[go: up one dir, main page]

login
A004919
a(n) = floor(n*phi^4), where phi is the golden ratio, A001622.
21
0, 6, 13, 20, 27, 34, 41, 47, 54, 61, 68, 75, 82, 89, 95, 102, 109, 116, 123, 130, 137, 143, 150, 157, 164, 171, 178, 185, 191, 198, 205, 212, 219, 226, 233, 239, 246, 253, 260, 267, 274, 281, 287, 294, 301, 308
OFFSET
0,2
COMMENTS
The golden section or golden ratio is now usually denoted by "phi", but it in the older literature it was more often denoted by "tau." - N. J. A. Sloane, Feb 17 2013
LINKS
A. J. Hildebrand, Junxian Li, Xiaomin Li, and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
FORMULA
a(n) = 2*n + floor(3*n*tau). [Formula corrected by Charles R Greathouse IV, Mar 11 2011]
MATHEMATICA
With[{c=GoldenRatio^4}, Floor[c*Range[0, 50]]] (* Harvey P. Dale, Apr 11 2012 *)
PROG
(Python)
from math import isqrt
def A004919(n): return (3*n+isqrt(45*n**2)>>1)+(n<<1) # Chai Wah Wu, Aug 17 2022
(Magma) [Floor((7+3*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Aug 22 2023
(SageMath) [floor(golden_ratio^4*n) for n in range(61)] # G. C. Greubel, Aug 22 2023
KEYWORD
nonn
STATUS
approved