[go: up one dir, main page]

login
A122070
Triangle given by T(n,k) = Fibonacci(n+k+1)*binomial(n,k) for 0<=k<=n.
4
1, 1, 2, 2, 6, 5, 3, 15, 24, 13, 5, 32, 78, 84, 34, 8, 65, 210, 340, 275, 89, 13, 126, 510, 1100, 1335, 864, 233, 21, 238, 1155, 3115, 5040, 4893, 2639, 610, 34, 440, 2492, 8064, 16310, 21112, 17080, 7896, 1597, 55, 801, 5184, 19572, 47502, 76860, 82908, 57492, 23256, 4181
OFFSET
0,3
COMMENTS
Subtriangle of (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Mirror image of the triangle in A185384.
FORMULA
T(n,k) = A000045(n+k+1)*A007318(n,k) .
T(n,n) = Fibonacci(2*n+1) = A001519(n+1) .
Sum_{k=0..n} T(n,k) = Fibonacci(3*n+1) = A033887(n) .
Sum_{k=0..n}(-1)^k*T(n,k) = (-1)^n = A033999(n) .
Sum_{k=0..floor(n/2)} T(n-k,k) = (Fibonacci(n+1))^2 = A007598(n+1).
Sum_{k=0..n} T(n,k)*2^k = Fibonacci(4*n+1) = A033889(n).
Sum_{k=0..n} T(n,k)^2 = A208588(n).
G.f.: (1-y*x)/(1-(1+3y)*x-(1+y-y^2)*x^2).
T(n,k) = T(n-1,k) + 3*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = 1, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n.
T(n,k) = A185384(n,n-k).
T(2n,n) = binomial(2n,n)*Fibonacci(3*n+1) = A208473(n).
EXAMPLE
Triangle begins:
1;
1, 2;
2, 6, 5;
3, 15, 24, 13;
5, 32, 78, 84, 34;
8, 65, 210, 340, 275, 89;
13, 126, 510, 1100, 1335, 864, 233;
(0, 1, 1, -1, 0, 0, ...) DELTA (1, 1, 1, 0, 0, ...) begins :
1;
0, 1;
0, 1, 2;
0, 2, 6, 5;
0, 3, 15, 24, 13;
0, 5, 32, 78, 84, 34;
0, 8, 65, 210, 340, 275, 89;
0, 13, 126, 510, 1100, 1335, 864, 233;
MAPLE
with(combinat): seq(seq(binomial(n, k)*fibonacci(n+k+1), k=0..n), n=0..10); # G. C. Greubel, Oct 02 2019
MATHEMATICA
Table[Fibonacci[n+k+1]*Binomial[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 02 2019 *)
PROG
(PARI) T(n, k) = binomial(n, k)*fibonacci(n+k+1);
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Oct 02 2019
(Magma) [Binomial(n, k)*Fibonacci(n+k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 02 2019
(Sage) [[binomial(n, k)*fibonacci(n+k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Oct 02 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> Binomial(n, k)*Fibonacci(n+ k+1) ))); # G. C. Greubel, Oct 02 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Oct 15 2006, Mar 13 2012
EXTENSIONS
Corrected and extended by Philippe Deléham, Mar 13 2012
Term a(50) corrected by G. C. Greubel, Oct 02 2019
STATUS
approved