This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Be

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Be


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Beans-Don't-Talk: A005694, A005695, A005696, A005697, A005698
Beanstalk: A005692, A005693
beastly numbers: A051003, A046720, A131645, A186086, A138563
Beatty sequences sequences related to :

Beatty sequences  : for a constant c, the two Beatty sequences are the main sequence floor(n*c) and the complementary sequence floor(n*c') where c' = c/(c-1))
Beatty sequences for: (n+1/2)/2 (A038707), (n+1/2)/4 (A038709), Feigenbaum's constant (A038123), Brun's constant (A038124)
Beatty sequences for: (sqrt(5)+5)/2 (A003231), (1 + sqrt 3)/2 (A003511), sqrt 3 + 2 (A003512), (3+Sqrt[3])/2 (A054406)
Beatty sequences for: 1+1/Pi (A059531), 1+Pi (A059532), 1+Catalan's constant (A059533), 1+1/Catalan's constant (A059534)
Beatty sequences for: 1+gamma A001620 (A059555), 1+1/gamma (A059556), 1+gamma^2, (A059557), 1+1/gamma^2 (A059558), 1-ln(1/gamma), (A059559), 1-1/ln(1/gamma) (A059560)
Beatty sequences for: 3/4, 2/5, 3/5, 2/7, 3/7, 4/7, 5/7, 3/8, 5/8, 5/13, 8/13, 8/21, 13/21, 7/19, 11/30 (A057353-A057367)
Beatty sequences for: 3^(1/3) (A059539), 3^(1/3)/(3^(1/3)-1) (A059540), 1+ln(2) (A059541), 1+1/ln(2) (A059542), ln(3) (A059543), ln(3)/(ln(3)-1) (A059544)
Beatty sequences for: e (A022843), e/(e-1) (A054385), 1/(e-2) (A000062), 1/e (A032634), e-1 (A000210), e+1 (A000572), (e+1)/e (A006594), e^(1/e) (A037087)
Beatty sequences for: e^gamma (A059565), e^gamma/(e^gamma-1) (A059566), 1-ln(ln(2)) (A059567), 1-1/ln(ln(2)) (A059568)
Beatty sequences for: e^pi (A038152), pi^e (A038153), 2^sqrt(2) (A038127), Euler's gamma (A038128), 2^(1/3) (A038129)
Beatty sequences for: Gamma(1/3) (A059551), Gamma(1/3)/(Gamma(1/3)-1) (A059552), Gamma(2/3) (A059553), Gamma(2/3)/(Gamma(2/3)-1) (A059554)
Beatty sequences for: ln(10) (A059545), ln(10)/(ln(10)-1) (A059546), 1+1/ln(3) (A059547), 1+ln(3) (A059548), 1+1/ln(10) (A059549), 1+ln(10) (A059550)
Beatty sequences for: ln(Pi) (A059561), ln(Pi)/(ln(Pi)-1) (A059562), e+1/e (A059563), (e^2+1)/(e^2-e+1) (A059564)
Beatty sequences for: Pi (A022844), Pi/(Pi-1) (A054386), 1/Pi (A032615), pi^2 (A037085), sqrt(pi) (A037086), 2*pi (A038130), sqrt(2 pi) (A038126)
Beatty sequences for: Pi^2/6, or zeta(2) (A059535), zeta(2)/(zeta(2)-1) (A059536), zeta(3) (A059537), zeta(3)/(zeta(3)-1) (A059538)
Beatty sequences for: sqrt(2) (A001951), 2 + sqrt(2) (A001952), 1 + 1/sqrt(11) (A001955), 1 + sqrt(11) (A001956)
Beatty sequences for: sqrt(3) (A022838), sqrt(5) (A022839), sqrt(6) (A022840), sqrt(7) (A022841), sqrt(8) (A022842)
Beatty sequences for: sqrt(5) - 1 (A001961), sqrt(5) + 3 (A001962), 1+sqrt(2) (A003151), 1/(2-sqrt(2)) (A003152)
Beatty sequences for: tau (A000201), tau^2 (A001950), tau^3 (A004976), tau^(4+n) (n=0..16) (A004919+n)
Beatty sequences: references about: see especially A000201
Beatty sequences: see also (1) A014245, A014246, A022803, A022804, A022805, A022806, A022879, A022880, A023541, A023542, A045671, A045672
Beatty sequences: see also (2) A045681, A045682, A045749, A045750, A045774, A045775

Beethoven: A001491, A054245, A123456
Beethoven: see also music
beginning with t: A006092, A005224
Belgian numbers: A106039, A106439, A106518, A106596, A106631, A106792, A107014, A107018, A107032, A107043, A107062, A107070.
Bell numbers, sequences related to :

Bell numbers: A000110*
Bell numbers: see also A007311
Bell numbers: see also set partitions
Bell numbers: see also Stirling numbers of 2nd kind

Bell polynomials: A178867, A263633. See also A263634.
bell ringing , sequences related to

bell ringing: (1) A090277, A090278, A090279, A090280, A090281, A090282, A090283, A090284
bell ringing: (2) A057112, A060112, A060135

Bell's formula: A002575, A002576
bemirps: A048895
bending: see folding
Benford's Law, sequences related to

Sequences in OEIS that satisfy (or do not satisfy) Benford's Law, and related sequences.
Obviously every sequence in the OEIS could potentially be added to one of the following categories, but we only list the most significant ones.
Benford's law, sequences known to satisfy, (01): A000041 (partitions), A000045 (Fibonacci), A000079 (2^n), A000108 (Catalan), A000110 (Bell), A000142 (n!), A000149 (e^n), A000213 (tribonacci), A000244 (3^n), A000288, A000302 (4^n), A000312 (n^n), A000322, A007318 (Pascal triangle), A007758, A008952, A008963
Benford's law, sequences known to satisfy, (02): A026549, A036289, A112420, A141053, A186190, A186191, A186192, A220454, A228158, A282022, A282023
Benford's law, sequences known not to satisfy, (00) Obviously if the terms of a sequence never begin with one of the digits 1 through 9 the sequence cannot satisfy Benford's law:
Benford's law, sequences known not to satisfy, (01): A000027 (n), A000040 (primes), A000195(log(n)), A000217 (triangular numbers), A000290 (squares), A000292 (tetrahedral), A000332, A000503 (tan(n)), A000578 (cubes), A000583 (n^4)
Benford's law, sequences known not to satisfy, (02): A001288, A004233, A011557, A095180, A178743, A246564
Benford's law: sequences conjectured to satisfy: A241299, A244059
Benford's law: sequences conjectured not to satisfy:
Benford's law: sequences for which this is an open question: A003095, A087455
Benford's law, sequences related to: A007524, A055439-A055449, A083377-A083380, A104140, A213201, A256218
Benford's law, sequences related to: For factorials with initial digit d (1 <= d <= 9) see A045509, A045510, A045511, A045516, A045517, A045518, A282021, A045519; A045520, A045521, A045522, A045523, A045524, A045525, A045526, A045527, A045528, A045529.
Benford's law, sequences related to: For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509.
Benford numbers: A004002*

Benny, Jack: A056064
bent functions: A004491, A099090
benzene: A000639
Berlekamp's switching game: A005311*
Bernoulli numbers , sequences related to :

Bernoulli numbers B_n: A027641**/A027642*. A027641 has all the references, links and formulae
Bernoulli numbers B_{2n}: A000367*/A002445*, but see especially A027641
Bernoulli numbers (n+1)B_n: A050925/A050932, A002427/A006955
Bernoulli numbers, generalized: A006568, A006569, A002678, A002679
Bernoulli numbers, higher order: A001904, A001905
Bernoulli numbers, irregularity index of primes: A061576, A091888, A007703, A000928, A091887, A073276, A073277, A060975
Bernoulli numbers, numerators and their factorizations: (1) A000367 = numerators, A000928 = irregular primes, A001067, A001896, A002427, A002431, A002443, A002657, A007703, A017329, A027641, A027643
Bernoulli numbers, numerators and their factorizations: (2) A027645, A027647, A029762, A029764, A033470, A033474, A035078, A035112, A043295, A043303, A046988, A050925
Bernoulli numbers, numerators and their factorizations: (3) A053382, A060054, A067778, A068206, A068399, A068528, A069040, A069044, A070192, A070193, A071020, A071772
Bernoulli numbers, numerators and their factorizations: (4) A073276, A075178, A076547, A076549, A079294 = number of prime factors, A083687, A084217, A085092, A085737, A089170, A089644, A089655
Bernoulli numbers, numerators and their factorizations: (5) A090177, A090179, A090495, A090496, A090629, A090789, A090790, A090791, A090793, A090798, A090800, A090817
Bernoulli numbers, numerators and their factorizations: (6) A090818, A090823, A090825, A090865, A090943 = squareful numerators, A090947 = largest prime factor, A091216, A091888, A092132, A092133, A092194, A092195
Bernoulli numbers, numerators and their factorizations: (7) A092221, A092222, A092223, A092224, A092225, A092226, A092227, A092228, A092229, A092230, A092231, A092291
Bernoulli numbers, numerators and their factorizations: (8) A090997, A090987
Bernoulli numbers, poly-Bernoulli numbers: A027643, A027644, A027645, A027646, A027647, A027648, A027649, A027650, A027651
Bernoulli numbers, see also (1): A000146, A000182, A000928, A001469, A001896, A001947, A002105, A002208, A002316, A002431, A002443, A002444
Bernoulli numbers, see also (2): A002657, A002790, A002882, A003245, A003264, A003272, A003326, A003414, A003457, A004193, A006863, A006953
Bernoulli numbers, see also (3): A006954, A014509, A020527, A020528, A020529, A029762, A029763, A029764, A029765, A030076, A033469, A033470
Bernoulli numbers, see also (4): A033471, A033473, A033474, A033475, A035077, A035078, A035112, A045979, A046094, A046968, A047680, A047681
Bernoulli numbers, see also (5): A047682, A047683, A047872, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A189995
Bernoulli numbers, see also (6): A027762, A046969
Bernoulli numbers, triangles that generate: A051714/A051715, A085737/A085738

Bernoulli polynomials, sequences related to :

Bernoulli polynomials, coefficients of: A053382*/A053383*, A048998*, A048999*
Bernoulli polynomials, see also A001898, A002558, A020527, A020528, A020529, A020543, A020544, A020545, A020546

Bernoulli twin numbers: A051716/A051717
Bernstein squares: A097871
Berstel sequence: A007420*
Bertrand's Postulate, sequences related to :

Bertrand's Postulate: A035250*, A036378, A006992, A051501

Bessel function or Bessel polynomial , sequences related to :

Bessel function or Bessel polynomial: (1) A000134, A000155, A000167, A000175, A000249, A000275, A000331, A001880
Bessel function or Bessel polynomial: (2) A001881, A002190, A002506, A006040, A006041, A014401, A039699, A046960, A046961 A046962, A046963
Bessel function or Bessel polynomial: (3) A051148, A051149
Bessel functions: J_0: A002454, J_1: A002474, J_2: A002506, J_3: A014401, J_4: A061403, J_5: A061404, J_6: A061405, J_7: A061407, J_9: A061440 J_10: A061441
Bessel numbers: A006789, A111924, A100861
Bessel polynomial, coefficients of: A001497, A001498
Bessel polynomial, defined: A001515, A001497, A001498
Bessel polynomial, values of: (1) A001515, A001517, A001518, A065919, A001514, A065920, A065921, A065922, A006199, A065707, A000806, A002119
Bessel polynomial, values of: (2) A065923, A001516, A065944, A065945, A065946, A065947, A065948, A065949, A065950, A065951
Bessel triangle: A001497*, A000369, A001498, A011801, A013988, A004747, A049403, A065931, A065943

betrothed numbers: A003502*, A003503*, A005276*


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]