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Introduction. In determining a function r(f) from its Laplace transform R(p)

Rn) = fm e "'r(l) di i (0
’ dhee 131599

one applics either a partial fraction expansion or an integration along some contour in
the complex p-planc; one thus obtains #(¢) in terms of the poles and residues of E{p),
or from the values of R(p) on a coniour of the p-plane. Both miethods have obvious
disadvantages for a numerical analysis.

In the following we propose to develop a method for determining 7(¢) in terms of the
values of R{p) on an infinite sequence of equidistant points

P = a + ko E=20,1,-,n, - (2)

on the real p-axis, where a is a real number in the region of existence of R(p}, and an
arbitrary positive integer. That R(p) is uniquely determined from its values at the
above points, is known [1]. It should therefore be possible to express r(f) directly in
terms of R(a + ko). In this paper it will be shown that #(f) can be written in the form

r{t) = Z Cipi(D), 3
k=t

where the ¢s are known functions, and the constants €, can readily be determined
from the values of R{p) at thie points a + Lo

The ¢/s can be chosen from several sets of complete orthogonal functious; in our
discussion we shall use the familiar trigonometric sef, the Legendre set and the Laguerre
polvioinials, )

The trigoncmetric set.  We introduce the variable 6 defined by

e" = cos 0 c > 0. (4)

The (0, ) interval transforms into the interval (0, 7/2), and r{#) becomes

r(—l In cos 8>.
2

For simplicity of notation we shall denote the above function by r(6) using the same
letter r.
The defining equation (1) takes the form

oR(p) = fow (cos )7 " sin 6r(6) df (5)

*Received Jonuary 6, 1956, Part of a naper presented at the Symposium on Modern Network Syn-
thesis, Polytechnic Institute of Brooklyn, April 1953




406 ATHANASIOS PAPOULIS [Vol. XIV, No. 4

hence with
p=02k+ Do k=0,1,2 ...
we have

R[22k + 1)o] = foﬂz (cos 6)* sin 6r(f) d8. (6)

In the following we shall assume, without loss of generality, that 7(0) = 0 subtracting,
If necessary, a constant from 7(6). The function 7(6) can be expanded in the 0, ©/2)
interval into an odd-sine series

r(8) = i Cysin (2% -+ 1)8. (7

This can of course be done by properly extending the definition of r(6) in the (—=, -+ )
interval.

We shall next determine the coefficients C, . We have

6 —ie\an ;8 -6
o . € T € e — e
(cos 6)*"sin 6 = (M) —
2j

2
expanding in the right hand side and properly collecting terms we obtain

2*"(cos 6)*sin 6 = sin Cn+ 1o+ --.

+ {:<2]:Z> - (AZZL 1):’ sin 20 = k) F1]04 - + [(2,1'1) - <n2~n 1)]sin 9. o

We next insert (7) and (8) into (6); because of the orthogonality of the odd sines in
the (0, 7/2) interval and since

’

/2
f [sin (20 4 1)0]° dg =

[EREN IS

W

we have

aR[(2n + 1)g] = 2'2’5

hence withn = 0, 1,2, -+ we obtain the system

2ok = ¢,
s

223 R(3s) = Cy 4 C,

2“% oR[(2n + 1)o] = [(i”) - (n 2n 1)]00 .

R ——

R ——
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Thus R(s) gives Co , R(30) give C, and each valuc of R{p) at the points (2k + De
together with the coefficients Co , Cy <+ 5 Cemr determines C. . The system (9) can
obviously be written in such a way as to give directly €, in terms of R(s), R(30), -+~
alone, but not much is gained, sincein a numerical evaluation of the C’s equation (9) can
be used as easily. Table 1 gives the numerical values of the coefficients of the C\'s in
the right hand side of (9), for EF=01,---,10.

TapLe 1
[ — _ _
n Co 01 Cz Ca Cd Cs Co C1 05 CQ Cxo
- R
0 1 : L s -
Lo et A
2 2 3 1 U
3 5 9 5 1 ;
4 a9~ 28 20 7 1
5 42 90 75 35 9 1
6 132 297 275 154 54 11 1
7 429 1001 100% 637 273 77 13 1
8 1430 3432 3640 2348 1200 440 104 15 1
9 4862 11034 13260 990G 5508 2243 663 135 17 1
10 16796 41000 48430 38760 23256 10659 3705 950 170 19 1

S0

Thus & method of analysis has resulted which compares sometimes favorably with
the known methods of numerical evaluation. of 7(f). Indeed the computation of
R((2k + 1)o) prescnts no difficulty, and the C/’s can be readily determined from (9);
the trigonometric functions are available, hence r(8) can be computed with any desired
accuracy from the series (7). Ina numerical evaluation of r(¢) onc computes the finite
sum

ry(0) = kzo C.sin (26 + 1)6 (10)

of the first N -+ 1 terms of (7); as N tends to infinity ry(6) tends to #(8). The nature of
the approximation 1s well known-from the theory of Fourier series [2]; 7v(0) and #(6)
are related by the equation

ey = & [ BT IO, (1)

thus the approximating function ry(8) is the average of 7(6) with the Fourier kernel
sin [J(4N + 3)(8 — 9]
sin (8 — ¥)

as the weighting factor. From r(6) one can readily obtain r(f) with the change of variablie
established by (4); however, Eq. (7) can be written directly in the time domain. Indeed
since

sin n@
sin @

= U.(x) cos § = z,

T ———
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where Un(z) are the Tchebycheff sine-polynomials of order n and
Sin 0 — (1 _ e—2a1)1/2

we have from (7)
() = (1 — e )2 3 CULle™). (12)
k=0

The choice of ¢ depends on the interval (0, T) in which #(f) is best to be desecribed;
if it is chosen so that

e—v’l‘ —

(S

then the (0, T) interval transforms into the (0, =/3) interval. If a detailed description
of r(¢) is desired both near the origin and for large values of ¢, then the function can be
evaluated twice with two different values of ¢.

The above provides a simple proof of the announced theorem that the Laplace
transform R(p) is uniquely determined from its values at the sequence

Pi=a-t+ke E=0,1-" 0 ©2)

of equidistant points on the real p-axis. This proof uscs the well-known orthogonality
and completeness of the trigonometric set. Indeed r(8), and hence r(f), is completely
defermined from the coefficients €, of (7); these cocfficients can he determined from
R(a + ko); knowing r(f) one clearly has R(p) therefere R(p) is uniquely determined
from its values at the points (2).

The Legendre set. We shall next expand r(¢) into a series of Legendre polynomials.
We introduce the logarithmic time-scale & defined by

e’ =z o > 0. : (13)

The (0, «) interval transforms into the interval (1, 0): again we shall denote the function

r(——l In 3:)
ag

by 7(z). Equation (1) takes the form
oR(p) = f % () dx < (14)
)
from which we obtain with p = (2k - 1),

1
aR[(2k -+ Vo] = f **r(x) dx. (15)
a

Thus the value of the function R(p) at the point [(2k + 1)¢] gives the 2/:th moment
of the fuinction r(z) in the (0, 1) interval

It is known that the Legendre polynomials P.(z) form a complete orthogonal set
in the (=1, 1) interval; We extend the definition of 7(z) in the (—1, 1) interval by
making

r(—z) = r(x).



