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ENUMERATION OF LADDER GRAPHS*
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Abstract. Censider V points labelled cyclically forming the vertex set of a planar convex poly-
gon, pairs of which may be connected by bonds. Define a ladder graph to be a graph with no
crossing bonds. New simple proofs are given for two results of Kirkman relating to the total
nunber of ladder graphs with & bonds. Relations are derived for calculating the number of con-
nected Jadder graphs with & bonds, and asymptotic expressions are obtained.

In the investigation of certain lattice walks (see, for example, [5]) we
encounter the following geometric problem: “What is the number of
connected line graphs which can be constructed from the vertex set of a
planar convex polygon, with no two lines crossing?”” This problem leads
immediately to the more general one: “What is the total number of line
graphs which can be constructed on the vertex set of a planar convex
polygon, with no two lines crossing?” This second problem has been
solved previously. It was proposed in 1857 by the Rev. T.P. Kirkman
[7], who in his paper gave the solution without proof. This solution con-
sists of an expression for the number of k-line graphs on an N-point
vertex set, and a recurrence relation for this number. The former was
proved by Cayley [2] some thirty years later. Cayley had also attempted
a proof of the recurrence relation but this was only satisfactorily given
by Watson [9] over seventy years later. (We are grateful to Professor
H.N.V. Temperley for bringing this paper to our attention.)

Upon reading Cayley’s paper, one is immediately struck by the
amount and complexity of the algebra required to prove such simple
results. Watson’s paper, though simpler, is nonetheless still involved, and

* This research has been supported in part by the U.S. Department of the Army through its
European Research Office.
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342 C. Domb, A.J. Barrett, Enumeration of ladder graphs

in fact the overriding characteristic of this seemingly simple problem
appears to be the exceedingly intricate mathematics required in its solu-
tion.

The problem is similar in character to other enumerations in graph
theory which have been solved more directly (see, for example, [8]).
We have based our approach on the fact that the symmetry exhibited by
this problem is that of the permutation group rather than that of the
symmetric group. This symmetry has also determined the labelling
scheme used.

As mentioned at the beginning, this problem is of importance in the
study of lattice walks. In addition, it has application to perturbation ex-
pansions for a polymer chain [3, 5] and Ising model expansions [1].

The points of the vertex set of a planar convex polygon are labelled
cyclically 1,2, ..., N. Any two points may be connected by a bond.
Following Chikahisa we define a ladder graph to be a graph with no
crossing bonds. We distinguish between basic bonds which connect ad-
jacent points of the vertex set, and bridges which connect non-adjacent
points. Let the tg_ta_lil_u_r_n_tlgf()f k-bond ladder graphs be a(V, k), the
number of k-bond ladder - graphs constructed solely from bridges | be
b(N, k) and the number of connected k-bond ladder graphs_be c¢(N, k).

Define the generating functions T it

2N-3

) ay )= 2 alN, k) wh, AW = 23 ay(w) xV,
k=0 N=1
N-=3 o

) by = 2 bWk wk,  Bx,w)= 27 byw) xV,
k=0 N=3 }
2N=3 L :

3) cyw)= L VR wE,  Cx,w) = 27 cyw) xN .
k=0 N=1

(The upper limit to the k-summation is well-known (see, for example,
[10, pp. 14, 118—120]).) By direct enumeration, we have
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(4) a;(w) =1,
az(w) =1+w,
a3(w) =1+ 3w+ 3w? +w3,
a,(w) =1+6w+ 14w? + 16w* + 9w* + 2w,

(5) by(w) =1,
b4(w) =1+ 2w,
6) e w) =1,
e, (w) =w,

Cq (w) =3w? + w3,

c,(w) = 12w +9w* +2w°.

The graphs for N = 4 are presented in Fig. 1.

For future reference we give the results obtained by Kirkman [7]:

the expression is
Kl'(k+1) 2

(7) b(N, k) =

where (V) = N(N +1)...(N+k — 1). The recurrence relation is
2 ’ 4
4 4

N L2

4 4 8 1 2
Fig. 1. Ladder graphs on four points.
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N N-1 k-1

(8) BN, k) = 2~ 27 b(N, s)b(N—h+2, k—s—1) .
2k h=3 =0

3.

Since k basic bonds can be placed on the NV points in (fcv) ways, it
is not hard to see that the generating function for basic bond graphs
is (1 +w)H,

Furthermore, since graphs are constructed only of basic bonds and
bridges, it follows that (for N > 3)

) ayw)=(1+ w)NbN(w) .
Multiplying both sides by x ,» and summing, yields the relation

(10) ACe, w) = BIx(1 + w),w] +a,x +a,x? |

We can also obtain a functional relation between A and C. The
ay (w) are decomposed into mutually exclusive groups made up of

(i) a single connected set,

(ii) two disjoint connected sets,

(iii) three disjoint connected sets,
and so on the standard manner (see, for example, [8]). We consider
these in turn. '

(i) A single term cj (w) has generating function C(x, w).

(ii) The two sets can contain r and s points, where r and s are non
zero integers (r + s = N). For any particular r and s (r # s), there are
N possible choices of the labelled points. When r = s, there are %N
choices. Hence the total contribution is ’

%ENC’,CS, r+s=N,
s

which has generating function

x d
(11) 3 dx

(iii) If we now introduce a third connected set of ¢ points, we find-
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that there are r +s ways in which these can be introduced adjacently to
one another, and t — 1 ways non adjacently. When any of r, s and ¢ are
equal, there are appropriate symmetry reduction factors. We then find
for this contribution

N(Ag,_l)zccc r+s+t=N,
r,s,t

which has generating function

2 42
ay X4
3! dx?
Proceeding in a similar manner the mth term has generating function
xm—l dm—-I
m! dxm—l

We can therefore write

m

(13)

2
(14)  AG,w)=Clr,w)+ 3 d o x? & a
Pdx ™ 731 gy

Comparing this with the Lagrange expansion (see, for example, [6])

(15) z=x+x ¢(z)

m dm—l
|. dxm-l
we see that if we identify (z—x)/x with A(x,w) and ¢ w1th C(x, w) we
obtain the functional relation

(16) A, w)=Cx(1 +4),w] .

x
oM™ +...,

—x+x¢(x)+2| dx¢2

This relation can be used to obtain the cy (w), given the ay (w); how-
ever, it is not very convenient.
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Preliminary to proving the Kirkman results (7) and (8), we establish
equivalent differential equations with initial conditions for the gener-
ating funtions. From (8) we have

b(N, k) = % 23 b(N,s) b(N—h +2, k—s—1), k+0,
=1, k=0.
Multiply both sides by w¥, differentiate w.r.t. w, and sum over k to get
S bywm=D, bN(w)=]—;/i§;: by briy -
Multiply by t¥=1 and integrate from 0 to x w.r.t. ¢:

N _
D, [ by ™at=1 T b, b, x¥  (n,+n,=N+2).
0 ny,np 1 2
Define hy (x,w) = by (W)/x; H =32 hy xN = B/x. We now have
X
D, [ hyt" at=32in, h, xN? (n, +n, =N+2)
0
which when summed over N = 3 gives
X
D, [ H@t,wydt=1 H(x,w).
0
Differentiating both sides w.r.t. x yields
D,H=HD, H
or

17) D,B—-BD, (B/x)=0.

[t is necessary to establish an initial condition in x and one in w. The
first is clearly

(18) B(O,w)=0.
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The w-condition is obtained from by (0) = 1 which when substituted
into (2) yields

(19) B(x,0)=x3/(1-x) .

The differential equation and initial conditions equivalent to (8)is (17)
with (18) and (19).

To find an equivalent equation for (7) we first write it as a recurrence
relation

00 b1, k+ =00 Z’ff)(fc]\f{)k(zg()lv =2 VK.

Proceeding as before, one obtains the differential equation

Q) [D3+0,@*+0,D — 05— 0,2(1/0)) B=0,
where

@ =xD_, ‘
0,=2wD, —1, 0,=wD,) ~3wD, —2,
0, =2wD, (WD, +1), 0,=D}w.

This equation requires three initial conditions in x and two in w. The
x conditions are

(22) B(0,w) =B, (0, w)=B,(0, w)=0.
The first w condition is (19). To obtain the second we note that

(23) b(N, 1)=N(N — 3)/2!.

Hence

(24) D, B(x,00= 21 b(N, ) x" =- +x(1+x).
N=4 (1-— x)3
The differential equation equivalent to (7) is (21) with initial condi-
tions (22), (19) and (24).
We have established differential equations whose solutions satisfy
Kirkman’s results. If we can show that the generating functions for the
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ladder graphs are solutions of these equations, then we shall have proved
that (7) and (8) are results valid for ladder graphs.

For convenience both ay (w) and ¢y (w) will be represented in this
section by dy(w) and both A and C by D. :

We subdivide the dy (w) into mutually exclusive classes d,((,) which
enumerate graphs of the appropriate type having » bridges which termi-
nate at the point labelled 1. Define ey (w) and E(x,w), generating func-
tions for graphs of the appropriate type, with no bridges terminating at
1, and which contain a given basic bond adjacent to 1. Similarly, define
In(w) and F(x,w) to enumerate all such graphs which contain two basic
bonds with common point 1.

Consider a',(\}) which counts all configurations with one bridge termi-
nating at 1 (see-Fig. 2). This bridge divides the N-gon into an m-gon and
an n-gon (m + n’=N + 2). There are ¢,, graphs on the m-gon containing
this bridge and e,, on the n-gon. Thus

(=1 _
d _W,?ne”’ e,, ~ mtn=N+2.

The factor 1/w arises because the bridge is counted twice, once in
each sub-polygon. Multiplying by +N and summing over N 2 4, we find

(25) DW= (1fwx?) E? .

N 2 N 2
Sm b
N-leg = m n —e3 N-| 3
e
Fig. 2. Graphs with one bridge terminating Fig. 3. Graphs with two bridges terminating

at 1. at 1.
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Looking at d{?? (see Fig. 3) we have two bridges, which divide the
polygon into an m-gon, an n-gon and a p-gon (m + n+p =N + 4). There
are e, graphs on the m-gon containing one of the given bridges, e,
graphs on the p-gon containing the other given bridge, and f,, graphs on
the n-gon containing both bridges. Thus

dj(\%)=—1 2 m Jn €5 m+n+p=N+4,

w2 manp

from which we obtain
(26) D =(1/wx)2 E2 F. |

The generalization to the case of graphs with r bridges terminating at
1 is straightforward: the result is

w1 |
dy 2 €, fnz"'fnr € ey |

w’ ny...Nppy | !

nl+r12+..;+nr+1 =N+72r,

27 DO =(1/wx2y E? F™1,
Now, writing

(28) D=D® +pMD + p@D 4 |
we have | , _ | , , ]

D =DO + (E2)wx®)[1 + (F/wx?) + (F/wx2)? +...]
or

(29) D@, w) = DO (x, w) + E2(x, w)/(wx? — F(x,w)). ;

For this to be a useful expression, we must for the cases D = A and
D = C ascertain E and F, and also A©) and C(®,

To obtain an expression for a](\(,’)(w), we isolate the point 1 and allow
all posible graphs on the remaining N — 1 points (see Fig. 4). In addition,
we can have 0, 1 or 2 basic bonds which terminate at 1. Thus we have
immediately
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Fig. 4. Graphs with no bridges terminating at 1.
30)  aP=+w)iay W),
Multiplying by x¥ and summing over N > 3, we have on the r.h.s.
x(1+w)? (4 —x).
To include the cases N = 1, 2, we add to this, from (4),

¢11x+¢12x2=)c+(1+w)x2

to get
(31) AO =x + (1 +w) x2+(1+w)? x (4 - x).

Using similar procedures it is not difficult to show that
G E mxw(tw) @d-x), F=xw U - x).
Substitution of these results into (29) yields, after some manipulation,
(33) A2w+ AL+ w)x? — (L +2w) x] + (1 +w)x? =0.
This can be solved formally to give
34) Alx,w) =

= x[(1+2w) —x(1 +w)— {[x(1 +w)— 112 —4xw(] +w)}1/2/2w.

The sign of the radical being chosen from the condition (d4/dx),-q = 1.
(34) can give an expression for B(x, w), since from (10),
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Blx(1+w), w] = A(x,w) —x — x2(1 + w)

= [x(1 +w) —x2(1 + w)2(1 + 2w)

—x(T+w){[x(1+w) — 112 — dxw(1 +w)} Y21 2w(1 +w)

which suggests
(35) B(x,w)=x[1-x(1+2w) — {(x — 1)2 —4xw} V2] 2w(1 +w).

This quantity satisfies the differential equations (17) and (21) to-
gether with the associated boundary conditions, thus proving both of
Kirkman’s results.

Stirling’s approximation is readily applied to the expression (7) for
b(N, k) to obtain asymptotic results. Writing (7) in terms of factorials
we have '

N+k-—1D)!

36 BN = RTINS N k- ) AT ET D)

For the case N and & both large we apply Stirling’s formula to
(N+k— 1), k!and (k+1)! and find

(N+k— 1)N+k—1/2 ek+2—N

37 b(N, k) ~

V20 (N= 1) (N = 2) (N — k— 3)! K12 (e + 1)k+3/2°

For the case k € N, we find

(N +k — 1)YV+H-1/2 g=2k+D)
(N=1)(N=2)(N—k=3N%52 jy (k+1)!
In order to obtain further asymptotic results we shall make use of a

theorem by Darboux [4] for a function f(z) which has a singularity at
z = a on the circle of convergence and satisfies

(38) b(N,k) ~

(39) f(2)=0() + (z — a) ¢(2),
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where 0 and ¢ are functions regular at z = a. Then, according to Darboux,
the asymptotic form of the coefficients in the expansion of f is the same
as that of the coefficients of ¢ (a) (z — a)*. Higher approximations can
also be obtained.

We now apply this to obtain an asymptotic expression for b, (w) for
the special case w = 1. by (1) is the total number of ladder graphs which

can be constructed solely from bridges on N points. We note from (9)
that

(40) @ (1)=2" b, (1).
From (35),
41) B(x, 1) =4x —ix —4x{(x — ) — 4x}1/?

x—2x—1x(1 —ax)2 (1 —p0)1/2,

Hi=

where o = 3+ 232 =3 — 232,
Applying Darboux’s theorem,

BGx, 1)~ — tx(1 —ax)M2 (1 — fla)!/? = Agx(1 — ax)!/?,

where
Ag=—5( =Bl
Expanding
Table 1
bN(l) CN(I)
N Asymptotic Exact Asymptotic Exact
10 20 856 20793 49 692 X 107 56 162 X 10°
20 30055 X 10° 30 016 X 10”7 25 289 x 10'? 20871 x 10'?
30 71 601 x 10'* 71542 x 10" 20 098 x 10*2 20 925 x 10%?
40 20700 x 10** 20 687 X 10%2 19 121 x 10™2 19 708 X 1032
50 66 362 x 102> 66 330 10>’ 20067 x 10°* 20557 x 10*
60 22 692 x 10°7 22 683 x 10°7 22403 x 102 22 858 X 10:2
70 81 094 x 10%* 81 067 x 10 26 099 X 10°> 26 552 x 10%2
80 29925 x 10°? 29916 x 10°* 31 368 x 1072 31844 % 1072
90 11 315 x 10%° 11 312 x 10°%° 38 606 % 10%? 39126 x 1082
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1/2

(1 —ax)V? =25 (-1 (N

) v oo
from which it follows that

@) by~ Ay-DV 112 )aN_l .
N-—1
A comparison of the values this expression gives with exact results is
given in Table 1. '

The functional relation (16) does not permit convenient evaluation of
the numbers of connected ladder graphs. It is more useful to make a
direct attack using the approach of Section 5.

To find cj(\?)(w) we isolate the point 1, allowing all connected graphs
on the remaining N — 1 points. At least one of the basic bonds adjacent
to the point 1 must be present. If both are present there will be addi-
tional graphs corresponding to two separate connected subgraphs on the
N points, joined only by the two basic bonds whose common point is 1
(see Fig. 5).

Collecting all contributions we have

43) O =ww+2ey w2 ¢, ¢,  (mtn=N-1)

m,n

from which we find

44) CO =x+x2 wt+x w? C2+xw(w+2)(C——x).

i
. ///////I

Fig. 5. Two connected subgraphs joined by the two basic bonds whose common point is 1.
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The functions ey and f for connected graphs can be similarly evalu-
ated to give

ey =w(l+w)ey_ +w? E C Cpn (m+n=N-1),
m,n

(45) E, =xw(l+w) (C—x)+x wk C?,

and

— 0,2 2 _
fy =W Cyy Fw mz;cm c, (m+n=N-1),
n

(46) F,=xw (C—x)+xw? C*.
Substitution of these results gives the cubic equation
477 wCHwC?=x(l +2w)C+x2 (1+w)=0
which can be formally solved to give
@8)  Clr,w)=[g—xh21P + [x(1+2w)3w+51 {8 = xh'2)~13 %,
where B
g(x, w) = — 25— x(1 +2w)/6w —x2(1+w)2w,
i, w) = x2(1+w)? [4w?
£ x((1 +2w)/ 3w [ +w)/2 - (1 + 2w)2[9w]
+(1+w)/2Tw —(1 +2w)2/108w? .

From the conditions that (48) have the desired expansion we deter-
mine the correct sign for x4'/2, and we also ascertain that g — xh!/? lies
on the first Riemann sheet.

From (47) we can obtain the recursion relation

N-1 N-n

N=1
(49) cN(w)=w 2 €, CNt1on +w 2 €, Cpy CNw1-m—n
n=2 n=1m=1
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Table 2
Values of ¢(V, k)

NV 1 2 3 4 5 6 7 8 9 10
0 1 i
- S PESRET
2 3 |
3 112 L
4 9 55 \ \L\ ( % \
R 2 66 273
6 30 455 1428 . %

7 s 315 3060 7752 Pr ENe),
8 105 2 856 20 349 43263
9 . 14 1428 23940 134 596 246 675

10 378 15960 191 268 888 030

11 42 6300 159390 1480 050

12 1386 83490 1480 050

13 132 27 324 965 250

14 5148 418 275

15 429 117 117

16 19 305

17 1430

which is readily adaptable for use on a digital computer. We list in Table
2 values of C(V, k) to N = 10, as these are useful in physical applications.

Darboux’s theorem may be used to obtain an asymptotic expression
for ¢py (1), the total number of connected ladder graphs which may be
drawn on N points. From (48),

(50)  Clx, 1) =[glx) —xhM2 ) +(x +5) [8(x) —xh 2 () 7B 5,

where
g)=— & —3x—x%,  h(x)=x*—if .

In order to apply the technique of Darboux, it is necessary to know
the singularities of C(x, 1). g — xh 1/2 has no zeroes, sG the singularities
occur only when

A3t |
(0%

H

o o

b . sk 0T
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(5I)  h=0 or x,=+10872,
To put C(x, 1) into the Darboux form, we write
(52) g xh =g +u(x) (1 - x/x )2
which defines u(x). Then
(53)  C=g"Bl1+u/g) (1 —x/x,) 2]/
T +5)g7 R+ (u/g) (1 — x/x )23

=2 [g1/3(;§3)+ (x +%)g”1/3( —1/3)] /)™ (1 —x/x ) -4

2N
+(1—x/x)V? 2 [g” ’ (2]\1//3 1)
e ()] w1~y

which is in the standard Darboux form (39). To find the asymptotic
values df the expansion we replace C by

G A =x/x) P[5 gl® — 3o +4) g5 P 1wy fgy) =
= ¢0(1 ”'-x/xo)l/z 3

where uy = u(xy), gy = 8(xy).
Expanding (1 — x/x,)Y/2 gives

55 ey~ oo (M) 11y

This procedure must be followed for both singular points (51).
The values given by (55) are compared with exact values in Table 1.

The connection between 4 and C (16) can be obtained very simply
from equations (33) and (47). Multiply (33) by (1 + A) to get the cubic
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equation

(56) WA3+wA2’x(1+A)(1+2w)A+x2(1+A)2(1+w)=0

whose solution is A. However, writing y = x (1 +4) and comparing with
(47) we see that C(y) is also a solution. In fact, as before, we have

A(x, w)=Clx(1 +A4), wl .

An important simplification in C occurs whenw = —1 [1, 5]. Setting
w = — 1 in (47) gives the equation

(57) c3+C*—xC=0
which, if we disallow C =0, becomes
(58) C*+C-x=0
which solves to give
(59) Clr,—1)=1(=1+[1+4x112).
The sign of the radical is chosen from C(0, — 1)=0.
The expansion of (59) as a power series in x yields ¢y (—1)-
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