を用いて、データ解析および曲線適合を行った。実験データを、1:1相互作用を記載する結合方程式と適合させた。単一セットの結合パラメーターが、各実験において用いられた全濃度に対して同時に得られることを可能にする非線形最小二乗適合を用いて、可逆的結合(完全解離)を想定する全データセットについての大域解析を行った。
RSV F変種の物理的安定性。様々なストレス条件下での、設計されたRSV Fタンパク質の物理的安定性を査定するために、該タンパク質を、極端なpH、高温、低いおよび高いモル浸透圧濃度、ならびに繰り返しの凍結/融解サイクルなど、薬学的に関連する多様なストレスで処理した。処理されたRSV Fタンパク質の物理的安定性を、部位φ特異的抗体D25の結合によって査定される決定的パラメーターである、処理後のそれらの抗原部位φの保存の程度によって評価した。
pH処理では、RSV Fタンパク質を50μg/mlの初期濃度に希釈し、適当なバッファーでpH3.5およびpH10に調整し、かつ室温で60分間インキュベートし、その後pH7.5に中和して戻し、かつ40μg/mlに調整した。温度処理では、40μg/mlのRSVタンパク質を、蒸発を阻止する加熱蓋を有するPCRサイクラーにおいて50℃、70℃、および90℃で60分間インキュベートした。モル浸透圧濃度処理では、350mM NaClをもともと含有する100μlのRSV Fタンパク質溶液(40μg/ml)を、2.5mM Trisバッファー(pH7.5)で10mM NaClのモル浸透圧濃度まで希釈した、または4.5M MgCl2で3.0Mの最終濃度に調整した。タンパク質溶液を、室温で60分間インキュベートし、次いでそれぞれ5M NaClを添加することによってまたは2.5mM Trisバッファーでの希釈によって350mM NaClに戻し、その後100μlまで濃縮した。凍結/融解処理は、繰り返しの液体窒素凍結および37℃での融解によって10回行われた。処理されたRSV Fタンパク質への抗体D25の結合を、上記で記載されるプロトコールを用いて、Octet装置で測定した。物理的安定性の程度を、ストレス処理の前および後での定常状態D25結合レベルの比率として示した。
融合前安定化RSV Fタンパク質の結晶化およびX線データ収集。RSV F DS、Cav1、DSCav1、およびDSCav1TriCの結晶を、1μlのRSV Fと1μlのリザーバー溶液(1.4M酒石酸K/Na、0.1M CHES pH9.5、0.2M LiSO4)とを混合することによる、20℃におけるハンギングドロップでの蒸気拡散法によって成長させた。結晶を液体窒素中で直接凍結させた。RSV F Cav1およびDSCav1の結晶も、1μlのRSV Fと0.5μlのリザーバー溶液(1.7M硫酸アンモニウム、0.1MシトレートpH5.5)とを混合することによる、20℃におけるハンギングドロップでの蒸気拡散法によって成長させた。結晶を3.2M硫酸アンモニウム、0.1MシトレートpH5.5の溶液に移し、かつ液体窒素中で急速冷凍した。すべてのX線回折データを、SER-CATビームラインID-22において1.00Åの波長で収集した。
融合前安定化RSV Fの構造決定、精密化、および解析。X線回折データを、HKL2000一式(Otwinowski and Minor, Methods Enzymol. (Academic Press, 1997), vol.276, pp.307-326))で積分しかつスケーリングし、そしてD25結合型RSV F構造(PDB ID: 4JHW、実施例1を参照されたい)をサーチモデルとして用いたPHASER(McCoy et al., Phaser crystallographic software. J. Appl. Crystallogr. 40, 658 (2007))によって、分子置換溶液を獲得した。手作業によるモデル構築をCOOT(Emsley et al., Acta Crystallogr D Biol Crystallogr, 66, 486 (2010))を用いて行い、かつ精密化をPHENIX(Adams et al., Acta Crystallogr D Biol Crystallogr, 66, 213 (2010))で実施した。最終的なデータ収集および精密化統計は、図40に提示されている。高レベルの構造類似性を示す残基225~455を用いて、RSV F構造の重ね合わせを実施した。抗原部位φのrmsd算出は、RSV F-D25複合体構造においてD25抗体の10Å以内にある残基61~71および194~219に基づいた。
ネガティブ染色電子顕微鏡法解析。サンプルを、新たにグロー放電した炭素フィルムグリッドに吸着させ、バッファーで2回リンスし、新たに作製した0.75%ギ酸ウラニルで染色した。2k×2k Eagle CCDカメラを備えたFEI T20顕微鏡で1.5Åのピクセルサイズで画像を記録した。画像解析および2D平均化を、Bsoft(Heymann, J. Struct. Biol. 157, 3 (2007))およびEMAN(Ludtke et al., J. Struct. Biol. 128, 82 (1999))で実施した。
NHP免疫。すべての動物実験は、NIH、NIAID、ワクチン研究センターの動物実験委員会(Animal Care and Use Committee of the Vaccine Research Center)によって検討されかつ認可され、すべての動物は、NIHでの米国動物飼育公認協会(American Association for Accreditation of Laboratory Animal Care)(AAALAC)公認施設において、地元政策、州政策、連邦政府政策、および機関政策に従って収容されかつ飼育された。8.76~14.68kgの重量がある、インド起源のマカク・ムラタ動物に対して、0週目および4週目に免疫原を筋肉内注入した。6週間まで1週間おきに血液を収集した。
RSV中和アッセイ。血清を1:10~1:40960の4倍希釈物として分配し、A2系統由来の原型F遺伝子およびKatushka蛍光タンパク質を発現する、等量の組換えmKate-RSVと混合し、かつ37℃で1時間インキュベートした。次に、384ウェル黒色オプティカルボトムプレートの各ウェルに30μlのMEM(最小必須培地)中1.5×104個の密度で播種してあったHEp-2細胞に、50μlの各血清希釈物/ウイルス混合物を添加し、かつEx 588nmおよびEm 635nm(SpectraMax Paradigm, Molecular Devices, Sunnyvale, CA 94089)での分光光度分析前に20~22時間インキュベートした。各サンプルに対するIC50を、GraphPad Prism(GraphPad Software Inc., San Diego CA)を用いて、曲線適合および非線形回帰によって算出した。P値をスチューデントT検定によって判定した。
血清抗原性解析。forteBio製のOctet Red384機器を用いて、反応速度測定に用いたものと同一の撹拌、温度、96ウェルプレート、バッファー、および容量で、RSV F変種タンパク質に対する血清反応性を測定した。10mMアセテートpH5中EDC/NHS活性化混合液中での300秒間のプローブ活性化を介して、RSV F DSCav1および融合後Fをアミンカップリングプローブに固定化した。10mMエタノールアミンpH8.5を用いて、プローブ反応性を消光した。典型的な捕捉レベルは0.7~1nmであり、かつ8チップの行内の変動は、これらの工程のそれぞれに対して0.1nmを超えなかった。次いで、結合測定前に、バイオセンサーチップをPBS+1% BSAバッファー中で300秒間平衡化した。血清をPBS+1% BSAで1/50および1/100希釈物に希釈し、かつ結合を300秒間査定した。1μlの動物血清あたり1μgのDSCav1または融合後Fタンパク質を用いて、血清枯渇を行った。血清とインキュベートした非ロードプローブの結合レベルを差し引くことによって、非特異的血清結合を差し引く平行補正を行った。RSV F変種をロードしたプローブを、部位φ査定のために1または2μMのD25 Fabと、および部位II査定のためにモタビズマブFabと、または部位φ/II以外の残りの部位の反応性を査定するために両抗体とインキュベートすることによって、部位特異的抗原性を査定した。
実施例10
融合前立体構造に安定化された一本鎖RSV Fタンパク質
本実施例は、Fタンパク質プロトマーが、F2/F1ヘテロ二量体ではなく単一ポリペプチド鎖として形成されるように、天然フーリン切断部位を欠いているさらなる組換えRSV Fタンパク質を例証する。さらなる融合前安定化一本鎖RSV Fタンパク質の設計を図解した概略図は、図43および44に提供されている。
図43~45は、一本鎖RSV F構築物第9号(scF第9号;BZGJ9 DSCav1;SEQ ID NO: 669)を含めた、一連の一本鎖構築物の設計を図解している。一本鎖構築物の可変因子には、リンカーサイズ、F1およびF2終結点、ならびに一本鎖構築物の三量体化を誘導するために用いられるメカニズムが含まれる。加えて、本明細書において記載されるストラテジーの使用を含めたいくつかのストラテジーを採用して、一本鎖構築物を融合前立体構造に安定化させることができる。表示される一本鎖構築物を細胞内で発現させ、かつサイズ排除クロマトグラフィー(図46)およびRSV F特異的抗体への結合(図47)によって特徴付けした。
RSV F構築物第9号(scF第9号;BZGJ9 DSCav1;SEQ ID NO: 669)をさらに特徴付けするために、このタンパク質の三次元構造をX線結晶学によって解明した(図48~51を参照されたい)。1.19M Li2SO4、3.33% PEG 400、0.12M MgSO4、0.1M NaOAc pH5.5のリザーバー溶液での蒸気拡散法を用いて、立方晶を成長させた。結晶を約120μmまで成長させ、その後2M硫酸リチウムを含有するリザーバー溶液中でそれらを急速冷凍した。回折データを、2.84の誤差を上回る強度で3.2Åの分解能に対して収集した。構築物第9号におけるGSリンカーの位置を図解した結晶構造(図49および50)を、他のリンカーサイズの位置を予測するために(図51)、およびさらなる一本鎖構築物BZGJ9-1~9-10の設計の基礎として用いた(図55を参照されたい)。C末端T4フィブリチン三量体化モチーフ、トロンビン部位、6×Hisタグ、およびStreptagIIを有する一本鎖構築物コドン最適化遺伝子を合成し、かつpLEXmに由来する哺乳類発現ベクター内にサブクローニングした。RSV F(+) Fdを発現するプラスミドを、浮遊状態のHEK293 GnTI-/-細胞内にトランスフェクトした。4~5日後、細胞上清を回収し、遠心分離し、濾過し、かつ濃縮した。まず、タンパク質を、20mM Tris-HCl pH7.5、200mM NaCl、および250mMイミダゾールpH8.0からなる溶出バッファーを用いて、Ni2+-NTA樹脂(Qiagen, Valencia, CA)により精製した。次いで、複合体を濃縮し、かつメーカーの指示書どおりにStrepTactin樹脂(Novagen, Darmstadt, Germany)でさらに精製した。HisおよびStrepタグを除去するためのトロンビンプロテアーゼ(Novagen)との一晩インキュベーション後に、過剰のD25 Fabを複合体に添加し、次いでそれを、2mM Tris-HCl pH7.5、350mM NaCl、および0.02% NaN3のランニングバッファー、またはリン酸緩衝生理食塩水(PBS)pH7.4を用いてSuperdex-200ゲル濾過カラム(GE Healthcare)で精製した。一本鎖フェリチン単一遺伝子産物を、同様の様式で発現させかつ精製した。
いくつかの一本鎖構築物を、動物モデルにおける免疫原性試験に選択した(図53)。BZGJ9 DS-Cav1、BZGJ9、BZGJ11 DS-Cav1(単量体)、BZGJ10(単量体および三量体画分)、BZGJ8(単量体)、BZGJ4 DS-Cav1、およびBZGJ11 DS-Cav1-ルマジンシンターゼ(60量体(mer)のオリゴマー)をすべて、50ugのPoly I:Cの存在下で10ugのタンパク質を0週目および3週目に注入することによって、10匹のCB6F1/Jマウスの群において免疫原性について試験した。5週目からの血清を免疫原性について試験した。RSV FサブタイプA DS-Cav1および融合後タンパク質の対照群も、同様の様式で試験しかつ免疫した。
RSVサブタイプAおよびサブタイプBに対する中和を査定するために、免疫した動物由来の血清を1:10~1:40960の4倍希釈物として分配し、サブタイプA(A2系統)またはサブタイプB(18537系統)由来の原型F遺伝子およびKatushka蛍光タンパク質を発現する、等量の組換えmKate-RSVと混合し、かつ37℃で1時間インキュベートした。次に、384ウェル黒色オプティカルボトムプレートの各ウェルに30μlのMEM(最小必須培地)中1.5×104個の密度で播種してあったHEp-2細胞に、50μlの各血清希釈物/ウイルス混合物を添加し、かつ588nm励起および635nm発光(SpectraMax Paradigm, Molecular Devices, CA)での分光光度分析前に20~22時間インキュベートした。各サンプルに対するIC50を、GraphPad Prism(GraphPad Software Inc., CA)を用いて、曲線適合および非線形回帰によって算出した。P値をスチューデントT検定によって判定した。
中和結果は、試験したすべての一本鎖構築物が免疫原性であることを示している。
一本鎖構築物をフェリチンに連結させて、scF抗原を含むフェリチンナノ粒子を産生した(図56)。簡潔には、scFタンパク質に含まれるF1ポリペプチドのC末端をフェリチンに連結させ、かつ組換えタンパク質を細胞内で発現させて、scF-フェリチンナノ粒子を産生した。一例は「BZGJ9-DS-Cav1-Longlink-フェリチン」タンパク質(SEQ ID NO: 1429)であり、それには、RSV Fの位置105と145との間のGSリンカーと、scF第9号におけるF1ポリペプチドのC末端をフェリチンサブユニットに連結させることによって生成された異種ペプチドリンカーによってRSV Fタンパク質の位置513に連結されたフェリチンサブユニットとを含む、組換えRSV F一本鎖タンパク質が含まれる。scF-フェリチンナノ粒子を発現させ、精製し、かつ温度、pH、およびモル浸透圧濃度の安定性について特徴付けした(図57)。加えて、フェリチンナノ粒子を動物に投与して、それらが免疫原性であることを実証した(図58)。試験した3種の構築物は、RSV F DSCav1(SEQ ID NO: 371)、BZGJ9-DS-Cav1-Longlink-フェリチン(SEQ ID NO: 1429)、およびscF第9号(BZGJ9 DS-Cav1とも称される、SEQ ID NO: 669)であった。これらは、上記で記載されるものと同じ免疫原性/中和である。
いくつかの一本鎖配列、ならびに設計手法の表示は、表19に挙げられたSEQ ID NOにおいて提供されている。
組換えFタンパク質のいくつかに関して、タンパク質の収量が算出され、かつ下記の表27に示されている。
実施例11
DSCav1変異を有する、B18537系統由来のRSV Fタンパク質の構造
本実施例は、RSVサブタイプにわたる、安定化DSCav1置換を有するRSVタンパク質の類似性を例証した。DSCav1置換を、B18537系統由来のRSV Fタンパク質に導入した。そして、C末端フォルドンドメインを含む、結果として生じた組換えタンパク質の三次元構造を、上記で記載されるものと同様の方法を用いて解明した。図59~62に示されるように、DSCav1置換をRSV F糖タンパク質Bサブタイプに導入することに成功し、抗原部位φを安定化させて、融合前特異的抗体に特異的に結合するサブタイプBバックグラウンドのDSCav1変異体を生成することができた。下記の表25は、RSV FサブタイプBに対するDSCav1についての結晶データの概要を提供している。
(表25)DSCav1サブタイプBに関する結晶データ
実施例12
三量体化ドメインを有しない組換えRSV Fタンパク質の設計および産生
本実施例は、融合前立体構造に安定化されているが、RSV Fタンパク質の膜近位ローブの安定性を維持するC末端三量体化ドメインを含まない、組換えRSV Fタンパク質の設計および産生を例証した。
簡潔には、α10ヘリックスのアミノ酸をシステイン残基で置換することによって、F1ポリペプチドのC末端に、C末端三量体化ドメインの代わりに、ジスルフィド結合の環が導入される。コイル-コイルのためのRSV Fエクトドメインの3つのα10ヘリックスは、該タンパク質の膜近位部分を安定化させる。細胞内で発現させた場合、α10ヘリックス内に導入されたシステインの間でプロトマー間ジスルフィド結合が形成され、それによって3つのα10ヘリックスがごく接近して「ロック」され、かつ融合前立体構造から融合後立体構造への膜近位ドメインの移動が阻止される。RSV Fタンパク質のα10ヘリックスは、残基492~膜貫通ドメイン(残基529)を含む。
本実施例において、安定化システイン環を有する組換えRSV Fタンパク質は、三量体化ドメインを含む組換えタンパク質としてまず発現する。初期発現後に、三量体化ドメインをタンパク質分解により除去することができる。RSV Fタンパク質の精製の前、後、または間に切断を実施することができる。現在のところ、本発明者らは、タンデム(tendem)Ni2+ IMAC、ならびにC末端His6およびStrepIIタグを介したStreptactin固定化工程、それに続く室温で12時間のトロンビン消化、次いでサイズ排除クロマトグラフィーによるRSV Fタンパク質からのフォルドンの分離を用いて、RSV Fタンパク質を精製している。切断されたRSV Fタンパク質をイオン交換によって精製することも可能であろう。
図63~68は、下記で挙げられるように設計された、三量体化ドメインを有しない組換えFタンパク質のいくつかについてのゲル濾過の結果、ならびに還元型および非還元型PAGE解析のクマシーブルー染色を示している。表22は、DSCav1置換と、α10ヘリックスにおける位置525および526(CCTail4xFd)、512および513(CCTail5xFd)、519および520(CCTail6xFd)、ならびに512および512(CC LongxFd)でのシステイン置換とを含む、表示される構築物の抗原特徴および物理的特徴を提供する。各構築物に対して対応するSEQ ID NOは、図66に示す。
(表22)操作されたRSV F糖タンパク質変種の抗原特徴および物理的特徴
三量体化ドメインを有しないかまたは切断可能な三量体化ドメインを有するいくつかのRSV Fタンパク質配列を、設計手法の表示と共に、表23に挙げたSEQ ID NOにおいて提供する。名前、α10システイン環、C末端フォルドンまたは切断可能フォルドンの存在または非存在、バックグラウンド配列(例えば、「DSCAV1」は、構築物がDSCav1置換を含むことを示す)、設計構想、および対応するSEQ ID NOを示す。表23において、以下の頭字語が用いられる:DSCAV1:S155C、S290C、S190F、V207L置換;Op-最適化コイルコイル;OpCC-ジスルフィドを有する最適化コイルコイル;InterC-C末端ヘリックスにおけるプロトマー間ジスルフィド;マルチ-InterC-複数のプロトマー間ジスルフィド安定化;ECC:増強されたコイル-コイル安定性;FP-CC:融合ペプチドCys架橋;190P:190ポケット代替的アミノ酸;Fd(切断不能フォルドン)、xFd(切断可能フォルドン)、N(フォルドンなし);CFM:空洞充填変異;ICFM:界面空洞充填変異。
上記の実施例9において記載するように、表23に挙げた切断可能な三量体化ドメインを有しないまたは有する組換えRSV Fタンパク質を、該タンパク質が細胞から細胞培地中に分泌される条件下で細胞内で発現させた。各構築物は、該タンパク質を分泌系に入れさせかつ分泌させるリーダー配列を含有する。次いで、培地を遠心分離し、かつ上清を、部位φ特異的抗体D25および部位II特異的抗体モタビズマブ(「Mota」、図69A~69E)への結合についての抗原性試験に用いた。試験された条件には、0日目におけるD25およびMota結合(条件1および2)、70℃で1時間のインキュベーション後の0日目におけるD25およびMota結合(条件3および4)、ならびに4℃で1週間後のD25およびMota結合(条件5および6)が含まれる。対照は、フォルドンドメインを有するDSCav1構築物である。各構築物についての具体的な抗原性データを、図69A~69Eに提供する(試験された条件は、ヘッダーの行に付記されている)。
(表23)三量体化ドメインを欠く、またはプロテアーゼ切断可能な三量体化ドメインを有する、組換えRSV Fタンパク質
組換えFタンパク質のいくつかに関して、タンパク質の収量を算出し、下記の表26に示す。
実施例13
RSV Fエクトドメインの膜遠位部分を安定化させるさらなる変異
本実施例は、RSV Fに対してなされた、該タンパク質をその融合前立体構造に安定化させるさらなる変異を例証する。
三量体化ドメインを有しないいくつかのRSV Fタンパク質配列を設計し、設計手法の表示と共に、表24に挙げたSEQ ID NOにおいて提供する。名前、SEQ ID NO: 1026に対する変異、C末端フォルドンドメインの存在または非存在、バックグラウンド配列(例えば、「WT」は野生型RSV Fを示す)、設計構想、および対応するSEQ ID NOを示す。
表24に挙げたC末端三量体化ドメインを有する組換えRSV Fタンパク質を、該タンパク質が細胞から細胞培地中に分泌される条件下で細胞内で発現させた。上記の実施例9において記載するように、各構築物は、該タンパク質を分泌系に入れさせかつ分泌させるリーダー配列を含有する。次いで、培地を遠心分離し、かつ上清を、部位φ特異的抗体D25および部位II特異的抗体モタビズマブ(「Mota」、図69A~69E)への結合についての抗原性試験に用いた。試験された条件には、0日目におけるD25およびMota結合(条件1および2)、70℃で1時間のインキュベーション後の0日目におけるD25およびMota結合(条件3および4)、ならびに4℃で1週間後のD25およびMota結合(条件5および6)が含まれる。対照は、フォルドンドメインを有するDSCav1構築物である。各構築物についての具体的な抗原性データを、図69A~69Eに提供する(試験された条件は、ヘッダーの行に付記されている)。
実施例14
最小部位φ免疫原
RSV Fの部位φエピトープは、三量体スパイクの先端に位置し、3種の中和抗体D25、AM22、および5C4によって認識される領域を含む。より具体的には、RSV F/D25複合体の結晶構造によって描出されるように、このエピトープは、ヘリックスα4の外表面(残基196~210)、ならびにβ2およびα1間の近接ループ(残基63~68)を含む。本実施例は、最小隣接残基のみを有する部位φを提示する抗原の設計および特徴付けを例証し、これは部位φ免疫応答を誘発するために用いることができ、かつ全長の融合前安定化RSV F三量体よりも産生するのに費用効果があり得る。
最小部位φRSV F免疫原の設計のための全般的構想
4つの主な設計構想:円順列変異、足場を組んだ円順列変異、ドメインIII免疫原、および多量体化を利用して、最小部位φ免疫原を設計した。
円順列変異は、タンパク質構造内の天然接続を変更し、一方で構成要素部分の空間的配向を維持する工程を伴う。最小部位φエピトープ構成要素のα4およびβ2-α1ループは、RSV F1内の2つの別個のループセグメントのそれぞれの部分である。安定した部位φ折り畳みを創出するために、該2つのループセグメントを2つの異なる考え得る順序で短い柔軟なアミノ酸リンカーで接続し(C末端からN末端に)、それによってそのそれぞれが部位φエピトープを保つ2つの別個の折り畳みが創出された(図70A)。
足場を組んだ円順列変異を創出するために、円順列変異がなされた部位φタンパク質の短い柔軟なリンカーを、単純なアミノ酸リンカーよりも高い安定性を潜在的に提供する、他のタンパク質由来の小さく硬いセグメントによって置き換えた(図70B)。
ドメインIII(残基50~306)は、部位φエピトープを含有する、RSV Fタンパク質のおよそ250個のアミノ酸のより大きなドメインである(図70Dを参照されたい)。部位φを取り囲むドメインIII残基は、邪魔になる有意なさらなる表面エピトープを免疫原に付加せずに、部位φにさらなる構造的安定性を提供する。ドメインIIIは、融合ペプチドを曝露する、残基136および137間の天然フーリン切断部位を含有する。該切断部位をアミノ酸リンカーで置き換えることによって、または円順列変異を実施して元のN末端およびC末端もしくはドメインIIIを連結させかつ該切断部位に新たなN末端およびC末端を創出することによって、ドメインIIIをさらに安定化することができる。これらの方法の両方を利用して、様々なドメインIII免疫原を安定化させた。
最後に、部位φ免疫原を多量体化して、免疫原性を増強させた(図70Dおよび70E)。三量体化を利用して、融合前RSV Fウイルススパイクにおいて観察される天然三量体を模倣し、かつ24量体および60量体などのより大きな規定オリゴマーを利用して、免疫原性を特異的に増強させた。それは、構築物間にジスルフィド結合を導入することによって、または二量体もしくは三量体として、アミノ酸リンカーを用いて構築物を共有結合で一緒に連結させることによって、またはアミノ酸リンカーを用いて構築物を多量体化ドメインに連結させることによって達成された。一部の構築物は、これらのストラテジーの組み合わせを利用した。用いられた最小の多量体化ドメインは三量体(例えば、GCN4)であり、最大のものは60量体(例えば、ルマジンシンターゼ)であった。本発明者らは、五量体、12量体、および24量体も用いた。
上記で描出された主要な設計構想に加えて、ジスルフィド結合の付加、空洞充填変異、表面疎水性の低下、荷電表面残基の付加、およびN結合型グリカンの付加、および潜在的に柔軟な領域の切り取りを含めた、いくつかの他の方法によって免疫原を安定化させた。いくつかの最小部位φ免疫原のリストを、設計手法の表示と共に、表20(部位φ非粒子免疫原)および21(タンパク質ナノ粒子上にある部位φ免疫原)に提供する。名前、構想、RSV Fタンパク質の残基、足場または他のものを付加されたタンパク質、および対応するSEQ ID NOを示す。表20および21において、以下の頭字語が用いられる:Sφ:最小部位φ;CP:円順列変異;DS:ジスルフィド;CAV:空洞充填;荷電:荷電残基の付加;SC:一本鎖;TD3:タンデムドメインIIIドメイン;D3:ドメインIII;RH:疎水性の低下;Fd:T4 Fd三量体化ドメイン;CCMPTD:ニワトリ軟骨基質タンパク質三量体化ドメイン;MTQ-CC:MTQコイルドコイル三量体化モチーフ;CXVIII:コラーゲンXVIII三量体化ドメイン;2M0E:Miz-1ジンクフィンガー6(2M0E)足場;ATCase:アスパラギン酸カルバモイルトランスフェラーゼ(ATC ase)三量体化ドメイン(1GQ3);GCN4:GCN4三量体化ドメイン;Fer:フェリチン;Dps:ミクロバクテリウム・アルボレセンス(Microbacterium Arborescens)Dps;LS:A.エオリカス(A. aeolicus)ルマジンシンターゼ;Thr:トロンビン;EH:疎水性の曝露; HCP1:P.エルジノーサ(P. aeruginosa)hcp1(1y12)。
上記の実施例9において記載するように、最小部位φ免疫原を、組織培養培地中への最小部位φ免疫原の分泌をもたらすシステムを用いて細胞内で発現させた。次いで、培地を遠心分離し、かつ上清を、部位φ特異的抗体D25、AN22、および5C4への結合についてのELISAによる抗原性試験に用いた(図72A~72F)。試験された条件には、4℃で0および1週間後のD25結合(条件1および2)、60℃(条件3)、70℃(条件4)、80℃(条件5)、90℃(条件6)、または100℃(条件7)で1時間後のD25結合、4℃で2週間後のAM22結合(条件8)、4℃で0週目の5C4結合(条件9)が含まれる。70℃で1時間後のD25、AM22、およびD25結合の平均も示す(条件10)。抗原性データの概要を図71に提供し、それは、各設計カテゴリーに入る部位φ免疫原の数を示しており、かつ少なくとも1.5のELISA結果をもたらした。各構築物についての具体的な抗原性データを、図72A~72Fに提供する(試験された条件は、ヘッダーの行に付記されている)。該結果は、最小部位φ免疫原が、融合前特異的抗体に特異的に結合し、ゆえに対象において抗原部位φに対する免疫応答を誘導するのに有用であることを示している。加えて、該結果は、最小部位φ構築物が、サンプルからRSV F融合前特異的抗体を単離しかつ検出するためのプローブとして用いられ得ることを示している。
抗原性データに基づき、免疫応答の産生についての動物モデルにおける評価のための、ならびにさらなる物理的および構造的な特徴付けのための代表として、初期構築物のうちの14種を選択した。該14種を選出するための測定基準には、D25(1週目)、AM22(2週目)、および70度で1時間後のD25に対するELISAの平均を示す構築物を選択することが含まれた。いくつかの非常に類似した構築物が各カテゴリーに選出されるのを阻止するために、カテゴリーのそれぞれをさらなるカテゴリーに細分化した(丸括弧内にSEQ ID NO)。
カテゴリー1:単量体:
部位φ円順列変異:TZ-13(354567-108)平均:3.18(SEQ ID NO: 1040)
足場を有する部位φ円順列変異:JG_2KN0(354567-417)平均:3.00(SEQ ID NO: 1053)
ドメインIII:E-CP_RBD51-307_14mutDS-Cav1_THS(354567-273)平均:3.17(SEQ ID NO: 1156)
ドメインIII二量体:GSJnh4-TWIN(354567-693)平均:3.06(SEQ ID NO: 1194)
カテゴリー2:三量体:
部位φ円順列変異:TZ-19(354567-126)平均:3.08(SEQ ID NO: 1106)
ドメインIII(2つが結び付いている):RSVF(+)THS_s_to_hp2_フォルドン(354567-210)平均:3.08(SEQ ID NO: 1170)、およびMS_08(354567-447)平均:3.08(SEQ ID NO: 1188)
ドメインIII二量体:GSJnh4Fd-TWIN(354567-705)平均:3.01(SEQ ID NO: 1212)
カテゴリー3:多価単量体:
フェリチン上の部位φ円順列変異:2m0e-resurf1-フェリチン(354567-621)平均:2.81(SEQ ID NO: 1276)
フェリチン上のドメインIII:GSJnh2F(354567-471)平均:3.10(SEQ ID NO: 1220)
非フェリチンオリゴマー上の単量体:LS1-E-CP_RBD51-307_11mutDS-Cav1_THS(354567-315)平均:2.72(SEQ ID NO: 1281)
付加的なもの:MP11(354567-642)平均:3.05(SEQ ID NO: 1263)
カテゴリー4:多価三量体:
ナノ粒子上のドメインIII(2):GSJnh2Fd-F(354567-483)平均:2.57(SEQ ID NO: 1266)、およびGSJnh4Fd-F(354567-489)平均:2.02(SEQ ID NO: 1268)
(表20)最小部位φ免疫原(タンパク質ナノ粒子上にない)
(表21)タンパク質ナノ粒子上にある最小部位φ免疫原
実施例15
融合前安定化Fタンパク質の免疫原性
一連のアッセイ(上記で提供されるものに加えて)を実施して、融合前立体構造に安定化されている本明細書において提供される組換えRSV Fタンパク質の免疫原性を例証した。結果は、融合前立体構造に安定化された提供される組換えRSV Fタンパク質を用いて、複数の動物モデルにおいて免疫応答を誘導し得ること、さらに、この免疫応答の誘導が、将来的なウイルスの攻撃を防御することを示している。
別様に示されていない限り、図73~84および本実施例において、言及は、以下の組換えRSV Fタンパク質に対してなされている。
DS(サブタイプA)=RSV A2 F(+)FdTHS S155C、S290C(SEQ ID NO: 185)
DS(サブタイプB)=RSV B18537 F(+)FdTHS S155C、S290C(SEQ ID NO: 1479)
DS-Cav1(サブタイプA)=RSV A2 F(+)FdTHS S155C、S290C、S190F、V207L(SEQ ID NO: 371)
DS-Cav1(サブタイプB)=RSV B18537 F(+)FdTHS S155C、S290C、S190F、V207L(SEQ ID NO: 372)
融合後F(サブタイプA)=RSV A2 F(+) dFPTHS
図73は、Ribiをアジュバントとして用いると、IMで与えられたフェリチンナノ粒子の背景で提示されるDS-Cav1の一本鎖バージョンが、単回投薬後のリーサス・マカクにおいて2週間後に小さいが検出可能な中和抗体応答を誘発することを図解している。1回投薬後のこれらの小さいが検出可能な応答に基づき、第2の投薬でブーストした後には相当な中和抗体応答が誘導されるであろうことが予想される。これは、下記で考察される、マウスにおいて2回投薬後の、Ribiとともに製剤化された、フェリチンナノ粒子上に提示される切断型DS安定化融合前F三量体2mcgの免疫原性と一致している。
図74に図解されるように、0週目および3週目に50mcgのpoly ICLC中20mcgのDS Fで免疫されたマウスにおいて、安定化融合前のDSバージョンに対する、マウス(CB6F1/J)の免疫応答が誘導される。中和活性は、DS免疫化マウスにおいて12週間を上回る高レベルで維持された。
図75に図解されるように、DS(サブタイプA)=RSV A2 F(+)FdTHS S155C、S290C(SEQ ID NO: 185)による免疫は、動物モデルにおいてRSV感染を阻止し得る。マウスを、0週目および3週目に、安定化Fタンパク質のDSバージョン(SEQ ID NO: 185)でIMで免疫した。マウスに、最後のワクチン接種の4ヶ月後である19週目に、10e7pfuの均質なRSV A2ウイルスを鼻腔内に抗原投与した。5日目に、肺および鼻を取り出して、組織におけるウイルス負荷を測定した。結果は、融合前FのDSバージョンで免疫されたマウスが、肺または鼻において検出可能なウイルスを有しなかったことを示している。
さらに、DS(サブタイプA)=RSV A2 F(+)FdTHS S155C、S290C(SEQ ID NO: 185)を投与されたマウスは、免疫原に対する2型サイトカイン応答を受けなかった(図76)。サイトカイン含量は、対照(PBS)、野生型RSV(RSV)、ホルマリン不活性化RSV(FIRSV)、DS(SEQ ID NO: 185;「融合前F」)、または安定化融合後F構築物(融合後F)による初回免疫後の5日目に、肺および鼻の上清において測定された。一次感染を受けているマウスは、予想どおり、有意なレベルのIFN-γおよびMIP-1αを有した。FI-RSV免疫化マウスは、有意なレベルの2型サイトカイン(IL-4、IL-5、およびIL-13)、およびワクチン増強性疾患と関連した応答に典型的な、上皮損傷と関連したサイトカイン(IL-6)を有した。融合前F(DS)で免疫されたマウスは、有効かつ調節された応答と関連した中程度レベルのIFN-γおよびIL-10を有し、かつ病気または体重喪失を有しなかった。
組換えRSV F DSCav1タンパク質(SEQ ID NO: 371)で免疫された非ヒト霊長類モデル由来の血清の中和活性を、3回投薬免疫の経過にわたってアッセイした(図77)。サブタイプA配列に基づきかつpoly ICLCとともに製剤化した、DS-Cav1融合前F(SEQ ID NO: 371)または融合後Fのいずれかを50mcg IMで、1群あたり4匹のリーサス・マカクに0および4週目に2回免疫した。26週目に、両群を、poly ICLCとともに製剤化したDS-Cav1融合前Fの50mcg IMでブーストした。DS-Cav1の2回投薬後、有意な中和活性が誘導され、かつ5ヶ月を上回る間、防御的閾値より上で維持された。融合後Fは免疫原性であり、かつ2回投薬後に検出可能な中和活性を誘導したが、一過性にのみ防御的閾値を上回った。DS-Cav1安定化融合前Fの3回目の投薬による融合後F群のブーストは、2回目の投薬後に達成されたものを上回る中和活性の上昇をもたらした。3回目の投薬後、均質なサブタイプAに対する中和活性は、赤色の枠で囲まれたエリアで強調表示されているように、10週間を上回って安定して維持された。
DSCav1構築物がalumとともに製剤化され得ることを実証するために、精製DSCav1(SEQ ID NO: 371)を、水酸化アルミニウムゲルまたはリン酸アルミニウムゲルと様々な比率で混合した。BALB/cマウスを、0および3週目に、alum(水酸化アルミニウムゲルまたはリン酸アルミニウムゲルのいずれか)ととも製剤化した、10mcgの安定化融合前FのDS-Cav1バージョンでIMで免疫した。タンパク質: alumの重量:重量の比率を、1:1~1:10で変動させた。すべての製剤は免疫原性であった(図78)。加えて、DSCav1免疫のためのアジュバントとしてのalumの使用を、非ヒト霊長類モデルにおいて実証した(図79)。リーサス・マカクを、0、4、および26週目に精製DSタンパク質(SEQ ID NO: 185)で免疫した。0および4週目の注入は、poly ICLC中に製剤化された安定化RSV融合前FのDSバージョン(50mcg)から構成された。26週目のブーストは、水酸化アルミニウムゲル中に製剤化された、50mcgのDS融合前安定化Fであった。したがって、alumは、NHPにおいて、安定化融合前Fに対する有効なアジュバントである。
別の免疫プロトコールが、DSCav1で有効な免疫応答を誘導することに対して有効であることを示すために、DSCav1を発現する遺伝子ベースのベクターでマウスを免疫し、かつRSV Fに対する結果として生じた免疫応答を評価した(図80)。CB6F1/Jマウスを、Fの野生型バージョンを発現する組換えアデノウイルス血清型5型で0および3週目に免疫し、または膜に固定された(分泌されない)preFのDS-Cav1バージョンを発現するrAd5で0週目に免疫し、かつalum中に製剤化された10mcgのDS-Cav1で3週目にブーストした。alum中DS-Cav1でブーストされた、rAd5-preFプライムされたマウスは、タンパク質のみの2回投薬を与えられたマウスと同程度に中和抗体を産生し、遺伝子ベースのベクターによって送達された融合前Fが免疫原性であり、かつ後続のタンパク質ブーストに対してプライムになり得ることを示した。
加えて、DSCav1タンパク質は、野生型(WT)RSV Fに対する免疫応答をブーストするのに有効であった(図81)。ブーストの2年よりも前に、RSV F(サブタイプA)のWTバージョンを発現する組換えアデノウイルスベクターでプライムされた非ヒト霊長類を、alum中に製剤化された単独の50mcg用量のDS-Cav1サブタイプAまたはサブタイプBでブーストした。ブーストの2週間後、サブタイプAおよびBのDS-Cav1タンパク質の両方によって中和活性は有意に増加した(図81~82)。
安定化FのDS(S155C、S290C)バージョンのサブタイプ横断的有効性を実証するために、CB6F1/Jマウスを、Ribi中に製剤化した10mcgのDSで0週目および3週目にIMで免疫した(図83)。中和抗体は、サブタイプAおよびBウイルスの両方に対して、A(SEQ ID NO: 185)およびB(SEQ ID NO: 1479)サブタイプタンパク質の両方によって誘導された。AおよびBの両方を受ける群は、合計20mcgのタンパク質を受けた。
図84は、RSV Fタンパク質のグリコシル化を変更することにより、その免疫原性が低下することを図解している。BALB/cマウスを、poly IC中に製剤化した10mcgの安定化融合前FのDSバージョンで、0および3週目に免疫した。F構築物をグリコシダーゼで処理した、またはN27およびN70におけるグリコシル化部位を除去するように変異体バージョンを作製した。N500グリコシル化を変異させた場合にFタンパク質は産生され得ず、これによりその部位におけるグリコシル化が発現に必要とされることが示唆された。Fのグリコシル化変種のいずれかによって免疫されたマウスにおいて、中和活性は、5週目(無地のバー)および7週目(ハッチングされたバー)に検出された。しかしながら、グリコシル化を変更することは、安定化融合前Fの元のDSバージョンと比較して、免疫原性を低下させるように見えた。****=P<0.0001。
記載される方法または組成物についての正確な詳細は、記載される態様の精神から逸脱することなく変動または改変され得ることは明白であろう。本発明者らは、下記の特許請求の範囲および精神に入るすべてのそのような改変および変動を主張する。