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Hierarchical Analysis:
Classification with Ordinal Object Dissimilarities

By M. Schader, Karlsruhe')

Summary: Lerman [1970] has demonstrated, that the dissimilarity indices normally used in data
analysis are identical up to strictly monotone transformations e RJr - R+ if the data are nominal
and each set of attribute scores is finite.

In that case he proposes to use a preorder between pairs of objects to express similarity or dis-
similarity, in order to avoid inconsistent classification results that might occur, if clustering
schemes which are not monotone invariant are applied to a quantitative index. Here it is shown,
how a hierarchy on the objects can be calculated, if such a preorder relation is given.

1. Dissimilarity and Ultradissimilarity

Let X be a finite set and < a dissimilarity (-relation) on X, that is

< is a total preorder relation
inY:={{x, y}|x, yEXand x # y}.

{w, x} < {y, z} signifies, that the objects y and z are more different than w and x. For
< to be nontrivial, we assume that | X | > 3.

It is desired to construct a hierarchy on X, that is a family Py, Py, . .. ,Pq of parti-
tions of X with

Py = {{x} IxEX},Pq = {X}andfori€ {0,1,...,9g—1}
P; is strictly finer than Py, (ie. P; % Py
and VA E€P, IBEP, . suchthat4 CB).

i+1

This hierarchy has to represent the given object dissimilarities “as accurately as possi-
ble™.
Defining an ultradissimilarity on X as a dissimilarity <’ on X that satisfies

xz2}< ¥} or {xz}< {2z}

for all x, y, z € X that are pairwise distinct, we can establish a function ¢ from the set
of ultradissimilarities on X into the set of hierarchies on X:
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If < is a given ultradissimilarity on X, let LG e 5 Cq be the equivalence classes
with respect to ~ and assume that these classes are numbered such that i </,
{w,x}E€C;and {y,z} € C]- yields {w, x} <' {y, z}. Then the relations S,

X r= g or e 3IEGIUGC, U, UL, TN i

are equivalence relations in X, and for the corresponding partitions Py, . . . ,Pq of X
P, is strictly finer than P;, . Adjoining Py = {{x} | x € X} we obtain the hierarchy
JEP ,Pq =9 ().

@ is clearly an injection and furthermore, for any given hierarchy Pq, . . . ,Pq on X
there exists an ultradissimilarity <’ on X with ¢ (") =P, . . . , P, namely the rela-
tion defined by

fw,x}<' {»,z}**min{i| 34 €P;and w,xE€A}<min{i|3AEP; and y, z €A}

(Hence C, U ... UG ={{x, y}|x, yEX, x#yand 34 €EP; withx, y € A}, thus
xS;yex=yor3AEP;withx, yEA and therefore ¢ (") =Py, . . - , Pg). In other
words, v is a bijection.

This allows us to restrict further considerations to the set D (X) of dissimilarities
on X:
Instead of calculating a hierarchy Py, . .., P, on X, we construct the corresponding
element <’ of the set U (X) of ultradissimilarities on X (which is a subset of D (X)).

2. The Semilattices D (X) and U (X)

D (X), the (finite) set of dissimilarities on X can be ordered by an order relation R,
setting for <;, <, €D (X)

<1 R, =¢>Gsl Cng.

Here G denotes the graph of <, i.e. the set {(¢, b) |a, bEY and ¢ < b}, and thus R is
the order normally used for the comparison of relations.

D (X), endowed with R, is a join semilattice, because any two elements <,
<, € D (X) have a supremum in D (X). The graph of sup {<;, <, ]} is the transitive
closure or G . U G_ ,thatis the smallest (with resp. to C) transitive graph & C s

which contains G . UG .
S <2

U (X) is a sub-semilattice of D (X), since <;, <, € U (X) implies sup K81

e U Xx).
In addition, D (X) is upper semimodular and therefore graded [cf. Barbut/Monjar-
det; Birkhoff], for example by

g =1X1(XI—=D2 —1Y,.I,

where Y/Ndesignates the quotient set of ¥ by ~, so that | Y/~| is the number of equiv-
alence classes with respect to ~.
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Fig. 1: The semilattice D (X) if | X | = 3. Elements of D (X) — U (X) resp. U (X) are characterized
by o resp. e.

Using the Stirling numbers of the second kind S (i, ), it is possible to compute the
number of dissimilarities resp. ultradissimilarities on X that have grade 0, 1, 2 etc.
Ifn:=|X|andm:=n(n—1)/2=|Y| there are [cf. Barbut/Monjardet|

m—k)!S(mm—k) 0<k<m-—1

dissimilarities of grade k.

Denoting by &, (I) (where /2> 3 and 1 < k& </— 1) the number of ultradissimilari-
ties with grade / (/ — 1)/2 — k on a set that has cardinality /, and by Nk (/) the number
of these ultradissimilarities having j classes (k <j </— 1) with respect to S, (S, de-
fined as in 1.), we get

N (D= z Ny (0.

On the other hand, there are S (/, j) ways to partition a set with cardinality / into j
classes, so that

Ny D=5 @ DN, ().

It follows that, starting with N, (/) = 1 for all /, we can find N (1) and esp. Ny (n) re-
cursively according to

-1
Ne(®=Z SADN1 ()

[cf. hereto the computation of the total number of hierarchies on a finite set in Ler-
man].

n=3,4,5 yields the following results:

m = 3 =4 n=5
number number | number number number number
grade diss. ultra- | diss. ultra- diss. ultra-
diss. diss. diss.
0 6 - 720 - 3,628,800 =
1 6 3 1,800 = 16,329,600 -
2 1 1 1,560 - 30,240,000 -
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n=3 n=4 n=5
number number | number number number number
grade diss. ultra- | diss. ultra- diss. ultra-
diss. diss. diss.
3 540 18 29,635,200 -
4 62 13 16,435,440 -
5 1 it 5,103,000 -
6 818,520 180
7 55,980 205
8 1,022 50
9 1 1
E 13 4 4,683 32 102,247,563 436

3. Approximation of Dissimilarities by Ultradissimilarities

If a hierarchy Py, . .

., PgonX has to be derived from a given dissimilarity < on X,
it is plausible to search for an element <’ of U (X) that lies “close” to < within the

meaning of the structure described in section 2.
Since D (X) is finite and a graded, upper semimodular join-semilattice,

d: D (X)* > R,, with

d($1,%2) = 28 (sup{<y, $21) — 8 (1) —8 (S2)

is a distance function on D (X) [cf. Comyn/van Dorpe] and respects the semilattice-

order R in the way that

i) <1 R <3 R implies d(£,,53)=4d($1,52) T4 (£:,53)
i) d(£1,52)=d (&, up (<, <) Hd (0, 5up <, <)
hold for any given <;,<,2,<3 €D (X).

With this distance function d (and < € (D (X) — U (X)) given) we now search for

<' € U (X) that minimizes d (<, <').

Proposition

< is the least element (with respect to R)

of theset M ={<* | <*€ U (X) and < R <*}.

Proof: Note first, that <’ is an element of M. For if <; €D (X) and <, € U (X) then
sup (<, <2} € U(X), and therefore <’ R < implies sup {<, <"} =< € U (X). If on
the other hand <’ and < are incomparable, then d (<, sup {<, <'H <d (£, <).
Furthermore, <; , <, €M together with <; R <; implies d (£, <) <d (£, 53).

Hence the least element of M (when it exists) has minimal distance to <. -
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. Now, if <, , <, are elements of M, they have an infimum (with the graph
‘_ G< N G< ) which belongs to M, and since M is finite inf M exists and is an element of
~1 ~2

M. In other words, inf M is the least element of M. This completes the proof.

Thus, starting with <, we can calculate <’ by joining equivalence classes (with re-
spect to ~) if we find x, y, z' € X that are pairwise distinct and do not satisfy the ultra-
dissimilarity condition of section 1.:

If {x, 1< {0, 2} < {x, z} (resp. {y, z} < {x, Y} < {x, z}) we set
b3S 02}~ 2} (esp. (0,2} < fx, p)~' fx, z}).

4. Algorithm and Example

To simplify the algorithmic descriptionlet X = {1, .. . ,n}and let < be defined by
the equivalence classes with respect to~ viz. Cy, G, . . . | Cq which are again num-
bered as in section 1.

We calculate the classes with respect to ~':

Step 1
Setxi= 1, y:=2 z7:=3.
Step 2
Compute i, j, k€ {1, . .. »q} so that {x, y} EC, v, 2] EC‘/ and {x, z} g

Set iy = inf {sup {j, j}, sup {7, k}, sup {j, k}} and I =sup{i j, k}.
Ifl] == i2 gO to Step 3

iz 'ix 5
Set Cf: = uL=JO 'Ci,+v .

If i, <qsetCI. o=y o forVE{I,B,...,q—iz}.

. i+
‘ Setq:=q—i, +1i,.
Step 3

Ifg=1 STOP: ~ has only one class Ci..

Ifz <n setz =z + | and go to Step 2.

Ify<n-—1 sety:=y+1,z:=y+landgotoStep2.
Ifx<n—2 setx:=x+I,y:=x+l,z:=x+23ndgotoStep2‘
STOP : ~' has thec]assesC,,...,Cq.
If for example X ={1, . . . ,6} and < is the relation

{1,6}<{1,4}~{4,6}<{2,3}<{1,3}~{5,6}<{1, 2} ~{2,4}~{3,4} ~{2, 5}
~{3,5}~{4,5}~{2,6}<{3,6}~{1,5}

then the algorithm starts with q = 6 and the classes

Cr={{1,6}}
G = {{1,4}, 4,6}}
G = {{2,3}}

Co={{1,3}, 5,6
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Cs = {{1,2), 2,4}, (3,4}, {2,5}, 3,5}, (4.5}, (2,61}
Cs = {{3,6},{1,5}}

and stops with ¢ = 4 and

¢, = {{1,6}}
C, = {{1,4}, 4,6}
Cy={{2,3}

Ca= {{1,2}, 1,3}, 11,5}, (2.4}, {2,5}, {2,6}, 3,4}, 3,5}, (3,6}, 4,5},
{58}

The corresponding hierarchy is shown in figure 2.

{1.2,3.4.5.8}
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