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The Lucas sequence of the �rst kind Un ≡ Un(P,Q) is a divisibility sequence:
if n divides m then Un divides Um. The Lucas sequence of the second kind
Vn ≡ Vn(P,Q) is an odd divisibility sequence: if n divides m and m/n is odd
then Vn divides Vm. We give some examples of linear combinations of Lucas
sequences that are either divisibility sequences or odd divisibility sequences.

1. Introduction. One of the many arithmetical properties of the sequence of
Fibonacci numbers F (n) is that it is a divisibility sequence: F (n) divides
F (m) whenever n divide m. The companion sequence of Lucas numbers L(n)
is not a divisibility sequence. However, it does have the weaker property that
if n divides m and m/n is odd then L(n) divides L(m). We shall refer to
sequences having this property as odd divisibility sequences. Somewhat
surprisingly, certain linear combinations of Fibonacci numbers or of Lucas
numbers also yield divisibility sequences or odd divisibility sequences. For
example, the following sequences are all divisibility sequences

F (2n) + F (4n)

F (4n) + F (6n)

F (6n) + F (8n)

...

F (3n)− 2F (n) + F (−n)

F (4n)− 2F (2n)

F (5n)− 2F (3n) + F (n)

F (6n)− 2F (4n) + F (2n)

...

F (4n)− 2F (2n)

F (8n)− 4F (6n) + 6F (4n)− 4F (2n)

F (12n)− 6F (10n) + 15F (8n)− 20F (6n) + 15F (4n)− 6F (2n)

...

L(2n)− L(0)

L(3n)− L(n)

L(4n)− L(2n)
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...

L(6n)− 3L(4n) + 3L(2n)− L(0)

L(7n)− 3L(5n) + 3L(3n)− L(n)

L(8n)− 3L(6n) + 3L(4n)− L(2n)

...

while the following sequences are examples of odd divisibility sequences

F (3n)− F (n)

F (4n)− F (2n)

F (5n)− F (3n)

...

F (3n) + 2F (n) + F (−n)

F (4n) + 2F (2n)

F (5n) + 2F (3n) + F (n)

F (6n) + 2F (4n) + F (2n)

...

L(2n) + L(0)

L(3n) + L(n)

L(4n) + L(2n)

...

L(4n)± 2L(2n) + L(0)

L(5n)± 2L(3n) + L(n)

L(6n)± 2L(4n) + L(2n)

...

The method of proof of these assertions is the same in each case and, as might
be expected, can be applied to more general Lucas sequences. Let us recall the
de�nition and some of the basic properties of Lucas sequences.
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2. Lucas sequences.

Let P,Q be nonzero integers, and let α, β be the two complex zeros of the
quadratic polynomial x2 − Px+Q:

α =
P +

√
P 2 − 4Q

2

β =
P −

√
P 2 − 4Q

2

with
α+ β = P, αβ = Q.

We suppose α and β are distinct, that is, P 2 6= 4Q.

The Lucas sequences of the �rst and second kind, denoted by Un(P,Q) and
Vn(P,Q) respectively, are integer sequences de�ned by

Un ≡ Un(P,Q) =
αn − βn

α− β
, Vn ≡ Vn(P,Q) = αn + βn.

They both satisfy the same second-order linear recurrence equation but with
di�erent initial conditions, namely

Un = PUn−1 −QUn−2, U0 = 0, U1 = 1

Vn = PVn−1 −QVn−2, V0 = 2, V1 = P.

Lucas sequences of the �rst kind Un(P,Q) are divisibility sequences: this
follows easily from the fact that xn − yn divides xnm − ynm in the ring Z[x, y],
and the observation that the resulting polynomial (xnm − ynm)/(xn − yn) is
symmetric in x and y and so can be written as an integral polynomial in the
variables x+ y and xy. Lucas sequences of the second kind Vn(P,Q) are odd
divisibility sequences: this follows from the observation that the polynomial
xn + yn divides xnm + ynm in the ring Z[x, y] provided m is odd.

The Fibonacci and Lucas numbers are examples of Lucas sequences with
parameter Q equal to −1,

F (n) = Un(1,−1), L(n) = Vn(1,−1).

The even-indexed Fibonacci and Lucas numbers are examples of Lucas
sequences with parameter Q equal to 1,

F (2n) = Un(3, 1), L(2n) = Vn(3, 1).

3



In Tables 1 through 4 we give some examples of divisibility and odd divisibility
sequences formed from linear combinations of Lucas sequences involving the
binomial coe�cients. Notice in each case the Lucas sequences have the second
parameter Q equal to either 1 or −1: r and s are arbitrary integers.

Table 1. Un = Un(P, 1), Vn = Vn(P, 1)
Divisibility sequences

Urn

Vrn − V(r+s)n

Urn − 2U(r+s)n + U(r+2s)n

Vrn − 3V(r+s)n + 3V(r+2s)n − V(r+3s)n

Urn − 4U(r+s)n + 6U(r+2s)n − 4U(r+3s)n + U(r+4s)n

...

Table 2. Un = Un(P, 1), Vn = Vn(P, 1)
Odd divisibility sequences

Urn

Vrn + V(r+s)n

Urn + 2U(r+s)n + U(r+2s)n

Vrn + 3V(r+s)n + 3V(r+2s)n + V(r+3s)n

Urn + 4U(r+s)n + 6U(r+2s)n + 4U(r+3s)n + U(r+4s)n

...

Table 3. Un = Un(P,−1), Vn = Vn(P,−1)
Divisibility sequences

Urn

Vrn − V(r+2s)n

Urn − 2U(r+2s)n + U(r+4s)n

Vrn − 3V(r+2s)n + 3V(r+4s)n − V(r+6s)n

Urn − 4U(r+2s)n + 6U(r+4s)n − 4U(r+6s)n + U(r+8s)n

...

Table 4. Un = Un(P,−1), Vn = Vn(P,−1)
Odd divisibility sequences

Urn

Vrn + V(r+2s)n

Urn + 2U(r+2s)n + U(r+4s)n

Vrn + 3V(r+2s)n + 3V(r+4s)n + V(r+6s)n

Urn + 4U(r+2s)n + 6U(r+4s)n + 4U(r+6s)n + U(r+8s)n

...
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We illustrate the common method for proving these results by proving two
entries in the tables. Firstly, we consider an entry from Table 1.

Example 1. Let Vn = Vn(P, 1) be a Lucas sequence of the second kind with
the parameter Q = 1. Let r, s be integers. The sequence
a(n) = Vrn − 3V(r+s)n + 3V(r+2s)n − V(r+3s)n is a divisibility sequence.

Proof. Without loss of generality we may assume s > 0 (since otherwise we
can replace r with r + 3s and s with −s in the de�nition of a(n)).

De�ne the Laurent polynomial

Sn(x) = xrn +
1

xrn
− 3

(
x(r+s)n +

1

x(r+s)n

)
+ 3

(
x(r+2s)n +

1

x(r+2s)n

)
−
(
x(r+3s)n +

1

x(r+3s)n

)
,

so that a(n) = Sn(α), where α = P+
√
P 2−4
2 .

Therefore

a(nm)

a(n)
=

Snm(α)

Sn(α)
.

Thus, in order to show that a(n) is a divisibility sequences, we need to show
that Snm(α)/Sn(α) is an integer for all positive integers n and m. The idea is
to show that Snm(x)/Sn(x) can be expressed as an integral polynomial in the

variable x+ 1/x; if we then specialise x = α = P+
√
P 2−4
2 , the result will follow

since α+ 1/α = P ∈ Z.

There are two cases to consider according as to whether 2r + 3s is positive or
negative.

Case 1: Suppose 2r + 3s ≥ 0.

Then we have the factorisation

Sn(x) =
(1− xsn)3

(
x(2r+3s)n − 1

)
x(r+3s)n

.
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Therefore
Snm(x)

Sn(x)
=

1

x(r+3s)n(m−1)P (x),

where

P (x) =
(1− xsnm)

3 (
x(2r+3s)nm − 1

)
(1− xsn)3

(
x(2r+3s)n − 1

)
= x(2r+6s)n(m−1) + · · ·+ 1

is a polynomial in x with integer coe�cients, of degree (2r + 6s)n(m− 1).
Hence

Snm(x)

Sn(x)
= x(r+3s)n(m−1) + · · ·+ 1

x(r+3s)n(m−1)

is a Laurent polynomial with integer coe�cients.

By the de�nition of Sn(x) we see that the left-hand side of the previous
equation is invariant under the transformation x→ 1/x. It follows that
Snm(x)/Sn(x) is an integral linear combination of expressions of the form
xk + 1/xk. Now it is readily shown that the Laurent polynomials xk + 1/xk

may be expressed as integral polynomials in x+ 1/x (either by a simple
induction argument or by recalling that xk + 1/xk= Tk(x+ 1/x), where Tk(x)
denotes the Chebyshev polynomial of the �rst kind). It follows that the
Laurent polynomial Snm(x)/Sn(x) can be written as an integral linear
combination of powers of x+ 1/x, as required.

Case 2: Suppose now 2r + 3s < 0. Since s is positive, r must be negative. As
in Case 1 we show Snm(x)/Sn(x) is always an integral polynomial in the
variable x+ 1/x.

This time we write the factorisation of Sn(x) in the form

Sn(x) =
(1− xsn)3

(
1− x|2r+3s|n)
x|r|n

.

Therefore
Snm(x)

Sn(x)
=

1

x|r|n(m−1)
P1(x),

where

P1(x) =
(1− xsnm)

3 (
1− x|2r+3s|nm)

(1− xsn)3
(
1− x|2r+3s|n

)
= x2|r|n(m−1) + · · ·+ 1

is a polynomial in x with integer coe�cients, of degree 2|r|n(m− 1) . Hence

Snm(x)

Sn(x)
= x|r|n(m−1) + · · ·+ 1

x|r|n(m−1)
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is a Laurent polynomial with integer coe�cients. The argument can now be
completed exactly as in Case 1. �

Here is an example taken from Table 3 involving Lucas sequences with
parameter Q = −1.

Example 2. Let r, s be integers. Let Vn = Vn(P,−1) be a Lucas sequence of
the second kind with the parameter Q = −1. The sequence
a(n) = Vrn − 3V(r+2s)n + 3V(r+4s)n − V(r+6s)n is a divisibility sequence.

Once again there is no loss of generality in assuming s > 0. The result when r
is even is an immediate consequence of Example 1 on observing that

V2n(P,−1) = Vn(P
2 + 2, 1).

Suppose now r is odd. We de�ne the Laurent polynomial

Sn(x) = xrn +
(−1)n

xrn
− 3

(
x(r+2s)n +

(−1)n

x(r+2s)n

)
+ 3

(
x(r+4s)n +

(−1)n

x(r+4s)n

)
−
(
x(r+6s)n +

(−1)n

x(r+6s)n

)
,

so that a(n) = Sn(α), where α = P+
√
P 2+4
2 . As before, the condition for a(n)

to be a divisibility sequence is that a(nm)/a(n) = Snm(α)/Sn(α) is an integer
for all positive integers n and m. We will prove this by showing that
Snm(x)/Sn(x) is always an integral polynomial in the variable x− 1/x; if we

then specialise x = α = P+
√
P 2+4
2 , the divisibility result will follow since now

α− 1/α = P ∈ Z.

We have the factorization

Sn(x) =

(
1− x2sn

)3 (
x(2r+6s)n − (−1)n

)
x(r+6s)n

.

There are two cases to consider depending on whether 2r + 6s is positive or
negative. We deal with case 2r + 6s is positive. The case when 2r + 6s is
negative is handled similarly.

We have
Snm(x)

Sn(x)
=

1

x(r+6s)n(m−1)P (x),

where

P (x) =

(
1− x2snm

)3 (
x(2r+6s)nm − (−1)nm

)
(1− x2sn)3

(
x(2r+6s)n − (−1)n

)
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is readily seen to be a polynomial in Z[x] for m = 1, 2, 3, ..., of degree

(2r + 12s)n(m− 1). Thus Snm(x)/Sn(x) = x(r+6s)n(m−1) + · · ·+ (−1)n(m−1)

x(r+6s)n(m−1)

is a Laurent polynomial with integer coe�cients. We claim Snm(x)/Sn(x) is
an integral polynomial in x− 1/x. To prove the claim, we will make use of the
symmetry properties

Snm(x)

Sn(x)
= (−1)n(m−1)

Snm

(
1
x

)
Sn

(
1
x

)
and

Snm(x)

Sn(x)
= (−1)n(m−1)Snm (−x)

Sn (−x)
.

There are several cases to consider depending on the parity of m and n:

(i) If n is even then Snm(x)/Sn(x) is an even function of x and is symmetric
under x→ 1/x and so is an integral linear combination of terms of the form
x2k + 1/x2k. Therefore, Snm(x)/Sn(x) can be written as an integral linear
combination of powers of x2 + 1/x2, and hence also as an integral linear

combination of powers of x− 1/x (since x2 + 1/x2 = (x− 1/x)
2
+ 2).

(ii) If n is odd and m is odd, then again Snm(x)/Sn(x) is an even function of x
and is symmetric under x→ 1/x, and hence as in part (i), Snm(x)/Sn(x) can
be written as an integral linear comination of powers of x− 1/x.

(iii) Finally, if n is odd and m is even then Snm(x)/Sn(x) is an odd function of
x and changes sign under the transformation x→ 1/x, and so is an integral
linear combination of terms of the form x2k+1 − 1/x2k+1, and therefore (for
example, by a simple induction argument) is also an integral linear
combination of powers of x− 1/x.�
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