[go: up one dir, main page]

login
A167816
Numerator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/3; denominator=A167817.
7
0, 1, 1, 2, 1, 5, 8, 13, 7, 34, 55, 89, 48, 233, 377, 610, 329, 1597, 2584, 4181, 2255, 10946, 17711, 28657, 15456, 75025, 121393, 196418, 105937, 514229, 832040, 1346269, 726103, 3524578, 5702887, 9227465, 4976784, 24157817, 39088169, 63245986, 34111385
OFFSET
0,4
LINKS
FORMULA
a(n) = (a(n-1)*A093148(n+2) + a(n-2)*A093148(n+1))/A093148(n-1) for n>1.
a(4*n) = A004187(n) = (a(4*n-1) + a(4*n-2))/3;
a(4*n+1) = A033889(n) = 3*a(4*n-1) + a(4*n-2);
a(4*n+2) = A033890(n) = a(4*n-1) + 3*a(4*n-2);
a(4*n+3) = A033891(n) = a(4*n-1) + a(4*n-2).
Numerator of Fibonacci(n) / Fibonacci(2n-4) for n>=3. - Gary Detlefs, Dec 20 2010
MATHEMATICA
Numerator[LinearRecurrence[{1, 1}, {0, 1/3}, 40]] (* Harvey P. Dale, Dec 07 2014 *)
LinearRecurrence[{0, 0, 0, 7, 0, 0, 0, -1}, {0, 1, 1, 2, 1, 5, 8, 13}, 39] (* Ray Chandler, Aug 03 2015 *)
PROG
(Magma) [0, 1, 1] cat [Numerator(Fibonacci(n)/Fibonacci(2*n-4)): n in [3..40]]; // Vincenzo Librandi, Jun 28 2016
CROSSREFS
Sequence in context: A377363 A193180 A201743 * A316292 A222542 A318052
KEYWORD
frac,nonn
AUTHOR
Reinhard Zumkeller, Nov 13 2009
EXTENSIONS
Definition corrected by D. S. McNeil, May 09 2010
STATUS
approved