[go: up one dir, main page]

login
A045528
Numbers k such that k! has initial digit '9'.
18
96, 97, 98, 99, 100, 101, 102, 103, 122, 139, 166, 190, 233, 241, 261, 268, 301, 331, 366, 380, 415, 431, 445, 481, 497, 514, 521, 583, 596, 624, 629, 634, 655, 672, 690, 716, 723, 762, 789, 799, 821, 833, 861, 897
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is log_10(10/9) = 1 - log_10(9) = 0.045757... (A104140) (Kunoff, 1987). - Amiram Eldar, Jul 17 2020
LINKS
Sharon Kunoff, N! has the first digit property, The Fibonacci Quarterly, Vol. 25, No. 4 (1987), pp. 365-367.
FORMULA
A008905(a(n)) = 9. - Amiram Eldar, Jul 17 2020
EXAMPLE
96 is a term since 96! = 9.916779... * 10^149 has the initial digit 9.
MATHEMATICA
Select[ Range[ 900 ], IntegerDigits[ #! ] [ [1] ] == 9 & ]
PROG
(PARI) isok(n) = digits(n!)[1] == 9; \\ Michel Marcus, Feb 08 2017
CROSSREFS
For factorials with initial digit d (1 <= d <= 9) see A045509, A045510, A045511, A045516, A045517, A045518, A282021, A045519; A045520, A045521, A045522, A045523, A045524, A045525, A045526, A045527, A045528, A045529. See also A000142, A008905, A104140.
Sequence in context: A050277 A090221 A334654 * A181470 A306104 A257411
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Jan 03 2001
STATUS
approved