This site is supported by donations to The OEIS Foundation.
Index to OEIS: Section Be
Index to OEIS: Section Be
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]
Beans-Don't-Talk: A005694, A005695, A005696, A005697, A005698
Beanstalk: A005692, A005693
beastly numbers: A051003, A046720, A131645, A186086, A138563
Beatty sequences sequences related to :
- Beatty sequences : for a constant c, the two Beatty sequences are the main sequence floor(n*c) and the complementary sequence floor(n*c') where c' = c/(c-1))
- Beatty sequences for: (n+1/2)/2 (A038707), (n+1/2)/4 (A038709), Feigenbaum's constant (A038123), Brun's constant (A038124)
- Beatty sequences for: (sqrt(5)+5)/2 (A003231), (1 + sqrt 3)/2 (A003511), sqrt 3 + 2 (A003512), (3+Sqrt[3])/2 (A054406)
- Beatty sequences for: 1+1/Pi (A059531), 1+Pi (A059532), 1+Catalan's constant (A059533), 1+1/Catalan's constant (A059534)
- Beatty sequences for: 1+gamma A001620 (A059555), 1+1/gamma (A059556), 1+gamma^2, (A059557), 1+1/gamma^2 (A059558), 1-ln(1/gamma), (A059559), 1-1/ln(1/gamma) (A059560)
- Beatty sequences for: 3/4, 2/5, 3/5, 2/7, 3/7, 4/7, 5/7, 3/8, 5/8, 5/13, 8/13, 8/21, 13/21, 7/19, 11/30 (A057353-A057367)
- Beatty sequences for: 3^(1/3) (A059539), 3^(1/3)/(3^(1/3)-1) (A059540), 1+ln(2) (A059541), 1+1/ln(2) (A059542), ln(3) (A059543), ln(3)/(ln(3)-1) (A059544)
- Beatty sequences for: e (A022843), e/(e-1) (A054385), 1/(e-2) (A000062), 1/e (A032634), e-1 (A000210), e+1 (A000572), (e+1)/e (A006594), e^(1/e) (A037087)
- Beatty sequences for: e^gamma (A059565), e^gamma/(e^gamma-1) (A059566), 1-ln(ln(2)) (A059567), 1-1/ln(ln(2)) (A059568)
- Beatty sequences for: e^pi (A038152), pi^e (A038153), 2^sqrt(2) (A038127), Euler's gamma (A038128), 2^(1/3) (A038129)
- Beatty sequences for: Gamma(1/3) (A059551), Gamma(1/3)/(Gamma(1/3)-1) (A059552), Gamma(2/3) (A059553), Gamma(2/3)/(Gamma(2/3)-1) (A059554)
- Beatty sequences for: ln(10) (A059545), ln(10)/(ln(10)-1) (A059546), 1+1/ln(3) (A059547), 1+ln(3) (A059548), 1+1/ln(10) (A059549), 1+ln(10) (A059550)
- Beatty sequences for: ln(Pi) (A059561), ln(Pi)/(ln(Pi)-1) (A059562), e+1/e (A059563), (e^2+1)/(e^2-e+1) (A059564)
- Beatty sequences for: Pi (A022844), Pi/(Pi-1) (A054386), 1/Pi (A032615), pi^2 (A037085), sqrt(pi) (A037086), 2*pi (A038130), sqrt(2 pi) (A038126)
- Beatty sequences for: Pi^2/6, or zeta(2) (A059535), zeta(2)/(zeta(2)-1) (A059536), zeta(3) (A059537), zeta(3)/(zeta(3)-1) (A059538)
- Beatty sequences for: sqrt(2) (A001951), 2 + sqrt(2) (A001952), 1 + 1/sqrt(11) (A001955), 1 + sqrt(11) (A001956)
- Beatty sequences for: sqrt(3) (A022838), sqrt(5) (A022839), sqrt(6) (A022840), sqrt(7) (A022841), sqrt(8) (A022842)
- Beatty sequences for: sqrt(5) - 1 (A001961), sqrt(5) + 3 (A001962), 1+sqrt(2) (A003151), 1/(2-sqrt(2)) (A003152)
- Beatty sequences for: tau (A000201), tau^2 (A001950), tau^3 (A004976), tau^(4+n) (n=0..16) (A004919+n)
- Beatty sequences: references about: see especially A000201
- Beatty sequences: see also (1) A014245, A014246, A022803, A022804, A022805, A022806, A022879, A022880, A023541, A023542, A045671, A045672
- Beatty sequences: see also (2) A045681, A045682, A045749, A045750, A045774, A045775
Beethoven: A001491, A054245, A123456
Beethoven: see also music
beginning with t: A006092, A005224
Belgian numbers: A106039, A106439, A106518, A106596, A106631, A106792, A107014, A107018, A107032, A107043, A107062, A107070.
Bell numbers, sequences related to :
- Bell numbers: A000110*
- Bell numbers: see also A007311
- Bell numbers: see also set partitions
- Bell numbers: see also Stirling numbers of 2nd kind
Bell polynomials: A178867, A263633. See also A263634.
bell ringing , sequences related to
- bell ringing: (1) A090277, A090278, A090279, A090280, A090281, A090282, A090283, A090284
- bell ringing: (2) A057112, A060112, A060135
Bell's formula: A002575, A002576
bemirps: A048895
bending: see folding
Benford's Law, sequences related to
- Sequences in OEIS that satisfy (or do not satisfy) Benford's Law, and related sequences.
- Obviously every sequence in the OEIS could potentially be added to one of the following categories, but we only list the most significant ones.
- Benford's law, sequences known to satisfy, (01): A000041 (partitions), A000045 (Fibonacci), A000079 (2^n), A000108 (Catalan), A000110 (Bell), A000142 (n!), A000149 (e^n), A000213 (tribonacci), A000244 (3^n), A000288, A000302 (4^n), A000312 (n^n), A000322, A007318 (Pascal triangle), A007758, A008952, A008963
- Benford's law, sequences known to satisfy, (02): A026549, A036289, A112420, A141053, A186190, A186191, A186192, A220454, A228158, A282022, A282023
- Benford's law, sequences known not to satisfy, (00) Obviously if the terms of a sequence never begin with one of the digits 1 through 9 the sequence cannot satisfy Benford's law:
- Benford's law, sequences known not to satisfy, (01): A000027 (n), A000040 (primes), A000195(log(n)), A000217 (triangular numbers), A000290 (squares), A000292 (tetrahedral), A000332, A000503 (tan(n)), A000578 (cubes), A000583 (n^4)
- Benford's law, sequences known not to satisfy, (02): A001288, A004233, A011557, A095180, A178743, A246564
- Benford's law: sequences conjectured to satisfy: A241299, A244059
- Benford's law: sequences conjectured not to satisfy:
- Benford's law: sequences for which this is an open question: A003095, A087455
- Benford's law, sequences related to: A007524, A055439-A055449, A083377-A083380, A104140, A213201, A256218
- Benford's law, sequences related to: For factorials with initial digit d (1 <= d <= 9) see A045509, A045510, A045511, A045516, A045517, A045518, A282021, A045519; A045520, A045521, A045522, A045523, A045524, A045525, A045526, A045527, A045528, A045529.
- Benford's law, sequences related to: For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509.
- Benford numbers: A004002*
Benny, Jack: A056064
bent functions: A004491, A099090
benzene: A000639
Berlekamp's switching game: A005311*
Bernoulli numbers , sequences related to :
- Bernoulli numbers B_n: A027641**/A027642*. A027641 has all the references, links and formulae
- Bernoulli numbers B_{2n}: A000367*/A002445*, but see especially A027641
- Bernoulli numbers (n+1)B_n: A050925/A050932, A002427/A006955
- Bernoulli numbers, generalized: A006568, A006569, A002678, A002679
- Bernoulli numbers, higher order: A001904, A001905
- Bernoulli numbers, irregularity index of primes: A061576, A091888, A007703, A000928, A091887, A073276, A073277, A060975
- Bernoulli numbers, numerators and their factorizations: (1) A000367 = numerators, A000928 = irregular primes, A001067, A001896, A002427, A002431, A002443, A002657, A007703, A017329, A027641, A027643
- Bernoulli numbers, numerators and their factorizations: (2) A027645, A027647, A029762, A029764, A033470, A033474, A035078, A035112, A043295, A043303, A046988, A050925
- Bernoulli numbers, numerators and their factorizations: (3) A053382, A060054, A067778, A068206, A068399, A068528, A069040, A069044, A070192, A070193, A071020, A071772
- Bernoulli numbers, numerators and their factorizations: (4) A073276, A075178, A076547, A076549, A079294 = number of prime factors, A083687, A084217, A085092, A085737, A089170, A089644, A089655
- Bernoulli numbers, numerators and their factorizations: (5) A090177, A090179, A090495, A090496, A090629, A090789, A090790, A090791, A090793, A090798, A090800, A090817
- Bernoulli numbers, numerators and their factorizations: (6) A090818, A090823, A090825, A090865, A090943 = squareful numerators, A090947 = largest prime factor, A091216, A091888, A092132, A092133, A092194, A092195
- Bernoulli numbers, numerators and their factorizations: (7) A092221, A092222, A092223, A092224, A092225, A092226, A092227, A092228, A092229, A092230, A092231, A092291
- Bernoulli numbers, numerators and their factorizations: (8) A090997, A090987
- Bernoulli numbers, poly-Bernoulli numbers: A027643, A027644, A027645, A027646, A027647, A027648, A027649, A027650, A027651
- Bernoulli numbers, see also (1): A000146, A000182, A000928, A001469, A001896, A001947, A002105, A002208, A002316, A002431, A002443, A002444
- Bernoulli numbers, see also (2): A002657, A002790, A002882, A003245, A003264, A003272, A003326, A003414, A003457, A004193, A006863, A006953
- Bernoulli numbers, see also (3): A006954, A014509, A020527, A020528, A020529, A029762, A029763, A029764, A029765, A030076, A033469, A033470
- Bernoulli numbers, see also (4): A033471, A033473, A033474, A033475, A035077, A035078, A035112, A045979, A046094, A046968, A047680, A047681
- Bernoulli numbers, see also (5): A047682, A047683, A047872, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A189995
- Bernoulli numbers, see also (6): A027762, A046969
- Bernoulli numbers, triangles that generate: A051714/A051715, A085737/A085738
Bernoulli polynomials, sequences related to :
- Bernoulli polynomials, coefficients of: A053382*/A053383*, A048998*, A048999*
- Bernoulli polynomials, see also A001898, A002558, A020527, A020528, A020529, A020543, A020544, A020545, A020546
Bernoulli twin numbers: A051716/A051717
Bernstein squares: A097871
Berstel sequence: A007420*
Bertrand's Postulate, sequences related to :
Bessel function or Bessel polynomial , sequences related to :
- Bessel function or Bessel polynomial: (1) A000134, A000155, A000167, A000175, A000249, A000275, A000331, A001880
- Bessel function or Bessel polynomial: (2) A001881, A002190, A002506, A006040, A006041, A014401, A039699, A046960, A046961 A046962, A046963
- Bessel function or Bessel polynomial: (3) A051148, A051149
- Bessel functions: J_0: A002454, J_1: A002474, J_2: A002506, J_3: A014401, J_4: A061403, J_5: A061404, J_6: A061405, J_7: A061407, J_9: A061440 J_10: A061441
- Bessel numbers: A006789, A111924, A100861
- Bessel polynomial, coefficients of: A001497, A001498
- Bessel polynomial, defined: A001515, A001497, A001498
- Bessel polynomial, values of: (1) A001515, A001517, A001518, A065919, A001514, A065920, A065921, A065922, A006199, A065707, A000806, A002119
- Bessel polynomial, values of: (2) A065923, A001516, A065944, A065945, A065946, A065947, A065948, A065949, A065950, A065951
- Bessel triangle: A001497*, A000369, A001498, A011801, A013988, A004747, A049403, A065931, A065943
betrothed numbers: A003502*, A003503*, A005276*
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]