OFFSET
1,1
COMMENTS
From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Same as A002445.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
LINKS
R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
FORMULA
a(n) = A002445(n). [Joerg Arndt, May 06 2012]
a(n) = A027760(2*n). - Ridouane Oudra, Feb 22 2022
PROG
(PARI)
a(n)=
{
my(s=0);
forprime (p=2, 2*n+1, if( (2*n)%(p-1)==0, s+=1/p ) );
return( denominator(s) );
}
/* Joerg Arndt, May 06 2012 */
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
STATUS
approved