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Abstract

Calculus and combinatorics overlap in that power series can be used to study
combinatorially defined sequences. In this note we use exponential generating
functions to study a curious refinement of the Euler numbers, which count the
number of “up-down” permutations of length n.



Students of calculus are familiar with the Maclaurin series of a function of a real
variable:

f(x) = ∑
n≥0

an
xn

n!
= a0 + a1x + a2

x2

2
+ a3

x3

6
+⋯,

where an is the nth derivative of f evaluated at x = 0.
What students of calculus may be less familiar with is the idea of a generating

function for a sequence of numbers, whereby the sequence of coefficients is used to
define the function. That is, a generating function for a sequence a0, a1, a2, . . . is a
way of encoding the sequence algebraically, as a formal power series. This approach
has been used extensively in enumerative combinatorics; Herb Wilf’s wonderful book
[6] provides a good introduction to the theory. In this article, we will study a new
variant of a classical problem in enumerative combinatorics, highlighting the power of
the generating function approach.

1 Generating functions

There are two basic types of generating functions, ordinary and exponential, correspond-
ing to

∑
n≥0

anx
n and ∑

n≥0

an
xn

n!
,

respectively.
To take a simple example, consider the sequence 1,1,1, . . .. Define its ordinary

generating function to be
F (x) = ∑

n≥0

xn.

We notice

F (x) = 1 + x + x2 + x3 +⋯ = 1 + x(1 + x + x2 +⋯) = 1 + xF (x).

Thus, (1 − x)F (x) = 1, and so it must be that F (x) = 1/(1 − x), as expected.
Note that this approach is very different from how the geometric series is introduced

in a calculus class. By defining the generating function as a formal series, we neatly
sidestep any question about its existence. We also don’t have to worry about convergence
questions (“Is ∣x∣ < 1?”) because for us, x is a symbol, not a real number. As Wilf [6, p.
7] puts it, “the analytic nature of the generating function doesn’t interest us; we love it
only as a clothesline on which our sequence is hanging out to dry.”

2 Alternating permutations

The first sequence we’d like to “hang out to dry” is the sequence E0,E1,E2, . . . formed by
interleaving the terms in the power series expansions for secant and tangent. Expanded
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individually, we have

secx = ∑
n≥0

E2n
x2n

(2n)!
= 1 +

x2

2
+ 5

x4

24
+ 61

x6

720
+⋯,

and

tanx = ∑
n≥0

E2n+1
x2n+1

(2n + 1)!
= x + 2

x3

6
+ 16

x5

120
+⋯.

Thus, E(x) = secx + tanx is the exponential generating function for the sequence

1,1,1,2,5,16,61, . . .

which is sometimes known as the sequence of Euler numbers (hence the notation En),
though in number theory the term “Euler numbers” sometimes just refers to the even
terms. The sequence is number A000111 in the On-Line Encyclopedia of Integer Se-
quences [4].1

For a combinatorialist, the first question we’d like to answer when given a sequence
of positive integers is: “What do they count?” Well, in the case of the Euler numbers,
the answer to this question has been known since at least 1881, when the Belgian math-
ematician Désiré André interpreted them as counting alternating permutations [1, 2].
Alternating permutations have re-emerged in various parts of algebraic and topological
combinatorics in recent decades, as discussed in a survey article by Richard Stanley [5].

Nowadays, when people say “alternating permutation” they usually mean either up-
down alternating or down-up alternating. The terms refer to how the permutation ap-
pears in one-line notation, e.g., 3517264 is an up-down permutation becuase the numbers
alternately increase and decrease, whereas 5371624 is a down-up permutation because
the numbers alternately decrease and increase.

There is a simple correspondence between up-down alternating and down-up alter-
nating permutations: for any up-down permutation of {1,2, . . . , n} replacing the letter
k with n+1−k will yield a corresponding down-up permutation (and vice-versa). Notice
the permutations 3517264 and 5371624 can be obtained from each other in this way.
Thus the set of alternating permutations splits evenly into these two types and André’s
result says:

En = ∣{up-down permutations of length n}∣,

= ∣{down-up permutations of length n}∣.

That is, E(x) = secx + tanx is the exponential generating function for the number of
up-down (or down-up) permutations.

1This database, founded by Neil Sloane, is an indispensible resource for the study of enumerative
combinatorics.
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As an exercise, let’s see how to derive this result combinatorially.
Our starting point is to define En as the number of up-down alternating permutations

of length n (with E0 = 1 for convenience), and to define the exponential generating
function for this sequence:

E(x) = ∑
n≥0

En
xn

n!
.

Now consider how to create one of the 2En alternating permutations (up-down or
down-up) of length n. First suppose that we put n in postion k + 1. Then to the left of
n we will have an alternating permutation of length k that ends in a down step, and to
the right of n we will have an up-down permutaton of length l, where k + l = n − 1. We
can sketch the situation like this:

n

k l

Note that while we have drawn an up-down alternating permutation, it could also be
down-up. It depends on whether k is even or, as in this case, k is odd.

To fill in the rest of the picture, we need to do two things:

1. choose the k elements that go to the left of n and arrange them as an alternating
permutation, and

2. arrange the remaining l elements to the right of n as an alternating permutation.

Step 1 can be done in (
n−1
k
)Ek ways. Indeed, we are choosing k of n − 1 elements, and

these can be ordered in Ek ways, according to the reversal of any up-down permutation
of length k. For step 2, we also want to form an up-down permutation, this time written
left to right. Since there are l elements to the right of n, this can be done in El ways.

Now we can conclude that there are (
n−1
k
)EkEl alternating permutations with n in

position k+1. Summing over all k, we find the total number of alternating permutations
of length n (down-up or up-down) is:

2En = ∑
k,l≥0

k+l=n−1

(
n − 1

k
)EkEl

= ∑
k,l≥0

k+l=n−1

(n − 1)!

k!l!
EkEl

= (n − 1)! ∑
k,l≥0

k+l=n−1

Ek

k!

El

l!
(for n ≥ 2). (1)
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Next, we will multiply both sides of (1) by xn−1/(n − 1)! and sum this recurrence
over all n ≥ 2. We get:

∑
n≥2

2En
xn−1

(n − 1)!
= ∑

n≥2

( ∑
k+l=n−1

Ek

k!

El

l!
)xn−1

= ∑
n≥2

∑
k+l=n−1

(Ek
xk

k!
)(El

xl

l!
)

= (∑
k≥0

Ek
xk

k!
)(∑

l≥0

El
xl

l!
) − 1

= E(x)2 − 1,

where the second to last identity comes from thinking of the index n as simply a way to
keep track of the total degree in the expansion of the product. The only term missing
from the product was E2

0 = 1. So we have

E(x)2 − 1 = 2∑
n≥2

En
xn−1

(n − 1)!
. (2)

But notice

E′(x) = ∑
n≥1

En
xn−1

(n − 1)!
,

so the right-hand side of (2) is 2(E′(x) − 1). Therefore we can write:

E(x)2 + 1 = 2E′(x).

It easy to check that taking E(x) = secx + tanx satisfies this differential equation
with initial condition E(0) = 1. This completes the derivation of André’s generating
function for up-down permutations.

3 A new refinement of Euler numbers

In a short note [3], David Callan suggested partitioning the alternating permutations
in a new way. Rather than consider whether an alternating permutation is down-up
or up-down, he considered the relative positions of 1 and n. We call a permutation
min-max if the number 1 appears to the left of n; if it appears to the right of n, we say
it is max-min.

There is a correspondence between min-max alternating permutations and max-min
alternating permutations through reversal of permutations. For example, the min-max
permutation 153624 becomes the max-min permutation 426351, while 3517264 becomes
4627153. (Notice that this reversal does not preserve up-downness in the even length
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case, but does in the odd.) Thus, there are the same number of min-max alternating
permutations as there are max-min alternating permutations. Since the total number
of alternating permutations is 2En, this implies that En counts the number of min-max
alternating permutations.

n = 4 max-min min-max

up-down
2413
3412

1324
1423
2314

down-up
4231
4132
3241

3142
2143

max-min min-max

up-down

35241 45231
35142 45132
34251 24351
35241 25341

14253 13254
24153 23154
15243 15342
14253 14352

down-up

42513 51423
43512 53412
52314 51324
32514 52413

31524 32415
21534 21435
41325 42315
41523 31425

Table 1: Alternating permutations for n = 4 and n = 5 organized by the properties
max-min/min-max and up-down/down-up.

But what if we combine Callan’s idea with the classical one? This partitions alter-
nating permutations into four subsets according to whether a permutation is up-down
or down-up and according to whether it is min-max or max-min. We see these subsets
shown in Table 1 for n = 4 and n = 5.

Let E↗n denote the the the number of up-down min-max permutations of n (the arrow
↗ points from 1 to n), and let E↖n denote the number of up-down max-min permutations
of n. Notice that

En = E↗n +E↖n .

We include the first few values of these sequences and some related quantities in Table
2. The seqences E↗n and E↖n do not appear in the On-Line Encyclopedia of Integer
Sequences [4] and thus are unlikely to have been studied before.

We can see from Table 2 that the numbers E↗n and E↖n are roughly equal. In fact,
for odd n, they are exactly equal. (This is because reversal gives a bijection between up-
down min-max permutations and up-down max-min permutations.) In the even case, we
find it slightly more likely that an up-down permutation is min-max than max-min. But
notice something: the difference between the number of min-max up-down permutations
and max-min up-down permutations is an Euler number! This will turn out to imply
that, as n → ∞, the ratio of min-max up-down permutations and max-min up-down
permutations tends to 1.
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n 2 3 4 5 6 7 8 9 10

En 1 2 5 16 61 272 1385 7936 50521

E↗n 1 1 3 8 33 136 723 3968 25953

E↖n 0 1 2 8 28 136 662 3968 24568

E↗n −E
↖
n 1 0 1 0 5 0 61 0 1385

E↖n
E↗n

0 1 2
3

1 .737 . . . 1 .916 . . . 1 .947 . . .

Table 2: Number of up-down min-max/max-min permutations up to n = 10

4 New generating functions

All of the facts just mentioned will be quickly deduced once we have found generating
functions for E↗n and E↖n . Just as we did for the case of all alternating permutations,
we will do this by first considering how to build a min-max up-down permutation. Since
it must be min-max, we will write a 1 somewhere to the left of n, and we will put a
bunch of blank spaces in for the rest of the numbers. We will also draw it in a way
that reminds us that the whole thing better be up-down alternating. We end up with a
picture like this:

1

n

2i 2j k

Now to fill in the rest of the picture, we need to do three things:

1. choose the elements that go to the left of 1 and arrange them as an up-down
permutation of even length,

2. choose the elements that go between 1 and n and arrange them as a down-up
permutation of even length, and

3. arrange the remaining elements as an up-down permutation to the right of n.

Step 1 can be done in (
n−2
2i

)E2i ways, step 2 can be done in (
n−2−2i

2j
)E2j ways, and, letting

k = n − 2 − 2i − 2j, step 3 can be done in Ek ways. Thus, for a fixed n, the number of
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min-max up-down permutations is:

E↗n = ∑
i,j,k≥0

2i+2j+k=n−2

(
n − 2

2i
)E2i(

n − 2 − 2i

2j
)E2jEk

= (n − 2)! ∑
i,j,k≥0

2i+2j+k=n−2

E2i

(2i)!

E2j

(2j)!

Ek

k!
(3)

Now let’s formally write down the generating function we want. Because of the
(n−2)! that cropped up above, and the fact that the notion of “min-max” doesn’t make
sense if n < 2, it makes sense to shift the coefficients of our generating function two steps
and define:

E↗(x) = ∑
n≥0

E↗n+2
xn

n!
= 1 + x + 3

x2

2
+ 8

x3

6
+ 33

x4

24
+⋯.

Now we can use (3) to manipulate the series as follows:

E↗n (x) = ∑
n≥0

E↗n+2
xn

n!

= ∑
n≥0

⎛
⎜
⎜
⎝

∑
0≤i,j,k

2i+2j+k=n

E2j

(2j)!

E2k

(2k)!

El

l!

⎞
⎟
⎟
⎠

xn

= ∑
i≥0

E2i
x2i

(2i)!
⋅ ∑
j≥0

E2j
x2j

(2j)!
⋅ ∑
k≥0

Ek
xk

k!
.

But we know these power series! The first two are the same: the generating function
for the even index Euler numbers, and the third is the generating function for all Euler
numbers. That is,

E↗n (x) = secx ⋅ secx ⋅ (secx + tanx) = sec3 x + sec2 tanx. (4)

This makes perfect sense if we think back to our picture for an up-down min-max
permutation. We have an arbitrary up-down permutation of even length (encoded by
secx), followed by a unique minimum, followed by an arbitrary down-up permutation
of even length (also encoded by secx), followed by a unique maximum, followed by an
arbitrary up-down permutation (encoded by secx + tanx). Easy!

We’ll skip the details, but the reader should now be able to use similar reasoning to
come up with the generating function for up-down max-min permutations. It is:

E↖n (x) = tanx ⋅ secx ⋅ (secx + tanx) = sec2 x tanx + secx tan2 x. (5)
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5 Consequences

Now that we have formulas (4) and (5) in hand, we can address the interesting properties
hinted at in Table 2. First note that the sum of our functions is the second derivative
of sec z + tan z, as it should be, since

d2

dx2
[secx + tanx] =

d2

dx2 ∑
n≥0

En
xn

n!
= ∑

n≥0

En+2
xn

n!

while

E↗(x) +E↖(z) = ∑
n≥0

(E↗n+2 +E↖n+2)
xn

n!
.

This is the generating function analogue of the identity En = E↗n +E
↖
n (which we already

knew). Similarly, we can check that the difference of the two functions is secx:

E↗(x) −E↖(x) = sec3 x − secx tan2 x = secx ⋅ (sec2 x − tan2 x) = secx.

Comparing coefficients of the series for the function on the far left with the series for
the function on the far right gives the following combinatorial identities for n ≥ 1:

E↗2n −E↖2n = E2n−2, (6)

E↗2n+1 −E↖2n+1 = 0. (7)

With these observations we are able to prove that the ratio of min-max up-down
permutations to max-min up-down permutations approaches 1. For odd integers, (7)
shows the ratio is exactly 1. For even integers, (6) implies that

E↖2n
E↗2n

=
E↗2n −E2n−2

E↗2n
= 1 −

E2n−2

E↗2n
.

But since E↗2n >
1
2E2n, we get

E2n−2

E↗2n
<
E2n−2

1
2E2n

,

and it suffices to show

lim
n→∞

E2n−2

E2n

= 0.

To prove this limit, we imagine an up-down permutation of 2n formed as follows.
Put 2n in the second position, and put any i = 1,2, . . . ,2n − 1 in position 1:

i

2n

2n − 2
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There are E2n−2 ways to fill in the rest of the positions by arranging the remaining
numbers in an up-down permutation. This shows us there are at least (2n − 1)E2n−2

up-down permutations of 2n, i.e., E2n > (2n − 1)E2n−2.
Returning to our ratio, we therefore have

E2n−2

E2n

<
E2n−2

(2n − 1)E2n−2

=
1

2n − 1
.

Thus limn→∞E2n−2/E2n = 0, and we have

lim
n→∞

E↖n

E↗n
= 1,

as desired.

6 Conclusions

We hope this article gives the reader some appreciation for the generating function ap-
proach to combinatorial enumeration. For example, the method gives identities such as
(6) and (7) without much trouble. Reversal of permutations gives a direct combinatorial
proof of (7), though the identity in (6), while proved, is still in some sense “unexplained.”
We are left with a tantalizing combinatorial question: is there a bijective explanation
for (6)?
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