[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a049684 -id:a049684
Displaying 1-10 of 22 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A000032 Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1.
(Formerly M0155)
+10
1423
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Cf. A000204 for Lucas numbers beginning with 1.
Also the number of independent vertex sets and vertex covers for the cycle graph C_n for n >= 2. - Eric W. Weisstein, Jan 04 2014
Also the number of matchings in the n-cycle graph C_n for n >= 3. - Eric W. Weisstein, Oct 01 2017
Also the number of maximal independent vertex sets (and maximal vertex covers) for the n-helm graph for n >= 3. - Eric W. Weisstein, May 27 2017
Also the number of maximal independent vertex sets (and maximal vertex covers) for the n-sunlet graph for n >= 3. - Eric W. Weisstein, Aug 07 2017
This is also the Horadam sequence (2, 1, 1, 1). - Ross La Haye, Aug 18 2003
For distinct primes p, q, L(p) is congruent to 1 mod p, L(2p) is congruent to 3 mod p and L(pq) is congruent 1 + q(L(q) - 1) mod p. Also, L(m) divides F(2km) and L((2k + 1)m), k, m >= 0.
a(n) = Sum_{k=0..ceiling((n - 1)/2)} P(3; n - 1 - k, k), n >= 1, with a(0) = 2. These are the sums over the SW-NE diagonals in P(3; n, k), the (3, 1) Pascal triangle A093560. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Also SW-NE diagonal sums of the (1, 2) Pascal triangle A029635 (with T(0, 0) replaced by 2).
Suppose psi = log(phi) = A002390. We get the representation L(n) = 2*cosh(n*psi) if n is even; L(n) = 2*sinh(n*psi) if n is odd. There is a similar representation for Fibonacci numbers (A000045). Many Lucas formulas now easily follow from appropriate sinh- and cosh-formulas. For example: the identity cosh^2(x) - sinh^2(x) = 1 implies L(n)^2 - 5*F(n)^2 = 4*(-1)^n (setting x = n*psi). - Hieronymus Fischer, Apr 18 2007
From John Blythe Dobson, Oct 02 2007, Oct 11 2007: (Start)
The parity of L(n) follows easily from its definition, which shows that L(n) is even when n is a multiple of 3 and odd otherwise.
The first six multiplication formulas are:
L(2n) = L(n)^2 - 2*(-1)^n;
L(3n) = L(n)^3 - 3*(-1)^n*L(n);
L(4n) = L(n)^4 - 4*(-1)^n*L(n)^2 + 2;
L(5n) = L(n)^5 - 5*(-1)^n*L(n)^3 + 5*L(n);
L(6n) = L(n)^6 - 6*(-1)^n*L(n)^4 + 9*L(n)^2 - 2*(-1)^n.
Generally, L(n) | L(mn) if and only if m is odd.
In the expansion of L(mn), where m represents the multiplier and n the index of a known value of L(n), the absolute values of the coefficients are the terms in the m-th row of the triangle A034807. When m = 1 and n = 1, L(n) = 1 and all the terms are positive and so the row sums of A034807 are simply the Lucas numbers. (End)
From John Blythe Dobson, Nov 15 2007: (Start)
The comments submitted by Miklos Kristof on Mar 19 2007 for the Fibonacci numbers (A000045) contain four important identities that have close analogs in the Lucas numbers:
For a >= b and odd b, L(a + b) + L(a - b) = 5*F(a)*F(b).
For a >= b and even b, L(a + b) + L(a - b) = L(a)*L(b).
For a >= b and odd b, L(a + b) - L(a - b) = L(a)*L(b).
For a >= b and even b, L(a + b) - L(a - b) = 5*F(a)*F(b).
A particularly interesting instance of the difference identity for even b is L(a + 30) - L(a - 30) = 5*F(a)*832040, since 5*832040 is divisible by 100, proving that the last two digits of Lucas numbers repeat in a cycle of length 60 (see A106291(100)). (End)
From John Blythe Dobson, Nov 15 2007: (Start)
The Lucas numbers satisfy remarkable difference equations, in some cases best expressed using Fibonacci numbers, of which representative examples are the following:
L(n) - L(n - 3) = 2*L(n - 2);
L(n) - L(n - 4) = 5*F(n - 2);
L(n) - L(n - 6) = 4*L(n - 3);
L(n) - L(n - 12) = 40*F(n - 6);
L(n) - L(n - 60) = 4160200*F(n - 30).
These formulas establish, respectively, that the Lucas numbers form a cyclic residue system of length 3 (mod 2), of length 4 (mod 5), of length 6 (mod 4), of length 12 (mod 40) and of length 60 (mod 4160200). The divisibility of the last modulus by 100 accounts for the fact that the last two digits of the Lucas numbers begin to repeat at L(60).
The divisibility properties of the Lucas numbers are very complex and still not fully understood, but several important criteria are established in Zhi-Hong Sun's 2003 survey of congruences for Fibonacci numbers. (End)
Sum_{n>0} a(n)/(n*2^n) = 2*log(2). - Jaume Oliver Lafont, Oct 11 2009
A010888(a(n)) = A030133(n). - Reinhard Zumkeller, Aug 20 2011
The powers of phi, the golden ratio, approach the values of the Lucas numbers, the odd powers from above and the even powers from below. - Geoffrey Caveney, Apr 18 2014
Inverse binomial transform is (-1)^n * a(n). - Michael Somos, Jun 03 2014
Lucas numbers are invariant to the following transformation for all values of the integers j and n, including negative values, thus: L(n) = (L(j+n) + (-1)^n * L(j-n))/L(j). The same transformation applied to all sequences of the form G(n+1) = m * G(n) + G(n-1) yields Lucas numbers for m = 1, except where G(j) = 0, regardless of initial values which may be nonintegers. The corresponding sequences for other values of m are: for m = 2, 2*A001333; for m = 3, A006497; for m = 4, 2*A001077; for m = 5, A087130; for m = 6, 2*A005667; for m = 7, A086902. The invariant ones all have G(0) = 2, G(1) = m. A related family of sequences is discussed at A059100. - Richard R. Forberg, Nov 23 2014
If x=a(n), y=a(n+1), z=a(n+2), then -x^2 - z*x - 3*y*x - y^2 + y*z + z^2 = 5*(-1)^(n+1). - Alexander Samokrutov, Jul 04 2015
A conjecture on the divisibility of infinite subsequences of Lucas numbers by prime(n)^m, m >= 1, is given in A266587, together with the prime "entry points". - Richard R. Forberg, Dec 31 2015
A trapezoid has three lengths of sides in order L(n-1), L(n+1), L(n-1). For increasing n a very close approximation to the maximum area will have the fourth side equal to 2*L(n). For a trapezoid with sides L(n-1), L(n-3), L(n-1), the fourth side will be L(n). - J. M. Bergot, Mar 17 2016
Satisfies Benford's law [Brown-Duncan, 1970; Berger-Hill, 2017]. - N. J. A. Sloane, Feb 08 2017
Lucas numbers L(n) and Fibonacci numbers F(n), being related by the formulas F(n) = (F(n-1) + L(n-1))/2 and L(n) = 2 F(n+1) - F(n), are a typical pair of "autosequences" (see the link to OEIS Wiki). - Jean-François Alcover, Jun 09 2017
For n >= 3, the Lucas number L(n) is the dimension of a commutative Hecke algebra of affine type A_n with independent parameters. See Theorem 1.4, Corollary 1.5, and the table on page 524 in the link "Hecke algebras with independent parameters". - Jia Huang, Jan 20 2019
From Klaus Purath, Apr 19 2019: (Start)
While all prime numbers appear as factors in the Fibonacci numbers, this is not the case with the Lucas numbers. For example, L(n) is never divisible by the following prime numbers < 150: 5, 13, 17, 37, 53, 61, 73, 89, 97, 109, 113, 137, 149 ... See A053028. Conjecture: Three properties can be determined for these prime numbers:
First observation: The prime factors > 3 occur in the Fibonacci numbers with an odd index.
Second observation: These are the prime numbers p congruent to 2, 3 (modulo 5), which occur both in Fibonacci(p+1) and in Fibonacci((p+1)/2) as prime factors, or the prime numbers p congruent to 1, 4 (modulo 5), which occur both in Fibonacci((p-1)/2) and in Fibonacci((p-1)/(2^k)) with k >= 2.
Third observation: The Pisano period lengths of these prime numbers, given in A001175, are always divisible by 4, but not by 8. In contrast, those of the prime factors of Lucas numbers are divisible either by 2, but not by 4, or by 8. (See also comment in A053028 by N. J. A. Sloane, Feb 21 2004). (End)
L(n) is the sum of 4*k consecutive terms of the Fibonacci sequence (A000045) divided by Fibonacci(2*k): (Sum_{i=0..4*k-1, k>=1} F(n+i))/F(2*k) = L(n+2*k+1). Sequences extended to negative indices, following the rule a(n-1) = a(n+1) - a(n). - Klaus Purath, Sep 15 2019
If one forms a sequence (A) of the Fibonacci type with the initial values A(0) = A022095(n) and A(1) = A000285(n), then A(n+1) = L(n+1)^2 always applies. - Klaus Purath, Sep 29 2019
From Kai Wang, Dec 18 2019: (Start)
L((2*m+1)k)/L(k) = Sum_{i=0..m-1} (-1)^(i*(k+1))*L((2*m-2*i)*k) + (-1)^(m*k).
Example: k=5, m=2, L(5)=11, L(10)=123, L(20)=15127, L(25)=167761. L(25)/L(5) = 15251, L(20) + L(10) + 1 = 15127 + 123 + 1 = 15251.
(End)
From Peter Bala, Dec 23 2021: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k.
For a positive integer k, the sequence (a(n))n>=1 taken modulo k becomes a purely periodic sequence. For example, taken modulo 11, the sequence becomes [1, 3, 4, 7, 0, 7, 7, 3, 10, 2, 1, 3, 4, 7, 0, 7, 7, 3, 10, 2, ...], a periodic sequence with period 10. (End)
For any sequence with recurrence relation b(n) = b(n-1) + b(n-2), it can be shown that the recurrence relation for every k-th term is given by: b(n) = A000032(k) * b(n-k) + (-1)^(k+1) * b(n-2k), extending to negative indices as necessary. - Nick Hobson, Jan 19 2024
REFERENCES
P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 69.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 32,50.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 46.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 148.
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2001.
C. N. Menhinick, The Fibonacci Resonance and other new Golden Ratio discoveries, Onperson, (2015), pages 200-206.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..4775 (terms 0..500 computed by N. J. A. Sloane)
A. Akbary and Q. Wang, A generalized Lucas sequence and permutation binomials, Proc. Amer. Math. Soc. 134 (2006) 15-22, sequence a(n) for l=5.
A. Aksenov, The Newman phenomenon and Lucas sequence, arXiv:1108.5352 [math.NT], 2011.
Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
Ovidiu Bagdasar, Eve Hedderwick and Ioan-Lucian Popa, On the ratios and geometric boundaries of complex Horadam sequences, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 63-70.
S. Barbero, U. Cerruti and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences , J. Int. Seq. 13 (2010) # 10.9.7, example 12.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
A. T. Benjamin, A. K. Eustis and M. A. Shattuck, Compression Theorems for Periodic Tilings and Consequences, JIS 12 (2009) 09.6.3.
A. Berger and T. P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
Kh. Bibak and M. H. Shirdareh Haghighi, Some Trigonometric Identities Involving Fibonacci and Lucas Numbers, JIS 12 (2009) 09.8.4.
J. Brown and R. Duncan, Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences, Fibonacci Quarterly 8 (1970) 482-486.
Paula Burkhardt, Alice Zhuo-Yu Chan, Gabriel Currier, Stephan Ramon Garcia, Florian Luca and Hong Suh, Visual properties of generalized Kloosterman sums, arXiv:1505.00018 [math.NT], 2015.
Frédéric Chapoton, A note on gamma triangles and local gamma vectors, arXiv:1809.00575 [math.CO], 2018.
Charles Cratty, Samuel Erickson, Frehiwet Negass and Lara Pudwell, Pattern Avoidance in Double Lists, preprint, 2015.
M. Dekking, Base phi representations and golden mean beta-expansions, arXiv:1906.08437 [math.NT], June 2019.
Wiktor Ejsmont and Franz Lehner, The Trace Method for Cotangent Sums, arXiv:2002.06052 [math.CA], 2020.
G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2012.
Sergio Falcon, On the Lucas triangle and its relationship with the k-Lucas numbers, Journal of Mathematical and Computational Science, 2 (2012), No. 3, pp. 425-434.
Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
Rigoberto Flórez, Robinson A. Higuita and Antara Mukherjee, The Geometry of some Fibonacci Identities in the Hosoya Triangle, arXiv:1804.02481 [math.NT], 2018.
Robert Frontczak and Taras Goy, Mersenne-Horadam identities using generating functions, Carpathian Math. Publ. (2020) Vol. 12, No. 1, 34-45.
Taras Goy and Mark Shattuck, Fibonacci and Lucas identities from Toeplitz-Hessenberg matrices, Applications and Applied Mathematics: An International Journal, 14:2 (2019), 699-715.
R. P. Grimaldi, Tilings, Compositions, and Generalizations, J. Int. Seq. 13 (2010), 10.6.5.
Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
A. M. Hinz, S. Klavžar, U. Milutinović and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 12. Book's website
V. E. Hoggat, Jr. and Marjorie Bicknell, Some congruences of the Fibonacci numbers modulo a prime p, Math. Mag. 47 (4) (1974) 210-214.
Jia Huang, Hecke algebras with independent parameters, arXiv preprint arXiv:1405.1636 [math.RT], 2014; Journal of Algebraic Combinatorics 43 (2016) 521-551.
Tanya Khovanova, Recursive Sequences
Dmitry Kruchinin, Superposition's properties of logarithmic generating functions, arXiv:1109.1683 [math.CO], 2011.
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
Matthew Macauley, Jon McCammond and Henning S. Mortveit, Dynamics groups of asynchronous cellular automata, Journal of Algebraic Combinatorics, Vol 33, No 1 (2011), pp. 11-35.
T. Mansour and M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
A. McLeod and W. O. J. Moser, Counting cyclic binary strings, Math. Mag., 80 (No. 1, 2007), 29-37.
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Hisanori Mishima, Factorizations of Lucas Numbers: m=1..100, m=101..200, n=201..300, n=301..400, n=401..478
Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4
OEIS Wiki, Autosequence
Arzu Özkoç, Some algebraic identities on quadra Fibona-Pell integer sequence, Advances in Difference Equations, 2015, 2015:148.
J. L. Ramirez and V. F. Sirvent, Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences, Vol. 17, 2014, #14.4.2.
B. Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.
Yüksel Soykan, On Hyperbolic Numbers With Generalized Fibonacci Numbers Components, Zonguldak Bülent Ecevit University (Turkey, 2019).
Yüksel Soykan, Generalized Fibonacci Numbers: Sum Formulas, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 1, 89-104.
Yüksel Soykan, Closed Formulas for the Sums of Squares of Generalized Fibonacci Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 9, No. 1, 23-39, Article no. AJARR.55441.
Yüksel Soykan, Closed Formulas for the Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of Sum_{k=0..n} W_k^3 and Sum_{k=1..n} W_(-k)^3, Archives of Current Research International (2020) Vol. 20, Issue 2, 58-69.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
Robin James Spivey, Close encounters of the golden and silver ratios, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 170-184.
Zhi-Hong Sun, Congruences for Fibonacci Numbers [PDF] (Lecture notes, 2009)
M. Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
L. C. Washington, Benford's Law for Fibonacci and Lucas numbers, Fib. Quarterly, 19-2 1981, pp. 175-177.
Eric Weisstein's World of Mathematics, Cycle Graph
Eric Weisstein's World of Mathematics, Helm Graph
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Lucas Number
Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
Eric Weisstein's World of Mathematics, Minimal Vertex Cover
Eric Weisstein's World of Mathematics, Sunlet Graph
Eric Weisstein's World of Mathematics, Vertex Cover
Wikipedia, Lucas number
Roman Witula, Damian Slota and Edyta Hetmaniok, Bridges between different known integer sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 255-263.
Shaoxiong Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019.
FORMULA
G.f.: (2 - x)/(1 - x - x^2).
L(n) = ((1 + sqrt(5))/2)^n + ((1 - sqrt(5))/2)^n = phi^n + (1-phi)^n.
L(n) = L(n - 1) + L(n - 2) = (-1)^n * L( - n).
L(n) = Fibonacci(2*n)/Fibonacci(n) for n > 0. - Jeff Burch, Dec 11 1999
E.g.f.: 2*exp(x/2)*cosh(sqrt(5)*x/2). - Len Smiley, Nov 30 2001
L(n) = F(n) + 2*F(n - 1) = F(n + 1) + F(n - 1). - Henry Bottomley, Apr 12 2000
a(n) = sqrt(F(n)^2 + 4*F(n + 1)*F(n - 1)). - Benoit Cloitre, Jan 06 2003 [Corrected by Gary Detlefs, Jan 21 2011]
a(n) = 2^(1 - n)*Sum_{k=0..floor(n/2)} C(n, 2k)*5^k. a(n) = 2T(n, i/2)( - i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = - 1. - Paul Barry, Nov 15 2003
L(n) = 2*F(n + 1) - F(n). - Paul Barry, Mar 22 2004
a(n) = (phi)^n + ( - phi)^( - n). - Paul Barry, Mar 12 2005
From Miklos Kristof, Mar 19 2007: (Start)
Let F(n) = A000045 = Fibonacci numbers, L(n) = a(n) = Lucas numbers:
L(n + m) + (-1)^m*L(n - m) = L(n)*L(m).
L(n + m) - (-1)^m*L(n - m) = 8*F(n)*F(m).
L(n + m + k) + (-1)^k*L(n + m - k) + (-1)^m*(L(n - m + k) + (-1)^k*L(n - m - k)) = L(n)*L(m)*L(k).
L(n + m + k) - (-1)^k*L(n + m - k) + (-1)^m*(L(n - m + k) - (-1)^k*L(n - m - k)) = 5*F(n)*L(m)*F(k).
L(n + m + k) + (-1)^k*L(n + m - k) - (-1)^m*(L(n - m + k) + (-1)^k*L(n - m - k)) = 5*F(n)*F(m)*L(k).
L(n + m + k) - (-1)^k*L(n + m - k) - (-1)^m*(L(n - m + k) - (-1)^k*L(n - m - k)) = 5*L(n)*F(m)*F(k). (End)
Inverse: floor(log_phi(a(n)) + 1/2) = n, for n>1. Also for n >= 0, floor((1/2)*log_phi(a(n)*a(n+1))) = n. Extension valid for all integers n: floor((1/2)*sign(a(n)*a(n+1))*log_phi|a(n)*a(n+1)|) = n {where sign(x) = sign of x}. - Hieronymus Fischer, May 02 2007
Let f(n) = phi^n + phi^(-n), then L(2n) = f(2n) and L(2n + 1) = f(2n + 1) - 2*Sum_{k>=0} C(k)/f(2n + 1)^(2k + 1) where C(n) are Catalan numbers (A000108). - Gerald McGarvey, Dec 21 2007, modified by Davide Colazingari, Jul 01 2016
Starting (1, 3, 4, 7, 11, ...) = row sums of triangle A131774. - Gary W. Adamson, Jul 14 2007
a(n) = trace of the 2 X 2 matrix [0,1; 1,1]^n. - Gary W. Adamson, Mar 02 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
For odd n: a(n) = floor(1/(fract(phi^n))); for even n>0: a(n) = ceiling(1/(1 - fract(phi^n))). This follows from the basic property of the golden ratio phi, which is phi - phi^(-1) = 1 (see general formula described in A001622).
a(n) = round(1/min(fract(phi^n), 1 - fract(phi^n))), for n>1, where fract(x) = x - floor(x). (End)
E.g.f.: exp(phi*x) + exp(-x/phi) with phi: = (1 + sqrt(5))/2 (golden section). 1/phi = phi - 1. See another form given in the Smiley e.g.f. comment. - Wolfdieter Lang, May 15 2010
L(n)/L(n - 1) -> A001622. - Vincenzo Librandi, Jul 17 2010
a(n) = 2*a(n-2) + a(n-3), n>2. - Gary Detlefs, Sep 09 2010
L(n) = floor(1/fract(Fibonacci(n)*phi)), for n odd. - Hieronymus Fischer, Oct 20 2010
L(n) = ceiling(1/(1 - fract(Fibonacci(n)*phi))), for n even. - Hieronymus Fischer, Oct 20 2010
L(n) = 2^n * (cos(Pi/5)^n + cos(3*Pi/5)^n). - Gary Detlefs, Nov 29 2010
L(n) = (Fibonacci(2*n - 1)*Fibonacci(2*n + 1) - 1)/(Fibonacci(n)*Fibonacci(2*n)), n != 0. - Gary Detlefs, Dec 13 2010
L(n) = sqrt(A001254(n)) = sqrt(5*Fibonacci(n)^2 - 4*(-1)^(n+1)). - Gary Detlefs, Dec 26 2010
L(n) = floor(phi^n) + ((-1)^n + 1)/2 = A014217(n) +((-1)^n+1)/2, where phi = A001622. - Gary Detlefs, Jan 20 2011
L(n) = Fibonacci(n + 6) mod Fibonacci(n + 2), n>2. - Gary Detlefs, May 19 2011
For n >= 2, a(n) = round(phi^n) where phi is the golden ratio. - Arkadiusz Wesolowski, Jul 20 2012
a(p*k) == a(k) (mod p) for primes p. a(2^s*n) == a(n)^(2^s) (mod 2) for s = 0,1,2.. a(2^k) == - 1 (mod 2^k). a(p^2*k) == a(k) (mod p) for primes p and s = 0,1,2,3.. [Hoggatt and Bicknell]. - R. J. Mathar, Jul 24 2012
From Gary Detlefs, Dec 21 2012: (Start)
L(k*n) = (F(k)*phi + F(k - 1))^n + (F(k + 1) - F(k)*phi)^n.
L(k*n) = (F(n)*phi + F(n - 1))^k + (F(n + 1) - F(n)*phi)^k.
where phi = (1 + sqrt(5))/2, F(n) = A000045(n).
(End)
L(n) = n * Sum_{k=0..floor(n/2)} binomial(n - k,k)/(n - k), n>0 [H. W. Gould]. - Gary Detlefs, Jan 20 2013
G.f.: G(0), where G(k) = 1 + 1/(1 - (x*(5*k-1))/((x*(5*k+4)) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
L(n) = F(n) + F(n-1) + F(n-2) + F(n-3). - Bob Selcoe, Jun 17 2013
L(n) = round(sqrt(L(2n-1) + L(2n-2))). - Richard R. Forberg, Jun 24 2014
L(n) = (F(n+1)^2 - F(n-1)^2)/F(n) for n>0. - Richard R. Forberg, Nov 17 2014
L(n+2) = 1 + A001610(n+1) = 1 + Sum_{k=0..n} L(k). - Tom Edgar, Apr 15 2015
L(i+j+1) = L(i)*F(j) + L(i+1)*F(j+1) with F(n)=A000045(n). - J. M. Bergot, Feb 12 2016
a(n) = (L(n+1)^2 + 5*(-1)^n)/L(n+2). - J. M. Bergot, Apr 06 2016
Dirichlet g.f.: PolyLog(s,-1/phi) + PolyLog(s,phi), where phi is the golden ratio. - Ilya Gutkovskiy, Jul 01 2016
L(n) = F(n+2) - F(n-2). - Yuchun Ji, Feb 14 2016
L(n+1) = A087131(n+1)/2^(n+1) = 2^(-n)*Sum_{k=0..n} binomial(n,k)*5^floor((k+1)/2). - Tony Foster III, Oct 14 2017
L(2*n) = (F(k+2*n) + F(k-2*n))/F(k); n >= 1, k >= 2*n. - David James Sycamore, May 04 2018
From Greg Dresden and Shaoxiong Yuan, Jul 16 2019: (Start)
L(3n + 4)/L(3n + 1) has continued fraction: n 4's followed by a single 7.
L(3n + 3)/L(3n) has continued fraction: n 4's followed by a single 2.
L(3n + 2)/L(3n - 1) has continued fraction: n 4's followed by a single -3. (End)
From Klaus Purath, Sep 15 2019: (Start)
All involved sequences extended to negative indices, following the rule a(n-1) = a(n+1) - a(n).
L(n) = (2*L(n+2) - L(n-3))/5.
L(n) = (2*L(n-2) + L(n+3))/5.
L(n) = F(n-3) + 2*F(n).
L(n) = 2*F(n+2) - 3*F(n).
L(n) = (3*F(n-1) + F(n+2))/2.
L(n) = 3*F(n-3) + 4*F(n-2).
L(n) = 4*F(n+1) - F(n+3).
L(n) = (F(n-k) + F(n+k))/F(k) with odd k>0.
L(n) = (F(n+k) - F(n-k))/F(k) with even k>0.
L(n) = A001060(n-1) - F(n+1).
L(n) = (A022121(n-1) - F(n+1))/2.
L(n) = (A022131(n-1) - F(n+1))/3.
L(n) = (A022139(n-1) - F(n+1))/4.
L(n) = (A166025(n-1) - F(n+1))/5.
The following two formulas apply for all sequences of the Fibonacci type.
(a(n-2*k) + a(n+2*k))/a(n) = L(2*k).
(a(n+2*k+1) - a(n-2*k-1))/a(n) = L(2*k+1). (End)
L(n) = F(n-k)*L(k+1) + F(n-k-1)*L(k), for all k >= 0, where F(n) = A000045(n). - Michael Tulskikh, Dec 06 2019
F(n+2*m) = L(m)*F(n+m) + (-1)^(m-1)*F(n) for all n >= 0 and m >= 0. - Alexander Burstein, Mar 31 2022
a(n) = i^(n-1)*cos(n*c)/cos(c) = i^(n-1)*cos(c*n)*sec(c), where c = Pi/2 + i*arccsch(2). - Peter Luschny, May 23 2022
From Yike Li and Greg Dresden, Aug 25 20022: (Start)
L(2*n) = 5*binomial(2*n-1,n) - 2^(2*n-1) + 5*Sum_{j=1..n/5} binomial(2*n,n+5*j) for n>0.
L(2*n+1) = 2^(2n) - 5*Sum_{j=0..n/5} binomial(2*n+1,n+5*j+3). (End)
From Andrea Pinos, Jul 04 2023: (Start)
L(n) ~ Gamma(1/phi^n) + gamma.
L(n) = Re(phi^n + e^(i*Pi*n)/phi^n). (End)
EXAMPLE
G.f. = 2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 11*x^5 + 18*x^6 + 29*x^7 + ...
MAPLE
with(combinat): A000032 := n->fibonacci(n+1)+fibonacci(n-1);
seq(simplify(2^n*(cos(Pi/5)^n+cos(3*Pi/5)^n)), n=0..36)
MATHEMATICA
a[0] := 2; a[n] := Nest[{Last[#], First[#] + Last[#]} &, {2, 1}, n] // Last
Array[2 Fibonacci[# + 1] - Fibonacci[#] &, 50, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
Table[LucasL[n], {n, 0, 36}] (* Zerinvary Lajos, Jul 09 2009 *)
LinearRecurrence[{1, 1}, {2, 1}, 40] (* Harvey P. Dale, Sep 07 2013 *)
LucasL[Range[0, 20]] (* Eric W. Weisstein, Aug 07 2017 *)
CoefficientList[Series[(-2 + x)/(-1 + x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
PROG
(Magma) [Lucas(n): n in [0..120]];
(PARI) {a(n) = if(n<0, (-1)^n * a(-n), if( n<2, 2-n, a(n-1) + a(n-2)))};
(PARI) {a(n) = if(n<0, (-1)^n * a(-n), polsym(x^2 - x - 1, n)[n+1])};
(PARI) {a(n) = real((2 + quadgen(5)) * quadgen(5)^n)};
(PARI) a(n)=fibonacci(n+1)+fibonacci(n-1) \\ Charles R Greathouse IV, Jun 11 2011
(PARI) polsym(1+x-x^2, 50) \\ Charles R Greathouse IV, Jun 11 2011
(Sage) [lucas_number2(n, 1, -1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
(Haskell)
a000032 n = a000032_list !! n
a000032_list = 2 : 1 : zipWith (+) a000032_list (tail a000032_list)
-- Reinhard Zumkeller, Aug 20 2011
(Python)
def A000032_gen(): # generator of terms
a, b = 2, 1
while True:
yield a
a, b = b, a+b
it = A000032_gen()
A000032_list = [next(it) for _ in range(50)] # Cole Dykstra, Aug 02 2022
(Python)
from sympy import lucas
def A000032(n): return lucas(n) # Chai Wah Wu, Sep 23 2023
CROSSREFS
Cf. A000204. A000045(n) = (2*L(n + 1) - L(n))/5.
First row of array A103324.
a(n) = A101220(2, 0, n), for n > 0.
a(k) = A090888(1, k) = A109754(2, k) = A118654(2, k - 1), for k > 0.
Cf. A131774, A001622, A002878 (L(2n+1)), A005248 (L(2n)), A006497, A080039, A049684 (summation of Fibonacci(4n+2)), A106291 (Pisano periods), A057854 (complement), A354265 (generalized Lucas numbers).
Cf. sequences with formula Fibonacci(n+k)+Fibonacci(n-k) listed in A280154.
Subsequence of A047201.
KEYWORD
nonn,nice,easy,core
AUTHOR
N. J. A. Sloane, May 24 1994
STATUS
approved
A001110 Square triangular numbers: numbers that are both triangular and square.
(Formerly M5259 N2291)
+10
83
0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, 113422539294030403250144100 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Satisfies a recurrence of S_r type for r=36: 0, 1, 36 and a(n-1)*a(n+1)=(a(n)-1)^2. First observed by Colin Dickson in alt.math.recreational, Mar 07 2004. - Rainer Rosenthal, Mar 14 2004
For every n, a(n) is the first of three triangular numbers in geometric progression. The third number in the progression is a(n+1). The middle triangular number is sqrt(a(n)*a(n+1)). Chen and Fang prove that four distinct triangular numbers are never in geometric progression. - T. D. Noe, Apr 30 2007
The sum of any two terms is never equal to a Fermat number. - Arkadiusz Wesolowski, Feb 14 2012
Conjecture: No a(2^k), where k is a nonnegative integer, can be expressed as a sum of a positive square number and a positive triangular number. - Ivan N. Ianakiev, Sep 19 2012
For n=2k+1, A010888(a(n))=1 and for n=2k, k > 0, A010888(a(n))=9. - Ivan N. Ianakiev, Oct 12 2013
For n > 0, these are the triangular numbers which are the sum of two consecutive triangular numbers, for instance 36 = 15 + 21 and 1225 = 595 + 630. - Michel Marcus, Feb 18 2014
The sequence is the case P1 = 36, P2 = 68, Q = 1 of the 3-parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014
For n=2k, k > 0, a(n) is divisible by 12 and is therefore abundant. I conjecture that for n=2k+1 a(n) is deficient [true for k up to 43 incl.]. - Ivan N. Ianakiev, Sep 30 2014
The conjecture is true for all k > 0 because: For n=2k+1, k > 0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. - Muniru A Asiru, Apr 13 2016
Numbers k for which A139275(k) is a perfect square. - Bruno Berselli, Jan 16 2018
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923; see Vol. 2, p. 10.
Martin Gardner, Time Travel and other Mathematical Bewilderments, Freeman & Co., 1988, pp. 16-17.
Miodrag S. Petković, Famous Puzzles of Great Mathematicians, Amer. Math. Soc. (AMS), 2009, p. 64.
J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 2001, p. 196.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kade Robertson, Table of n, a(n) for n = 0..600 [This replaces an earlier b-file computed by T. D. Noe]
Nikola Adžaga, Andrej Dujella, Dijana Kreso, and Petra Tadić, On Diophantine m-tuples and D(n)-sets, 2018.
Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7.
Tom Beldon and Tony Gardiner, Triangular numbers and perfect squares, The Mathematical Gazette, 2002, pp. 423-431, esp pp. 424-426.
P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11-24.
Kwang-Wu Chen and Yu-Ren Pan, Greatest Common Divisors of Shifted Horadam Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.5.8.
Yong-Gao Chen and Jin-Hui Fang, Triangular numbers in geometric progression, INTEGERS 7 (2007), #A19.
F. Javier de Vega, On the parabolic partitions of a number, J. Alg., Num. Theor., and Appl. (2023) Vol. 61, No. 2, 135-169.
Colin Dickson et al., ratio of integers = sqrt(2), thread in newsgroup alt.math.recreational, March 7, 2004.
H. G. Forder, A Simple Proof of a Result on Diophantine Approximation, Math. Gaz., 47 (1963), 237-238.
Bill Gosper, The Triangular Squares, 2014.
Jon Grantham and Hester Graves, The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits, arXiv:2009.04052 [math.NT], 2020. Mentions this sequence.
Gillian Hatch, Pythagorean Triples and Triangular Square Numbers, Mathematical Gazette 79 (1995), 51-55.
P. Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105.
Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
A. Nowicki, The numbers a^2+b^2-dc^2, J. Int. Seq. 18 (2015) # 15.2.3.
J. L. Pietenpol, A. V. Sylwester, E. Just, and R. M. Warten, Problem E 1473, Amer. Math. Monthly, Vol. 69, No. 2 (Feb. 1962), pp. 168-169. (From the editorial note on p. 169 of this source, we learn that the question about the existence of perfect squares in the sequence of triangular numbers cropped up in the Euler-Goldbach Briefwechsel of 1730; the translation into English of the relevant letters can be found at Correspondence of Leonhard Euler with Christian Goldbach (part II), pp. 614-615.) - José Hernández, May 24 2022
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2020.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
D. A. Q., Triangular square numbers - a postscript, Math. Gaz., 56 (1972), 311-314.
K. Ramsey, Generalized Proof re Square Triangular Numbers, digest of 2 messages in Triangular_and_Fibonacci_Numbers Yahoo group, May 27, 2005 - Oct 10, 2011.
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
UWC, Problem A, Nieuw Archief voor Wiskunde, Dec 2004; Jaap Spies, Solution.
Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
Eric Weisstein's World of Mathematics, Square Triangular Number
Eric Weisstein's World of Mathematics, Triangular Number
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
FORMULA
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 34 * a(n-1) - a(n-2) + 2.
G.f.: x*(1 + x) / (( 1 - x )*( 1 - 34*x + x^2 )).
a(n-1) * a(n+1) = (a(n)-1)^2. - Colin Dickson, posting to alt.math.recreational, Mar 07 2004
If L is a square-triangular number, then the next one is 1 + 17*L + 6*sqrt(L + 8*L^2). - Lekraj Beedassy, Jun 27 2001
a(n) - a(n-1) = A046176(n). - Sophie Kuo (ejiqj_6(AT)yahoo.com.tw), May 27 2006
a(n) = A001109(n)^2 = A001108(n)*(A001108(n)+1)/2 = (A000129(n)*A001333(n))^2 = (A000129(n)*(A000129(n) + A000129(n-1)))^2. - Henry Bottomley, Apr 19 2000
a(n) = (((17+12*sqrt(2))^n) + ((17-12*sqrt(2))^n)-2)/32. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2). See UWC problem link and solution. - Jaap Spies, Dec 12 2004
From Antonio Alberto Olivares, Nov 07 2003: (Start)
a(n) = 35*(a(n-1) - a(n-2)) + a(n-3);
a(n) = -1/16 + ((-24 + 17*sqrt(2))/2^(11/2))*(17 - 12*sqrt(2))^(n-1) + ((24 + 17*sqrt(2))/2^(11/2))*(17 + 12*sqrt(2))^(n-1). (End)
a(n+1) = (17*A029547(n) - A091761(n) - 1)/16. - R. J. Mathar, Nov 16 2007
a(n) = A001333^2 * A000129^2 = A000129(2*n)^2/4 = binomial(A001108,2). - Bill Gosper, Jul 28 2008
Closed form (as square = triangular): ( (sqrt(2)+1)^(2*n)/(4*sqrt(2)) - (1-sqrt(2))^(2*n)/(4*sqrt(2)) )^2 = (1/2) * ( ( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2 + 1 )*( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2. - Bill Gosper, Jul 25 2008
a(n) = (1/8)*(sinh(2*n*arcsinh(1)))^2. - Artur Jasinski, Feb 10 2010
a(n) = floor((17 + 12*sqrt(2))*a(n-1)) + 3 = floor(3*sqrt(2)/4 + (17 + 12*sqrt(2))*a(n-1) + 1). - Manuel Valdivia, Aug 15 2011
a(n) = (A011900(n) + A001652(n))^2; see the link about the generalized proof of square triangular numbers. - Kenneth J Ramsey, Oct 10 2011
a(2*n+1) = A002315(n)^2*(A002315(n)^2 + 1)/2. - Ivan N. Ianakiev, Oct 10 2012
a(2*n+1) = ((sqrt(t^2 + (t+1)^2))*(2*t+1))^2, where t = (A002315(n) - 1)/2. - Ivan N. Ianakiev, Nov 01 2012
a(2*n) = A001333(2*n)^2 * (A001333(2*n)^2 - 1)/2, and a(2*n+1) = A001333(2*n+1)^2 * (A001333(2*n+1)^2 + 1)/2. The latter is equivalent to the comment above from Ivan using A002315, which is a bisection of A001333. Using A001333 shows symmetry and helps show that a(n) are both "squares of triangular" and "triangular of squares". - Richard R. Forberg, Aug 30 2013
a(n) = (A001542(n)/2)^2.
From Peter Bala, Apr 03 2014: (Start)
a(n) = (T(n,17) - 1)/16, where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,3)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17; 1, 18].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = A096979(2*n-1) for n > 0. - Ivan N. Ianakiev, Jun 21 2014
a(n) = (6*sqrt(a(n-1)) - sqrt(a(n-2)))^2. - Arkadiusz Wesolowski, Apr 06 2015
From Daniel Poveda Parrilla, Jul 16 2016 and Sep 21 2016: (Start)
a(n) = A000290(A002965(2*n)*A002965(2*n + 1)) (after Hugh Darwen).
a(n) = A000217(2*(A000129(n))^2 - (A000129(n) mod 2)).
a(n) = A000129(n)^4 + Sum_{k=0..(A000129(n)^2 - (A000129(n) mod 2))} 2*k. This formula can be proved graphically by taking the corresponding triangle of a square triangular number and cutting both acute angles, one level at a time (sum of consecutive even numbers), resulting in a square of squares (4th powers).
a(n) = A002965(2*n)^4 + Sum_{k=A002965(2*n)^2..A002965(2*n)*A002965(2*n + 1) - 1} 2*k + 1. This formula takes an equivalent sum of consecutives, but odd numbers. (End)
E.g.f.: (exp((17-12*sqrt(2))*x) + exp((17+12*sqrt(2))*x) - 2*exp(x))/32. - Ilya Gutkovskiy, Jul 16 2016
EXAMPLE
a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
MAPLE
a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004
A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]], AppendTo[lst, f[n]]], {n, 0, 10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
Transpose[NestList[Flatten[{Rest[#], 34Last[#]-First[#]+2}]&, {0, 1}, 20]][[1]] (* Harvey P. Dale, Mar 25 2011 *)
LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *)
LinearRecurrence[{6, -1}, {0, 1}, 20]^2 (* Harvey P. Dale, Oct 22 2012 *)
(* Square = Triangular = Triangular = A001110 *)
ChebyshevU[#-1, 3]^2==Binomial[ChebyshevT[#/2, 3]^2, 2]==Binomial[(1+ChebyshevT[#, 3])/2, 2]=={1, 36, 1225, 41616, 1413721}[[#]]&@Range[5]
True (* Bill Gosper, Jul 20 2015 *)
L=0; r={}; Do[AppendTo[r, L]; L=1+17*L+6*Sqrt[L+8*L^2], {i, 1, 19}]; r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
PROG
(PARI) a=vector(100); a[1]=1; a[2]=36; for(n=3, #a, a[n]=34*a[n-1]-a[n-2]+2); a \\ Charles R Greathouse IV, Jul 25 2011
(Haskell)
a001110 n = a001110_list !! n
a001110_list = 0 : 1 : (map (+ 2) $
zipWith (-) (map (* 34) (tail a001110_list)) a001110_list)
-- Reinhard Zumkeller, Oct 12 2011
(MIT/GNU Scheme, with memoizing definec-macro from Antti Karttunen's IntSeq-library)
(definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2))))))
;; The following two are for testing whether n is in this sequence:
(define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n)))))
(define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n))))))
;; Antti Karttunen, Dec 06 2013
(Magma) [n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
CROSSREFS
Other S_r type sequences are S_4=A000290, S_5=A004146, S_7=A054493, S_8=A001108, S_9=A049684, S_20=A049683, S_36=this sequence, S_49=A049682, S_144=A004191^2.
Cf. A001014; intersection of A000217 and A000290; A010052(a(n))*A010054(a(n)) = 1.
Cf. A005214, A054686, A232847 and also A233267 (reveals an interesting divisibility pattern for this sequence).
Cf. A240129 (triangular numbers that are squares of triangular numbers), A100047.
See A229131, A182334, A299921 for near-misses.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A056854 a(n) = Lucas(4*n). +10
38
2, 7, 47, 322, 2207, 15127, 103682, 710647, 4870847, 33385282, 228826127, 1568397607, 10749957122, 73681302247, 505019158607, 3461452808002, 23725150497407, 162614600673847, 1114577054219522, 7639424778862807, 52361396397820127, 358890350005878082, 2459871053643326447 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
a(n) and b(n) := A004187(n) are the nonnegative proper and improper solutions of the Pell equation a(n)^2 - 5*(3*b(n))^2 = +4. See the cross-reference to A004187 below. - Wolfdieter Lang, Jun 26 2013
Lucas numbers of the form n^2-2. - Michel Lagneau, Aug 11 2014
REFERENCES
R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
LINKS
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Dale Gerdemann, Combinatorial proofs of Zeckendorf family identities, Fib. Quart. 46/47 (2009) 249. [N. J. A. Sloane, Dec 05 2009]
A. F. Horadam, Special Properties of the Sequence W(n){a,b; p,q}, Fib. Quart., Vol. 5, No. 5 (1967), pp. 424-434.
Tanya Khovanova, Recursive Sequences
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
FORMULA
a(n) = 7*a(n-1) - a(n-2) with a(0)=2, a(1)=7.
a(n) = A000032(4*n), where A000032 = Lucas numbers.
a(n) = 7*S(n-1, 7) - 2*S(n-2, 7) = S(n, 7) - S(n-2, 7) = 2*T(n, 7/2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 7) = A004187(n), n>=0. See A049310 and A053120.
a(n) = ((7+sqrt(45))/2)^n + ((7-sqrt(45))/2)^n.
G.f.: (2-7x)/(1-7x+x^2).
a(n) = A005248(2*n); bisection of A005248.
a(n) = Fibonacci(8*n)/Fibonacci(4*n), n>0. - Gary Detlefs, Dec 26 2010
a(n) = 2 + 5*Fibonacci(2*n)^2 = 2 + 5*A049684(n), n >= 0. This is in Koshy's book (reference under A065563) 15. on p. 88. Compare with the above Chebyshev T formula. - Wolfdieter Lang, Aug 27 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(7 - 3*sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.14242 42709 40138 85949 ... = 2 + 1/(7 + 1/(47 + 1/(322 + ...))).
Also F(-alpha) = 0.85670 72882 04563 14901 ... has the continued fraction representation 1 - 1/(7 - 1/(47 - 1/(322 - ...))) and the simple continued fraction expansion 1/(1 + 1/((7-2) + 1/(1 + 1/((47-2) + 1/(1 + 1/((322-2) + 1/(1 + ...))))))). Cf. A005248.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((7^2-4) + 1/(1 + 1/((47^2-4) + 1/(1 + 1/((322^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + (1/2)*F(alpha)/F(-alpha) = 1.16675297774947414828... has the simple continued fraction expansion 1 + 1/((7 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/(15127 - 2) + 1/(1 + ...))))). (End)
a(n) = Fibonacci(4*n+2) - Fibonacci(4*n-2), where Fibonacci(-2) = -1. - Bruno Berselli, May 25 2015
a(n) = sqrt(45*(A004187(n))^2+4).
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(4*n+4)/F(4) - F(4*n-4)/F(4) = A004187(n+1) - A004187(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^4 = [2, 3; 3, 5].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) (mod p^k) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
5*Sum_{n >= 1} 1/(a(n) - 9/a(n)) = 1: (9 = Lucas(4)+2 and 5 = Lucas(4)-2)
9*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4)*( theta_3((7-3*sqrt(5))/2)^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. Cf. A153415.
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4)*( 1 - theta_3((3*sqrt(5)-7)/2)^2 ).
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 7*x^2 + 48*x^3 + 329*x^4 + ... is the o.g.f. for A004187. (End)
E.g.f.: 2*exp(7*x/2)*cosh(3*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
a(2k+1)/7 is the numerator of the continued fraction [3*sqrt(5), 3*sqrt(5), ..., 3*sqrt(5)] with 2k copies of 3*sqrt(5), for k>0. - Greg Dresden and Tracy Z. Wu, Sep 10 2020
EXAMPLE
Pell equation: n = 0, 2^2 - 45*0^2 = +4 (improper); n = 1, 7^2 - 5*(3*1)^2 = +4; n=2, 47^2 - 5*(3*7)^2 = +4. - Wolfdieter Lang, Jun 26 2013
MATHEMATICA
a[0] = 2; a[1] = 7; a[n_] := 7a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{7, -1}, {2, 7}, 25] (* or *) LucasL[4*Range[0, 25]] (* Harvey P. Dale, Aug 08 2011 *)
PROG
(PARI) a(n)=if(n<0, 0, polsym(1-7*x+x^2, n)[n+1])
(PARI) a(n)=if(n<0, 0, 2*subst(poltchebi(n), x, 7/2))
(Sage) [lucas_number2(n, 7, 1) for n in range(27)] #Zerinvary Lajos, Jun 25 2008
(Magma) [Lucas(4*n): n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
CROSSREFS
Cf. quadrisection of A000032: this sequence (first), A056914 (second), A246453 (third, without 11), A288913 (fourth).
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).
KEYWORD
nonn,easy,changed
AUTHOR
Barry E. Williams, Aug 29 2000
EXTENSIONS
More terms from James A. Sellers, Aug 31 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
STATUS
approved
A033889 a(n) = Fibonacci(4*n + 1). +10
16
1, 5, 34, 233, 1597, 10946, 75025, 514229, 3524578, 24157817, 165580141, 1134903170, 7778742049, 53316291173, 365435296162, 2504730781961, 17167680177565, 117669030460994, 806515533049393, 5527939700884757, 37889062373143906, 259695496911122585, 1779979416004714189 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
For positive n, a(n) equals (-1)^n times the permanent of the (4n) X (4n) tridiagonal matrix with sqrt(i)'s along the three central diagonals, where i is the imaginary unit. - John M. Campbell, Jul 12 2011
a(n) = 5^n*a(n; 3/5) = (16/5)^n*a(2*n; 3/4), and F(4*n) = 5^n*b(n; 3/5) = (16/5)^n*b(2*n; 3/4), where a(n; d) and b(n; d), n=0, 1, ..., d in C, denote the delta-Fibonacci numbers defined in comments to A014445. Two of these identities from the following relations follows: F(k+1)^n*a(n; F(k)/F(k+1)) = F(k*n+1) and F(k+1)^n*b(n; F(k)/F(k+1)) = F(k*n) (see also Witula's et al. papers). - Roman Witula, Jul 24 2012
LINKS
Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
Tanya Khovanova, Recursive Sequences.
Kai Wan, Problem H-90, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 60, No. 3 (2022), p. 282; Solution to Problem H-90, by Ángel Plaza, ibid., Vol. 62, No. 1 (2024), pp. 95-96.
Roman Wituła, Binomials Transformation Formulae of Scaled Lucas Numbers, Demonstratio Mathematica, Vol. XLVI, No. 1 (2013), pp. 15-27.
Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009), 310-329, MR2555042.
FORMULA
a(n) = 7*a(n-1) - a(n-2) for n >= 2. - Floor van Lamoen, Dec 10 2001
From R. J. Mathar, Jan 17 2008: (Start)
O.g.f.: (1 - 2*x)/(1 - 7*x + x^2).
a(n) = A004187(n+1) - 2*A004187(n). (End); corrected by Klaus Purath, Jul 29 2020
a(n) = A167816(4*n+1). - Reinhard Zumkeller, Nov 13 2009
a(n) = sqrt(1 + 2 * Fibonacci(2*n) * Fibonacci(2*n + 1) + 5 * (Fibonacci(2*n) * Fibonacci(2*n + 1))^2). - Artur Jasinski, Feb 06 2010
a(n) = Sum_{k=0..n} A122070(n,k)*2^k. - Philippe Deléham, Mar 13 2012
a(n) = Fibonacci(2*n)^2 + Fibonacci(2*n)*Fibonacci(2*n+2) + 1. - Gary Detlefs, Apr 18 2012
a(n) = Fibonacci(2*n)^2 + Fibonacci(2*n+1)^2. - Bruno Berselli, Apr 19 2012
a(n) = Sum_{k = 0..n} A238731(n,k)*4^k. - Philippe Deléham, Mar 05 2014
a(n) = A000045(A016813(n)). - Michel Marcus, Mar 05 2014
2*a(n) = Fibonacci(4*n) + Lucas(4*n). - Bruno Berselli, Oct 13 2017
a(n) = A094567(n-1) + A094567(n), assuming A094567(-1) = 0. - Klaus Purath, Jul 29 2020
Sum_{n>=0} (-1)^n * arctan(3/a(n)) = Pi/4 (A003881) (Wan, 2022). - Amiram Eldar, Mar 01 2024
E.g.f.: exp(7*x/2)*(5*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024
MATHEMATICA
Table[Fibonacci[4*n+1], {n, 0, 14}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *)
PROG
(Magma) [Fibonacci(4*n+1): n in [0..100]]; // Vincenzo Librandi, Apr 16 2011
(PARI) a(n)=fibonacci(4*n+1) \\ Charles R Greathouse IV, Jul 15 2011
(PARI) Vec((1-2*x)/(1-7*x+x^2) + O(x^100)) \\ Altug Alkan, Dec 10 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A064170 a(1) = 1; a(n+1) = product of numerator and denominator in Sum_{k=1..n} 1/a(k). +10
10
1, 1, 2, 10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The numerator and denominator in the definition have no common divisors >1.
Also denominators in a system of Egyptian fraction for ratios of consecutive Fibonacci numbers: 1/2 = 1/2, 3/5 = 1/2 + 1/10, 8/13 = 1/2 + 1/10 + 1/65, 21/34 = 1/2 + 1/10 + 1/65 + 1/442 etc. (Rossi and Tout). - Barry Cipra, Jun 06 2002
a(n)-1 is a square. - Sture Sjöstedt, Nov 04 2011
From Wolfdieter Lang, May 26 2020: (Start)
Partial sums of the reciprocals: Sum_{k=1..n} 1/a(k) equal 1 for n=1, and F(2*n - 1)/F(2*n - 3) for n >= 2, with F = A000045. Proof by induction. Hence a(n) = 1 for n=1, and F(2*n - 3)*F(2*n - 5) for n >= 2, with F(-1) = 1 (gcd(F(n), F(n+1) = 1). See the comment by Barry Cipra.
Thus a(n) = 1, for n = 1, and a(n) = 1 + F(2*(n-2))^2, for n >= 2 (by Cassini-Simson for even index, e.g., Vajda, p. 178 eq.(28)). See the Sture Sjöstedt comment.
The known G.f. of {F(2*n)^2} from A049684 leds then to the conjectured formula by R. J. Mathar below, and this proves also the recurrence given there..
From the partial sums the series Sum_{k>=1} 1/a(k) converges to 1 + phi, with phi = A001622. See the formulas by Gary W. Adamson and Diego Rattaggi below. (End)
REFERENCES
S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
LINKS
Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
C. Rossi and C. A. Tout, Were the Fibonacci Series and the Golden Section Known in Ancient Egypt?, Historia Mathematica, vol. 29 (2002), 101-113.
FORMULA
a(n) = Fibonacci(2*n-5)*Fibonacci(2*n-3), for n >= 3. - Barry Cipra, Jun 06 2002
Sum_{n>=3} 1/a(n) = 2/(1+sqrt(5)) = phi - 1, with phi = A001622. - Gary W. Adamson, Jun 07 2003
Conjecture: a(n) = 8*a(n-1)-8*a(n-2)+a(n-3), n>4. G.f.: -x*(2*x^2+x^3-7*x+1)/((x-1)*(x^2-7*x+1)). - R. J. Mathar, Jul 03 2009 [For a proof see the W. Lang comment above.]
a(n+1) = (A005248(n)^2 - A001906(n)^2)/4, for n => 0. - Richard R. Forberg, Sep 05 2013
From Diego Rattaggi, Apr 21 2020: (Start)
a(n) = 1 + A049684(n-2) for n>1.
Sum_{n>=2} 1/a(n) = phi = (1+sqrt(5))/2 = A001622.
Sum_{n>=1} 1/a(n) = phi^2 = 1 + phi. (End) [See a comment above for the proof]
a(n) = F(2*n - 3)*F(2*n - 5) = 1 + F(2*(n - 2))^2, for n >= 2, with F(-1) = 1. See the W. Lang comments above. - Wolfdieter Lang, May 26 2020
EXAMPLE
1/a(1) + 1/a(2) + 1/a(3) + 1/a(4) = 1 + 1 + 1/2 + 1/10 = 13/5. So a(5) = 13 * 5 = 65.
MATHEMATICA
A064170[1] := 1; A064170[n_] := A064170[n] = Module[{temp = Sum[1/A064170[i], {i, n - 1}]}, Numerator[temp] Denominator[temp]]; Table[A064170[n], {n, 20}](* Alonso del Arte, Sep 05 2013 *)
Join[{1}, LinearRecurrence[{8, -8, 1}, {1, 2, 10}, 23]] (* Jean-François Alcover, Sep 22 2017 *)
CROSSREFS
Cf. A033890 (first differences). - R. J. Mathar, Jul 03 2009
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Sep 19 2001
STATUS
approved
A081018 a(n) = (Lucas(4n+1)-1)/5, or Fibonacci(2n)*Fibonacci(2n+1), or A081017(n)/5. +10
10
0, 2, 15, 104, 714, 4895, 33552, 229970, 1576239, 10803704, 74049690, 507544127, 3478759200, 23843770274, 163427632719, 1120149658760, 7677619978602, 52623190191455, 360684711361584, 2472169789339634, 16944503814015855, 116139356908771352, 796030994547383610 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Another interpretation of this sequence is: nonnegative integers k such that (k + 1)^2 + (2k)^2 is a perfect square. So apart from a(0) = 0, a(n) + 1 and 2a(n) form the legs of a Pythagorean triple. - Nick Hobson, Jan 13 2007
Also solution y of Diophantine equation x^2 + 4*y^2 = k^2 for which x=y+1. - Carmine Suriano, Jun 23 2010
Also the index of the first of two consecutive heptagonal numbers whose sum is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 20 2014
Nonnegative integers k such that G(x) = k for some rational number x where G(x) = x/(1-x-x^2) is the generating function of the Fibonacci numbers. - Tom Edgar, Aug 24 2015
The integer solutions of the equation a(b+1) = (a-b)(a-b-1) or, equivalently, binomial(a, b) = binomial(a-1, b+1) are given by (a, b) = (a(n+1), A003482(n)=Fibonacci(2*n) * Fibonacci(2*n+3)) (Lind and Singmaster). - Tomohiro Yamada, May 30 2018
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 28.
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
LINKS
Pridon Davlianidze, Problem B-1279, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 4 (2020), p. 368; An Unusual Generalization, Solution to Problem B-1279 by J. N. Senadheera, ibid., Vol. 59, No. 4 (2021), pp. 370-371.
Dae S. Hong, When is the Generating Function of the Fibonacci Numbers an Integer?, The College Mathematics Journal, Vol. 46, No. 2 (March 2015), pp. 110-112
D. A. Lind, The quadratic field Q(sqrt(5)) and a certain diophantine equation, Fibonacci Quart., Vol. 6, No. 3 (1968), pp. 86-93.
David Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quart., Vol. 13, No. 4 (1973), pp. 295-298.
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(3) + Fibonacci(7) + Fibonacci(11) + ... + Fibonacci(4n+3).
G.f.: x*(2-x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Mar 30 2012
E.g.f.: (1/5)^(3/2)*((1+phi^2)*exp(phi^4*x) - (1 + (1/phi^2))*exp(x/phi^4) - sqrt(5)*exp(x)), where 2*phi = 1 + sqrt(5). - G. C. Greubel, Aug 24 2015
From - Michael Somos, Aug 27 2015: (Start)
a(n) = -A081016(-1-n) for all n in Z.
0 = a(n) - 7*a(n+1) + a(n+2) - 1 for all n in Z.
0 = a(n)*a(n+2) - a(n+1)^2 + a(n+1) + 2 for all n in Z.
0 = a(n)*(a(n) -7*a(n+1) -1) + a(n+1)*(a(n+1) - 1) - 2 for all n in Z. (End)
a(n) = (k(n) + sqrt(k(n)*(4 + 5*k(n))))/2, where k(n) = A049684(n). - Stefano Spezia, Mar 11 2021
Product_{n>=1} (1 + 1/a(n)) = phi (A001622) (Davlianidze, 2020). - Amiram Eldar, Nov 30 2021
EXAMPLE
G.f. = 2*x + 15*x^2 + 104*x^3 + 714*x^4 + 4895*x^5 + 33552*x^6 + ...
MAPLE
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d, `, (luc(4*n+1)-1)/5) od: # James A. Sellers, Mar 03 2003
MATHEMATICA
(LucasL[4*Range[0, 30]+1]-1)/5 (* or *) LinearRecurrence[{8, -8, 1}, {0, 2, 15}, 30] (* G. C. Greubel, Aug 24 2015, modified Jul 14 2019 *)
PROG
(PARI) concat(0, Vec(x*(2-x)/((1-x)*(1-7*x+x^2)) + O(x^30))) \\ Colin Barker, Dec 20 2014
(Magma) [(Lucas(4*n+1)-1)/5: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
(Sage) [(lucas_number2(4*n+1, 1, -1) -1)/5 for n in (0..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([0..30], n-> (Lucas(1, -1, 4*n+1)[2] -1)/5); # G. C. Greubel, Jul 14 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A081017.
Partial sums of A033891. Bisection of A001654 and A059840.
Equals A089508 + 1.
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved
A273622 a(n) = (1/3)*(Lucas(3*n) - Lucas(n)). +10
10
1, 5, 24, 105, 451, 1920, 8149, 34545, 146376, 620125, 2626999, 11128320, 47140601, 199691245, 845906424, 3583318305, 15179181851, 64300049280, 272379384749, 1153817597625, 4887649790376, 20704416783605, 87705316964399, 371525684705280, 1573808055889201, 6666757908429845 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is a divisibility sequence, that is, a(n) divides a(m) whenever n divides m. The sequence satisfies a linear recurrence of order 4. Cf. A273623.
More generally, for distinct integers r and s with r = s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. When r is even (resp. odd) the normalized sequence (Lucas(r*n) - Lucas(s*n))/(Lucas(r) - Lucas(s)), with initial term equal to 1, has the o.g.f. x*(1 - x^2)/( (1 - Lucas(r)*x + x^2)*(1 - Lucas(s)*x + x^2) ) (resp. x*(1 + x^2)/( (1 - Lucas(r)*x - x^2)*(1 - Lucas(s)*x - x^2) ) and belongs to the 3-parameter family of fourth-order divisibility sequences found by Williams and Guy, with parameter values P1 = (Lucas(r) + Lucas(s)), P2 = Lucas(r)*Lucas(s) and Q = 1 (resp. Q = -1). For particular cases see A004146 (r = 2, s = 0), A049684 (r = 4, s = 0), A215465 (r = 4, s = 2), A049683 (r = 6, s = 0), A049682 (r = 8, s = 0) and A037451 (r = 3, s = -1).
LINKS
Spirit Karcher and Mariah Michael, Prime Factors and Divisibility of Sums of Powers of Fibonacci and Lucas Numbers, Amer. J. of Undergraduate Research (2021) Vol. 17, Issue 4, 59-69.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory, 7 (5) (2011), 1255-1277.
FORMULA
a(n) = (1/3)*( (2 + sqrt(5))^n + (2 - sqrt(5))^n - ((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n ).
a(n) = -a(-n).
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4).
O.g.f.: x*(1 + x^2)/((1 - x - x^2 )*(1 - 4*x - x^2)).
a(n) = (A014448(n) - A000032(n))/3. - R. J. Mathar, Jun 07 2016
a(n) = Fibonacci(n) + Sum_{k=1..n} Fibonacci(n-k)*Lucas(3*k). - Yomna Bakr and Greg Dresden, Jun 16 2024
E.g.f.: (2*exp(2*x)*cosh(sqrt(5)*x) - 2*exp(x/2)*cosh(sqrt(5)*x/2))/3. - Stefano Spezia, Jun 17 2024
MAPLE
with(combinat):
Lucas := n->fibonacci(n+1) + fibonacci(n-1):
seq(1/3*(Lucas(3*n) - Lucas(n)), n = 1..24);
MATHEMATICA
LinearRecurrence[{5, -2, -5, -1}, {1, 5, 24, 105}, 100] (* G. C. Greubel, Jun 02 2016 *)
Table[1/3 (LucasL[3 n] - LucasL[n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
PROG
(Magma) [1/3*(Lucas(3*n) - Lucas(n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, -5, -2, 5]^(n-1)*[1; 5; 24; 105])[1, 1] \\ Charles R Greathouse IV, Jun 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, May 27 2016
STATUS
approved
A350922 a(0) = 2, a(1) = 5, and a(n) = 7*a(n-1) - a(n-2) - 4 for n >= 2. +10
10
2, 5, 29, 194, 1325, 9077, 62210, 426389, 2922509, 20031170, 137295677, 941038565, 6449974274, 44208781349, 303011495165, 2076871684802, 14235090298445, 97568760404309, 668746232531714, 4583654867317685, 31416837838692077, 215334210003526850, 1475922632185995869 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
From William P. Orrick, Dec 20 2023: (Start)
Every term is a Markov number (see A002559) and, for n > 1, corresponds to a node of the Markov tree A368546 whose sibling and ancestors are all odd-indexed Fibonacci numbers. For n > 1, a(n) is the label of the node obtained from the root by going left n - 2 times and then right. Its Farey index, described in the comments to A368546, is 2 / (2*n - 1).
For instance, a(3) = 194 comes from going left once from the root node of the Markov tree and then right, which corresponds to the sequence of Markov numbers 5, 13, 194. The corresponding sequence of Farey indices is 1/2, 1/3, 2/5. The sibling of the final node corresponds to Markov number 34 and Farey index 1/4. (End)
LINKS
FORMULA
G.f.: (2 - x)*(1 - 5*x)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 3*A049684(n) + 2 = 3*A064170(n+2) - 1. - Hugo Pfoertner, Jan 22 2022
a(n) = 3*A000045(2*n - 1) * A000045(2*n + 1) - 1 = A000045(2*n - 1)^2 + A000045(2*n + 1)^2. - William P. Orrick, Jan 8 2023
MATHEMATICA
CoefficientList[Series[(2 - x)*(1 - 5*x)/((1 - x)*(1 - 7*x + x^2)), {x, 0, 22}], x] (* James C. McMahon, Dec 22 2023 *)
CROSSREFS
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350923, A350924, A350925, A350926.
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Jan 22 2022
STATUS
approved
A221245 T(n,k)=Number of nXk arrays of occupancy after each element moves to some horizontal, diagonal or antidiagonal neighbor +10
9
0, 1, 0, 2, 9, 0, 4, 50, 64, 0, 8, 484, 1056, 441, 0, 16, 3864, 45369, 21660, 3025, 0, 32, 32400, 1337130, 4096576, 441720, 20736, 0, 64, 267264, 44315649, 438377904, 367565584, 8997120, 142129, 0, 128, 2214144, 1404725868, 56606878084 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Table starts
.0........1...........2...............4.................8................16
.0........9..........50.............484..............3864.............32400
.0.......64........1056...........45369...........1337130..........44315649
.0......441.......21660.........4096576.........438377904.......56606878084
.0.....3025......441720.......367565584......142283547000....71306050492681
.0....20736.....8997120.....32940435025....46087307409528.89545789526100625
.0...142129...183206016...2951293792489.14921719105582926
.0...974169..3730330800.264404315544196
.0..6677056.75953515968
.0.45765225
Even columns are perfect squares
LINKS
EXAMPLE
Some solutions for n=3 k=4
..1..0..1..0....0..0..3..1....0..2..0..0....1..2..0..1....0..1..1..0
..1..1..1..2....0..4..2..0....0..1..4..2....0..0..5..2....0..4..1..0
..1..2..1..1....1..1..0..0....0..0..2..1....0..1..0..0....2..0..2..1
CROSSREFS
Column 2 is A049684
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 06 2013
STATUS
approved
A049682 a(n) = (Lucas(8*n) - 2)/45. +10
7
0, 1, 49, 2304, 108241, 5085025, 238887936, 11222647969, 527225566609, 24768378982656, 1163586586618225, 54663801192073921, 2568035069440856064, 120642984462528161089, 5667652234669382715121, 266259012044998459449600, 12508505913880258211416081 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
This is a divisibility sequence.
LINKS
FORMULA
a(n) = (1/45)*(-2 + ((47 + 7*sqrt(45))/2)^n + ((47 - 7*sqrt(45))/2)^n). - Ralf Stephan, Apr 14 2004
From R. J. Mathar, Jun 03 2009: (Start)
a(n) = (A004187(n))^2.
a(n) = 48*a(n-1) - 48*a(n-2) + a(n-3).
G.f.: x*(1 + x)/((1 - x)*(1 - 47*x + x^2)). (End)
From R. K. Guy, Feb 24 2010: (Start)
a(n) = F(4*n)^2/9.
a(n) - a(n-1) = A004187(2n-1). (End)
From Peter Bala, Jun 03 2016: (Start)
exp( Sum_{n >= 1} 45*a(n)*x^n/n ) = 1 + 15/7*Sum_{n >= 1} Fibonacci(8*n)*x^n.
This is the particular case k = 4 of the relation exp( Sum_{n >= 1} 5*F(k*n)^2*x^n/n ) = 1 + 5*Fibonacci(k)/Lucas(k) * ( Sum_{n >= 1} F(2*k*n)*x^n ). (End)
Lim_{n->infinity} a(n+1)/a(n) = (47 + 21*sqrt(5))/2 = phi^8, where phi is the golden ratio (A001622). - Ilya Gutkovskiy, Jun 06 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Jun 12 2016
0 = a(n)*(+a(n) -98*a(n+1) -2*a(n+2)) + a(n+1)*(+2401*a(n+1) -98*a(n+2)) + a(n+2)^2 for all integer n. - Michael Somos, Jun 12 2016
EXAMPLE
G.f. = x + 49*x^2 + 2304*x^3 + 108241*x^4 + 5085025*x^5 + 238887936*x^6 + ...
MAPLE
with(combinat); seq( fibonacci(4*n)^2/9, n=0..20); # G. C. Greubel, Dec 14 2019
MATHEMATICA
LinearRecurrence[{48, -48, 1}, {0, 1, 49}, 20] (* or *) CoefficientList[Series[ (-x-x^2)/ (x^3-48x^2+48x-1), {x, 0, 20}], x] (* Harvey P. Dale, Apr 22 2011 *)
PROG
(MuPAD) numlib::fibonacci(4*n)^2/9 $ n = 0..25; // Zerinvary Lajos, May 09 2008
(PARI) vector(21, n, (fibonacci(4*(n-1))/3)^2) \\ G. C. Greubel, Dec 02 2017
(Magma) [(Fibonacci(4*n)/3)^2: n in [0..20]]; // G. C. Greubel, Dec 02 2017
(Sage) [(fibonacci(4*n)/3)^2 for n in (0..20)] # G. C. Greubel, Dec 14 2019
(GAP) List([0..20], n-> (Fibonacci(4*n)/3)^2 ); # G. C. Greubel, Dec 14 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from N. J. A. Sloane, Feb 26 2010
STATUS
approved
page 1 2 3

Search completed in 0.032 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 12:15 EDT 2024. Contains 375517 sequences. (Running on oeis4.)