
Mathematical Assoc. of America American Mathematical Monthly 121:1 December 1, 2017 5:28 p.m. EulerFib4MonthlyRevRevRev.tex page 1

Why is Pi less than twice Phi?
Alejandro H. Morales, Igor Pak and Greta Panova

Abstract. We give a proof of the inequality in the title in terms of Fibonacci numbers and Euler numbers via a
combinatorial argument and asymptotics for these numbers. The result is motivated by Sidorenko’s theorem on the
number of linear extensions of a partially ordered set and its complement. We conclude with some open problems.

Figure 1. Rendition of part of the Fibonacci spiral. The bottom shows two overlapping horizontal lines, the one with a shadow has
length cπ̇/2 (like the the quarter circle of the spiral), the longer one ending in a pink segment has length cφ̇. Photo by Alexia Guuinic.

1. INTRODUCTION. We start with the inequality

π < 2φ, (∗)

where φ = (1 +
√

5)/2 is the golden ratio. The question in the title may seem rather innocent. Of course,
π ≈ 3.141593 < 2φ ≈ 3.236068. How deep can this be? Inequality (∗) has a conceptual proof in terms
of two classical combinatorial sequences. Let us set this up first.

Our first sequence {Fn} is the sequence of Fibonacci numbers, defined by F0 = F1 = 1, Fn+1 =
Fn + Fn−1 for n ≥ 1. This is perhaps one of the best known integer sequences and begins

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . .

See [9] and [12, A000045] for a trove of information about this wonderful sequence.
Our second sequence {En} is the sequence of Euler numbers. This is a sequence that begins

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . . .
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Our favorite definition of the sequence is via the Seidel–Entringer triangle of Seidel [13]:

1

0 → 1

1 ← 1 ← 0

0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0

0 → 5 → 10 → 14 → 16 → 16

Here one alternates direction, following the ox-plowing or boustrophedon order, starting each row with
zero, and with each new number equal to the previous number plus the number above. For example,
14 = 10 + 4 as in the last row of the triangle above. The numbers in this triangle are called Entringer
numbers. The nonzero first and last numbers in each row are the Euler numbers. We refer to [16] for an
extensive survey and to [12, A000111] for numerous results and further references.

Theorem 1. For all n ≥ 1, we have

En · Fn ≥ n!.

For example, F3 · E3 = 3 · 2 = 3!, F4 · E4 = 5 · 5 = 25 > 4! = 24, F5 · E5 = 8 · 16 = 128 > 5! =
120, etc. To understand the connection, recall the classical generating functions for each sequence:

F(t) =
∞∑

n=0

Fn t
n =

1

1− t− t2 and

E(t) =
∞∑

n=0

En

tn

n!
= tan t + sec t =

1 + sin t

cos t
.

See [16, Thm. 1.1], [7, §3.2.22], [10] for different proofs of the statement about E(t). These formulas
imply the following (also classical) asymptotics of the numbers

Fn ∼
1√
5
φn+1 and

En

n!
∼ 4

π

(
2

π

)n

.

Here we use an ∼ bn as a notation for an/bn → 1 as n→∞.
In fact, we only need the base of the exponent and not the leading constants. Here φ is the smallest

root of 1 − t − t2 = 0. Similarly, π/2 is the smallest (in absolute value) solution of cos t = 0. While
the formula for Fibonacci numbers is written in most combinatorics textbooks, the asymptotic formula for
Euler numbers is not as well known. We refer to a marvelous monograph [6, p. 269] where this is one of
the main examples, and to the survey [16, Eq. 1.10].

Now, the theorem and the asymptotics above give

1 ≤ Fn · En

n!
∼ 4φ√

5π

(
2φ

π

)n

.

This implies inequality (∗). See below why the inequality has to be strict.
The rest of the paper is structured as follows. First, we give a combinatorial proof of Theorem 1 in

the next section. We then discuss the origin of the theorem, state exercises that provide the details for our
proofs, and give some curious open problems (Section 3).
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2. COMBINATORIAL PROOF OF THE MAIN THEOREM. We start with classical combinatorial
interpretations of Euler and Fibonacci numbers. These will be used to obtain a combinatorial proof of
Theorem 1.

First, consider words in the symbols {�, ⊂, ⊃}, where each open bracket “⊂” is followed by a closed
bracket “⊃.” Denote by Bn the set of such sequences of length n. For example,

B4 =
{
� � � �, � �⊂⊃, �⊂⊃�, ⊂⊃��, ⊂⊃⊂⊃

}
.

Proposition 2. We have |Bn| = Fn, for all n ≥ 1.

Let Sn denote the set of all permutations of {1, 2, . . . , n}, so |Sn| = n!. A permutation σ ∈ Sn is
called alternating if σ(1) < σ(2) > σ(3) < σ(4) > · · · . Let An be the set of alternating permutations
in Sn.

Proposition 3. We have |An| = En, for all n ≥ 1.

These results are well known. The proof of Proposition 2 is an easy exercise in induction. Proposition 3
follows as a corollary of Exercise 5 below using the Seidel–Entringer triangle.

We can now reformulate Theorem 1 as:∣∣An

∣∣ · ∣∣Bn

∣∣ ≥ ∣∣Sn

∣∣.
Consider now the map Φ : An × Bn → Sn defined as follows: Φ(σ,w) = ω, where ω is a permutation
obtained from σ ∈ An by swapping numbers in the positions of a pair of consecutive brackets “⊂⊃ ” in
w ∈ Bn. For example,

Φ
(
(3, 6, 2, 5, 4, 7, 1, 8), � �⊂⊃�⊂⊃�

)
= (3, 6, 5, 2, 4, 1, 7, 8).

The theorem now follows from the following lemma.

Lemma 4. The map Φ : An × Bn → Sn is a surjection.

Proof. We need to show that for every ω ∈ Sn there exist σ ∈ An and w ∈ Bn such that ω = Φ(σ,w).
Denote by J = {ω(2), ω(4), . . .}, the set of entries in even positions, and let b = ω(i) be the smallest
entry in J . Locally, the permutation ω looks as follows:

ω = (. . . , x, a, b, c, y . . .).

Now, if b > a, c, do nothing. Since x, y > b, locally we have the desired inequalities x > a < b > c < y.
Then repeat the procedure by induction for sub-permutations σ1 = (. . . , x, a) and σ2 = (c, y, . . .).

If b < max{a, c}, swap b with the largest of these elements. Say this is a. Again, locally we have
the desired inequalities x > b < a > c. Make the word w have a pair of brackets ⊂⊃ indicating that a
and b are swapped. Then repeat the procedure by induction for sub-permutations σ1 = (. . . , x) and σ2 =
(c, y, . . .). In the case when max{a, c} = c, proceed symmetrically with permutations σ1 = (. . . , x, a)
and σ2 = (b, y, . . .). Let σ denote the resulting permutation at the end of the process.

Observe that elements that move (b and possibly a or c) move at most once, so the bracket sequence w
is well-defined. Note also that at every move elements at even positions could only increase and at odd
positions decrease, and that the parity of positions translates to σ1 and σ2.

By induction, we obtain alternating inequalities for both σ1 and σ2; the last element of σ1 increases
if the last position of σ1 is even, and decreases if odd; similarly the first element of σ2 is followed by an
increase if its position inw is odd, and is followed by a decrease if even. The last element of σ1 and the first
element of σ2 are also smaller or larger than the elements adjacent to them in the middle (b and possibly a
and c) with inequalities matching the parity of the position (increase if odd and decrease if even). Thus σ
is alternating, as desired. Finally, note that Φ(σ,w) = ω, by construction. This completes the proof.
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Exercise 5. Denote by En,k = |An+1,k| for n = 0, 1, . . . and k = 0, . . . , n, where An,k = {σ ∈
An, σ(1) = k} is the set of alternating permutations σ ∈ Sm such that σ(1) = k. Note that En,n = En.
Place these numbers in the Seidel–Entringer triangle in the ox-plowing order and prove that they satisfy
equations as in the triangle. Deduce Proposition 3.

Exercise 6. The goal of this exercise is to use the Seidel–Entringer triangle to show that the generating
function E(t) =

∑∞
n=0Enx

n/n! equals tan t+ sec t; see, e.g., [1] and [8, Ex. 6.75].

(a) Consider a triangular array of integers

a00
a10 a11

a20 a11 a22
· · ·

satisfying aij = ai,j−1 + ai−1,j−1, i.e., each entry, except those on the left diagonal, is a sum of the
entry to its left and the entry above it to its left. Show that

ann =
n∑

k=0

(
n

k

)
ak0 and

∞∑
n=0

ann
tn

n!
= et

∞∑
n=0

an0
tn

n!
.

(b) Change the signs of the Seidel–Entringer triangle so that we have two positive rows, two negative rows,
two positive rows, etc.:

1
0 1

−1 −1 0
0 −1 −2 −2

5 5 4 2 0
0 5 10 14 16 16

Let u(t) and v(t) be the exponential generating functions for the left and right diagonals of this signed
Seidel–Entringer triangle. Deduce that v(t) = etu(t).

(c) For u(t) and v(t) as defined above, show that −v(t) + 2 = e−tu(t). Hint: note that u(t) is even and
v(t)− 1 is odd.

(d) Show that u(t) = cosh t, v(t) = 1 + tanh t and that E(t) = tan t+ sec t.

Exercise 7. Find a pair of permutations σ, σ′ ∈ S4 such that Φ(σ) = Φ(σ′). Use the proof above to show
that En · Fn > n!(1 + ε)n for some explicit ε > 0.

Exercise 8. Denote by g(σ) the number of times σ ∈ Sn appears as the image of Φ. Give an explicit
combinatorial interpretation of g(σ). Find σ ∈ Sn for which g(σ) is maximal.

3. LINEAR EXTENSIONS OF PARTIALLY ORDERED SETS. We denote by P a partially ordered
set, or poset for short, on a set X of n = |X| elements. Its order relation is denoted by �. Let e(P) be
the number of linear extensions of P , defined as bijections f : X → {1, . . . , n} such that f(u) < f(v)
for all u, v ∈ X with u ≺ v. For example, if the poset P forms a single n-chain (every two elements are
comparable), we have e(P) = 1. On the other hand, if the poset P forms a single n-antichain (no two
elements are comparable), we have e(P) = n!. We refer to [18], [19, Ch. 8] and [15, Ch. 3] for standard
definitions and notation.

The following geometric construction is our main source of examples. Let S ⊂ R2 be a finite set of
points. Define an ordering (x1, y1) 4 (x2, y2) when x1 ≤ x2 and y1 ≤ y2. The resulting poset PS is
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called two-dimensional. For example, a poset Hp,q with p + q + 1 elements forming a hook (two in-
comparable chains with p and q elements with an extra minimal element) has

(
p+q
p

)
linear extensions.

Similarly, the poset Un forming a zigzag pattern with n points as in in Figure 2, has the Euler number
e(Un) = En of linear extensions.

Another notable example is the poset Ck with 2× k elements forming a grid. It has the Catalan number
of linear extensions:

e(Ck) =
1

k + 1

(
2k

k

)

(see, e.g., [15, 17] and [12, A000108]).

H4,5 C6 U7

1

2

3

1

2

3

4

U7

Figure 2. Two-dimensional posets H4,5, C6, U7 and a complement of U7.

For a poset P on set S, denote by C(P) the comparability graph of P , that is, the graph with vertices
P and edges {x, y} if x and y are comparable in the poset. A poset P on S is called a complement
if its comparability graph C(P) is a complement of C(P). Note that a poset can have more than one
complement.

Proposition 9. Every two-dimensional poset P has a complement poset P .

We leave the proof of the proposition to the reader with a hint given in Figure 3.

Example 10. A complement poset Un is described as follows: elements X = X1 ∪X2 where X1 =
{1, . . . , bn/2c} andX2 = {1′, . . . , dn/2e′}, and relations i � j and i′ � j′ if i < j, i � j′ if j − i > 1,
and i′ � j if j − i > 0. See Figure 2 for an example.

Next, we use induction to prove that e(Un) = Fn. First note that e(U0) = e(U1) = 1. For n ≥ 1,
the minimal elements of Un+1 are 1 and 1′, the minimal elements of Un+1 − {1′} are 1 and 2′, and the
minimal element of Un+1 − {1} is 1′. Thus, the linear extensions of Un+1 either start with 1′ or with both
11′. Thus

e(Un+1) = e(Un+1 − {1′}) + e(Un+1 − {1, 1′}).

Since Un+1 − {1′} and Un+1 − {1, 1′} are isomorphic to Un and Un−1, respectively, then we obtain that
e(Un+1) satisfies the Fibonacci recurrence.

Exercise 11. Describe a complement poset Hp,q. Show that e(Hp,q) = (p+ q + 1)p!q!.

Exercise 12. Describe a complement poset Ck. Prove that Qk := e(Ck) is the number of permutations
(a1, . . . , ak, b1, . . . , bk) ∈ S2k such that ai < bj for all 1 ≤ i < j ≤ k.
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P P P

Figure 3. The Hasse diagram of a two-dimensional poset P , its complement P as a set of points in R2, and the Hasse diagram of P .

Remark 13. The problem of computing e(P) is known to be #P-complete [4], and is difficult even in
some seemingly simple cases (see, e.g., [5, 11]).

We are now getting to the heart of the motivation behind Theorem 1.

Theorem 14 (Sidorenko [14]). Let P be a two-dimensional poset with n elements, and let P be a com-
plement of P . We have

e(P) e(P) ≥ n!.

Clearly, when P is an n-chain, we have P is an n-antichain, and the inequality is tight. Similarly, by
Exercise 11, we have e(Hp,q)e(Hp,q) = n! since n = |Hp,q| = p+ q + 1 in this case, so the inequality
is tight again.

Observe that Exercise 10 and Sidorenko’s theorem immediately imply Theorem 1. Note that the proof
of Sidorenko’s theorem is non-bijective and uses Stanley’s interpretation of e(P) as volumes of certain
polytopes. The following exercise gives an idea of this connection.

Exercise 15. Consider a polytope Pn ⊂ Rn defined by the following inequalities:

xi ≥ 0, for all 1 ≤ i ≤ n,
xi + xi+1 ≤ 1, for all 1 ≤ i ≤ n− 1.

Describe P3. Prove that Pn has Fn+1 has vertices. Prove that vol(Pn) = En/n!.

Our proof of Theorem 1 suggests that there might be a direct combinatorial proof for all two-
dimensional posets. If this is too much to hope for, perhaps the following problem can be resolved.

Open Problem 16. Give a combinatorial proof that QkCk ≥ (2k)!, where Qk = e(Ck). A direct com-
putation shows that the sequence {Qk} starts with 2, 12, 150, 3192, 106290, etc. Find the generating
function

Q(t) = 1 +
∞∑
k=1

Qk

tk

k!

and exact asymptotics forQk. Note that by Sidorenko’s theorem and Exercise 12, we haveQk ≥ (2k)!/4k.

Remark 17. We should mention that Sidorenko’s theorem can be reduced to a special case of the Mahler
conjecture, see [2]. This leads to a counterpart to Sidorenko’s theorem, giving the following upper bound:

e(P) e(P) ≤ n!
(π

2

)n (
1 + o(1)

)
.

The proof uses Santaló’s inequality for polar polytopes, which is sharp for convex bodies. The authors
of [2] suggest that this bound can be further improved, although not by much.
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Open Problem 18. Denote by Rk the poset corresponding to [k × k] square of points in the grid. It is
known that

log e(Rk) =
1

2
n log n +

(
1

2
− 2 log 2

)
n + O

(√
n log n

)
,

where n = k2 (see, e.g., [11] and [12, A039622]). Find the asymptotics of e(Rk). Note that since
e(Rk) ≤

√
n!, we have e(Rk) ≥

√
n!. Note also that by the the remark above we have:

log e(Rk) =
1

2
n log n + Θ(n).
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