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1, INTRODUCTION

We establish here a characterization of the Fibonacci and Lucas numbers
while determining the units of the quadratic field extension Q(\/5) of the
rational field Q. Using an appropriate norm on Q@/5), we also findall solu-
tions to the Diophantine equation x? - 5y2 = 44 and solve a certain binomial
coefficient equation, Except for the definitions of basic algebraic structures,
the treatment is self-contained, and so should also serve as a brief introduc-
tion to algebraic number theory, We hope the reader sees the beauty of one
branch of mathematics interacting profitably with another, wherein both gain,

For the definitions of group, ring, and field, we refer the readerto [1],
Let u be an element of the field of complex numbers C, We say u is an
algebraic number if there is a polynomial

n-1

(1) p(®) = aan1 ta X teee taxtay (a; €EQ, ay # 0)

with coefficients in Q not all zero which is satisfied by u, i, e,, such that

p() = anun + a_n_iun"1 +eee tauta; = 0,

Thus V2 and i = V-1 are algebraic numbers, while 77 is not, Among all
the polynomials satisfied by u, there is one of least positive degree, say of
the form p(x) in (1), Since p(u) = 0 implies a;ip(u) = 0, we may choose
p(x) with leading coefficient 1, i.e., so that p(x) is monic, The monic
polynomial of least positive degree satisfied by u is called the minimal poly-
nomial of u, For example, the minimal polynomial of §/2 is x? -4. The
reason we insist that the leading coefficient of p(x) be 1 is that with this pro-
vision the minimal polynomial is unique (see [1, Chap, 14]).

An algebraic number is said to be an algebraic integer if its minimal

polynomial has integral coefficients, For example, any rational r is an
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algebraic number (it satisfies x-r), but among the rationals only the integers
are algebraic integers (the reader should prove this), For this reason the

ordinary integers are sometimes referred to as rational integers., An alge-
braic number u # 0 is called a unitifboth u and u™! are algebraic inte-
gers, As an example, -1 and i are units, A unit should be distinguished
from the unit (multiplicative identity) element 1 of the field, although the unit

element is also a unit,

3. THE QUADRATIC FIELD Q(\/5)

Denote by Q(\/5) the smallest field contained in the field of real num-
bers R which contains both Q@ and V/5. We first expose the form of the
elements in Q(\/5).

Theorem 1. Q(\/3) = {r +sV5 lr,s € Ql.

Proof, Denote the right side in Theorem 1 by S. Then since the ele-
ments of S are formed using the field operations from those in @ and V5,
we have S C Q(\/5). But we claim S is already a field, Clearly it inherits
the necessary additive and associative properties from R, and the product of
any two elements in S is easily shown to be again in S, Hence we must only

show the existence of inverses in S, If r+s\5 # 0, then

1 _r-svVh _ _ r -( g )\/S_ES.

r+s\V5 r? - 5g2 r2 - 552 r? - 5g2

Since Q(\/5) is the smallest subfield of R containing Q and \/5-, we have
Q(\/5) C S. Thus S = Q(V3).

Because of the irrationality of\/5—, we note that two elements in Q( \/—5-)
are equal if and only if they are equal componentwise, i.e., a +bV5= ¢+
d\/5 for a,b,c,d € Q ifand only if a = ¢ and b = d. Q(V5) is called a
quadratic field because it is formed by adjoining V/5 to Q, and the minimal
polynomial of V5 isa quadratic.,

We next describe the set Qi(\/5—) of algebraic integers in R which also
occur in Q(\/5).

Theorem 2, The set Qi(\/g) of algebraic integersin Q(V/5) consists of
precisely the numbers 4(a +bV5), where a and b are integers such that
a =b (mod 2).
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Proof. Using Theorem 1, any number u in Q(\/5) may be expressed
as u = (a +b\/5—)/c, where the integers a, b, and ¢ have no common fac—
tor except +1. We may assume b # 0 to exclude the trivial case when u is

rational. Then the monic polynomial of lowest degree satisfied by u is

o () ) (s

c?

If u is to be an algebraic integer, then the coefficients 2a/c and (a% - 5b?)
/c? must be integers. Thus 4a?/ c?, (4a% - 20b%)/c?, and hence 20b?/ c?
must all be integers, so that c|2a and 02|20b2, where nlm means n divides
m, Now any prime factor p # 2 of ¢ must divide both a and b by the
above, contrary to our assumption that a, b, ¢ have no common factor except
*], Similarly 4|c is impossible, so the only choices left are ¢ = 1 and
c = 2,

If ¢ =1, p(x) has integral coefficients and u is an algebraic integer.
In this case u has the form }(2a + Zb\/g), and 2a = 2b = 0 (mod 2), so the
conclusion of the theorem is true. If ¢ = 2, then (a% - 5b2)/c? = (a? - 5b%)/4
is an integer if and only if a and b are either both odd or both even, or
equivalently a = b (mod 2). Hence the theorem also holds here, completing
the proof,

We remark the Qi(\/g) actually forms a ring because it is closed under
multiplication. The reader is urged to verify the details.

We next investigate the question of units in Q(\/5). First note that by
definition if u; and u, are units, then uy, uyl, uy, uy!, -u; are all in Qi(\/S_).
Using Theorem 2, it is straightforward to verify that then ugu,, (uquy)~1, uguzd,
(uuzh)~L, (-uy)~! are also in Qi(\/g). Hence ujuy, uwuy!, and -u; are units
in Q(V5). In particular, if u is a unit, sois u-1.

The Gaussian integers J are the set of complex numbers with integral
real and imaginary parts. A useful function from J to the nonnegative inte-
gers is the norm defined by |a +bi| = a2 + b2 This norm is handy because
|xy| = |x|ly] for x,y € J, so it preserves the multiplicative structure of J.
We now introduce an analogous function on Qi(\/g). If u-= %(a +bVE) € Q4
(\/5), define the norm of u by

N@) = Ha +bV5)}a -bV5) = Ha? - 5b2)
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The reader should verify that N(u) is always an integer (possibly negative),
and that N(ujuy)= N(uy)N(uy) for all uy,u, € Qi(\/s_). We use this norm to
obtain a characterization of units.
Theorem 3. An element u &€ Qi(\/g) is a unit if and only if N@) = =*1.
Proof, If u is a unit, then u, u‘ieQi(\/g), so that 1 = N(1) =
N@uu-1) = NwN(@~1), Since N@) and N(u~!) are integers, N(u) = +1. Con-
versely, if u = la +bV5) € Qi(\/g) such that N(u) = 41, then

{a +bV5) i@ -bVh) = 21,
so that
ut = ti@ - bVE) € Q;(V5)

by Theorem 2, Thus u is a unit.

Using the norm function on Qi(\/?)) and recalling that a unit in Q( \/5)
must already be in Qi(\/s_)’ we can obtain a complete accounting of the units
in QW5). Let a= (1+1/5)/2¢€ Qi(\/g). Then N(a) = -1, soby Theorem
3 « is a unitin Q(\/E;). By the above remarks we therefore know that *a,
ta?, a3, -, %1, +a~!, £x72,.+. are units in Q(V/5). Thus in contrast with
the Gaussian integers J, where the only units are +1, i, in Q(\/5) there
are units of either sign as large or as small as we please,

Theorem 4, The numbers
(3) ta, Ta m=20,1,2,°-°)

are the only units in Q(V/5).

Proof, We first prove there is no unit between 1 and «. Suppose that
there is a unit u € Qi(\/S—) such that 1 < u < @. By Theorem 2, u = ;_(x +
v V/5), where x and y are integers. Then by Theorem 3

s = N = XZ';SyZ _ (x+2yy5>(x -2y\,/§>’

so that using 1 < u we find
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dx+yVE) <-1= lx+y Vi -yVE) =1 <x + y\E) .
Dividing by u # 0 yields
(4) -1< dx-yVE) <= 1.
Adding (4) to 1< u< « gives
0 < x <1l1l+a,

showing that x = 1 or 2, But in either case there is no integer y such that
1< u < g holds, This contradiction shows there is no unit between 1 and «.

Now to finish the proof. Suppose u # 0 is a unit, where we mayassume
u is positive since -u is also a unit, Then either u = an, or there is an

n+i -n . cp s . -n
. Now a ™ is a unit, implying « "u also

integer n such that a< y< a
is, Butthen 1< o ‘u< a, which wasshown impossible in the first part of
the proof, Hence the only units in Q(\/5) are given in (3).

We now use Theorem 4 to give a characterization of Fibonacci and Lucas
numbers, But we first need,

Theorem 5, Define the Fibonacci numbers Fn by Fy=10, Fy =1,
Foig = Fppg T Fp and the Lucas numbers L, by Ly=2, Ly =1, Lot =

L + 1, , Then
n+i1 n

o = —%(Ln + Fn\/g)

Proof, We establish this by induction. It is certainly true for n = 0, L
If it is valid for n = k, k +1, simply adding the corresponding equations
together with the fact that o™ = of 4 of ghows it holds for n = k + 2,
completing the induction step and the proof,

Theorem 6. The algebraic number %(a +bVE) € Q(V5) is a unit if and
only if a = L][1 and b = Fn for some integer n,

Proof, This is a combination of Theorems 4 and 5,

Thus we have characterized the Fibonacci and Lucas numbers in terms
of the units in Q(\/5). We note in passing that since ™ is a unit of Q(V'5),
Theorem 2 implies Fn = Ln (mod 2),
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An application of these properties of Q(\/5) to prove the converse of a
familiar property of the Fibonacci numbers has been given by Carlitz [2] . This
type of development is capable of generalization to Q(\/d), where d may be
assumed to be a squarefree integer, One striking fact is that the analogue of
unique factorization of elements into powers of irreducible (prime) elements
holds for only a finite number of d (d = 5 is one of them). For further in-
formation about this, we refer the reader to [3; Chap. 15| for a number theo-

retic approach, and to [1; Chap. 14] for an algebraic one.

4, THE SOLUTION OF x* - 5y% = #4

We show here how the solutions of the Diophantine equation x% - 5y% = +4
may be easily obtained as a byproduct of the preceding algebraic material,
Note that N(a) = -1, so that N(@") = (-1)". Thenif v € Q,(5), N(w =1

if and only if u = a1, and N(u) = -1. if and only if u = a?2*! for some in-

teger n, This observation leads to the

Theorem 7. (i) All rational integral solutions of x? - 5y = 4 aregiven
by X = Lgy, v = Fyp, and (ii) all of x% - 552 = -4 by x = Loptys ¥ = Fopg
@ =0, 1, £2,...) .

Proof, (i) Since N(a?2) = 1, Theorem 5 shows that the purported solu-
tions actually satisfy x? - 5y2 = 4, Conversely, if x2 - 5y2 = 4, then x = y
(mod 2) and N[%(x + y\/&';)] = 1. By the preceeding remarks, X(x+ y\V/5)=
o’ for some n, so that by Theorem5 x = Ly, y = Fyy, showingthat these
are all the solutions,

(i) Asin (i), N(@®®*l) = -1 and Theorem 5 show that x = Ly, y=
Fon+1 are actually solutions. On the other hand, if x® - 5y = -4, then x =
y (mod2) and N[Hx+yV5)] = -1. Then Xx+yV5) = a?™ forsome n,
so by Theorem 5 X = Lgn+y, ¥ = Fop+y, completing the proof.

We remark that Theorem 7 was proved by Long and Jordan [4] by using
the classical theory of the Pell equation, from which the result follows easily.
Theorem 7 also provides a characterization of Fibonacci and Lucas numbers

analogous to Theorem 6, but in terms of a Diophantine equation,
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5. THE SOLUTION OF A CERTAIN BINOMIAL COEFFICIENT EQUATION

We shalluse the preceding results to solve completelythe seemingly un-

related binomial coefficient equation,

@ () - (23)

For example, the three solutions of (5) with smallest n are

o)) ) () ()

First note that by cancelling common factors, (5) is equivalent to
nk+1 = @m-~-Kn-k-1),
or

K+ -3nk+n? - 2n = 0,

This quadratic in k has a solution in integers if and only if its diseriminant

5n% + 2n + 1 is a perfect square, say

5n2 +2n +1 = {2,

Then

25n% + 10n + 1 = 5t - 5 + 1,
so that
(7 (5n + 1)2 - 52 = -4,

which is the form of the Diophantine equation which we solved in the previous

section, Then by (ii) of Theorem 7, (7) has an integral solution if and only if
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X = Lor+y, ¥ = Fyp+y, and x = 1 (mod 5), the last condition being imposed
so that n is an integer. Now it is easy to verify that Lgpyy = 1 (mod 5) if
and only if r is even, say r = 2s, so all solutions of (7) are given by

Lyg+y 1

n = e, t= Fygiy .

Using the Binet form for Fibonacci and Lucas numbers, we have

Lyg+4 - 1
n o= ———— = FpsFos+s .
Also,
3n-1-t _ =
k = S557——= = }(8FyTag+1 - 1 - Fygi1) = FogpFogiq .

Hence all solutions of our original equation (5) are given by
n = FogFogty, k = FyggFogry, s =1,2,3,°°°,
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