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1. INTRODUCTION

Elsewhere in this journal [1] the sequence {wn(a,b;p, q)} has been
introduced and its basic properties exhibited. Here we investigate three spe-
cial properties of the sequence, namely, the '""Pythagorean' property (2), the
geometrical-paradox property (3), and the complex case (4). These are gen-
eralizations of results earlier published for the sequence {hn(r, s)} = {Wn(l‘,
r+s;51, —1)} which may be consulted in [3], [4], [5] respectively.

But observe that with reference to {hn(r, s)} the notation in this paper
varies slightly from that used in [2], [3], [4] and [5]. Our properties in
this paper form the second of the proposed series of articles envisaged in [1]
Notation and content of [1] are assumed, when required.

Some interesting special cases of {wn(a,b;p, qQ) } occur which we record

for later reference (2):

(1.1) integers a=1, b=2,p=2,q =1
(1.2) odd numbers 1 3 2 1
(1.3) arithmetic progression (common difference) a a+d 2 1
(1.4) geometric progression (common ratio q) a g gq+1 ¢
(1.5) Fermat's sequence u (3, 2) 1 3 3 2
(1.6) Fermat's sequence vy 3, 2) 2 3 3 2
(1.7) Pell's sequence u, (2,-1) 1 2 2 -1
(1.8) Pell's sequence v (2,-1) 2 2 2 -1

Sequence (1.1) has alreadybeen noted-in [1], while sequences (1.5) — (1. 8)
were mentioned in [6] However, sequences (1.2) — (1.4) have not been pre-

viously recorded in this series of papers.

2. THE "PYTHAGOREAN'" PROPERTY

Any W, at all may be substituted in the known formula for Pythagorean

triples: (u? - v3)?2 + (2av)? = (u2+v?)2, Writing u = W, = W4 We obtain
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2~ w? )2 2 = (w2 2
(2.1) (Wn+2 Wn+1) * (zwn'i-ngH) (Wn+z * W%l"‘i) *
Next, using the recurrence relation W T PW A [1], we may
express (2.1) in avariety of ways, some of them quite complicated. Generally,

we have

. - 2 - w2 |2 - NE
(2.2) l:(pw][l + qwn) w +1] + [an _H(pwn +1 qwn)]

= - 2 2 2
[(pwn+1 qwn) * Wn+1] *

Assigned values of n, p, g (and a,b) may be inserted in this formula
to yield various Pythagorean triples. For example, n = 0 with a = 1 (=wy),.
b=2(Fw), p=5 q= -1 (afairlyrandom choice) produces the Pythagorean
set 117, 4 4, 125,

More particularly, for the special sequences described in paragraph 1,

we deduce, with n = 0 for simplicity, the following Pythagorean triples:

(1.1) 5 12 13

(1.2) 16 30 34

(1.3) 2ad + 3d2 2a% + 6ad + 4d2 2a% + 6ad + 5d2
(1.4) a’qi(q? - 1) 2a%q? a?q?(q? + 1)
(1.5) 40 42 58

(1.6) 16 30 34

(1.7) 21 20 29

(1.8) 32 24 40

Triples for (1.2) and (1.6) just happen to coincide with n = 0 since w; = 3,
wy = 5 for both sequences. No other values of n reproduce this coincidence
for these two sequences.

Our concern here is not so much with the general Pythagorean formula

(2.2) as with the cases arising when p = 1, q = -1 since these restrictions

lead to {hn(r, s)}, {fn} and {an}. In this respect, observe that, in (2.1),
2~ wd = -

Wnte T Wn4y (Wn+z * W]z1+1)(wn+‘z Wit )-

Substitution of p = 1, q = -1 in (2.2) yields

+ (2w

1 P 2 = w2 4w )2
(2.2) (W ¥ntg) et ) T (Vg Wiy
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with a similar result for the case p = -1, g = -1, No other values of p,q

2
produce the term (w_ Wn+3) .

Thus we have the sequences whose nth terms are

(2.3) Wn(a,b;l,-l) = afn_2 + bfn-i = hn(a;b- a)
and
(2.4) w (@,b-1,-1) = ()%af _, -Dbf ) = g (b-a) (say)

where the g- and h-notation are introduced for convenience.
Putting a = r, b =r+s in (2.2)', we derive the Pythagorean general-

ization for {hn(r, s)} determined in [2] and [3], namely,

@9 (hn hn+3)2 i (Zhn+1 hm+2)2 = (Zhn+1 hn+2 * h?l) ’
in which the right-hand side is merely an alternative expression for the sum
of the squares in the right-hand side of (2.2)'.

Examples of (2.2)' are, with (say) n =0, a =5, b =2, from (2.3),
45% + 282 = 552, and, from (2.4), 5%+ 122 = 13% Illustrations of the Pytha-
gorean formula (2.5) have been given in [3] More especially, for the Fib-
onacci and Lucas sequences {fn}, {an} the Pythagorean triples are, for
n=20, 3,4, 5 and 8, 6, 10, respectively, while for n = 1 (say) they are
5, 12, 13 and 7, 24, 25, respectively,

As the properties of {hn(r, s)} have been developed in [2], it is thought
worthwhile to examine some similar properties of the companion g-sequence
relating to Pythagorean number triples. To this purpose we now direct our
attention.

Just as it was shown in [3], with reference to (2.3), that all Pythagorean
number triples are Fibonacci number triples, so may we likewise demonstrate
the same for (2.4). Instead of putting

(2.6) a=x-y, b=y

in (2.3), we substitute
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(2.7) a=x+y, b=y

in (2.4). In some of the concrete cases of (2.3) and (2.4), some part of the
.number triples will be negative; for instance, in the second case quoted above,
the actual triple is -5, -12, 13,

Many different, but related, sequences give the same triple, but for
different values of n. First, take the case p = 1, g = -1. Write x = W,
y=w_ asin [3]. Then by (2.3)

+2°

W
It

(2 8) afn * bfn-l—i
y = afn_ .t bfn

Solve (2.6). Hence

o
1

n
(2.9) B = Vi
‘ +
b= (D"t - v,

where we have used the fundamental Fibonacci formula [2]

Y n+i
fn+1fn—1 fn 07
Giving n all possible integral values, we obtain an infinite sequence of

sequences of which a selected few are

h (y,x-y), h&-y -x+2y,
(2.10) n n
hn(—x + 2y, 2x - 3y), hn(2x - 3y, -3x + 5y) ,

corresponding to n = -1, 0, 1, 2, respectively.

The second of the sequences (2.10) already occurs in (2.6). A given
Pythagorean triple may be derived from any of these sequences if the correct
value of n is associatedwith it (since we are operating on the same 4 numbers
X-7Y, Vs X, X+y in each sequence). Examples are (i), if x =3, y =2,
thetriple 5, 12, 13 is obtained fromthe sequences hn(2,\1),. hn(l,l), hnﬂ(:_l,O) and
hn((), 1) when n = -1, 0, 1, 2 respectively: (ii) if x = 4, y = 3, .the triple



428 SPECIAL PROPERTIES OF THE SEQUENCE Wn(a,b;p, q) [ Dec,

7, 24, 25 is obtained from the sequences hn(3, 1), hn(l, 2), hn(z, -1), hIl
(-1,3) when n = -1, 0, 1, 2 respectively.,

Correspondingly, in the case p = -1, q = -1, write x = Wi V7
W 4 SO that by (2.4)

x = ()" @f. - bf_ )
(2.11) noonh

" (-af,_ + Dbf))

<
1l

whence, solving with the aid of the fundamental Fibonacci formula quoted above,

we have
a = xf + yf
(2.12) n TnH
b = an+1 + y‘fn

leading to an infinite sequence of sequences of which a selected few are, for
n=-1,0, 1, 2,

g (Vs X-9)s g x+ty, -x ,
(2.13) n n

g,(x * 2y, -y), g (2x * 3y, -x-y),

respectively, With x = 3, y = 2, for instance, the triple -5, -12, 13
arises from gn(z, 1), gn(5, -3), gn(7, -2), gn(lz, -5) when n = -1,0,1,2
respectively. Observe that the second sequence in (2.13) already occurs in
(2.7). Had we written x = W VT W above, then of course we would
have obtained the negatives of the values of a,b given in (2.12).

Remarks similar to the other remarks for h (a,b,-a) in [3] may be

paralleled for gn(a, b-a).

3. THE GEOMETRICAL PARADOX

A well-known geometrical problem requires a given square to be sub-
divided in a specified manner and re-arranged so as to form a rectangle of
certain dimensions. In the process of re-arrangement, it appears as though
a small area of one square unit has been gained or lost, This illusion is due

to inaccurate re-assembling of the sub-dividedparts. Precise re-arrangement
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reveals the existance of a very small parallelogram of unit area included in
the rectangle, Mathematically, the secret of the paradox lies with the Fib-
onacci formula quoted in Section 2,

Previously in [4] I generalized this paradox to the sequence {hn(r, s)}.
Our basic generalized formula now is 1 , with n replaced by n+1, w

n

_ 9 — n . .
Wits = Vo eq . Asin [4], the construction guarantees two cases, n

even and n odd., See Figs. 1, 2, 3. Clearly, the spirit of the standard
construction is preserved only if q < 0, Write gq; = -g (g; > 0). From the
figures, we see that the exigencies of the constructions impose the restriction
p = q; = 1, so that the defining recurrence relation [1] is now w, = w

n+2 n+1

+w , the fundamental formula [1] is W, W = (-1)"%, and the area

- w2
nt2 T "nt
of the parallelogram [4] is e. Consequently, the only sequences for which the
standard construction is applicable are wn(a,b;l, -1) = hn(a,b -a) by (2.3).

Briefly repeating the basic results proved in [4], we have, after calcu—

lations:
= Vw2 2 =Vw? + wl .
(3.1) )‘n W + Wn_i, p,n wotwp
. An
. n) o _
4 T V-1 Y
tan9=tan<——y—5), tany = , tan §_ =
(3.3) n 2 n n n Wn+1 - n Wn_2
€4
T e, +f3ww - tn
1 n n-i
tn )
(3.4) 1im( )=a=1+a1,
n—>w tn+1 1
where in (3.3) we have set
(3.5) e; = ab +a% - Db? .,

Initially, in Fig, 3 we have



430 SPECIAL PROPE

RTIES OF THE SEQUENCE W_(a,bsp,q)

PWn+
P¥h-1 PWh4
4rWn PV
d1Wn 91Wn
P¥p-1 4%
Fig. 1
|
|
PV d¥n
v.7
T L %n
A1Wn—9. An pwW
w n-2 S n-i w
n
I
Pw, _, n
q1Wn PWn+1
Vn+a
Fig. 2 (n even)
Wn+2
PW, 7 d1Wn
Y.
AWz | ®n PW, 4
W A4
n n
;qiwn an_‘_i n

Fig, 3 (n odd)

= q = 1 in Figs. 1-3)

[Dec.
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(3.6) tan {)n = tan ('yn + Sn - 7/2)

Eventually, after calculation this leads back to (3.3).

Worth noting is the fact that (3.3) is a considerable simplification of the
form for tan Gn given in [4]

Concrete instances of the paradox, with details of specific values for

B0 Ay My Are to be found in [4]

4, THE COMPLEX CASE

Label each of the fundamental constants a, b, p, 9, e associated with a
sequence different from {wn} by a subscript symbolic of that sequence; that
is, for the sequence {hn}, for instance, express these constants as 2y bh’
Pps Gy O

Define

d = w +iw @2 = -1)

.]-
(4.1) n n o

bun_ L + 1(bun - gau

-2 n—i)

using a known expression [1] for w, . Hence

do = a.d = a +ib
(4.2)

d1=bd=b+i(pb—qa)
After substituting oS pu,o-oqu o, We deduce from (4.1), (4.2) that
(4.3) 4y = Py~ ady,

and

o
it

{b + i(pb - qa)} Wy~ q(a +i‘b)un__2
(wy + iwz)un_1 - a(wy + ivvi)un_2

= dy o, - qd, W,

= bd W, ~dag

(4.4)
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from (4.1), which is aform we could anticipate, Of course, we could have sub-

stituted w, = aun, + (b - pa)un and obtained an equivalent result, Thus

-1

(4.5) {dn}

1]

{wn (@ + ib, b +i(pb - qa); p,q)}.

Moreover,

= - 2 _ 12
€4 padbd qay bd

(4.6) (1 - q +ip)e
after calculation,

Fundamental properties of dn are deducible in an analogous way to those
of w [1] Only the three most interesting general properties are stated for

n
the record:
_ 2 — n_i
(4.7) dn—1 dn+1 ‘ dn eq d
2 - 2 = (- 212 2
(4.8) (dndn+3) + ( 2pqdn+1dn+z) ( 2pqdn+1dn+2+dn) +2c102dn
r
(4.9) Qe " T p _
—_—— = v
dn r

(that is, the right-hand side of (4.9) is independent of a, b, n). In the Pytha-

gorean result (4.8), we have written

Ci :pd —qd+ "d
(4.10) n+2 n+1i n

Cy = Cy + 2d11

All these results are easy to verify using as appropriate (4.3) or (4.1) with w,
= Ad" + Bﬁn [1]being a convenient substitution on (4.7) and (4.9). Be it noted
o . _ n-1 .
that with this approach we may need to use W W "WV T epdT which
is a special case of [1] (4.18) for which r =t = 1,
Particular cases of the above theoretical results lead back to those in

[5]. For example p = -q = 1 implies wn(a,b;l, -1) = hn(a,b -a) by (2.3)
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Under these conditions, replace dn by kn. Then (4.6), for instance, gives

(5].
(4.11) e, = e.e

where c¢ is the complex Fibonacci sequence for which a = b = 1 and [5],
(3.5),

(4.12) ec=2+i, eh=ab+a2-b2.

Extending [5] we may define a generalized quaternion as:

(.13) Ay = Wy TAW L T IW L, TR,

with conjugate quaternion
(4.14) an = w_ - iw - jw - kw )

n n+i

where i2 = j2 = K = -1, ij = -ji, jk = - kj, ki = -ik
From (4.13), (4.14),

+
(4.15) qn___q.ﬂ

Finally, for the conjugate (_1n it follows that

S

Qi
1l

o7l

l

(4.16) b =

Qu
=2
o

o
joF ]

1l

o
[N

(Note: Helpful advice from the referee has been incorporated into the early

part of Section 2 and is hereby acknowledged. )
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