[go: up one dir, main page]

login
A038130
Beatty sequence for 2*Pi.
15
0, 6, 12, 18, 25, 31, 37, 43, 50, 56, 62, 69, 75, 81, 87, 94, 100, 106, 113, 119, 125, 131, 138, 144, 150, 157, 163, 169, 175, 182, 188, 194, 201, 207, 213, 219, 226, 232, 238, 245, 251, 257, 263, 270, 276, 282, 289, 295, 301, 307, 314, 320, 326, 333, 339, 345
OFFSET
0,2
COMMENTS
a(n) = floor[circumference of a circle of radius n]; a(n) = floor(2*Pi*n). - Mohammad K. Azarian, Feb 29 2008
This sequence consists of the nonnegative integers k satisfying sin(k) <= 0 and sin(k+1) >= 0; thus this sequence and A246388 partition A022844 (the Beatty sequence for Pi). - Clark Kimberling, Aug 24 2014
FORMULA
a(n) = floor(n*2*Pi).
MATHEMATICA
Table[Floor[2 n*Pi], {n, 0, 100}] (* or *)
Select[Range[0, 628], Sin[#] <= 0 && Sin[# + 1] >= 0 &] (* Clark Kimberling, Aug 24 2014 *)
CROSSREFS
Complement of A108586.
Sequence in context: A108592 A108593 A172331 * A246295 A108587 A079424
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Mohammad K. Azarian, Feb 29 2008
STATUS
approved