[go: up one dir, main page]

login
Search: a006472 -id:a006472
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of the sum of the reciprocals of triangular polygorials A006472.
+20
1
2, 3, 9, 4, 8, 3, 3, 0, 9, 9, 2, 7, 3, 4, 0, 4, 7, 1, 6, 5, 2, 2, 6, 3, 2, 6, 3, 6, 4, 3, 6, 3, 7, 3, 1, 5, 1, 9, 6, 8, 6, 3, 7, 0, 0, 7, 0, 9, 1, 3, 6, 2, 4, 4, 4, 7, 2, 6, 7, 9, 7, 5, 6, 3, 8, 5, 7, 2, 9, 5, 5, 5, 9, 4, 8, 3, 3, 3, 3, 4, 6, 4, 0, 5, 2, 4, 5, 5, 9, 4, 9, 9, 7, 1, 2, 3, 1, 5, 0, 7, 8, 9, 2, 5, 2, 2, 3, 6, 9, 3, 1, 1, 0, 3, 7, 8, 4, 9, 6, 1
OFFSET
1,1
FORMULA
Equals BesselI(1, 2*sqrt(2))/sqrt(2).
EXAMPLE
2.3948330992734047165226326364363731519686370070913624447267975638...
MATHEMATICA
RealDigits[BesselI[1, 2 Sqrt[2]]/Sqrt[2] 10, 120][[1]]
CROSSREFS
Cf. A001113 (of factorials), A070910 (of factorials squared).
Cf. A365077 (continued fraction).
Cf. A006472.
KEYWORD
nonn,cons
AUTHOR
Kelvin Voskuijl, Aug 17 2023
STATUS
approved
Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).
(Formerly M1459 N0577)
+10
4053
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304
OFFSET
0,3
COMMENTS
These were formerly sometimes called Segner numbers.
A very large number of combinatorial interpretations are known - see references, esp. R. P. Stanley, "Catalan Numbers", Cambridge University Press, 2015. This is probably the longest entry in the OEIS, and rightly so.
The solution to Schröder's first problem: number of ways to insert n pairs of parentheses in a word of n+1 letters. E.g., for n=2 there are 2 ways: ((ab)c) or (a(bc)); for n=3 there are 5 ways: ((ab)(cd)), (((ab)c)d), ((a(bc))d), (a((bc)d)), (a(b(cd))).
Consider all the binomial(2n,n) paths on squared paper that (i) start at (0, 0), (ii) end at (2n, 0) and (iii) at each step, either make a (+1,+1) step or a (+1,-1) step. Then the number of such paths that never go below the x-axis (Dyck paths) is C(n). [Chung-Feller]
Number of noncrossing partitions of the n-set. For example, of the 15 set partitions of the 4-set, only [{13},{24}] is crossing, so there are a(4)=14 noncrossing partitions of 4 elements. - Joerg Arndt, Jul 11 2011
a(n-1) is the number of ways of expressing an n-cycle (123...n) in the symmetric group S_n as a product of n-1 transpositions (u_1,v_1)*(u_2,v_2)*...*(u_{n-1},v_{n-1}) where u_i<v_i and u_k <= u_j for k < j; see example. If the condition is dropped, one obtains A000272. - Joerg Arndt and Greg Stevenson, Jul 11 2011
Noncrossing partitions are partitions of genus 0. - Robert Coquereaux, Feb 13 2024
a(n) is the number of ordered rooted trees with n nodes, not including the root. See the Conway-Guy reference where these rooted ordered trees are called plane bushes. See also the Bergeron et al. reference, Example 4, p. 167. - Wolfdieter Lang, Aug 07 2007
As shown in the paper from Beineke and Pippert (1971), a(n-2)=D(n) is the number of labeled dissections of a disk, related to the number R(n)=A001761(n-2) of labeled planar 2-trees having n vertices and rooted at a given exterior edge, by the formula D(n)=R(n)/(n-2)!. - M. F. Hasler, Feb 22 2012
Shifts one place left when convolved with itself.
For n >= 1, a(n) is also the number of rooted bicolored unicellular maps of genus 0 on n edges. - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 15 2001
Number of ways of joining 2n points on a circle to form n nonintersecting chords. (If no such restriction imposed, then the number of ways of forming n chords is given by (2n-1)!! = (2n)!/(n!*2^n) = A001147(n).)
Arises in Schubert calculus - see Sottile reference.
Inverse Euler transform of sequence is A022553.
With interpolated zeros, the inverse binomial transform of the Motzkin numbers A001006. - Paul Barry, Jul 18 2003
The Hankel transforms of this sequence or of this sequence with the first term omitted give A000012 = 1, 1, 1, 1, 1, 1, ...; example: Det([1, 1, 2, 5; 1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132]) = 1 and Det([1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132; 14, 42, 132, 429]) = 1. - Philippe Deléham, Mar 04 2004
a(n) equals the sum of squares of terms in row n of triangle A053121, which is formed from successive self-convolutions of the Catalan sequence. - Paul D. Hanna, Apr 23 2005
Also coefficients of the Mandelbrot polynomial M iterated an infinite number of times. Examples: M(0) = 0 = 0*c^0 = [0], M(1) = c = c^1 + 0*c^0 = [1 0], M(2) = c^2 + c = c^2 + c^1 + 0*c^0 = [1 1 0], M(3) = (c^2 + c)^2 + c = [0 1 1 2 1], ... ... M(5) = [0 1 1 2 5 14 26 44 69 94 114 116 94 60 28 8 1], ... - Donald D. Cross (cosinekitty(AT)hotmail.com), Feb 04 2005
The multiplicity with which a prime p divides C_n can be determined by first expressing n+1 in base p. For p=2, the multiplicity is the number of 1 digits minus 1. For p an odd prime, count all digits greater than (p+1)/2; also count digits equal to (p+1)/2 unless final; and count digits equal to (p-1)/2 if not final and the next digit is counted. For example, n=62, n+1 = 223_5, so C_62 is not divisible by 5. n=63, n+1 = 224_5, so 5^3 | C_63. - Franklin T. Adams-Watters, Feb 08 2006
Koshy and Salmassi give an elementary proof that the only prime Catalan numbers are a(2) = 2 and a(3) = 5. Is the only semiprime Catalan number a(4) = 14? - Jonathan Vos Post, Mar 06 2006
The answer is yes. Using the formula C_n = binomial(2n,n)/(n+1), it is immediately clear that C_n can have no prime factor greater than 2n. For n >= 7, C_n > (2n)^2, so it cannot be a semiprime. Given that the Catalan numbers grow exponentially, the above consideration implies that the number of prime divisors of C_n, counted with multiplicity, must grow without limit. The number of distinct prime divisors must also grow without limit, but this is more difficult. Any prime between n+1 and 2n (exclusive) must divide C_n. That the number of such primes grows without limit follows from the prime number theorem. - Franklin T. Adams-Watters, Apr 14 2006
The number of ways to place n indistinguishable balls in n numbered boxes B1,...,Bn such that at most a total of k balls are placed in boxes B1,...,Bk for k=1,...,n. For example, a(3)=5 since there are 5 ways to distribute 3 balls among 3 boxes such that (i) box 1 gets at most 1 ball and (ii) box 1 and box 2 together get at most 2 balls:(O)(O)(O), (O)()(OO), ()(OO)(O), ()(O)(OO), ()()(OOO). - Dennis P. Walsh, Dec 04 2006
a(n) is also the order of the semigroup of order-decreasing and order-preserving full transformations (of an n-element chain) - now known as the Catalan monoid. - Abdullahi Umar, Aug 25 2008
a(n) is the number of trivial representations in the direct product of 2n spinor (the smallest) representations of the group SU(2) (A(1)). - Rutger Boels (boels(AT)nbi.dk), Aug 26 2008
The invert transform appears to converge to the Catalan numbers when applied infinitely many times to any starting sequence. - Mats Granvik, Gary W. Adamson and Roger L. Bagula, Sep 09 2008, Sep 12 2008
Limit_{n->oo} a(n)/a(n-1) = 4. - Francesco Antoni (francesco_antoni(AT)yahoo.com), Nov 24 2008
Starting with offset 1 = row sums of triangle A154559. - Gary W. Adamson, Jan 11 2009
C(n) is the degree of the Grassmannian G(1,n+1): the set of lines in (n+1)-dimensional projective space, or the set of planes through the origin in (n+2)-dimensional affine space. The Grassmannian is considered a subset of N-dimensional projective space, N = binomial(n+2,2) - 1. If we choose 2n general (n-1)-planes in projective (n+1)-space, then there are C(n) lines that meet all of them. - Benji Fisher (benji(AT)FisherFam.org), Mar 05 2009
Starting with offset 1 = A068875: (1, 2, 4, 10, 18, 84, ...) convolved with Fine numbers, A000957: (1, 0, 1, 2, 6, 18, ...). a(6) = 132 = (1, 2, 4, 10, 28, 84) dot (18, 6, 2, 1, 0, 1) = (18 + 12 + 8 + 10 + 0 + 84) = 132. - Gary W. Adamson, May 01 2009
Convolved with A032443: (1, 3, 11, 42, 163, ...) = powers of 4, A000302: (1, 4, 16, ...). - Gary W. Adamson, May 15 2009
Sum_{k>=1} C(k-1)/2^(2k-1) = 1. The k-th term in the summation is the probability that a random walk on the integers (beginning at the origin) will arrive at positive one (for the first time) in exactly (2k-1) steps. - Geoffrey Critzer, Sep 12 2009
C(p+q)-C(p)*C(q) = Sum_{i=0..p-1, j=0..q-1} C(i)*C(j)*C(p+q-i-j-1). - Groux Roland, Nov 13 2009
Leonhard Euler used the formula C(n) = Product_{i=3..n} (4*i-10)/(i-1) in his 'Betrachtungen, auf wie vielerley Arten ein gegebenes polygonum durch Diagonallinien in triangula zerschnitten werden könne' and computes by recursion C(n+2) for n = 1..8. (Berlin, 4th September 1751, in a letter to Goldbach.) - Peter Luschny, Mar 13 2010
Let A179277 = A(x). Then C(x) is satisfied by A(x)/A(x^2). - Gary W. Adamson, Jul 07 2010
a(n) is also the number of quivers in the mutation class of type B_n or of type C_n. - Christian Stump, Nov 02 2010
From Matthew Vandermast, Nov 22 2010: (Start)
Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1) equals the number of ways to choose 0 or more balls of each color while satisfying the following conditions: 1. No two colors are chosen the same positive number of times. 2. For any two colors (c, d) that are chosen at least once, color c is chosen more times than color d iff color c appears more times in the original set than color d.
If the second requirement is lifted, the number of acceptable ways equals A000110(n+1). See related comments for A016098, A085082. (End)
Deutsch and Sagan prove the Catalan number C_n is odd if and only if n = 2^a - 1 for some nonnegative integer a. Lin proves for every odd Catalan number C_n, we have C_n == 1 (mod 4). - Jonathan Vos Post, Dec 09 2010
a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} such that f(1)=1 and for all n >= 1 f(n+1) <= f(n)+1. For a nice bijection between this set of functions and the set of length 2n Dyck words, see page 333 of the Fxtbook (see link below). - Geoffrey Critzer, Dec 16 2010
Postnikov (2005) defines "generalized Catalan numbers" associated with buildings (e.g., Catalan numbers of Type B, see A000984). - N. J. A. Sloane, Dec 10 2011
Number of permutations in S(n) for which length equals depth. - Bridget Tenner, Feb 22 2012
a(n) is also the number of standard Young tableau of shape (n,n). - Thotsaporn Thanatipanonda, Feb 25 2012
a(n) is the number of binary sequences of length 2n+1 in which the number of ones first exceed the number of zeros at entry 2n+1. See the example below in the example section. - Dennis P. Walsh, Apr 11 2012
Number of binary necklaces of length 2*n+1 containing n 1's (or, by symmetry, 0's). All these are Lyndon words and their representatives (as cyclic maxima) are the binary Dyck words. - Joerg Arndt, Nov 12 2012
Number of sequences consisting of n 'x' letters and n 'y' letters such that (counting from the left) the 'x' count >= 'y' count. For example, for n=3 we have xxxyyy, xxyxyy, xxyyxy, xyxxyy and xyxyxy. - Jon Perry, Nov 16 2012
a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps come in 2 colors. Example: a(4)=14 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 8 paths of shape HHH, 2 paths of shape UHD, 2 paths of shape UDH, and 2 paths of shape HUD. - José Luis Ramírez Ramírez, Jan 16 2013
If p is an odd prime, then (-1)^((p-1)/2)*a((p-1)/2) mod p = 2. - Gary Detlefs, Feb 20 2013
Conjecture: For any positive integer n, the polynomial Sum_{k=0..n} a(k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 23 2013
a(n) is the size of the Jones monoid on 2n points (cf. A225798). - James Mitchell, Jul 28 2013
For 0 < p < 1, define f(p) = Sum_{n>=0} a(n)*(p*(1-p))^n, then f(p) = min{1/p, 1/(1-p)}, so f(p) reaches its maximum value 2 at p = 0.5, and p*f(p) is constant 1 for 0.5 <= p < 1. - Bob Selcoe, Nov 16 2013 [Corrected by Jianing Song, May 21 2021]
No a(n) has the form x^m with m > 1 and x > 1. - Zhi-Wei Sun, Dec 02 2013
From Alexander Adamchuk, Dec 27 2013: (Start)
Prime p divides a((p+1)/2) for p > 3. See A120303(n) = Largest prime factor of Catalan number.
Reciprocal Catalan Constant C = 1 + 4*sqrt(3)*Pi/27 = 1.80613.. = A121839.
Log(Phi) = (125*C - 55) / (24*sqrt(5)), where C = Sum_{k>=1} (-1)^(k+1)*1/a(k). See A002390 = Decimal expansion of natural logarithm of golden ratio.
3-d analog of the Catalan numbers: (3n)!/(n!(n+1)!(n+2)!) = A161581(n) = A006480(n) / ((n+1)^2*(n+2)), where A006480(n) = (3n)!/(n!)^3 De Bruijn's S(3,n). (End)
For a relation to the inviscid Burgers's, or Hopf, equation, see A001764. - Tom Copeland, Feb 15 2014
From Fung Lam, May 01 2014: (Start)
One class of generalized Catalan numbers can be defined by g.f. A(x) = (1-sqrt(1-q*4*x*(1-(q-1)*x)))/(2*q*x) with nonzero parameter q. Recurrence: (n+3)*a(n+2) -2*q*(2*n+3)*a(n+1) +4*q*(q-1)*n*a(n) = 0 with a(0)=1, a(1)=1.
Asymptotic approximation for q >= 1: a(n) ~ (2*q+2*sqrt(q))^n*sqrt(2*q*(1+sqrt(q))) /sqrt(4*q^2*Pi*n^3).
For q <= -1, the g.f. defines signed sequences with asymptotic approximation: a(n) ~ Re(sqrt(2*q*(1+sqrt(q)))*(2*q+2*sqrt(q))^n) / sqrt(q^2*Pi*n^3), where Re denotes the real part. Due to Stokes' phenomena, accuracy of the asymptotic approximation deteriorates at/near certain values of n.
Special cases are A000108 (q=1), A068764 to A068772 (q=2 to 10), A240880 (q=-3).
(End)
Number of sequences [s(0), s(1), ..., s(n)] with s(n)=0, Sum_{j=0..n} s(j) = n, and Sum_{j=0..k} s(j)-1 >= 0 for k < n-1 (and necessarily Sum_{j=0..n-1} s(j)-1 = 0). These are the branching sequences of the (ordered) trees with n non-root nodes, see example. - Joerg Arndt, Jun 30 2014
Number of stack-sortable permutations of [n], these are the 231-avoiding permutations; see the Bousquet-Mélou reference. - Joerg Arndt, Jul 01 2014
a(n) is the number of increasing strict binary trees with 2n-1 nodes that avoid 132. For more information about increasing strict binary trees with an associated permutation, see A245894. - Manda Riehl, Aug 07 2014
In a one-dimensional medium with elastic scattering (zig-zag walk), first recurrence after 2n+1 scattering events has the probability C(n)/2^(2n+1). - Joachim Wuttke, Sep 11 2014
The o.g.f. C(x) = (1 - sqrt(1-4x))/2, for the Catalan numbers, with comp. inverse Cinv(x) = x*(1-x) and the functions P(x) = x / (1 + t*x) and its inverse Pinv(x,t) = -P(-x,t) = x / (1 - t*x) form a group under composition that generates or interpolates among many classic arrays, such as the Motzkin (Riordan, A005043), Fibonacci (A000045), and Fine (A000957) numbers and polynomials (A030528), and enumerating arrays for Motzkin, Dyck, and Łukasiewicz lattice paths and different types of trees and non-crossing partitions (A091867, connected to sums of the refined Narayana numbers A134264). - Tom Copeland, Nov 04 2014
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
The Catalan number series A000108(n+3), offset n=0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset n=0 (empirical observation). - Tony Foster III, Sep 05 2016
Hankel transforms of the Catalan numbers with the first 2, 4, and 5 terms omitted give A001477, A006858, and A091962, respectively, without the first 2 terms in all cases. More generally, the Hankel transform of the Catalan numbers with the first k terms omitted is H_k(n) = Product_{j=1..k-1} Product_{i=1..j} (2*n+j+i)/(j+i) [see Cigler (2011), Eq. (1.14) and references therein]; together they form the array A078920/A123352/A368025. - Andrey Zabolotskiy, Oct 13 2016
Presumably this satisfies Benford's law, although the results in Hürlimann (2009) do not make this clear. See S. J. Miller, ed., 2015, p. 5. - N. J. A. Sloane, Feb 09 2017
Coefficients of the generating series associated to the Magmatic and Dendriform operadic algebras. Cf. p. 422 and 435 of the Loday et al. paper. - Tom Copeland, Jul 08 2018
Let M_n be the n X n matrix with M_n(i,j) = binomial(i+j-1,2j-2); then det(M_n) = a(n). - Tony Foster III, Aug 30 2018
Also the number of Catalan trees, or planted plane trees (Bona, 2015, p. 299, Theorem 4.6.3). - N. J. A. Sloane, Dec 25 2018
Number of coalescent histories for a caterpillar species tree and a matching caterpillar gene tree with n+1 leaves (Rosenberg 2007, Corollary 3.5). - Noah A Rosenberg, Jan 28 2019
Finding solutions of eps*x^2+x-1 = 0 for eps small, that is, writing x = Sum_{n>=0} x_{n}*eps^n and expanding, one finds x = 1 - eps + 2*eps^2 - 5*eps^3 + 14*eps^3 - 42*eps^4 + ... with x_{n} = (-1)^n*C(n). Further, letting x = 1/y and expanding y about 0 to find large roots, that is, y = Sum_{n>=1} y_{n}*eps^n, one finds y = 0 - eps + eps^2 - 2*eps^3 + 5*eps^3 - ... with y_{n} = (-1)^n*C(n-1). - Derek Orr, Mar 15 2019
Permutations of length n that produce a bipartite permutation graph of order n [see Knuth (1973), Busch (2006), Golumbic and Trenk (2004)]. - Elise Anderson, R. M. Argus, Caitlin Owens, Tessa Stevens, Jun 27 2019
For n > 0, a random selection of n + 1 objects (the minimum number ensuring one pair by the pigeonhole principle) from n distinct pairs of indistinguishable objects contains only one pair with probability 2^(n-1)/a(n) = b(n-1)/A098597(n), where b is the 0-offset sequence with the terms of A120777 repeated (1,1,4,4,8,8,64,64,128,128,...). E.g., randomly selecting 6 socks from 5 pairs that are black, blue, brown, green, and white, results in only one pair of the same color with probability 2^(5-1)/a(5) = 16/42 = 8/21 = b(4)/A098597(5). - Rick L. Shepherd, Sep 02 2019
See Haran & Tabachnikov link for a video discussing Conway-Coxeter friezes. The Conway-Coxeter friezes with n nontrivial rows are generated by the counts of triangles at each vertex in the triangulations of regular n-gons, of which there are a(n). - Charles R Greathouse IV, Sep 28 2019
For connections to knot theory and scattering amplitudes from Feynman diagrams, see Broadhurst and Kreimer, and Todorov. Eqn. 6.12 on p. 130 of Bessis et al. becomes, after scaling, -12g * r_0(-y/(12g)) = (1-sqrt(1-4y))/2, the o.g.f. (expressed as a Taylor series in Eqn. 7.22 in 12gx) given for the Catalan numbers in Copeland's (Sep 30 2011) formula below. (See also Mizera p. 34, Balduf pp. 79-80, Keitel and Bartosch.) - Tom Copeland, Nov 17 2019
Number of permutations in S_n whose principal order ideals in the weak order are modular lattices. - Bridget Tenner, Jan 16 2020
Number of permutations in S_n whose principal order ideals in the weak order are distributive lattices. - Bridget Tenner, Jan 16 2020
Legendre gives the following formula for computing the square root modulo 2^m:
sqrt(1 + 8*a) mod 2^m = (1 + 4*a*Sum_{i=0..m-4} C(i)*(-2*a)^i) mod 2^m
as cited by L. D. Dickson, History of the Theory of Numbers, Vol. 1, 207-208. - Peter Schorn, Feb 11 2020
a(n) is the number of length n permutations sorted to the identity by a consecutive-132-avoiding stack followed by a classical-21-avoiding stack. - Kai Zheng, Aug 28 2020
Number of non-crossing partitions of a 2*n-set with n blocks of size 2. Also number of non-crossing partitions of a 2*n-set with n+1 blocks of size at most 3, and without cyclical adjacencies. The two partitions can be mapped by rotated Kreweras bijection. - Yuchun Ji, Jan 18 2021
Named by Riordan (1968, and earlier in Mathematical Reviews, 1948 and 1964) after the French and Belgian mathematician Eugène Charles Catalan (1814-1894) (see Pak, 2014). - Amiram Eldar, Apr 15 2021
For n >= 1, a(n-1) is the number of interpretations of x^n is an algebra where power-associativity is not assumed. For example, for n = 4 there are a(3) = 5 interpretations: x(x(xx)), x((xx)x), (xx)(xx), (x(xx))x, ((xx)x)x. See the link "Non-associate powers and a functional equation" from I. M. H. Etherington and the page "Nonassociative Product" from Eric Weisstein's World of Mathematics for detailed information. See also A001190 for the case where multiplication is commutative. - Jianing Song, Apr 29 2022
Number of states in the transition diagram associated with the Laplacian system over the complete graph K_N, corresponding to ordered initial conditions x_1 < x_2 < ... < x_N. - Andrea Arlette España, Nov 06 2022
a(n) is the number of 132-avoiding stabilized-interval-free permutations of size n+1. - Juan B. Gil, Jun 22 2023
Number of rooted polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
a(n) is the number of extremely lucky Stirling permutations of order n; i.e., the number of Stirling permutations of order n that have exactly n lucky cars. (see Colmenarejo et al. reference) - Bridget Tenner, Apr 16 2024
REFERENCES
The large number of references and links demonstrates the ubiquity of the Catalan numbers.
R. Alter, Some remarks and results on Catalan numbers, pp. 109-132 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 2, edited R. C. Mullin et al., 1971.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, many references.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 53.
J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, ch. 4, pp. 96-106.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 183, 196, etc.).
Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
E. Deutsch, Dyck path enumeration, Discrete Math., 204, 167-202, 1999.
E. Deutsch and L. Shapiro, Seventeen Catalan identities, Bulletin of the Institute of Combinatorics and its Applications, 31, 31-38, 2001.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, 207-208.
Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182-2212. MR2404544 (2009j:05019)
S. Dulucq and J.-G. Penaud, Cordes, arbres et permutations. Discrete Math. 117 (1993), no. 1-3, 89-105.
A. Errera, Analysis situs - Un problème d'énumération, Mémoires Acad. Bruxelles, Classe des sciences, Série 2, Vol. XI, Fasc. 6, No. 1421 (1931), 26 pp.
Ehrenfeucht, Andrzej; Haemer, Jeffrey; Haussler, David. Quasimonotonic sequences: theory, algorithms and applications. SIAM J. Algebraic Discrete Methods 8 (1987), no. 3, 410-429. MR0897739 (88h:06026)
I. M. H. Etherington, Non-associate powers and a functional equation. The Mathematical Gazette, 21 (1937): 36-39; addendum 21 (1937), 153.
I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc., 10 (1997), 139-167.
Susanna Fishel, Myrto Kallipoliti and Eleni Tzanaki, Facets of the Generalized Cluster Complex and Regions in the Extended Catalan Arrangement of Type A, The electronic Journal of Combinatorics 20(4) (2013), #P7.
D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
H. G. Forder, Some problems in combinatorics, Math. Gazette, vol. 45, 1961, 199-201.
Fürlinger, J.; Hofbauer, J., q-Catalan numbers. J. Combin. Theory Ser. A 40 (1985), no. 2, 248-264. MR0814413 (87e:05017)
M. Gardner, Time Travel and Other Mathematical Bewilderments, Chap. 20 pp. 253-266, W. H. Freeman NY 1988.
James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
M. C. Golumbic and A. N. Trenk, Tolerance graphs, Vol. 89, Cambridge University Press, 2004, pp. 32.
S Goodenough, C Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16,
H. W. Gould, Research bibliography of two special number sequences, Mathematica Monongaliae, Vol. 12, 1971.
D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
M. Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), 53-63 and 85-93.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 530.
N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis. Amer. Math. Monthly 80 (1973), 868-876.
Peter Hajnal and Gabor V. Nagy, A bijective proof of Shapiro's Catalan convolution, Elect. J. Combin., 21 (2014), #P2.42.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 67, (3.3.23).
F. Harary, G. Prins, and W. T. Tutte, The number of plane trees. Indag. Math. 26, 319-327, 1964.
J. Harris, Algebraic Geometry: A First Course (GTM 133), Springer-Verlag, 1992, pages 245-247.
S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math., 308 (2008), 5954-5964.
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
Higgins, Peter M. Combinatorial results for semigroups of order-preserving mappings. Math. Proc. Camb. Phil. Soc. (1993), 113: 281-296.
B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
F. Hurtado, M. Noy, Ears of triangulations and Catalan numbers, Discrete Mathematics, Volume 149, Issues 1-3, Feb 22 1996, Pages 319-324.
M. Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5.
R. H. Jeurissen, Raney and Catalan, Discrete Math., 308 (2008), 6298-6307.
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 36.
Kim, Ki Hang; Rogers, Douglas G.; Roush, Fred W. Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013)
Klarner, D. A. A Correspondence Between Sets of Trees. Indag. Math. 31, 292-296, 1969.
M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
D. E. Knuth, The Art of Computer Programming, 2nd Edition, Vol. 1, Addison-Wesley, 1973, pp. 238.
D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.6 (p. 450).
Thomas Koshy and Mohammad Salmassi, "Parity and Primality of Catalan Numbers", College Mathematics Journal, Vol. 37, No. 1 (Jan 2006), pp. 52-53.
M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146.
P. Lafar and C. T. Long, A combinatorial problem, Amer. Math. Mnthly, 69 (1962), 876-883.
Laradji, A. and Umar, A. On certain finite semigroups of order-decreasing transformations I, Semigroup Forum 69 (2004), 184-200.
P. J. Larcombe, On pre-Catalan Catalan numbers: Kotelnikow (1766), Mathematics Today, 35 (1999), p. 25.
P. J. Larcombe, On the history of the Catalan numbers: a first record in China, Mathematics Today, 35 (1999), p. 89.
P. J. Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum, 32 (1999/2000), 5-7.
P. J. Larcombe and P. D. C. Wilson, On the trail of the Catalan sequence, Mathematics Today, 34 (1998), 114-117.
P. J. Larcombe and P. D. C. Wilson, On the generating function of the Catalan sequence: a historical perspective, Congress. Numer., 149 (2001), 97-108.
G. S. Lueker, Some techniques for solving recurrences, Computing Surveys, 12 (1980), 419-436.
J. J. Luo, Antu Ming, the first inventor of Catalan numbers in the world [in Chinese], Neimenggu Daxue Xuebao, 19 (1998), 239-245.
C. L. Mallows, R. J. Vanderbei, Which Young Tableaux Can Represent an Outer Sum?, Journal of Integer Sequences, Vol. 18, 2015, #15.9.1.
Toufik Mansour, Matthias Schork, and Mark Shattuck, Catalan numbers and pattern restricted set partitions. Discrete Math. 312(2012), no. 20, 2979-2991. MR2956089
Toufik Mansour and Simone Severini, Enumeration of (k,2)-noncrossing partitions, Discrete Math., 308 (2008), 4570-4577.
M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000). Zbl 0945.05037
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
A. Milicevic and N. Trinajstic, "Combinatorial Enumeration in Chemistry", Chem. Modell., Vol. 4, (2006), pp. 405-469.
Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015.
David Molnar, "Wiggly Games and Burnside's Lemma", Chapter 8, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 102.
C. O. Oakley and R. J. Wisner, Flexagons, Amer. Math. Monthly, 64 (1957), 143-154.
A. Panholzer and H. Prodinger, Bijections for ternary trees and non-crossing trees, Discrete Math., 250 (2002), 181-195 (see Eq. 4).
Papoulis, Athanasios. "A new method of inversion of the Laplace transform."Quart. Appl. Math 14.405-414 (1957): 124.
S. G. Penrice, Stacks, bracketings and CG-arrangements, Math. Mag., 72 (1999), 321-324.
C. A. Pickover, Wonders of Numbers, Chap. 71, Oxford Univ. Press NY 2000.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
G. Pólya, On the number of certain lattice polygons. J. Combinatorial Theory 6 1969 102-105. MR0236031 (38 #4329)
C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly, 112 (2015), 636-644.
Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
Ronald C. Read, "The Graph Theorists who Count -- and What They Count", in 'The Mathematical Gardner', in D. A. Klarner, Ed., pp. 331-334, Wadsworth CA 1989.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
T. Santiago Costa Oliveira, "Catalan traffic" and integrals on the Grassmannian of lines, Discr. Math., 308 (2007), 148-152.
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
Shapiro, Louis W. Catalan numbers and "total information" numbers. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 531-539. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0398853 (53 #2704).
L. W. Shapiro, A short proof of an identity of Touchard's concerning Catalan numbers, J. Combin. Theory, A 20 (1976), 375-376.
L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
L. W. Shapiro, W.-J. Woan and S. Getu, The Catalan numbers via the World Series, Math. Mag., 66 (1993), 20-22.
D. M. Silberger, Occurrences of the integer (2n-2)!/n!(n-1)!, Roczniki Polskiego Towarzystwa Math. 13 (1969): 91-96.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
S. Snover and S. Troyer, Multidimensional Catalan numbers, Abstracts 848-05-94 and 848-05-95, 848th Meeting, Amer. Math. Soc., Worcester Mass., March 15-16, 1989.
Solomon, A. Catalan monoids, monoids of local endomorphisms and their presentations. Semigroup Forum 53 (1996), 351-368.
R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, Vol. 2, 1999; see especially Chapter 6.
R. P. Stanley, Recent Progress in Algebraic Combinatorics, Bull. Amer. Math. Soc., 40 (2003), 55-68.
Richard P. Stanley, "Catalan Numbers", Cambridge University Press, 2015.
J. J. Sylvester, On reducible cyclodes, Coll. Math. Papers, Vol. 2, see especially page 670, where Catalan numbers appear.
Thiel, Marko. "A new cyclic sieving phenomenon for Catalan objects." Discrete Mathematics 340.3 (2017): 426-429.
I. Vun and P. Belcher, Catalan numbers, Mathematical Spectrum, 30 (1997/1998), 3-5.
D. Wells, Penguin Dictionary of Curious and Interesting Numbers, Entry 42 p 121, Penguin Books, 1987.
D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 41.
J. Wuttke, The zig-zag walk with scattering and absorption on the real half line and in a lattice model, J. Phys. A 47 (2014), 215203, 1-9.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..1000 (first 200 terms from N. J. A. Sloane, first 351 from K. D. Bajpai)
James Abello, The weak Bruhat order of S_Sigma, consistent sets, and Catalan numbers, SIAM J. Discrete Math. 4 (1991), 1-16.
Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Mathematics, 335 (2014), 1-7.
M. Aigner, Enumeration via ballot numbers, Discrete Mathematics, Vol. 308, No. 12 (2008), 2544-2563.
R. Alter and K. K. Kubota, Prime and prime power divisibility of Catalan numbers, Journal of Combinatorial Theory, Series A, Vol. 15, No. 3 (1973), 243-256.
M. J. H. Al-Kaabi, D. Manchon and F. Patras, Chapter 2 of Monomial bases and pre-Lie structure for free Lie algebras, arXiv:1708.08312 [math.RA], 2017, See p. 3.
P. C. Allaart and K. Kawamura, The Takagi function: a survey, Real Analysis Exchange, 37 (2011/12), 1-54; arXiv:1110.1691 [math.CA]. See Section 3.2.
N. Alon, Y. Caro and I. Krasikov, Bisection of trees and sequences, Discrete Math., 114 (1993), 3-7. (See Lemma 2.1.)
G. Alvarez, J. E. Bergner and R. Lopez, Action graphs and Catalan numbers, arXiv preprint arXiv:1503.00044 [math.CO], 2015.
George E. Andrews, Catalan numbers, q-Catalan numbers and hypergeometric series, Journal of Combinatorial Theory, Series A, Vol. 44, No. 2 (1987), 267-273.
Federico Ardila, Catalan Numbers, 2016.
Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274 16; See Table 2.8. Also arXiv:math/0611106, 2006-2007.
Joerg Arndt, Matters Computational (The Fxtbook), p. 333 and p. 337.
Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], 2019.
Jean-Christophe Aval, Multivariate Fuss-Catalan numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., 27 (2002), 29-48. (C(n) = number of triangulations of cyclic polytope C(n,2).)
R. Bacher and C. Krattenthaler, Chromatic statistics for triangulations and Fuss-Catalan complexes, Electronic Journal of Combinatorics, Vol. 18, No. 1 (2011), #P152.
D. F. Bailey, Counting Arrangements of 1's and -1's, Mathematics Magazine 69(2) 128-131 1996.
I. Bajunaid et al., Function Series, Catalan Numbers, and Random Walks on Trees, The American Mathematical Monthly, Vol. 112, No. 9 (2005), 765-785.
P. Balduf, The propagator and diffeomorphisms of an interacting field theory, Master's thesis, submitted to the Institut für Physik, Mathematisch-Naturwissenschaftliche Fakultät, Humboldt-Universität, Berlin, 2018.
C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, INRIA report 3661, preprint for FPSAC 99, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
S. Barbero, U. Cerruti and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7, theorem 17.
E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, Permutations avoiding an increasing number of length-increasing forbidden subsequences, Discrete Mathematics and Theoretical Computer Science 4, 2000, 31-44.
E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, Some permutations with forbidden subsequences and their inversion number, Discrete Mathematics, Vol. 234, No. 1-3 (2001), 1-15.
E. Barcucci, A. Frosini and S. Rinaldi, On directed-convex polyominoes in a rectangle, Discrete Mathematics, Vol. 298, No. 1-3 (2005), 62-78.
Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016).
Jean-Luc Baril, David Bevan and Sergey Kirgizov, Bijections between directed animals, multisets and Grand-Dyck paths, arXiv:1906.11870 [math.CO], 2019.
Jean-Luc Baril, C. Khalil and V. Vajnovszki, Catalan and Schröder permutations sortable by two restricted stacks, arXiv:2004.01812 [cs.DM], 2020.
Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.
Jean-Luc Baril, Sergey Kirgizov, José L. Ramírez, and Diego Villamizar, The Combinatorics of Motzkin Polyominoes, arXiv:2401.06228 [math.CO], 2024. See page 1.
Jean-Luc Baril, Sergey Kirgizov and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
Jean-Luc Baril, T. Mansour and A. Petrossian, Equivalence classes of permutations modulo excedances, 2014.
Jean-Luc Baril and J.-M. Pallo, Motzkin subposet and Motzkin geodesics in Tamari lattices, 2013.
Jean-Luc Baril and Armen Petrossian, Equivalence classes of Dyck paths modulo some statistics, Discrete Mathematics, Vol. 338, No. 4 (2015), 655-660.
Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016), 343-385.
Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2
Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv:1107.5490 [math.CO], 2011.
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
A. M. Baxter and L. K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014.
Margaret Bayer and Keith Brandt, The Pill Problem, Lattice Paths and Catalan Numbers, preprint, Mathematics Magazine, Vol. 87, No. 5 (December 2014), pp. 388-394.
Christian Bean, A. Claesson and H. Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2015.
Nicholas R. Beaton, Mathilde Bouvel, Veronica Guerrini and Simone Rinaldi, Enumerating five families of pattern-avoiding inversion sequences; and introducing the powered Catalan numbers, arXiv:1808.04114 [math.CO], 2018.
L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen 191 (1971), 87-98.
E. T. Bell, The Iterated Exponential Integers, Annals of Mathematics, Vol. 39, No. 3 (1938), 539-557.
Maciej Bendkowski and Pierre Lescanne, Combinatorics of explicit substitutions, arXiv:1804.03862 [cs.LO], 2018.
Matthew Bennett, Vyjayanthi Chari, R. J. Dolbin and Nathan Manning, Square partitions and Catalan numbers, arXiv:0912.4983 [math.RT], 2009.
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-like Structures, Encyclopedia of Mathematics and its Applications 67 (1997), see pp. 163, 167, 168, 252, 256, 291.
Julia E. Bergner, Cedric Harper, Ryan Keller and Mathilde Rosi-Marshall, Action graphs, planar rooted forests, and self-convolutions of the Catalan numbers, arXiv:1807.03005 [math.CO], 2018.
E. E. Bernard and P. D. A. Mole, Generating strategies for continuous separation processes, Computer J., 2 (1959), 87-89. [Annotated scanned copy]
E. E. Bernard and P. D. A. Mole, Generating Strategies for Continuous Separation Processes, The Computer Journal, Vol. 2, No. 2 (1959), 87-89.
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discrete Mathematics, Vol. 204, No. 1-3 (1999), 73-112.
A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations Defining Convex Permutominoes, Journal of Integer Sequences 10 (2007), Article 07.9.7.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures].
D. Bessis, C. Itzykson, and J. B. Zuber, Quantum Field Theory Techniques in Graphical Enumeration, Adv. in Applied Math., Vol. I, Issue 3, Jun 1980, p. 109-157.
D. Birmajer, J. B. Gil, J. O. Tirrell, and M. D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
Aubrey Blecher, Charlotte Brennan and Arnold Knopfmacher, Water capacity of Dyck paths, Advances in Applied Mathematics (2019) Vol. 112, 101945.
Natasha Blitvić and Einar Steingrímsson, Permutations, moments, measures, arXiv:2001.00280 [math.CO], 2020.
Miklós Bóna, Surprising Symmetries in Objects Counted by Catalan Numbers, Electronic J. Combin., 19 (2012), P62.
M. Bona and B. E. Sagan, On Divisibility of Narayana Numbers by Primes, Journal of Integer Sequences 8 (2005), Article 05.2.4.
T. Bourgeron, Montagnards et polygones [dead link]
Michel Bousquet and Cedric Lamathe, On symmetric structures of order two, Discrete Mathematics and Theoretical Computer Science, Vol. 10, No. 2 (2008), 153-176.
Mireille Bousquet-Mélou, Sorted and/or sortable permutations, Discrete Mathematics, vol.225, no.1-3, pp.25-50, (2000).
M. Bousquet-Mélou and Gilles Schaeffer, Walks on the slit plane, Probability Theory and Related Fields, Vol. 124, no. 3 (2002), 305-344.
M. Bouvel, V. Guerrini and S. Rinaldi, Slicings of parallelogram polyominoes, or how Baxter and Schroeder can be reconciled, arXiv preprint arXiv:1511.04864 [math.CO], 2015.
G. Bowlin and M. G. Brin, Coloring Planar Graphs via Colored Paths in the Associahedra, arXiv preprint arXiv:1301.3984 [math.CO], 2013.
Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012.
Richard Brak, A Universal Bijection for Catalan Structures, arXiv:1808.09078 [math.CO], 2018.
D. Broadhurst and D. Kreimer, Knots and Numbers in phi^4 Theory to 7 Loops and Beyond, arXiv:9504352 [hep-ph], 1995.
K. S. Brown's Mathpages at Math Forum, The Meanings of Catalan Numbers
W. G. Brown, Historical Note on a Recurrent Combinatorial Problem, The American Mathematical Monthly, Vol. 72, No. 9 (1965), 973-977.
W. G. Brown, Historical note on a recurrent combinatorial problem, Amer. Math. Monthly, 72 (1965), 973-977. [Annotated scanned copy]
Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
B. Bukh, PlanetMath.org, Catalan numbers
Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
A. H. Busch, A characterization of triangle-free tolerance graphs, Discrete Applied Mathematics 154, no. 3, 2006 pp. 471.
W. Butler, A. Kalotay and N. J. A. Sloane, Correspondence, 1974
W. Butler and N. J. A. Sloane, Correspondence, 1974
Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
Fangfang Cai, Qing-Hu Hou, Yidong Sun and Arthur L.B. Yang, Combinatorial identities related to 2X2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018.
David Callan, A Combinatorial Interpretation for a Super-Catalan Recurrence, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.8.
D. Callan, A Combinatorial Interpretation of a Catalan Numbers Identity, Mathematics Magazine, Vol. 72, No. 4 (1999), 295-298.
David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
D. Callan, A variant of Touchard's Catalan number identity, arXiv preprint arXiv:1204.5704 [math.CO], 2012.
D. Callan, Pattern avoidance in "flattened" partitions, Discrete Mathematics, Vol. 309, No. 12 (2009), 4187-4191.
D. Callan, The Maximum Associativeness of Division: 11091, The American Mathematical Monthly, Vol. 113, No. 5 (2006), 462-463.
David Callan and Emeric Deutsch, The Run Transform, Discrete Math. 312 (2012), no. 19, 2927-2937, arXiv:1112.3639 [math.CO], 2011.
Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
Peter J. Cameron, Some treelike objects, The Quarterly Journal of Mathematics, Vol. 38, No. 2 (1987), 155-183. See pp. 155, 162.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
Giulio Cerbai, Anders Claesson, Luca Ferrari and Einar Steingrímsson, Sorting with pattern-avoiding stacks: the 132-machine, arXiv:2006.05692 [math.CO], 2020.
José Luis Cereceda, An alternative recursive formula for the sums of powers of integers, arXiv:1510.00731 [math.CO], 2015.
G. Chatel and V. Pilaud, The Cambrian and Baxter-Cambrian Hopf Algebras, arXiv preprint arXiv:1411.3704 [math.CO], 2014.
Cedric Chauve, Yann Ponty and Michael Wallner, Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models, arXiv:1905.04971 [math.CO], 2019.
Young-Ming Chen, The Chung-Feller theorem revisited, Discrete Mathematics, Vol. 308, No. 7 (2008), 1328-1329.
Peter Cholak and Ludovic Patey, Thin set theorems and cone avoidance, arXiv:1812.00188 [math.LO], 2018.
Wun-Seng Chou, Tian-Xiao He and Peter J.-S. Shiue, On the Primality of the Generalized Fuss-Catalan Numbers, Journal of Integer Sequences, Vol. 21 (2018), Article 18.2.1.
Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, Counting Biorders, J. Integer Seqs., Vol. 6, 2003.
Kai Lai Chung and W. Feller, On Fluctuations in Coin-Tossing, Proceedings of the National Academy of Sciences of the United States of America, Vol. 35, No. 10 (1949), 605-608.
J. Cigler, Some nice Hankel determinants, arXiv:1109.1449 [math.CO], 2011.
Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
Laura Colmenarejo, Aleyah Dawkins, Jennifer Elder, Pamela E. Harris, Kimberly J. Harry, Selvi Kara, Dorian Smith, and Bridget Eileen Tenner, On the lucky and displacement statistics of Stirling permutations, arXiv:2403.03280 [math.CO], 2024.
CombOS - Combinatorial Object Server, Generate Dyck paths
Aldo Conca, Hans-Christian Herbig and Srikanth B. Iyengar, Koszul properties of the moment map of some classical representations, arXiv:1705.02688 [math.AC], 2017, also Collectanea Mathematica (2018) 69.3, 337-357.
Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
Alissa S. Crans, A surreptitious sequence: the Catalan numbers video (2014).
Danielle Cressman, Jonathan Lin, An Nguyen and Luke Wiljanen, Generalized Action Graphs, poster, (2020).
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
Dennis E. Davenport, Louis W. Shapiro and Leon C. Woodson, A bijection between the triangulations of convex polygons and ordered trees, Integers (2020) Vol. 20, Article #A8.
T. Davis, Catalan Numbers
Colin Defant, Catalan Intervals and Uniquely Sorted Permutations, arXiv:1904.02627 [math.CO], 2019.
C. Defant and K. Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
Jimmy Devillet and Bruno Teheux, Associative, idempotent, symmetric, and order-preserving operations on chains, arXiv:1805.11936 [math.RA], 2018.
R. M. Dickau, Catalan numbers
T. Dokos and I. Pak, The expected shape of random doubly alternating Baxter permutations, arXiv:1401.0770 [math.CO], 2014.
C. Domb & A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358. (Annotated scanned copy)
C. Domb & A. J. Barrett, Notes on Table 2 in "Enumeration of ladder graphs", Discrete Math. 9 (1974), 55. (Annotated scanned copy)
T. Doslic, Handshakes across a (round) table, JIS 13 (2010) #10.2.7.
Eric S. Egge, Kailee Rubin, Snow Leopard Permutations and Their Even and Odd Threads, arXiv:1508.05310 [math.CO], 2015.
Roger B. Eggleton and Richard K. Guy, Catalan strikes again! How likely is a function to be convex?, Mathematics Magazine, 61 (1988): 211-219.
Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
Gennady Eremin, Factoring Catalan numbers, arXiv:1908.03752 [math.NT], 2019.
A. España, X. Leoncini, and E. Ugalde, Combinatorics of the paths towards synchronization, arXiv:2205.05948 [math.DS], 2022.
I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz., 21 (1937), 36-39. [Annotated scanned copy]
I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162. [Annotated scanned copy]
I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. [Annotated scanned copy]. Part II [not scanned] is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
Jackson Evoniuk, Steven Klee and Van Magnan, Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012.
FindStat - Combinatorial Statistic Finder, The number of stack-sorts needed to sort a permutation
D. C. Fielder & C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, A hybrid of Darboux's method and singularity analysis in combinatorial asymptotics, arXiv:math/0606370 [math.CO], 2006.
Philippe Flajolet, Xavier Gourdon, and Philippe Dumas, Mellin transforms and asymptotics: harmonic sums, Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 3-58.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 18, 35
D. Foata and G.-N. Han, The doubloon polynomial triangle, Ram. J. 23 (2010), 107-126
Dominique Foata and Guo-Niu Han, Doubloons and new q-tangent numbers, Quart. J. Math. 62 (2) (2011) 417-432
S. Forcey, M. Kafashan, M. Maleki and M. Strayer, Recursive bijections for Catalan objects, arXiv preprint arXiv:1212.1188 [math.CO], 2012 and J. Int. Seq. 16 (2013) #13.5.3.
H. G. Forder, Some problems in combinatorics, Math. Gazette, vol. 45, 1961, 199-201. [Annotated scanned copy]
Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
J. R. Gaggins, Constructing the Centroid of a Polygon, Math. Gaz., 61 (1988), 211-212.
Mohammad Ganjtabesh, Armin Morabbi and Jean-Marc Steyaert, Enumerating the number of RNA structures
Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
E.-K. Ghang and D. Zeilberger, Zeroless Arithmetic: Representing Integers ONLY using ONE, arXiv preprint arXiv:1303.0885 [math.CO], 2013.
A. Ghasemi, K. Sreenivas and L. K. Taylor, Numerical Stability and Catalan Numbers, arXiv preprint arXiv:1309.4820 [math.NA], 2013.
Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373, 2016.
Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018.
S. Gilliand, C. Johnson, S. Rush, D. Wood, The sock matching problem, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 691-697.
Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Lisa R. Goldberg, Catalan numbers and branched coverings by the Riemann sphere, Adv. Math. 85 (1991), No. 2, 129-144.
S. Goldstein, J. L. Lebowitz and E. R. Speer, The Discrete-Time Facilitated Totally Asymmetric Simple Exclusion Process, arXiv:2003.04995 [math-ph], 2020.
K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
H. W. Gould, Proof and generalization of a Catalan number formula of Larcombe, Congr. Numer. 165 (2003) p 33-38.
Alain Goupil and Gilles Schaeffer, Factoring N-Cycles and Counting Maps of Given Genus, Europ. J. Combinatorics (1998) 19 819-834.
B. Gourevitch, L'univers de Pi (click Mathematiciens, Gosper)
D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer, 1986. (Annotated scanned copy)
Taras Goy and Mark Shattuck, Determinant formulas of some Toeplitz-Hessenberg matrices with Catalan entries, Proceedings of the Indian Academy of Science - Mathematical Sciences, Vol. 129 (2019), Article 46.
Curtis Greene and Brady Haran, Shapes and Hook Numbers (extra footage), Numberphile video (2016)
Catherine Greenhill, Bernard Mans, and Ali Pourmiri, Balanced Allocation on Dynamic Hypergraphs, arXiv:2006.07588 [cs.DS], 2020.
H. G. Grundman and E. A. Teeple, Sequences of Generalized Happy Numbers with Small Bases, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.8.
R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967. [Annotated scanned copy]
R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6.
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis (annotated cached copy)
Mark Haiman, with an Appendix by Ezra Miller, Commutative algebra of n points in the plane, Trends Commut. Algebra, MSRI Publ 51 (2004): 153-180. [See Theorem 1.2]
Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
Brady Haran and Sergei Tabachnikov, Frieze Patterns, Numberphile video (2019); more footage
F. Harary & R. W. Robinson, The number of achiral trees, Jnl. Reine Angewandte Mathematik 278 (1975), 322-335. (Annotated scanned copy)
Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011
A. M. Hinz, S. Klavžar, U. Milutinović and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 259. Book's website
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
V. E. Hoggatt, Jr. and Paul S. Bruckman, The H-convolution transform, Fibonacci Quart., Vol. 13(4), 1975, p. 357.
C. Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint arXiv:1410.2657 [math.CO], 2014.
W. Hürlimann (2009). Generalizing Benford's law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284.
Hsien-Kuei Hwang, Mihyun Kang and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms (2018), Vol. 110, Article 29.
Anders Hyllengren, Four integer sequences, Oct 04 1985. Observes essentially that A000984 and A002426 are inverse binomial transforms of each other, as are A000108 and A001006.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
A. Joseph and P. Lamprou, A new interpretation of Catalan numbers, arXiv preprint arXiv:1512.00406 [math.CO], 2015.
R. Kahkeshani, A Generalization of the Catalan Numbers, J. Int. Seq. 16 (2013) #13.6.8
Manuel Kauers and Doron Zeilberger, Counting Standard Young Tableaux With Restricted Runs, arXiv:2006.10205 [math.CO], 2020.
Clark Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
Martin Klazar and Richard Horský, Are the Catalan Numbers a Linear Recurrence Sequence?, arXiv:2107.10717 [math.CO], 2021. Published in American Mathematical Monthly, 129:2, 166-171, DOI:10.1080/00029890.2022.2005392.
D. E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
M. Konvalinka and S. Wagner, The shape of random tanglegrams, arXiv preprint arXiv:1512.01168 [cond-mat.mes-hall], 2015.
G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
G. Kreweras, Sur les partitions non croisées d'un cycle, (in French) Discrete Math. 1 (1972), no. 4, 333-350. MR0309747 (46 #8852)
C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146. [Annotated scanned copy]
Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
Shrinu Kushagra, Shai Ben-David and Ihab Ilyas, Semi-supervised clustering for de-duplication, arXiv:1810.04361 [cs.LG], 2018.
Marie-Louise Lackner and M Wallner, An invitation to analytic combinatorics and lattice path counting; Preprint, Dec 2015.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Peter J. Larcombe, Daniel R. French, On the "Other" Catalan Numbers: A Historical Formulation Re-Examined, Preprint 2000-2016.
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
Pierre Lescanne, An exercise on streams: convergence acceleration, arXiv preprint arXiv:1312.4917 [cs.NA], 2013.
Hsueh-Yung Lin, The odd Catalan numbers modulo 2^k, arXiv:1012.1756 [math.NT], 2010-2011.
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
J.-L. Loday and B. Vallette, Algebraic Operads, version 0.999, 2012.
R. P. Loh, A. G. Shannon, A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
Colin L. Mallows and Lou Shapiro, Balls on the Lawn, J. Integer Sequences, Vol. 2, 1999, #5.
C. Mallows and R. J. Vanderbei, Which Young Tableaux Can Represent an Outer Sum?, J. Int. Seq. 18 (2015) 15.9.1.
K Manes, A Sapounakis, I Tasoulas, P Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv preprint arXiv:1510.01952 [math.CO], 2015.
Toufik Mansour, Counting Peaks at Height k in a Dyck Path, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.1
Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
Toufik Mansour and Mark Shattuck, Counting Dyck Paths According to the Maximum Distance Between Peaks and Valleys, Journal of Integer Sequences, Vol. 15 (2012), #12.1.1.
Toufik Mansour and Yidong Sun, Identities involving Narayana polynomials and Catalan numbers (2008), arXiv:0805.1274 [math.CO]; Discrete Mathematics, Volume 309, Issue 12, Jun 28 2009, Pages 4079-4088
R. J. Marsh and P. P. Martin, Pascal arrays: counting Catalan sets, arXiv:math/0612572 [math.CO], 2006.
MathOverflow, Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?, answer by Tom Copeland posted in Aug 2021.
Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
Jon McCammond, Noncrossing partitions in surprising locations, arXiv:math/0601687 [math.CO], 2006.
D. Merlini, R. Sprugnoli and M. C. Verri, Waiting patterns for a printerDiscrete Applied Mathematics, 144 (2004), 359-373; FUN with algorithm'01, Isola d'Elba, 2001.
Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
Marni Mishna and Lily Yen, Set partitions with no k-nesting, arXiv:1106.5036 [math.CO], 2011.
S. Mizera, Combinatorics and Topology of Kawai-Lewellen-Tye Relations, arXiv:1706.08527 [hep-th], 2017.
T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
Torsten Mütze and Franziska Weber, Construction of 2-factors in the middle layer of the discrete cube, arXiv preprint arXiv:1111.2413 [math.CO], 2011.
Liviu I. Nicolaescu, Counting Morse functions on the 2-sphere, arXiv:math/0512496 [math.GT], 2005-2006.
J.-C. Novelli and J.-Y. Thibon, Free quasi-symmetric functions of arbitrary level, arXiv:math/0405597 [math.CO], 2004.
R. J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon and T. Miller, The Game of timber!, 2013.
C. D. Olds (Proposer) and H. W. Becker (Discussion), Problem 4277, Amer. Math. Monthly 56 (1949), 697-699. [Annotated scanned copy]
Igor Pak, History of Catalan numbers, arXiv:1408.5711 [math.HO], 2014.
Hao Pan and Zhi-Wei Sun, A combinatorial identity with application to Catalan numbers, arXiv:math/0509648 [math.CO], 2005-2006.
A. Panayotopoulos and P. Tsikouras, Meanders and Motzkin Words, J. Integer Seqs., Vol. 7, 2004.
A. Panholzer and H. Prodinger, Bijections for ternary trees and non-crossing trees, Discrete Math., 250 (2002), 181-195 (see Eq. 4).
A. Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math 14 (1957), 405-414. [Annotated scan of selected pages]
Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
Ludovic Patey, Ramsey-like theorems and moduli of computation, arXiv:1901.04388 [math.LO], 2019.
P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
P. Peart and W.-J. Woan, Dyck Paths With No Peaks at Height k, J. Integer Sequences, 4 (2001), #01.1.3.
Robin Pemantle and Mark C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Rev., 50 (2) (2008), 199-272.
K. A. Penson and J.-M. Sixdeniers, Integral Representations of Catalan and Related Numbers, J. Integer Sequences, 4 (2001), #01.2.5.
Karol A. Penson and Karol Zyczkowski, Product of Ginibre matrices : Fuss-Catalan and Raney distribution, arXiv version; Phys. Rev E. vol. 83, 061118 (2011).
T. K. Petersen and Bridget Eileen Tenner, The depth of a permutation, arXiv:1202.4765 [math.CO], 2012-2014.
Ville H. Pettersson, Enumerating Hamiltonian Cycles, The Electronic Journal of Combinatorics, Volume 21, Issue 4, 2014.
Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv preprint arXiv:1505.07665 [math.CO], 2015.
Vincent Pilaud, Pebble trees, arXiv:2205.06686 [math.CO], 2022.
Maxim V. Polyakov, Kirill M. Semenov-Tian-Shansky, Alexander O. Smirnov and Alexey A. Vladimirov, Quasi-Renormalizable Quantum Field Theories, arXiv:1811.08449 [hep-th], 2018.
Alexander Postnikov, Permutohedra, associahedra, and beyond, 2005, arXiv:math/0507163 [math.CO], 2005.
J.-B. Priez and A. Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv preprint arXiv:1411.4161 [math.CO], 2014-2015.
L. Pudwell and A. Baxter, Ascent sequences avoiding pairs of patterns, 2014.
Alon Regev, Enumerating Triangulations by Parallel Diagonals, Journal of Integer Sequences, Vol. 15 (2012), #12.8.5; arXiv preprint arXiv:1208.3915, 2012.
Alon Regev, Amitai Regev, and Doron Zeilberger, Identities in character tables of S_n, arXiv preprint arXiv:1507.03499 [math.CO], 2015.
Amitai Regev, Nathaniel Shar, and Doron Zeilberger, A Very Short (Bijective!) Proof of Touchard's Catalan Identity, 2015.
Amitai Regev, Nathaniel Shar, and Doron Zeilberger, A Very Short (Bijective!) Proof of Touchard's Catalan Identity, [Local copy, pdf file only, no active links]
C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, arXiv preprint arXiv:1502.06553 [math.RT], 2015.
J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
N. A. Rosenberg, Counting coalescent histories, J. Comput Biol., 14 (2007), 360-377.
E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013-2014.
E. Rowland and D. Zeilberger, A Case Study in Meta-AUTOMATION: AUTOMATIC Generation of Congruence AUTOMATA For Combinatorial Sequences, arXiv preprint arXiv:1311.4776 [math.CO], 2013.
Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.
A. Sapounakis and P. Tsikouras, On k-colored Motzkin words, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.5.
E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
A. Schuetz and G. Whieldon, Polygonal Dissections and Reversions of Series, arXiv preprint arXiv:1401.7194 [math.CO], 2014.
J. A. von Segner, Enumeratio modorum, quibus figurae planae rectilineae per diagonales dividuntur in triangula, Novi Comm. Acad. Scient. Imper. Petropolitanae, 7 (1758/1759), 203-209.
Sarah Shader, Weighted Catalan Numbers and Their Divisibility Properties, Research Science Institute, MIT, 2014.
L. W. Shapiro, A Catalan triangle, Discrete Math., 14, 83-90, 1976.
L. W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976), no. 1, 83-90. [Annotated scanned copy]
D. M. Silberger, Occurrences of the integer (2n-2)!/n!(n-1)!, Roczniki Polskiego Towarzystwa Math. 13 (1969): 91-96. [Annotated scanned copy]
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 7.
N. Solomon and S. Solomon, A natural extension of Catalan Numbers, JIS 11 (2008) 08.3.5
Frank Sottile, The Schubert Calculus of Lines (a section of Enumerative Real Algebraic Geometry)
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
R. P. Stanley, Hipparchus, Plutarch, Schröder and Hough, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997.
R. P. Stanley, Catalan Addendum
R. P. Stanley, Interpretations of Catalan Numbers (Notes) [Annotated scanned copy]
P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
T. Stojadinovic, The Catalan numbers, Preprint 2015.
C. Stump, On a New Collection of Words in the Catalan Family, J. Int. Seq. 17 (2014) # 14.7.1
Zhi-Wei Sun and Roberto Tauraso, On some new congruences for binomial coefficients, arXiv:0709.1665 [math.NT], 2007-2011.
V. S. Sunder, Catalan numbers
P. Tarau, A Generic Numbering System based on Catalan Families of Combinatorial Objects, arXiv preprint arXiv:1406.1796 [cs.MS], 2014.
I. Tasoulas, K. Manes, A. Sapounakis and P. Tsikouras, Chains with Small Intervals in the Lattice of Binary Paths, arXiv:1911.10883 [math.CO], 2019.
B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
Thotsaporn "Aek" Thanatipanonda and Doron Zeilberger, A Multi-Computational Exploration of Some Games of Pure Chance, arXiv:1909.11546 [math.CO], 2019.
I. Todorov, Studying Quantum Field Theory, arXiv:1311.7258 [math-ph], 2013.
Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
J.-D. Urbina, J. Kuipers, Q. Hummel and K. Richter, Multiparticle correlations in complex scattering and the mesoscopic Boson Sampling problem, arXiv preprint arXiv:1409.1558 [quant-ph], 2014.
A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv:1107.2938 [math.NT], 2011.
Gérard Villemin, Nombres De Catalan (French)
D. W. Walkup, The number of plane trees, Mathematika, vol. 19, No. 2 (1972), 200-204.
Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S. Meel and Sarfraz Khurshid, A Study of Symmetry Breaking Predicates and Model Counting, National University of Singapore (2020).
Eric Weisstein's World of Mathematics, Binary Bracketing.
Eric Weisstein's World of Mathematics, Binary Tree.
Eric Weisstein's World of Mathematics, Catalan Number.
Eric Weisstein's World of Mathematics, Dyck Path.
Eric Weisstein's World of Mathematics, Nonassociative Product.
Eric Weisstein's World of Mathematics, Staircase Walk.
Wikipedia, Catalan number
J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, Context-free coalgebras, 2013.
Roman Witula, Damian Slota and Edyta Hetmaniok, Bridges between different known integer sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 255-263.
W.-J. Woan, Hankel Matrices and Lattice Paths, J. Integer Sequences, 4 (2001), #01.1.2.
Wen-jin Woan, A Recursive Relation for Weighted Motzkin Sequences Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.6.
Wen-jin Woan, Animals and 2-Motzkin Paths, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.6.
Wen-jin Woan, A Relation Between Restricted and Unrestricted Weighted Motzkin Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.7.
Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
F. Yano and H. Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
FORMULA
a(n) = binomial(2*n, n)/(n+1) = (2*n)!/(n!*(n+1)!) = A000984(n)/(n+1).
Recurrence: a(n) = 2*(2*n-1)*a(n-1)/(n+1) with a(0) = 1.
Recurrence: a(n) = Sum_{k=0..n-1} a(k)a(n-1-k).
G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x), and satisfies A(x) = 1 + x*A(x)^2.
a(n) = Product_{k=2..n} (1 + n/k).
a(n+1) = Sum_{i} binomial(n, 2*i)*2^(n-2*i)*a(i). - Touchard
It is known that a(n) is odd if and only if n=2^k-1, k=0, 1, 2, 3, ... - Emeric Deutsch, Aug 04 2002, corrected by M. F. Hasler, Nov 08 2015
Using the Stirling approximation in A000142 we get the asymptotic expansion a(n) ~ 4^n / (sqrt(Pi * n) * (n + 1)). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
Integral representation: a(n) = (1/(2*Pi))*Integral_{x=0..4} x^n*sqrt((4-x)/x). - Karol A. Penson, Apr 12 2001
E.g.f.: exp(2*x)*(I_0(2*x)-I_1(2*x)), where I_n is Bessel function. - Karol A. Penson, Oct 07 2001
a(n) = polygorial(n, 6)/polygorial(n, 3). - Daniel Dockery (peritus(AT)gmail.com), Jun 24 2003
G.f. A(x) satisfies ((A(x) + A(-x)) / 2)^2 = A(4*x^2). - Michael Somos, Jun 27, 2003
G.f. A(x) satisfies Sum_{k>=1} k(A(x)-1)^k = Sum_{n>=1} 4^{n-1}*x^n. - Shapiro, Woan, Getu
a(n+m) = Sum_{k} A039599(n, k)*A039599(m, k). - Philippe Deléham, Dec 22 2003
a(n+1) = (1/(n+1))*Sum_{k=0..n} a(n-k)*binomial(2k+1, k+1). - Philippe Deléham, Jan 24 2004
a(n) = Sum_{k>=0} A008313(n, k)^2. - Philippe Deléham, Feb 14 2004
a(m+n+1) = Sum_{k>=0} A039598(m, k)*A039598(n, k). - Philippe Deléham, Feb 15 2004
a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*binomial(n, k)*binomial(k, floor(k/2)). - Paul Barry, Jan 27 2005
Sum_{n>=0} 1/a(n) = 2 + 4*Pi/3^(5/2) = F(1,2;1/2;1/4) = A268813 = 2.806133050770763... (see L'Univers de Pi link). - Gerald McGarvey and Benoit Cloitre, Feb 13 2005
a(n) = Sum_{k=0..floor(n/2)} ((n-2*k+1)*binomial(n, n-k)/(n-k+1))^2, which is equivalent to: a(n) = Sum_{k=0..n} A053121(n, k)^2, for n >= 0. - Paul D. Hanna, Apr 23 2005
a((m+n)/2) = Sum_{k>=0} A053121(m, k)*A053121(n, k) if m+n is even. - Philippe Deléham, May 26 2005
E.g.f. Sum_{n>=0} a(n) * x^(2*n) / (2*n)! = BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
Given g.f. A(x), then B(x) = x * A(x^3) satisfies 0 = f(x, B(X)) where f(u, v) = u - v + (u*v)^2 or B(x) = x + (x * B(x))^2 which implies B(-B(x)) = -x and also (1 + B^3) / B^2 = (1 - x^3) / x^2. - Michael Somos, Jun 27 2005
a(n) = a(n-1)*(4-6/(n+1)). a(n) = 2a(n-1)*(8a(n-2)+a(n-1))/(10a(n-2)-a(n-1)). - Franklin T. Adams-Watters, Feb 08 2006
Sum_{k>=1} a(k)/4^k = 1. - Franklin T. Adams-Watters, Jun 28 2006
a(n) = A047996(2*n+1, n). - Philippe Deléham, Jul 25 2006
Binomial transform of A005043. - Philippe Deléham, Oct 20 2006
a(n) = Sum_{k=0..n} (-1)^k*A116395(n,k). - Philippe Deléham, Nov 07 2006
a(n) = (1/(s-n))*Sum_{k=0..n} (-1)^k (k+s-n)*binomial(s-n,k) * binomial(s+n-k,s) with s a nonnegative free integer [H. W. Gould].
a(k) = Sum_{i=1..k} |A008276(i,k)| * (k-1)^(k-i) / k!. - André F. Labossière, May 29 2007
a(n) = Sum_{k=0..n} A129818(n,k) * A007852(k+1). - Philippe Deléham, Jun 20 2007
a(n) = Sum_{k=0..n} A109466(n,k) * A127632(k). - Philippe Deléham, Jun 20 2007
Row sums of triangle A124926. - Gary W. Adamson, Oct 22 2007
Limit_{n->oo} (1 + Sum_{k=0..n} a(k)/A004171(k)) = 4/Pi. - Reinhard Zumkeller, Aug 26 2008
a(n) = Sum_{k=0..n} A120730(n,k)^2 and a(k+1) = Sum_{n>=k} A120730(n,k). - Philippe Deléham, Oct 18 2008
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, the present sequence is Phi([1]) (also Phi([1,1])). - Gary W. Adamson, Oct 27 2008
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}...Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n) where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i < l_(i+1) and l_(i+1) <> 0 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(n) = A000680(n)/A006472(n+1). - Mark Dols, Jul 14 2010; corrected by M. F. Hasler, Nov 08 2015
Let A(x) be the g.f., then B(x)=x*A(x) satisfies the differential equation B'(x)-2*B'(x)*B(x)-1=0. - Vladimir Kruchinin, Jan 18 2011
Complement of A092459; A010058(a(n)) = 1. - Reinhard Zumkeller, Mar 29 2011
G.f.: 1/(1-x/(1-x/(1-x/(...)))) (continued fraction). - Joerg Arndt, Mar 18 2011
With F(x) = (1-2*x-sqrt(1-4*x))/(2*x) an o.g.f. in x for the Catalan series, G(x) = x/(1+x)^2 is the compositional inverse of F (nulling the n=0 term). - Tom Copeland, Sep 04 2011
With H(x) = 1/(dG(x)/dx) = (1+x)^3 / (1-x), the n-th Catalan number is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)), and H(x) is the o.g.f. for A115291. - Tom Copeland, Sep 04 2011
From Tom Copeland, Sep 30 2011: (Start)
With F(x) = (1-sqrt(1-4*x))/2 an o.g.f. in x for the Catalan series, G(x)= x*(1-x) is the compositional inverse and this relates the Catalan numbers to the row sums of A125181.
With H(x) = 1/(dG(x)/dx) = 1/(1-2x), the n-th Catalan number (offset 1) is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)). (End)
G.f.: (1-sqrt(1-4*x))/(2*x) = G(0) where G(k) = 1 + (4*k+1)*x/(k+1-2*x*(k+1)*(4*k+3)/(2*x*(4*k+3)+(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2011
E.g.f.: exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)) = G(0) where G(k) = 1 + (4*k+1)*x/((k+1)*(2*k+1)-x*(k+1)*(2*k+1)*(4*k+3)/(x*(4*k+3)+(k+1)*(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2011
E.g.f.: Hypergeometric([1/2],[2],4*x) which coincides with the e.g.f. given just above, and also by Karol A. Penson further above. - Wolfdieter Lang, Jan 13 2012
A076050(a(n)) = n + 1 for n > 0. - Reinhard Zumkeller, Feb 17 2012
a(n) = A208355(2*n-1) = A208355(2*n) for n > 0. - Reinhard Zumkeller, Mar 04 2012
a(n+1) = A214292(2*n+1,n) = A214292(2*n+2,n). - Reinhard Zumkeller, Jul 12 2012
G.f.: 1 + 2*x/(U(0)-2*x) where U(k) = k*(4*x+1) + 2*x + 2 - x*(2*k+3)*(2*k+4)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 20 2012
G.f.: hypergeom([1/2,1],[2],4*x). - Joerg Arndt, Apr 06 2013
Special values of Jacobi polynomials, in Maple notation: a(n) = 4^n*JacobiP(n,1,-1/2-n,-1)/(n+1). - Karol A. Penson, Jul 28 2013
For n > 0: a(n) = sum of row n in triangle A001263. - Reinhard Zumkeller, Oct 10 2013
a(n) = binomial(2n,n-1)/n and a(n) mod n = binomial(2n,n) mod n = A059288(n). - Jonathan Sondow, Dec 14 2013
a(n-1) = Sum_{t1+2*t2+...+n*tn=n} (-1)^(1+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*a(1)^t1*a(2)^t2*...*a(n)^tn. - Mircea Merca, Feb 27 2014
a(n) = Sum_{k=1..n} binomial(n+k-1,n)/n if n > 0. Alexander Adamchuk, Mar 25 2014
a(n) = -2^(2*n+1) * binomial(n-1/2, -3/2). - Peter Luschny, May 06 2014
a(n) = (4*A000984(n) - A000984(n+1))/2. - Stanislav Sykora, Aug 09 2014
a(n) = A246458(n) * A246466(n). - Tom Edgar, Sep 02 2014
a(n) = (2*n)!*[x^(2*n)]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 4^(n-1)*hypergeom([3/2, 1-n], [3], 1). - Peter Luschny, Feb 03 2015
a(2n) = 2*A000150(2n); a(2n+1) = 2*A000150(2n+1) + a(n). - John Bodeen, Jun 24 2015
a(n) = Sum_{t=1..n+1} n^(t-1)*abs(Stirling1(n+1, t)) / Sum_{t=1..n+1} abs(Stirling1(n+1, t)), for n > 0, see (10) in Cereceda link. - Michel Marcus, Oct 06 2015
a(n) ~ 4^(n-2)*(128 + 160/N^2 + 84/N^4 + 715/N^6 - 10180/N^8)/(N^(3/2)*Pi^(1/2)) where N = 4*n+3. - Peter Luschny, Oct 14 2015
a(n) = Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*binomial(n+1-k,k)*a(n-k) if n > 0; and a(0) = 1. - David Pasino, Jun 29 2016
Sum_{n>=0} (-1)^n/a(n) = 14/25 - 24*arccsch(2)/(25*sqrt(5)) = 14/25 - 24*A002390/(25*sqrt(5)) = 0.353403708337278061333... - Ilya Gutkovskiy, Jun 30 2016
C(n) = (1/n) * Sum_{i+j+k=n-1} C(i)*C(j)*C(k)*(k+1), n >= 1. - Yuchun Ji, Feb 21 2016
C(n) = 1 + Sum_{i+j+k<n-1} C(i)*C(j)*C(k). - Yuchun Ji, Sep 01 2016
a(n) = A001700(n) - A162551(n) = binomial(2*n+1,n+1). - 2*binomial(2*n,n-1). - Taras Goy, Aug 09 2018
G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x) = 2F1(1/2,1;2;4*x). G.f. A(x) satisfies A = 1 + x*A^2. - R. J. Mathar, Nov 17 2018
C(n) = 1 + Sum_{i=0..n-1} A000245(i). - Yuchun Ji, Jan 10 2019
From A.H.M. Smeets, Apr 11 2020: (Start)
(1+sqrt(1+4*x))/2 = 1-Sum_{i >= 0} a(i)*(-x)^(i+1), for any complex x with |x| < 1/4; and sqrt(x+sqrt(x+sqrt(x+...))) = 1-Sum_{i >= 0} a(i)*(-x)^(i+1), for any complex x with |x| < 1/4 and x <> 0. (End)
a(3n+1)*a(5n+4)*a(15n+10) = a(3n+2)*a(5n+2)*a(15n+11). The first case of Catalan product equation of a triple partition of 23n+15. - Yuchun Ji, Sep 27 2020
a(n) = 4^n * (-1)^(n+1) * 3F2[{n + 1,n + 1/2,n}, {3/2,1}, -1], n >= 1. - Sergii Voloshyn, Oct 22 2020
a(n) = 2^(1 + 2 n) * (-1)^(n)/(1 + n) * 3F2[{n, 1/2 + n, 1 + n}, {1/2, 1}, -1], n >= 1. - Sergii Voloshyn, Nov 08 2020
a(n) = (1/Pi)*4^(n+1)*Integral_{x=0..Pi/2} cos(x)^(2*n)*sin(x)^2 dx. - Greg Dresden, May 30 2021
From Peter Bala, Aug 17 2021: (Start)
G.f. A(x) satisfies A(x) = 1/sqrt(1 - 4*x) * A( -x/(1 - 4*x) ) and (A(x) + A(-x))/2 = 1/sqrt(1 - 4*x) * A( -2*x/(1 - 4*x) ); these are the cases k = 0 and k = -1 of the general formula 1/sqrt(1 - 4*x) * A( (k-1)*x/(1 - 4*x) ) = Sum_{n >= 0} ((k^(n+1) - 1)/(k - 1))*Catalan(n)*x^n.
2 - sqrt(1 - 4*x)/A( k*x/(1 - 4*x) ) = 1 + Sum_{n >= 1} (1 + (k + 1)^n) * Catalan(n-1)*x^n. (End)
Sum_{n>=0} a(n)*(-1/4)^n = 2*(sqrt(2)-1) (A163960). - Amiram Eldar, Mar 22 2022
0 = a(n)*(16*a(n+1) - 10*a(n+2)) + a(n+1)*(2*a(n+1) + a(n+2)) for all n>=0. - Michael Somos, Dec 12 2022
G.f.: (offset 1) 1/G(x), with G(x) = 1 - 2*x - x^2/G(x) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 01 2023
a(n) = K^(2n+1, n, 1) for all n >= 0, where K^(n, s, x) is the Krawtchouk polynomial defined to be Sum_{k=0..s} (-1)^k * binomial(n-x, s-k) * binomial(x, k). - Vladislav Shubin, Aug 17 2023
From Peter Bala, Feb 03 2024: (Start)
The g.f. A(x) satisfies the following functional equations:
A(x) = 1 + x/(1 - 4*x) * A(-x/(1 - 4*x))^2,
A(x^2) = 1/(1 - 2*x) * A(- x/(1 - 2*x))^2 and, for arbitrary k,
1/(1 - k*x) * A(x/(1 - k*x))^2 = 1/(1 - (k+4)*x) * A(-x/(1 - (k+4)*x))^2. (End)
a(n) = A363448(n) + A363449(n). - Julien Rouyer, Jun 28 2024
EXAMPLE
From Joerg Arndt and Greg Stevenson, Jul 11 2011: (Start)
The following products of 3 transpositions lead to a 4-cycle in S_4:
(1,2)*(1,3)*(1,4);
(1,2)*(1,4)*(3,4);
(1,3)*(1,4)*(2,3);
(1,4)*(2,3)*(2,4);
(1,4)*(2,4)*(3,4). (End)
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ...
For n=3, a(3)=5 since there are exactly 5 binary sequences of length 7 in which the number of ones first exceed the number of zeros at entry 7, namely, 0001111, 0010111, 0011011, 0100111, and 0101011. - Dennis P. Walsh, Apr 11 2012
From Joerg Arndt, Jun 30 2014: (Start)
The a(4) = 14 branching sequences of the (ordered) trees with 4 non-root nodes are (dots denote zeros):
01: [ 1 1 1 1 . ]
02: [ 1 1 2 . . ]
03: [ 1 2 . 1 . ]
04: [ 1 2 1 . . ]
05: [ 1 3 . . . ]
06: [ 2 . 1 1 . ]
07: [ 2 . 2 . . ]
08: [ 2 1 . 1 . ]
09: [ 2 1 1 . . ]
10: [ 2 2 . . . ]
11: [ 3 . . 1 . ]
12: [ 3 . 1 . . ]
13: [ 3 1 . . . ]
14: [ 4 . . . . ]
(End)
MAPLE
A000108 := n->binomial(2*n, n)/(n+1);
G000108 := (1 - sqrt(1 - 4*x)) / (2*x);
spec := [ A, {A=Prod(Z, Sequence(A))}, unlabeled ]: [ seq(combstruct[count](spec, size=n+1), n=0..42) ];
with(combstruct): bin := {B=Union(Z, Prod(B, B))}: seq(count([B, bin, unlabeled], size=n+1), n=0..25); # Zerinvary Lajos, Dec 05 2007
gser := series(G000108, x=0, 42): seq(coeff(gser, x, n), n=0..41); # Zerinvary Lajos, May 21 2008
seq((2*n)!*coeff(series(hypergeom([], [2], x^2), x, 2*n+2), x, 2*n), n=0..30); # Peter Luschny, Jan 31 2015
A000108List := proc(m) local A, P, n; A := [1, 1]; P := [1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), A[-1]]);
A := [op(A), P[-1]] od; A end: A000108List(31); # Peter Luschny, Mar 24 2022
MATHEMATICA
Table[(2 n)!/n!/(n + 1)!, {n, 0, 20}]
Table[4^n Gamma[n + 1/2]/(Sqrt[Pi] Gamma[n + 2]), {n, 0, 20}] (* Eric W. Weisstein, Oct 31 2024 *)
Table[Hypergeometric2F1[1 - n, -n, 2, 1], {n, 0, 20}] (* Richard L. Ollerton, Sep 13 2006 *)
Table[CatalanNumber @ n, {n, 0, 20}] (* Robert G. Wilson v, Feb 15 2011 *)
CatalanNumber[Range[0, 20]] (* Eric W. Weisstein, Oct 31 2024 *)
CoefficientList[InverseSeries[Series[x/Sum[x^n, {n, 0, 31}], {x, 0, 31}]]/x, x] (* Mats Granvik, Nov 24 2013 *)
CoefficientList[Series[(1 - Sqrt[1 - 4 x])/(2 x), {x, 0, 20}], x] (* Stefano Spezia, Aug 31 2018 *)
PROG
(PARI) a(n)=binomial(2*n, n)/(n+1) \\ M. F. Hasler, Aug 25 2012
(PARI) a(n) = (2*n)! / n! / (n+1)!
(PARI) a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + x + O(x^2); while(m<=n, m*=2; A = sqrt(subst(A, x, 4*x^2)); A += (A - 1) / (2*x*A)); polcoeff(A, n));
(PARI) {a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + x)^2 + x * O(x^n)), n))}; /* Michael Somos */
(PARI) (recur(a, b)=if(b<=2, (a==2)+(a==b)+(a!=b)*(1+a/2), (1+a/b)*recur(a, b-1))); a(n)=recur(n, n); \\ R. J. Cano, Nov 22 2012
(PARI) x='x+O('x^40); Vec((1-sqrt(1-4*x))/(2*x)) \\ Altug Alkan, Oct 13 2015
(MuPAD) combinat::dyckWords::count(n) $ n = 0..38 // Zerinvary Lajos, Apr 14 2007
(Magma) C:= func< n | Binomial(2*n, n)/(n+1) >; [ C(n) : n in [0..60]];
(Magma) [Catalan(n): n in [0..40]]; // Vincenzo Librandi, Apr 02 2011
(Haskell)
import Data.List (genericIndex)
a000108 n = genericIndex a000108_list n
a000108_list = 1 : catalan [1] where
catalan cs = c : catalan (c:cs) where
c = sum $ zipWith (*) cs $ reverse cs
-- Reinhard Zumkeller, Nov 12 2011
a000108 = map last $ iterate (scanl1 (+) . (++ [0])) [1]
-- David Spies, Aug 23 2015
(Sage) [catalan_number(i) for i in range(27)] # Zerinvary Lajos, Jun 26 2008
(Sage) # Generalized algorithm of L. Seidel
def A000108_list(n) :
D = [0]*(n+1); D[1] = 1
b = True; h = 1; R = []
for i in range(2*n-1) :
if b :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1; R.append(D[1])
else :
for k in range(1, h, 1) : D[k] += D[k+1]
b = not b
return R
A000108_list(31) # Peter Luschny, Jun 02 2012
(Maxima) A000108(n):=binomial(2*n, n)/(n+1)$ makelist(A000108(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
(Python)
from gmpy2 import divexact
A000108 = [1, 1]
for n in range(1, 10**3):
A000108.append(divexact(A000108[-1]*(4*n+2), (n+2))) # Chai Wah Wu, Aug 31 2014
(Python)
# Works in Sage also.
A000108 = [1]
for n in range(1000):
A000108.append(A000108[-1]*(4*n+2)//(n+2)) # Günter Rote, Nov 08 2023
(GAP) A000108:=List([0..30], n->Binomial(2*n, n)/(n+1)); # Muniru A Asiru, Feb 17 2018
CROSSREFS
A row of A060854.
See A001003, A001190, A001699, A000081 for other ways to count parentheses.
Enumerates objects encoded by A014486.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A051168 (diagonal of the square array described).
Cf. A033552, A176137 (partitions into Catalan numbers).
Cf. A000753, A000736 (Boustrophedon transforms).
Cf. A120303 (largest prime factor of Catalan number).
Cf. A121839 (reciprocal Catalan constant), A268813.
Cf. A038003, A119861, A119908, A120274, A120275 (odd Catalan number).
Cf. A002390 (decimal expansion of natural logarithm of golden ratio).
Coefficients of square root of the g.f. are A001795/A046161.
For a(n) mod 6 see A259667.
For a(n) in base 2 see A264663.
Hankel transforms with first terms omitted: A001477, A006858, A091962, A078920, A123352, A368025.
Cf. A332602 (conjectured production matrix).
Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A001764 {4,oo}.
KEYWORD
core,nonn,easy,eigen,nice,changed
STATUS
approved
Euler or up/down numbers: e.g.f. sec(x) + tan(x). Also for n >= 2, half the number of alternating permutations on n letters (A001250).
(Formerly M1492 N0587)
+10
336
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, 370371188237525, 4951498053124096, 69348874393137901, 1015423886506852352, 15514534163557086905, 246921480190207983616, 4087072509293123892361
OFFSET
0,4
COMMENTS
Number of linear extensions of the "zig-zag" poset. See ch. 3, prob. 23 of Stanley. - Mitch Harris, Dec 27 2005
Number of increasing 0-1-2 trees on n vertices. - David Callan, Dec 22 2006
Also the number of refinements of partitions. - Heinz-Richard Halder (halder.bichl(AT)t-online.de), Mar 07 2008
The ratio a(n)/n! is also the probability that n numbers x1,x2,...,xn randomly chosen uniformly and independently in [0,1] satisfy x1 > x2 < x3 > x4 < ... xn. - Pietro Majer, Jul 13 2009
For n >= 2, a(n-2) = number of permutations w of an ordered n-set {x_1 < ... x_n} with the following properties: w(1) = x_n, w(n) = x_{n-1}, w(2) > w(n-1), and neither any subword of w, nor its reversal, has the first three properties. The count is unchanged if the third condition is replaced with w(2) < w(n-1). - Jeremy L. Martin, Mar 26 2010
A partition of zigzag permutations of order n+1 by the smallest or the largest, whichever is behind. This partition has the same recurrent relation as increasing 1-2 trees of order n, by induction the bijection follows. - Wenjin Woan, May 06 2011
As can be seen from the asymptotics given in the FORMULA section, one has lim_{n->oo} 2*n*a(n-1)/a(n) = Pi; see A132049/A132050 for the simplified fractions. - M. F. Hasler, Apr 03 2013
a(n+1) is the sum of row n in triangle A008280. - Reinhard Zumkeller, Nov 05 2013
M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon (2011) give a far-reaching generalization of the bijection between Euler numbers and alternating permutations. - N. J. A. Sloane, Jul 09 2015
Number of treeshelves avoiding pattern T321. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link, see A278678 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
Number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that no three terms are equal. [Theorem 7 of Corteel, Martinez, Savage, and Weselcouch] - Eric M. Schmidt, Jul 17 2017
Number of self-dual edge-labeled trees with n vertices under "mind-body" duality. Also number of self-dual rooted edge-labeled trees with n vertices. See my paper linked below. - Nikos Apostolakis, Aug 01 2018
The ratio a(n)/n! is the volume of the convex polyhedron defined as the set of (x_1,...,x_n) in [0,1]^n such that x_i + x_{i+1} <= 1 for every 1 <= i <= n-1; see the solutions by Macdonald and Nelsen to the Amer. Math. Monthly problem referenced below. - Sanjay Ramassamy, Nov 02 2018
Number of total cyclic orders on {0,1,...,n} such that the triple (i-1,i,i+1) is positively oriented for every 1 <= i <= n-1; see my paper on cyclic orders linked below. - Sanjay Ramassamy, Nov 02 2018
The number of binary, rooted, unlabeled histories with n+1 leaves (following the definition of Rosenberg 2006). Also termed Tajima trees, Tajima genealogies, or binary, rooted, unlabeled ranked trees (Palacios et al. 2015). See Disanto & Wiehe (2013) for a proof. - Noah A Rosenberg, Mar 10 2019
From Gus Wiseman, Dec 31 2019: (Start)
Also the number of non-isomorphic balanced reduced multisystems with n + 1 distinct atoms and maximum depth. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The labeled version is A006472. For example, non-isomorphic representatives of the a(0) = 1 through a(4) = 5 multisystems are (commas elided):
{1} {12} {{1}{23}} {{{1}}{{2}{34}}} {{{{1}}}{{{2}}{{3}{45}}}}
{{{12}}{{3}{4}}} {{{{1}}}{{{23}}{{4}{5}}}}
{{{{1}{2}}}{{{3}}{{45}}}}
{{{{1}{23}}}{{{4}}{{5}}}}
{{{{12}}}{{{3}}{{4}{5}}}}
Also the number of balanced reduced multisystems with n + 1 equal atoms and maximum depth. This is possibly the meaning of Heinz-Richard Halder's comment (see also A002846, A213427, A265947). The non-maximum-depth version is A318813. For example, the a(0) = 1 through a(4) = 5 multisystems are (commas elided):
{1} {11} {{1}{11}} {{{1}}{{1}{11}}} {{{{1}}}{{{1}}{{1}{11}}}}
{{{11}}{{1}{1}}} {{{{1}}}{{{11}}{{1}{1}}}}
{{{{1}{1}}}{{{1}}{{11}}}}
{{{{1}{11}}}{{{1}}{{1}}}}
{{{{11}}}{{{1}}{{1}{1}}}}
(End)
With s_n denoting the sum of n independent uniformly random numbers chosen from [-1/2,1/2], the probability that the closest integer to s_n is even is exactly 1/2 + a(n)/(2*n!). (See Hambardzumyan et al. 2023, Appendix B.) - Suhail Sherif, Mar 31 2024
The number of permutations of size n+1 that require exactly n passes through a stack (i.e. have reverse-tier n-1) with an algorithm that prioritizes outputting the maximum possible prefix of the identity in a given pass and reverses the remainder of the permutation for prior to the next pass. - Rebecca Smith, Jun 05 2024
REFERENCES
M. D. Atkinson: Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 34, 932.
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 258-260, section #11.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.
Bishal Deb and Alan D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, arXiv:2212.07232, Dec 14 2022.
H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 66.
O. Heimo and A. Karttunen, Series help-mates in 8, 9 and 10 moves (Problems 2901, 2974-2976), Suomen Tehtavaniekat (Proceedings of the Finnish Chess Problem Society) vol. 60, no. 2/2006, pp. 75, 77.
S. K. Jha, A Congruence for the Number of Alternating Permutations, Missouri J. Math. Sci., 33 (No. 1, 2021), 99-104
L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 238.
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 110.
C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 184.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1997 and Vol. 2, 1999; see Problem 5.7.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..485 (terms 0..199 from N. J. A. Sloane)
Désiré André, Mémoire sur les permutations alternées, J. Math. Pur. Appl., 7 (1881), 167-184.
Joerg Arndt, Matters Computational (The Fxtbook), pp. 281-282.
M. D. Atkinson, Zigzag permutations and comparisons of adjacent elements, Information Processing Letters 21 (1985), 187-189.
Stefano Barbero, Umberto Cerruti, and Nadir Murru, Some combinatorial properties of the Hurwitz series ring arXiv:1710.05665 [math.NT], 2017.
Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 12.
B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 16-26 1990.
F. Bergeron, M. Bousquet-Mélou, and S. Dulucq, Standard paths in the composition poset, Ann. Sci. Math. Quebec, 19 (1995), no. 2, 139-151.
O. Bodini, M. Dien, X. Fontaine, A. Genitrini and H. K. Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016 DOI 10.1007/978-3-662-49529-2_16; Lecture Notes in Computer Science Series Volume 9644.
J. M. Borwein and S. T. Chapman, I Prefer Pi: A Brief History and Anthology of Articles in the American Mathematical Monthly, Amer. Math. Monthly, 122 (2015), 195-216.
Graham Brightwell, Gérard Cohen, Emanuela Fachini, Marianne Fairthorne, János Körner, Gábor Simonyi and Ágnes Tóth, Permutation capacities of families of oriented infinite paths, SIAM J. Discrete Math. 24 (2010), no. 2, 441-456.
Peter J. Cameron and Liam Stott, Trees and cycles, arXiv:2010.14902 [math.CO], 2020. See p. 12.
Lorenzo Cappello and Julia A. Palacios, Sequential importance sampling for multi-resolution Kingman-Tajima coalescent counting, arXiv:1902.05527 [stat.AP], 2019.
Swee Hong Chan and Igor Pak, Computational complexity of counting coincidences, arXiv:2308.10214 [math.CO], 2023. See p. 16.
Xiao-Min Chen, X.-K. Chang, J.-Q. Sun, X./-B. Hu and Y.-N. Yeh, Three semi-discrete integrable systems related to orthogonal polynomials and their generalized determinant solutions, Nonlinearity, Volume 28, Number 7, Jun 08 2015.
Suyoung Choi, B. Park and H. Park, The Betti numbers of real toric varieties associated to Weyl chambers of type B, arXiv preprint arXiv:1602.05406 [math.AT], 2016.
Suyoung Choi and Younghan Yoon, The cohomology rings of real permutohedral varieties, arXiv:2308.12693 [math.AT], 2023.
Sean Cleary, Mareike Fischer, Robert C. Griffiths and Raazesh Sainudiin, Some distributions on finite rooted binary trees, UCDMS Research Report NO. UCDMS2015/2, School of Mathematics and Statistics, University of Canterbury, Christchurch, NZ, 2015.
C. K. Cook, M. R. Bacon, and R. A. Hillman, Higher-order Boustrophedon transforms for certain well-known sequences, Fib. Q., 55(3) (2017), 201-208.
Jane Ivy Coons and Seth Sullivant, The Cavender-Farris-Neyman Model with a Molecular Clock, arXiv:1805.04175 [math.AG], 2018.
Jane Ivy Coons and Seth Sullivant, The h*-polynomial of the order polytope of the zig-zag poset, arXiv:1901.07443 [math.CO], 2019.
Sylvie Corteel, Megan A. Martinez, Carla D. Savage and Michael Weselcouch, Patterns in Inversion Sequences I, arXiv:1510.05434 [math.CO], 2015
Chandler Davis, Problem 4755, Amer. Math. Monthly, 64 (1957) 596; solution by W. J. Blundon, 65 (1958), 533-534. [Denoted by P_n in solution.]
Chandler Davis, Problem 4755: A Permutation Problem, Amer. Math. Monthly, 64 (1957) 596; solution by W. J. Blundon, 65 (1958), 533-534. [Denoted by P_n in solution.] [Annotated scanned copy]
Colin Defant and James Propp, Quantifying Noninvertibility in Discrete Dynamical Systems, arXiv:2002.07144 [math.CO], 2020.
Karel Devriendt, Renaud Lambiotte and Piet Van Mieghem, Constructing Laplacian matrices with Soules vectors: inverse eigenvalue problem and applications, arXiv:1909.11282 [physics.soc-ph], 2019.
Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, arXiv preprint arXiv:1112.1295 [math.CO], 2011.
Filippo Disanto and Thomas Wiehe, Exact enumeration of cherries and pitchforks in ranked trees under the coalescent model, Math. Biosci. 242 (2013), 195-200.
R. Donaghey, Alternating permutations and binary increasing trees, J. Combinatorial Theory Ser. A 18 (1975), 141--148.MR0360299 (50 #12749)
O. Dovgoshey, E. Petrov and H.-M. Teichert, On spaces extremal for the Gomory-Hu inequality, arXiv preprint arXiv:1412.1979 [math.AG], 2014.
D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Preprint, Annotated scanned copy.
Richard Ehrenborg and N. Bradley Fox, The Descent Set Polynomial Revisited, arXiv:1408.6858 [math.CO], 2014. See Table 4.
N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003.
N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
N. D. Elkies, New Directions in Enumerative Chess Problems, The Electronic Journal of Combinatorics, vol. 11(2), 2004.
Eugène Estanave, Sur les coefficients des développements en séries de tangx, sécx et d’autres fonctions. Leur expression à l’aide d’un déterminant unique, Bulletin de la Société Mathématique de France, Tome 31 (1903), pp. 203-208.
P. Flajolet, S. Gerhold and B. Salvy, On the non-holonomic character of logarithms, powers and the n-th prime function, arXiv:math/0501379 [math.CO], 2005.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009.
D. Foata and M.-P. Schutzenberger, Nombres d'Euler et permutations alternantes, in J. N. Srivastava et al., eds., A Survey of Combinatorial Theory (North Holland Publishing Company, Amsterdam, 1973), pp. 173-187.
Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
Jithin D. George, David I. Ketcheson and Randall J. LeVeque, A characteristics-based approximation for wave scattering from an arbitrary obstacle in one dimension, arXiv:1901.04158 [math.AP], 2019.
Claude Godrèche and Jean-Marc Luck, Records for the moving average of a time series, arXiv:1907.07598 [cond-mat.stat-mech], 2019.
W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 Mar 2013
Heinz-Richard Halder, Über Verfeinerungen von Partitionen, Periodica Mathematica Hungarica Vol. 12 (3), (1981), pp. 217-220.
L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley and A. Shraibman, An improved protocol for ExactlyN with more than 3 players, arXiv:2309.06554 [cs.CC], 2023.
Guo-Niu Han, Hankel Continued fractions and Hankel determinants of the Euler numbers, arXiv:1906.00103 [math.CO], 2019.
F. Heneghan and T. K. Petersen, Power series for up-down min-max permutations, 2013.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
M. Josiat-Verges, Enumeration of snakes and cycle-alternating permutations, arXiv:1011.0929 [math.CO], 2010.
M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon, The algebraic combinatorics of snakes, arXiv preprint arXiv:1110.5272 [math.CO], 2011.
A. A. Kirillov, Variations on the triangular theme, Amer. Math. Soc. Transl., (2), Vol. 169, 1995, pp. 43-73, see p. 52.
Masato Kobayashi, A new refinement of Euler numbers on counting alternating permutations, arXiv:1908.00701 [math.CO], 2019.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
Dmitry Kruchinin, Integer properties of a composition of exponential generating functions, arXiv:1211.2100 [math.NT], 2012.
Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Daeseok Lee and H.-K. Ju, An Extension of Hibi's palindromic theorem, arXiv preprint arXiv:1503.05658 [math.CO], 2015.
Tamás Lengyel, A Note on a Permutation Statistic, J. Int. Seq., Vol. 22 (2019), Article 19.5.1.
F. Luca and P. Stanica, On some conjectures on the monotonicity of some arithmetical sequences, J. Combin. Number Theory 4 (2012) 1-10.
J. M. Luck, On the frequencies of patterns of rises and falls, arXiv preprint arXiv:1309.7764 [cond-mat.stat-mech], 2013.
Peter Luschny, An introduction to the Bernoulli function, arXiv:2009.06743 [math.HO], 2020.
I. G. Macdonald and R. B. Nelsen (independently), Solution to E2701, Amer. Math. Monthly, 86 (1979), 396.
Toufik Mansour, Howard Skogman and Rebecca Smith, Passing through a stack k times with reversals, arXiv:1808.04199 [math.CO], 2018.
J. L. Martin and J. D. Wagner, Updown numbers and the initial monomials of the slope variety, Electronic J. Combin. 16, no. 1 (2009), Research Paper R82. [From Jeremy L. Martin, Mar 26 2010]
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
A. Mendes, A note on alternating permutations, Amer. Math. Monthly, 114 (2007), 437-440.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
A. Morales, I. Pak and G. Panova, Hook formulas for skew shapes I. q-analogues and bijections, arXiv preprint arXiv:1512.08348 [math.CO], 2015.
Alejandro H. Morales, I. Pak, and G. Panova, Why is pi < 2 phi?, Preprint, 2016.
F. Murtagh, Counting dendrograms: a survey, Discrete Applied Mathematics, 7 (1984), 191-199.
D. J. Newman, W. Weissblum and others, Problem 67-5: "Up-Down" Permutations, SIAM Review, Vol. 9, No. 1 (Jan., 1967), page 121, Vol. 11, No. 1 (Jan., 1969), p. 75, and Vol. 10, No. 2 (Apr., 1968), pp. 225-226. [Annotated scanned copy]
A. Niedermaier and J. Remmel, Analogues of Up-down Permutations for Colored Permutations, J. Int. Seq. 13 (2010), 10.5.6., C(t), D(t).
E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
J. Palacios, J. Wakeley and S. Ramachandran, Bayesian nonparametric inference of population size changes from sequential genealogies, Genetics 201 (2015), 281-304.
Qiong Qiong Pan and Jiang Zeng, The gamma-coefficients of Branden's (p,q)-Eulerian polynomials and André permutations, arXiv:1910.01747 [math.CO], 2019.
S. Ramassamy, Modular periodicity of the Euler numbers and a sequence by Arnold, arXiv:1712.08666 [math.CO], 2017.
A. Randrianarivony and J. Zeng, Sur une extension des nombres d'Euler et les records des permutations alternantes, J. Combin. Theory Ser. A 68 (1994), 68-99.
A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
Jeffrey B. Remmel, Generating functions for alternating descents and alternating major index, Ann. Comb. 16 (2012), no. 3, 625-650. MR2960023.
Y. Sano, The principal numbers of K. Saito for the types A_l, D_l and E_l, Discr. Math., 307 (2007), 2636-2642.
L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, vol. 7 (1877), 157-187.
B. Shapiro and A. Vainshtein, On the number of connected components in the space of M-polynomials in hyperbolic functions Adv. in Ap. Math., Vol. 30, Issues 1-2, Feb. 2003, pp. 273-282 (Added by Tom Copeland, Oct 04 2015)
Heesung Shin and Jiang Zeng, More bijections for Entringer and Arnold families, arXiv:2006.00507 [math.CO], 2020.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
J. Staib, Trigonometric power series, Math. Mag., 49 (1976), 147-148.
R. P. Stanley, Queue problems revisited, Suomen Tehtavaniekat (Proceedings of the Finnish Chess Problem Society), vol. 59, no. 4 (2005), 193-203.
R. P. Stanley, Permutations
Yidong Sun and Liting Zhai, Some properties of a class of refined Eulerian polynomials, arXiv:1810.07956 [math.CO], 2018.
Zhi-Hong Sun, Congruences involving Bernoulli polynomials, Discr. Math., 308 (2007), 71-112.
Ross Tang, An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series [From Ross Tang (ph.tchaa(AT)gmail.com), Jul 28 2010. Web page no longer accessible, pdf of archive.org version uploaded by Ralf Stephan, Dec 28 2013]
S. T. Thompson, Problem E754: Skew Ordered Sequences, Amer. Math. Monthly, 54 (1947), 416-417. [Annotated scanned copy]
A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.
Eric Weisstein's World of Mathematics, Euler Zigzag Number.
Eric Weisstein's World of Mathematics, Alternating Permutation.
Eric Weisstein's World of Mathematics, Entringer Number.
FORMULA
E.g.f.: (1+sin(x))/cos(x) = tan(x) + sec(x).
E.g.f. for a(n+1) is 1/(cos(x/2) - sin(x/2))^2 = 1/(1-sin(x)) = d/dx(sec(x) + tan(x)).
E.g.f. A(x) = -log(1-sin(x)), for a(n+1). - Vladimir Kruchinin, Aug 09 2010
O.g.f.: A(x) = 1+x/(1-x-x^2/(1-2*x-3*x^2/(1-3*x-6*x^2/(1-4*x-10*x^2/(1-... -n*x-(n*(n+1)/2)*x^2/(1- ...)))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
E.g.f. A(x) = y satisfies 2y' = 1 + y^2. - Michael Somos, Feb 03 2004
a(n) = P_n(0) + Q_n(0) (see A155100 and A104035), defining Q_{-1} = 0. Cf. A156142.
2*a(n+1) = Sum_{k=0..n} binomial(n, k)*a(k)*a(n-k).
Asymptotics: a(n) ~ 2^(n+2)*n!/Pi^(n+1). For a proof, see for example Flajolet and Sedgewick.
a(n) = (n-1)*a(n-1) - Sum_{i=2..n-2} (i-1)*E(n-2, n-1-i), where E are the Entringer numbers A008281. - Jon Perry, Jun 09 2003
a(2*k) = (-1)^k euler(2k) and a(2k-1) = (-1)^(k-1)2^(2k)(2^(2k)-1) Bernoulli(2k)/(2k). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005
|a(n+1) - 2*a(n)| = A000708(n). - Philippe Deléham, Jan 13 2007
a(n) = 2^n|E(n,1/2) + E(n,1)| where E(n,x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
a(n) = 2^(n+2)*n!*S(n+1)/(Pi)^(n+1), where S(n) = Sum_{k = -inf..inf} 1/(4k+1)^n (see the Elkies reference). - Emeric Deutsch, Aug 17 2009
a(n) = i^(n+1) Sum_{k=1..n+1} Sum_{j=0..k} binomial(k,j)(-1)^j (k-2j)^(n+1) (2i)^(-k) k^{-1}. - Ross Tang (ph.tchaa(AT)gmail.com), Jul 28 2010
a(n) = sum((if evenp(n+k) then (-1)^((n+k)/2)*sum(j!*Stirling2(n,j)*2^(1-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n) else 0),k,1,n), n>0. - Vladimir Kruchinin, Aug 19 2010
If n==1(mod 4) is prime, then a(n)==1(mod n); if n==3(mod 4) is prime, then a(n)==-1(mod n). - Vladimir Shevelev, Aug 31 2010
For m>=0, a(2^m)==1(mod 2^m); If p is prime, then a(2*p)==1(mod 2*p). - Vladimir Shevelev, Sep 03 2010
From Peter Bala, Jan 26 2011: (Start)
a(n) = A(n,i)/(1+i)^(n-1), where i = sqrt(-1) and {A(n,x)}n>=1 = [1,1+x,1+4*x+x^2,1+11*x+11*x^2+x^3,...] denotes the sequence of Eulerian polynomials.
Equivalently, a(n) = i^(n+1)*Sum_{k=1..n} (-1)^k*k!*Stirling2(n,k) * ((1+i)/2)^(k-1) = i^(n+1)*Sum_{k = 1..n} (-1)^k*((1+i)/2)^(k-1)* Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*j^n.
This explicit formula for a(n) can be used to obtain congruence results. For example, for odd prime p, a(p) = (-1)^((p-1)/2) (mod p), as noted by Vladimir Shevelev above.
For the corresponding type B results see A001586. For the corresponding results for plane increasing 0-1-2 trees see A080635.
For generalized Eulerian, Stirling and Bernoulli numbers associated with the zigzag numbers see A145876, A147315 and A185424, respectively. For a recursive triangle to calculate a(n) see A185414.
(End)
a(n) = I^(n+1)*2*Li_{-n}(-I) for n > 0. Li_{s}(z) is the polylogarithm. - Peter Luschny, Jul 29 2011
a(n) = 2*Sum_{m=0..(n-2)/2} 4^m*(Sum_{i=m..(n-1)/2} (i-(n-1)/2)^(n-1)*binomial(n-2*m-1,i-m)*(-1)^(n-i-1)), n > 1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Aug 09 2011
a(n) = D^(n-1)(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1-x^2)*d/dx. Cf. A006154. a(n) equals the alternating sum of the nonzero elements of row n-1 of A196776. This leads to a combinatorial interpretation for a(n); for example, a(4*n+2) gives the number of ordered set partitions of 4*n+1 into k odd-sized blocks, k = 1 (mod 4), minus the number of ordered set partitions of 4*n+1 into k odd-sized blocks, k = 3 (mod 4). Cf A002017. - Peter Bala, Dec 06 2011
From Sergei N. Gladkovskii, Nov 14 2011 - Dec 23 2013: (Start)
Continued fractions:
E.g.f.: tan(x) + sec(x) = 1 + x/U(0); U(k) = 4k+1-x/(2-x/(4k+3+x/(2+x/U(k+1)))).
E.g.f.: for a(n+1) is E(x) = 1/(1-sin(x)) = 1 + x/(1 - x + x^2/G(0)); G(k) = (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1).
E.g.f.: for a(n+1) is E(x) = 1/(1-sin(x)) = 1/(1 - x/(1 + x^2/G(0))) ; G(k) = 8*k+6-x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)).
E.g.f.: for a(n+1) is E(x) = 1/(1 - sin(x)) = 1/(1 - x*G(0)); G(k) = 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))).
E.g.f.: for a(n+1) is E(x) = 1/(1 - sin(x)) = 1/(1 - x*G(0)) where G(k)= 1 - x^2/( (2*k+1)*(2*k+3) - (2*k+1)*(2*k+3)^2/(2*k+3 - (2*k+2)/G(k+1))).
E.g.f.: tan(x) + sec(x) = 1 + 2*x/(U(0)-x) where U(k) = 4k+2 - x^2/U(k+1).
E.g.f.: tan(x) + sec(x) = 1 + 2*x/(2*U(0)-x) where U(k) = 4*k+1 - x^2/(16*k+12 - x^2/U(k+1)).
E.g.f.: tan(x) + sec(x) = 4/(2-x*G(0))-1 where G(k) = 1 - x^2/(x^2 - 4*(2*k+1)*(2*k+3)/G(k+1)).
G.f.: 1 + x/Q(0), m=+4, u=x/2, where Q(k) = 1 - 2*u*(2*k+1) - m*u^2*(k+1)*(2*k+1)/(1 - 2*u*(2*k+2) - m*u^2*(k+1)*(2*k+3)/Q(k+1)).
G.f.: conjecture: 1 + T(0)*x/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/T(k+1)).
E.g.f.: 1+ 4*x/(T(0) - 2*x), where T(k) = 4*(2*k+1) - 4*x^2/T(k+1):
E.g.f.: T(0)-1, where T(k) = 2 + x/(4*k+1 - x/(2 - x/( 4*k+3 + x/T(k+1)))). (End)
E.g.f.: tan(x/2 + Pi/4). - Vaclav Kotesovec, Nov 08 2013
Asymptotic expansion: 4*(2*n/(Pi*e))^(n+1/2)*exp(1/2+1/(12*n) -1/(360*n^3) + 1/(1260*n^5) - ...). (See the Luschny link.) - Peter Luschny, Jul 14 2015
From Peter Bala, Sep 10 2015: (Start)
The e.g.f. A(x) = tan(x) + sec(x) satisfies A''(x) = A(x)*A'(x), hence the recurrence a(0) = 1, a(1) = 1, else a(n) = Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i).
Note, the same recurrence, but with the initial conditions a(0) = 0 and a(1) = 1, produces the sequence [0,1,0,1,0,4,0,34,0,496,...], an aerated version of A002105. (End)
a(n) = A186365(n)/n for n >= 1. - Anton Zakharov, Aug 23 2016
From Peter Luschny, Oct 27 2017: (Start)
a(n) = abs(2*4^n*(H(((-1)^n - 3)/8, -n) - H(((-1)^n - 7)/8, -n))) where H(z, r) are the generalized harmonic numbers.
a(n) = (-1)^binomial(n + 1, 2)*2^(2*n + 1)*(zeta(-n, 1 + (1/8)*(-7 + (-1)^n)) - zeta(-n, 1 + (1/8)*(-3 + (-1)^n))). (End)
a(n) = i*(i^n*Li_{-n}(-i) - (-i)^n*Li_{-n}(i)), where i is the imaginary unit and Li_{s}(z) is the polylogarithm. - Peter Luschny, Aug 28 2020
Sum_{n>=0} 1/a(n) = A340315. - Amiram Eldar, May 29 2021
a(n) = n!*Re([x^n](1 + I^(n^2 - n)*(2 - 2*I)/(exp(x) + I))). - Peter Luschny, Aug 09 2021
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 61*x^6 + 272*x^7 + 1385*x^8 + ...
Sequence starts 1,1,2,5,16,... since possibilities are {}, {A}, {AB}, {ACB, BCA}, {ACBD, ADBC, BCAD, BDAC, CDAB}, {ACBED, ADBEC, ADCEB, AEBDC, AECDB, BCAED, BDAEC, BDCEA, BEADC, BECDA, CDAEB, CDBEA, CEADB, CEBDA, DEACB, DEBCA}, etc. - Henry Bottomley, Jan 17 2001
MAPLE
A000111 := n-> n!*coeff(series(sec(x)+tan(x), x, n+1), x, n);
s := series(sec(x)+tan(x), x, 100): A000111 := n-> n!*coeff(s, x, n);
A000111:=n->piecewise(n mod 2=1, (-1)^((n-1)/2)*2^(n+1)*(2^(n+1)-1)*bernoulli(n+1)/(n+1), (-1)^(n/2)*euler(n)):seq(A000111(n), n=0..30); A000111:=proc(n) local k: k:=floor((n+1)/2): if n mod 2=1 then RETURN((-1)^(k-1)*2^(2*k)*(2^(2*k)-1)*bernoulli(2*k)/(2*k)) else RETURN((-1)^k*euler(2*k)) fi: end:seq(A000111(n), n=0..30); (C. Ronaldo)
T := n -> 2^n*abs(euler(n, 1/2)+euler(n, 1)): # Peter Luschny, Jan 25 2009
S := proc(n, k) option remember; if k=0 then RETURN(`if`(n=0, 1, 0)) fi; S(n, k-1)+S(n-1, n-k) end:
A000364 := n -> S(2*n, 2*n);
A000182 := n -> S(2*n+1, 2*n+1);
A000111 := n -> S(n, n); # Peter Luschny, Jul 29 2009
a := n -> 2^(n+2)*n!*(sum(1/(4*k+1)^(n+1), k = -infinity..infinity))/Pi^(n+1):
1, seq(a(n), n = 1..22); # Emeric Deutsch, Aug 17 2009
# alternative Maple program:
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 29 2015
MATHEMATICA
n=22; CoefficientList[Series[(1+Sin[x])/Cos[x], {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011, after Michael Somos *)
a[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1)-1)*BernoulliB[n+1])/(n+1)]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 09 2012, after C. Ronaldo *)
ee = Table[ 2^n*EulerE[n, 1] + EulerE[n] - 1, {n, 0, 26}]; Table[ Differences[ee, n] // First // Abs, {n, 0, 26}] (* Jean-François Alcover, Mar 21 2013, after Paul Curtz *)
a[ n_] := If[ n < 0, 0, (2 I)^n If[ EvenQ[n], EulerE[n, 1/2], EulerE[n, 0] I]]; (* Michael Somos, Aug 15 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], With[{m = n - 1}, m! SeriesCoefficient[ 1 / (1 - Sin[x]), {x, 0, m}]]]; (* Michael Somos, Aug 15 2015 *)
s[0] = 1; s[_] = 0; t[n_, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0](* Jean-François Alcover, Feb 12 2016 *)
a[n_] := If[n == 0, 1, 2*Abs[PolyLog[-n, I]]]; (* Jean-François Alcover, Dec 02 2023, after M. F. Hasler *)
a[0] := 1; a[1] := 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] a[k] a[n - 1 - k], {k, 0, n - 2}]; Map[a, Range[0, 26]] (* Oliver Seipel, May 24 2024 after Peter Bala *)
a[0] := 1; a[1] := 1; a[n_] := a[n] = 1/(n (n-1)) Sum[a[n-1-k] a[k] k, {k, 1, n-1}]; Map[#! a[#]&, Range[0, 26]] (* Oliver Seipel, May 27 2024 *)
PROG
(PARI) {a(n) = if( n<1, n==0, n--; n! * polcoeff( 1 / (1 - sin(x + x * O(x^n))), n))}; \\ Michael Somos, Feb 03 2004
(PARI) {a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos, Feb 03 2004
(PARI) {a(n) = local(an); if( n<1, n>=0, an = vector(n+1, m, 1); for( m=2, n, an[m+1] = sum( k=0, m-1, binomial(m-1, k) * an[k+1] * an[m-k]) / 2); an[n+1])}; \\ Michael Somos, Feb 03 2004
(PARI) z='z+O('z^66); egf = (1+sin(z))/cos(z); Vec(serlaplace(egf)) \\ Joerg Arndt, Apr 30 2011
(PARI) A000111(n)={my(k); sum(m=0, n\2, (-1)^m*sum(j=0, k=n+1-2*m, binomial(k, j)*(-1)^j*(k-2*j)^(n+1))/k>>k)} \\ M. F. Hasler, May 19 2012
(PARI) A000111(n)=if(n, 2*abs(polylog(-n, I)), 1) \\ M. F. Hasler, May 20 2012
(Maxima) a(n):=sum((if evenp(n+k) then (-1)^((n+k)/2)*sum(j!*stirling2(n, j)*2^(1-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n) else 0), k, 1, n); /* Vladimir Kruchinin, Aug 19 2010 */
(Maxima)
a(n):=if n<2 then 1 else 2*sum(4^m*(sum((i-(n-1)/2)^(n-1)*binomial(n-2*m-1, i-m)*(-1)^(n-i-1), i, m, (n-1)/2)), m, 0, (n-2)/2); /* Vladimir Kruchinin, Aug 09 2011 */
(Sage) # Algorithm of L. Seidel (1877)
def A000111_list(n) :
R = []; A = {-1:0, 0:1}; k = 0; e = 1
for i in (0..n) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) : Am += A[k]; A[k] = Am; k += e
R.append(Am)
return R
A000111_list(22) # Peter Luschny, Mar 31 2012 (revised Apr 24 2016)
(Haskell)
a000111 0 = 1
a000111 n = sum $ a008280_row (n - 1)
-- Reinhard Zumkeller, Nov 01 2013
(Python)
# requires python 3.2 or higher
from itertools import accumulate
A000111_list, blist = [1, 1], [1]
for n in range(10**2):
blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))
A000111_list.append(sum(blist)) # Chai Wah Wu, Jan 29 2015
(Python)
from mpmath import *
mp.dps = 150
l = chop(taylor(lambda x: sec(x) + tan(x), 0, 26))
[int(fac(i) * li) for i, li in enumerate(l)] # Indranil Ghosh, Jul 06 2017
CROSSREFS
Cf. A000364 (secant numbers), A000182 (tangent numbers).
Cf. A181937 for n-alternating permutations.
Cf. A109449 for an extension to an exponential Riordan array.
Column k=2 of A250261.
For 0-1-2 trees with n nodes and k leaves, see A301344.
Matula-Goebel numbers of 0-1-2 trees are A292050.
An overview over generalized Euler numbers gives A349264.
KEYWORD
nonn,core,eigen,nice,easy,changed
EXTENSIONS
Edited by M. F. Hasler, Apr 04 2013
Title corrected by Geoffrey Critzer, May 18 2013
STATUS
approved
Number of ultradissimilarity relations on an n-set.
(Formerly M3649)
+10
47
1, 1, 4, 32, 436, 9012, 262760, 10270696, 518277560, 32795928016, 2542945605432, 237106822506952, 26173354092593696, 3375693096567983232, 502995942483693043200, 85750135569136650473360, 16583651916595710735271248, 3611157196483089769387182064, 879518067472225603327860638128
OFFSET
1,3
COMMENTS
First column in A154960. - Mats Granvik, Jan 18 2009
Number of chains from minimum to maximum in the lattice of set partitions of {1, ..., n} ordered by refinement. - Gus Wiseman, Jul 22 2018
REFERENCES
L. Babai and T. Lengyel, A convergence criterion for recurrent sequences with application to the partition lattice, Analysis 12 (1992), 109-119.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 316-321.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Barsky, J.-P. Bézivin, p-adic Properties of Lengyel's Numbers, Journal of Integer Sequences, 17 (2014), #14.7.3.
P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. See p. 170 - N. J. A. Sloane, Apr 18 2014
Steven R. Finch, Lengyel's Constant [Broken link]
Steven R. Finch, Lengyel's Constant [From the Wayback machine]
T. Lengyel, On a recurrence involving Stirling numbers, Europ. J. Combin., 5 (1984), 313-321.
T. Lengyel, On some 2-adic properties of a recurrence involving Stirling numbers, p-Adic Numbers Ultrametric Anal. Appl. 4, No. 3, 179-186 (2012).
F. Murtagh, Counting dendrograms: a survey, Discrete Appl. Math., 7 (1984), 191-199.
M. Schader, Hierarchical analysis: classification with ordinal object dissimilarities, Metrika, 27 (1980), 127-132. [Annotated scanned copy]
M. Schader, Letter to N. J. A. Sloane, Aug 25 1981.
Eric Weisstein's World of Mathematics, Lengyel's Constant
FORMULA
a(n) = Sum_{i=1..n-1} N_i(n), where N_k(m) = Sum_{j=k..m-1} Stirling2(m, j)*N_{k-1}(j), m=3..n, k=2..m-1; N_1(2)=N_1(3)=...=N_1(n)=1.
a(n) = Sum_{k=1..n-1} Stirling2(n, k)*a(k) [Lengyel]. - Vladeta Jovovic, Apr 16 2003
E.g.f. satisfies Z(z) = 1/2 * (Z(exp(z)-1) - z). [Lengyel]
Asymptotic growth: a(n) ~ C_L*(n!)^2*(2log(2))^(-n)*n^(-1-1/3*log(2)) (Babai and Lengyel), with C_L = 1.0986858055... = A086053 [Flajolet and Salvy].
Sum_{k>=1} a(k-1)/fallfac(n,k) = -1/n^2 + 2*Sum_{k>=1} a(k-1)/n^k, with the falling factorials fallfac(n,k) = Product_{j=0..k-1}(n-j). - Vaclav Kotesovec, Aug 04 2015
EXAMPLE
From Gus Wiseman, Jul 22 2018: (Start)
The (3) = 4 chains from minimum to maximum in the lattice of set partitions of {1,2,3}:
{{1},{2},{3}} < {{1,2,3}}
{{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}
{{1},{2},{3}} < {{2},{1,3}} < {{1,2,3}}
{{1},{2},{3}} < {{3},{1,2}} < {{1,2,3}}
(End)
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[StirlingS2[n, k]*a[k], {k, 1, n-1}]; Array[a, 19]
(* Jean-François Alcover, Jun 24 2011, after Vladeta Jovovic *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, for(k=1, n, A = truncate(A) + x*O(x^k); A = x - A + subst(A, x, exp(x + x*O(x^k)) - 1)); n! * polcoeff(A, n))} /* Michael Somos, Sep 22 2007 */
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Vladeta Jovovic, Apr 16 2003
STATUS
approved
Pentagorials: n-th polygorial for k=5.
+10
21
1, 1, 5, 60, 1320, 46200, 2356200, 164934000, 15173928000, 1775349576000, 257425688520000, 45306921179520000, 9514453447699200000, 2350070001581702400000, 674470090453948588800000, 222575129849803034304000000
OFFSET
0,3
LINKS
M. A. Asiru, Sequence factorial of g-gonal numbers, Int. J. Math. Educ. Sci. Technol., 44(4) (2012), 579-586.
FORMULA
a(n) = polygorial(n, 5) = (A000142(n)/A000079(n))*A008544(n) = (n!/2^n)*Product_{i=0..n-1} (3*i+2) = (n!/2^n)*3^n*Pochhammer(2/3, n) = (n!/2^n)*3^n*GAMMA(n+2/3)/GAMMA(2/3).
a(n) ~ Gamma(1/3) * 3^(n+1/2) * n^(2*n+2/3) / (2^n * exp(2*n)). - Vaclav Kotesovec, Jul 17 2015
D-finite with recurrence a(n+1) = ((n+1)*(3*n+2)/2)*a(n) = A000326(n+1)*a(n). - Muniru A Asiru, Apr 05 2016
E.g.f.: hypergeom([2/3, 1], [], (3/2)*x). - Robert Israel, Apr 05 2016
MAPLE
a := n->(n!/2^n)*mul(3*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
Table[k! Pochhammer[2/3, k] (3/2)^k, {k, 0, 20}] (* Jan Mangaldan, Mar 20 2013 *)
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[5, #] &, 17, 0] (* Robert G. Wilson v, Dec 17 2016 *)
PROG
(PARI) a(n)=n!/2^n*prod(i=1, n, 3*i-1) \\ Charles R Greathouse IV, Dec 13 2016
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved
Heptagorials: n-th polygorial for k=7.
+10
20
1, 1, 7, 126, 4284, 235620, 19085220, 2137544640, 316356606720, 59791398670080, 14050978687468800, 4018579904616076800, 1374354327378698265600, 553864793933615401036800, 259762588354865623086259200
OFFSET
0,3
FORMULA
a(n) = polygorial(n, 7) = (A000142(n)/A000079(n))*A047055(n) = (n!/2^n)*Product_{i=0..n-1}(5*i+2) = (n!/2^n)*5^n*Pochhammer(2/5, n) = (n!/2^n)*5^n*GAMMA(n+2/5)*sin(2*Pi/5)*GAMMA(3/5)/Pi.
D-finite with recurrence 2*a(n) = n*(5*n-3)*a(n-1). - R. J. Mathar, Mar 12 2019
MAPLE
a := n->n!/2^n*mul(5*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[7, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
Join[{1}, FoldList[Times, PolygonalNumber[7, Range[20]]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 29 2019 *)
PROG
(PARI) a(n)=n!/2^n*prod(i=1, n, 5*i-3) \\ Charles R Greathouse IV, Dec 13 2016
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved
Hendecagorials: n-th polygorial for k=11.
+10
20
1, 1, 11, 330, 19140, 1818300, 256380300, 50250538800, 13065140088000, 4350691649304000, 1805537034461160000, 913601739437346960000, 553642654099032257760000, 395854497680808064298400000
OFFSET
0,3
LINKS
FORMULA
a(n) = polygorial(n, 11) = (A000142(n)/A000079(n))*A084949(n) = (n!/2^n)*Product_{i=0..n-1} (9*i+2) = (n!/2^n)*9^n*Pochhammer(2/9, n) = (n!/2^n)*9^n*GAMMA(n+2/9)/GAMMA(2/9).
D-finite with recurrence 2*a(n) = n*(9*n-7)*a(n-1). - R. J. Mathar, Mar 12 2019
MAPLE
a := n->n!/2^n*product(9*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[polygorial[11, #] &, 16, 0] (* Robert G. Wilson v, Dec 13 2016 *)
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved
Octagorials: n-th polygorial for k=8.
+10
19
1, 1, 8, 168, 6720, 436800, 41932800, 5577062400, 981562982400, 220851671040000, 61838467891200000, 21086917550899200000, 8603462360766873600000, 4138265395528866201600000, 2317428621496165072896000000
OFFSET
0,3
FORMULA
a(n) = polygorial(n, 8) = (A000142(n)/A000079(n))*A047657(n) = (n!/2^n)*Product_{i=0..n-1} (6*i+2) = (n!/2^n)*6^n*Pochhammer(1/3, n) = (n!/2)*3^n*sqrt(3)*GAMMA(n+1/3)*GAMMA(2/3)/Pi.
D-finite with recurrence a(n) = n*(3*n-2)*a(n-1). - R. J. Mathar, Mar 12 2019
MAPLE
a := n->n!/2^n*product(6*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[8, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
PROG
(PARI) a(n) = n! / 2^n * prod(i=0, n-1, 6*i+2) \\ Felix Fröhlich, Dec 13 2016
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved
Enneagorials: n-th polygorial for k=9.
+10
19
1, 1, 9, 216, 9936, 745200, 82717200, 12738448800, 2598643555200, 678245967907200, 220429939569840000, 87290256069656640000, 41375581377017247360000, 23128949989752641274240000
OFFSET
0,3
FORMULA
a(n) = polygorial(n, 9) = (A000142(n)/A000079(n))*A084947(n) = (n!/2^n)*Product_{i=0..n-1} (7*i+2) = (n!/2^n)*7^n*Pochhammer(2/7, n) = (n!/2^n)*7^n*GAMMA(n+2/7)/GAMMA(2/7).
D-finite with recurrence 2*a(n) = n*(7*n-5)*a(n-1). - R. J. Mathar, Mar 12 2019
MAPLE
a := n->n!/2^n*product(7*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[9, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
PROG
(PARI) a(n)=n!/2^n*prod(i=1, n, 7*i-5) \\ Charles R Greathouse IV, Dec 13 2016
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved
Decagorials: n-th polygorial for k=10.
+10
19
1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000
OFFSET
0,3
FORMULA
a(n) = polygorial(n, 10) = (A000142(n)/A000079(n))*A084948(n) = (n!/2^n)*Product_{i=0..n-1} (8*i+2) = (n!/2^n)*8^n*Pochhammer(1/4, n) = (n!/2)*4^n*GAMMA(n+1/4)*sqrt(2)*GAMMA(3/4)/Pi.
a(n) = Product_{k=1..n} k*(4k-3). - Daniel Suteu, Nov 01 2017
D-finite with recurrence a(n) -n*(4*n-3)*a(n-1)=0. - R. J. Mathar, May 02 2022
MAPLE
a := n->n!/2^n*product(8*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
PROG
(PARI) a(n)=n!/2^n*prod(i=1, n, 8*i-6) \\ Charles R Greathouse IV, Dec 13 2016
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved

Search completed in 0.065 seconds