(AM 14 1956 (not 1957!)

A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM

BY
ATHANASIOS PAPOULIS

Polytechnic Institute of Brooklyn

Introduction. In determining a function r(t) from its Laplace transform R(p)

 $R(p) = \int_0^\infty e^{-pt} r(t) \ dt$

Also A39599

one applies either a partial fraction expansion or an integration along some contour in the complex p-plane; one thus obtains r(t) in terms of the poles and residues of R(p), or from the values of R(p) on a contour of the p-plane. Both methods have obvious disadvantages for a numerical analysis.

In the following we propose to develop a method for determining r(t) in terms of the values of R(p) on an infinite sequence of equidistant points

$$p_k = a + k\sigma \qquad k = 0, 1, \dots, n, \dots$$
 (2)

on the real p-axis, where a is a real number in the region of existence of R(p), and an arbitrary positive integer. That R(p) is uniquely determined from its values at the above points, is known [1]. It should therefore be possible to express r(t) directly in terms of $R(n + k\sigma)$. In this paper it will be shown that r(t) can be written in the form

$$r(t) = \sum_{k=0}^{\infty} C_k \varphi_k(t), \qquad (3)$$

where the φ_k 's are known functions, and the constants C_k can readily be determined from the values of R(p) at the points $a + k\sigma$.

The φ_k 's can be chosen from several sets of complete orthogonal functions; in our discussion we shall use the familiar trigonometric set, the Legendre set and the Laguerre polynomials.

The trigonometric set. We introduce the variable θ defined by

$$e^{-\sigma t} = \cos \theta \qquad \sigma > 0.$$
 (4)

The $(0, \infty)$ interval transforms into the interval $(0, \pi/2)$, and r(t) becomes

$$r\left(-\frac{1}{\sigma}\ln\cos\theta\right)$$
.

For simplicity of notation we shall denote the above function by $r(\theta)$ using the same letter r.

The defining equation (1) takes the form

$$\sigma R(p) = \int_0^{\pi/2} (\cos \theta)^{(p/\sigma)-1} \sin \theta r(\theta) d\theta$$
 (5)

ana in 590

^{*}Received January 6, 1956. Part of a paper presented at the Symposium on Modern Network Synthesis, Polytechnic Institute of Brooklyn, April 1955.

hence with

$$p = (2k + 1)\sigma$$
 $k = 0, 1, 2, \cdots$

we have

$$\sigma R[(2k+1)\sigma] = \int_0^{\pi/2} (\cos \theta)^{2k} \sin \theta r(\theta) d\theta.$$
 (6)

In the following we shall assume, without loss of generality, that r(0) = 0 subtracting, if necessary, a constant from $r(\theta)$. The function $r(\theta)$ can be expanded in the $(0, \pi/2)$ interval into an odd-sine series

$$r(\theta) = \sum_{k=0}^{\infty} C_k \sin(2k+1)\theta.$$
 (7)

This can of course be done by properly extending the definition of $r(\theta)$ in the $(-\pi, +\pi)$ interval.

We shall next determine the coefficients \mathcal{C}_{k} . We have

$$(\cos\theta)^{2n}\sin\theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{2n}\frac{e^{i\theta} - e^{-i\theta}}{2i},$$

expanding in the right hand side and properly collecting terms we obtain

 $2^{2n}(\cos \theta)^{2n}\sin \theta = \sin (2n + 1)\theta + \cdots$

$$+\left[\binom{2n}{k}-\binom{2n}{k-1}\right]\sin\left[2(n-k)+1\right]\theta+\cdots+\left[\binom{2n}{n}-\binom{2n}{n-1}\right]\sin\theta. \tag{8}$$

We next insert (7) and (8) into (6); because of the orthogonality of the odd sines in the $(0, \pi/2)$ interval and since

$$\int_0^{\pi/2} \left[\sin (2n + 1) \theta \right]^2 d\theta = \frac{\pi}{4} ,$$

we have

$$\sigma R[(2n+1)\sigma] = 2^{-2n} \frac{\pi}{4} \left\{ \left[\binom{2n}{n} - \binom{2n}{n-1} \right] C_0 + \cdots + \left[\binom{2n}{k} - \binom{2n}{k-1} \right] C_{n-k} + \cdots + C_n \right\}$$

hence with $n = 0, 1, 2, \cdots$ we obtain the system

$$2^{2n} \frac{4}{\pi} \sigma R[(2n+1)\sigma] = \left[\binom{2n}{n} - \binom{2n}{n-1} \right] C_0 + \cdots + \left[\binom{2n}{k} - \binom{2n}{k-1} \right] C_{n-k} + \cdots + C_n.$$

Thus $R(\sigma)$ gives C_0 , $R(3\sigma)$ give C_1 and each value of R(p) at the points $(2k+1)\sigma$ together with the coefficients C_0 , $C_1 \cdots$, C_{k-1} , determines C_k . The system (9) can obviously be written in such a way as to give directly C_k in terms of $R(\sigma)$, $R(3\sigma)$, \cdots alone, but not much is gained, since in a numerical evaluation of the C_k 's equation (9) can be used as easily. Table 1 gives the numerical values of the coefficients of the C_k 's in the right hand side of (9), for $k=0,1,\cdots,10$.

TABLE 1

n	C ₀	C_1	C_2	C_3	C_4	C_5	C 6	C_7	C ₈	C 9	C10
0	1 1 2	1 3	1		Δ	A39	1599	7	d	Jk.en	ces of
2 3 4	2 5 19 -1	9	5 20	1 7	1						
5	42 132	90 297	75 275	$\frac{35}{154}$	$\frac{9}{54}$	1 11	1				
7	429 1430	$\frac{1001}{3432}$	1001 3640	637 2548	273 1260	77 440	13 104	15	1 17	1	
9 10	4862 16796	11934 41990	13260 48450	9996 38760_	550S 23256	2244 10659	663 3705	135 950	170	19	1
	08 DK	245	344	588	1392	- 589 Lubiah	590				

Thus a method of analysis has resulted which compares sometimes favorably with the known methods of numerical evaluation of r(t). Indeed the computation of $R((2k+1)\sigma)$ presents no difficulty, and the C_k 's can be readily determined from (9); the trigonometric functions are available, hence $r(\theta)$ can be computed with any desired accuracy from the series (7). In a numerical evaluation of $r(\theta)$ one computes the finite sum

$$r_N(\theta) = \sum_{k=0}^{N} C_k \sin(2k+1)\theta$$
 (10)

of the first N+1 terms of (7); as N tends to infinity $r_N(\theta)$ tends to $r(\theta)$. The nature of the approximation is well known from the theory of Fourier series [2]; $r_N(\theta)$ and $r(\theta)$ are related by the equation

$$r_N(\theta) = \frac{4}{\pi} \int_0^{\pi/2} r(y) \frac{\sin\left[\frac{1}{2}(4N+3)(\theta-y)\right]}{\sin\frac{1}{2}(\theta-y)} dy, \tag{11}$$

thus the approximating function $r_N(\theta)$ is the average of $r(\theta)$ with the Fourier kernel

$$\frac{\sin\left[\frac{1}{2}(4N+3)(\theta-y)\right]}{\sin\frac{1}{2}(\theta-y)}$$

as the weighting factor. From $r(\theta)$ one can readily obtain r(t) with the change of variable established by (4); however, Eq. (7) can be written directly in the time domain. Indeed since

$$\frac{\sin n\theta}{\sin \theta} = U_n(x) \qquad \cos \theta = x,$$

where Un(x) are the Tchebycheff sine-polynomials of order n and

$$\sin \theta = (1 - e^{-2\sigma t})^{1/2}$$

we have from (7)

$$r(t) = (1 - e^{-2\sigma t})^{1/2} \sum_{k=0}^{\infty} C_k U_{2k}(e^{-\sigma t}).$$
 (12)

The choice of σ depends on the interval (0, T) in which r(t) is best to be described; if it is chosen so that

$$e^{-\sigma T} = \frac{1}{2}$$

then the (0, T) interval transforms into the $(0, \pi/3)$ interval. If a detailed description of r(t) is desired both near the origin and for large values of t, then the function can be evaluated twice with two different values of σ .

The above provides a simple proof of the announced theorem that the Laplace transform R(p) is uniquely determined from its values at the sequence

$$p_k = a + k\sigma \qquad k = 0, 1, \cdots, n, \cdots \tag{2}$$

of equidistant points on the real p-axis. This proof uses the well-known orthogonality and completeness of the trigonometric set. Indeed $r(\theta)$, and hence r(t), is completely determined from the coefficients C_k of (7); these coefficients can be determined from $R(a + k\sigma)$; knowing r(t) one clearly has R(p) therefore R(p) is uniquely determined from its values at the points (2).

The Legendre set. We shall next expand r(t) into a series of Legendre polynomials. We introduce the logarithmic time-scale x defined by

$$e^{-\sigma t} = x \qquad \sigma > 0. \tag{13}$$

The $(0, \infty)$ interval transforms into the interval (1, 0): again we shall denote the function

$$r\left(-\frac{1}{\sigma}\ln x\right)$$

by r(x). Equation (1) takes the form

$$\sigma R(p) = \int_0^1 x^{(p/\sigma)-1} r(x) \ dx \tag{14}$$

from which we obtain with $p = (2k + 1)\sigma$,

$$\sigma R[(2k+1)\sigma] = \int_0^1 x^{2k} r(x) \, dx. \tag{15}$$

Thus the value of the function R(p) at the point $[(2k+1)\sigma]$ gives the 2kth moment of the function r(x) in the (0, 1) interval

It is known that the Legendre polynomials $P_k(x)$ form a complete orthogonal set in the (-1, 1) interval; We extend the definition of r(x) in the (-1, 1) interval by making

$$r(-x) = r(x).$$