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Polyenoid systems (or polyenoids) are trees which can be embedded in a hexagonal lattice and represent 
CnHn+2 polyene hydrocarbons. Complete mathematical solutions in terms of summations and in terms of 
a generating function are deduced for the numbers of polyenoids when overlapping edges and/or vertices 
are allowed. Geometrically planar polyenoids (without overlapping vertices) are enumerated by computer 
programming. Thus the numbers of geometrically nonplanar polyenoids become accessible. Some of their 
numbers are confirmed by combinatorial constructions, a pen-and-paper method. 

INTRODUCTION 

Isomers of conjugated polyene hydrocarbons, CnHn+2, are 
of great interest in organic chemistry. The enumeration of 
their isomers is the topic of the present work. Figure 1 shows 
the three isomers of C4H6 which are taken into account. The 
molecules of interest are acyclic conjugated hydrocarbons, 
but also radicals (as e.g., trimethylenemethane) are included. 

As chemical graphs,' the conjugated polyene hydrocarbons 
are represented by certain trees, where any two incident edges 
form an angle of 120". Their forms up to five vertices (n  = 
6) are displayed in Figure 2. For the sake of completeness, 
one vertex alone for n = 1 is included; it represents the CH3 
methyl radical. 

The present work was inspired by Kirby,* who enumerated 
conjugated polyene isomers by computer programming based 
on coding of the structures. The smallest numbers of these 
isomers are I ,  = 1, 1, 1, 3, 4, 12 for n = 1, 2, ..., 6 in 
consistency with Figure 2. We have achieved a complete 
mathematical solution for I,, but only when it is allowed for 
all structures irrespective of steric hindrances. It is assumed 
that such structures can be realized chemically by nonplanar 
molecules. In consequence, we obtain 17  = 27 versus the 
26 isomers for n = 7 reported by Kirby.* This feature is 
explained by our inclusion of the coiled C7Hg radical. 

The mathematical methods of the present work follow 
basically Harary and Read3 in their enumeration of cata- 
fusenes. Generating functions are employed extensively, and 
the Redfield-Pblya theorem4 is implied, although we do not 
refer to it explicitly. Parallel with these methods, we have 
also applied the method of combinatorial summations? which 
leads to a formula for I ,  in closed form. 

DEFINITIONS 

A polyenoid system (or simply polyenoid) P is one vertex 
alone or a tree which can be embedded in a planar hexagonal 
lattice (consisting of congruent regular hexagons). More 
precisely, P is said to be a geometrically planar polyenoid 
when defined in this way. A geometrically nonplanar 
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Figure 1. Three isomers of C4H6: frans- and cis-butadiene and 
the trimethylenemethane radical. 

Figure 2. All I ,  nonisomorphic polyenoids for n 5 6; they 
represent C,H,+2 polyene hydrocarbons. 

Figure 3. The coiled C10H12 polyenoid; in the right-hand drawing 
the C2" symmetry is accentuated. 

polyenoid P* is defined in the same way, but so that it has 
at least two overlapping vertices when drawn in a plane. A 
system P* may be referred to as helicenic in analogy with 
the helicenic polyhexes.6 

A geometrically planar polyenoid (P) can obviously belong 
to one of the symmetry groups D3h, C3k, D z ~ ,  CZ,, CZ,, or Cs. 
Then CH3 and C2H4 are attributed to the groups D3h and 
Dz,, respectively. These symmetries are realized if the 
carbon-hydrogen bonds are included. We shall also assign 
the same six symmetry groups to the P* systems, disregard- 
ing the geometrical nonplanarity. Thus, for instance, all the 
coiled polyenoids are attributed to C2". An illustration for 
C10H12 is given in Figure 3. 

Two types of C2" systems are distinguished and identified 
by the symbols C*,(a) and C2,,(b). A P or P* system belongs 
to C*,(a) when its unique twofold symmetry axis (C2) passes 
through a vertex; P or P* belongs to C24b) when CZ bisects 
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Figure 4. The U, rooted unsymmetrical polyenoids for m 5 4. 

perpendicularly an edge. The coiled system of Figure 3, for 
instance, is of the type C*,(b), as is any coiled C,H,+* 
polyenoid where n = 4,  6 ,  8 ,  ... . The coiled C,H,+* 
polyenoids for n = 3, 5, 7, ... belong to C*,(a). 

The number of vertices in a polyenoid is n, while its 
number of edges will be identified by the symbol m. 

ALGEBRAIC SOLUTION 

Rooted Unsymmetrical Polyenoids. A s  an underlying 
principle, all polyenoids with m + 1 edges are generated by 
adding one edge every time to the polyenoids with m edges. 
To a free end vertex of an edge (vertex of degree one) a 
new edge can be added in exactly two directions. A 
directional walk of this kind has been employed frequently 
in generation of chemical graphs and their codings.'-I4 This 
list of references is far from complete. 

As a starting point, the U, numbers of rooted unsym- 
metrical polyenoids are to be determined. The smallest 
systems of this category are shown in Figure 4. We 
distinguish two types: the Uin* systems where the first edge 
(incident to the root edge) is not incident to a vertex of degree 
three, and the Um** systems where the first edge is incident 
to a vertex of degree three or in other words a branching 
vertex. These branching vertices are indicated by white dots 
in Figure 4.  Here m does not count the root edge. One has 
clearly 

U, = U,,,* + Um** (m  > l ) ,  U ,  = 1 ( 1 )  

Furthermore, 

Um,,* = 2U, (m > 0), U1* = 0 ( 2 )  

since the Um+] * systems can be obtained from the U, systems 
by adding one edge in two directions. It is also clear that 

in- I 

u,+,** = CUiUm+(m > 1 1 ,  u1** = u 2 ** = O  ( 3 )  
i= 1 

since these systems may be interpreted as two branches 
attached to one vertex and having m - 1 edges together. On 
combining eqs 1-3 one arrives at the recurrence relation 
for U,, 

m- 1 

u,,, = 2 ~ ,  + C u~u,-~ (m > 1) (4) 
i= 1 

The initial conditions are Ul = 1, Uz = 2. 
The appropriate generating functions satisfy 

U(X) = U*(x) + U**(x) + x ( 5 )  
where the last x takes care of the m = 1 system, which 

Table 1. Numbers of Some Rooted Unsymmetrical Polyenoids 

m um * Um** U", 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
2 
4 

10 
28 
84 

264 
858 

2860 
9124 

0 
0 
1 
4 

14 
48 

165 
512 

2002 
7012 

1 
1 
2 
5 

14 
42 

132 
429 

1430 
4862 

16796 

otherwise would not have been counted. Furthermore, 

V*(x)  = 2x U(X), U**(x) = XU2(X) (6)  
Hence 

(7) XU2(X) + (2x - l )U(x )  + x = 0 

from which the following is obtained 

1 

m= 1 2 

m 

U(x)  = XU&" = -X-'[l - 2x - ( 1  - 4x)1'2] = 

x + 2x2 + 5x3 + 14x4 + 42x5 + ... (8) 
Here a plus sign before the square root is extraneous. By 
definition, we shall put 

(9) UO = 1 

and also define the modified generating function 

1 

m=O 2 

m 

U,(X) = c U&" = 1 + U(X) = -x- ' [ l  - ( 1  - 4X)"*] = 

1 + x + 2w2 + 5x3 + 14x4 + 42x5 + ... (10) 
Additional numerical values are found in Table 1. 

which keep cropping up in various contexts:I5 
It is interesting to notice that U,  are the Catalan numbers, 

U, = (m  + I>-'(:) ( 1 1 )  

Crude Totals. In the following analysis some "crude 
totals" 5.6 are needed. The first crude total, presently denoted 
by '.Im, is simply 

J,= Um (m > 0)  (12)  

'J(x)  = U(x)  ( 1 3 )  

I 

with the corresponding generating function 

The next crude t ~ t a l , ~ . ~  viz. *Jm, appears to be identical 
with U,,,+,** for m > 1; see eq 3. Then, with the aid of eq 
4. one obtains 

m- 1 

2Jin = U,U,-, = U,,, - 2Um (m > 1) (14) 
i= 1 

The corresponding generating function is 

J(x) = V2(X) = x- I( 1 - 2x)U(x) - 1 = ix-2[  1 - 4x + 2 

2 
2x2 - (1 - 2 ~ ) (  1 - 4 ~ ) " ~ ]  (15) 
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Table 2. Crude Totals for Polvenoids and from this it follows that 
m 'J* *Jm 3Jm 4Jm 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 
2 
5 

14 
42 

132 
429 

1430 
4862 

16796 
58786 

208012 
742900 

2674440 
9694845 

1 
4 

14 
48 

165 
572 

2002 
7072 

25194 
90440 

326876 
1 188640 
4345965 

15967980 

1 
6 

27 
110 
429 

1638 
6188 

23256 
872 10 

326876 
1225785 
4601610 

17298645 1 

1 
8 

44 
208 
910 

3808 
15504 
620 16 

245157 
96 1400 

3749460 
4567280 

Also 3Jm is needed in the following. It is 

m-2 m-i-1 

with the generating function 

3 J ( ~ )  = U3(x) = ~ - ~ ( 1  - 4~ + 3x2)U(x) - x- ' ( l  - 2x) = 
1 -  
2 -x 3[(1 - 2x)(1 - 4x + x2) - 

( 1  - 4x + 3x2)(1 - 4 ~ ) " ~ ]  (17)  

Finally we shall need the crude totals 

m-3 m-i+2 m-i-j-I 
4Jm= X U i  Uj UkUm-i-j-k - - Um+, - 

i=l j = ]  k= 1 

6Um+2 + 1OU,,+1 - 4Um (m > 3 )  (18)  

The corresponding generating function is 

4J(x) = d(x)  = ~ - ~ ( l  - 2x)(1 - 4x + 2x2)U(x) - 

2 
x - ~ (  1 - 4x + 3x2) = Ix-'[ 1 - 8x + 20x2 - 16x3 + 

2x4 - ( 1  - 2x)(1 - 4x + 2x2)(1 - 4 x ) i / 2 ~  (19) 

Numerical values of the crude totals are collected in Table 
2. A peculiar behavior of these numbers is observed. Firstly, 
2Jm < ' J ,  form < 4,  2Jm > ' J ,  form > 4, while 2J4 = 'J4 

= 14. Next, 3Jm < 2Jm for m < 12, 3Jm > ' J ,  for m > 12, 
while 3 J ~ 2  = 2J12 = 326876. The next "turning point" is 
(outside the range of Table 2) 4J24 = 3J24 = 2789279908316. 
Presently it will be proven that this behavior is general, and 
the turning point occurs as 

Jm = "J,, m = 2 a ( a  + 1) (20) 
a+ I 

First we shall derive the explicit form of "J,  as 

a a 2m 
Jm = G(~+,) (a  I 1, m I a) 

in consistency with eq 1 1  (for a = 1 ) .  Also for a = 2 the 
formula 21 is verified by means of eq 14. On multiplying 
eq 7 by Ua(x) one gets 

xv"+2(x) + (ZU - l )v"+'(X)  + X P ( X )  = 0 (22)  

(23)  
a+ 1 

Jm = Jm+l - 2(a+1Jm) - aJ,n a+2 

This relation was used to prove eq 21 by complete induction 
on a. Equation 21 now yields 

a + l ~ m  = P<"J,>, P = a-'(a + l>(m - a>(m + a + I ) - '  
(24)  

Then eq 20 follows from the fact that /3 = 1 if and only if 
m = 2 a ( a  + 1 ) .  Furthermore, p < 1 if and only if m < 
2 a ( a  + 1) and p > 1 if and only if m > 2a(a  + l),  which 
fully explains the behavior described below eq 19. 

It is interesting that our crude totals are exactly the 
elements in the Catalan triangle of Shapiro.I6 This author 
has both deduced the explicit form (21) and pointed out the 
relevance of Ua(x). 

Atom-Rooted Polyenoids. A polyenoid emerges by 
attaching a appendages to a vertex, where a = 1, 2, or 3. 
Let the numbers of these "atom-rooted" systems with m 
edges be I _  d,, 2 L  ih, and 3- i,, respectively. For the sake of 
completeness, define also 

(25)  
0 . d = l  ( m = 0 )  

which accounts for one vertex alone. 
For a = 1 (one appendage), assume that there are (for a 

given m) M systems with mirror symmetry and A without. 
Then 

where 

M =  U(m-l),2 (m > 0) (27)  

Here and in the following it is always assumed that U and 
similar quantities are only defined as nonvanishing numbers 
for integer subscripts (occasionally including zero). There- 
fore, in eq 27, m = 1 ,  3, 5 ,  7 ,  ... . The quantity ' J ,  is the 
crude total of eq 12. On eliminating A from eq 26 and 
inserting M from eq 27, the following is obtained 

(28)  
1 1 4 = ,Wm + U(m-l)/21 

The generating function for M is x Uo(x2); hence 

m 1 

1 J q x )  = ( Jzm)xm = L[ U(x) + XUo(X2)] = 
m= 1 2 

1 

4 
-x-'[2(1 - x )  - ( 1  - 4X)'l2 - (1 - 4x2)"2] = 

x + x2 + 3x3 + 7x4 + 22x5 + 66x6 + ... (29)  

For a = 2 (two appendages), assume again that there are 
M mirror-symmetrical (C2,.) and A unsymmetrical (CJ 
systems. Now 

Jm = M + 2A, 'A,,, = M + A (30)  
2 

where 

%������ %������ %������ %������
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Hence 

1 1 
2 2-4m = -r2Jm + Um12] = ,[Um+, - 2Um + Um/2] (32) 

The generating function for M is U(x2), while 2J(x) is found 
in eq 15. Finally, for the numbers 2 y &  the following was 
arrived at 

C Y V l N  ET AL. 

Table 3. Numbers of Atom-Rooted Polyenoids, Classified 
According to Symmetry 

m 1 
1 

2 ” 4 X )  = c (2Am)xm = -[ U2(X) + U(X2)] = 
m=2 2 

1 

2 
-x-l[( 1 - 2X)U(X) + XU(X2) - XI = 

-x-2[2( 1 - 2x) - (1 - 2x)( 1 - 4 x y 2  - (1 - 4x2)’/2] = 
1 

4 
x2 + 2x3 + 8x4 + 24x5 + 85x6 + .... (33) 

For a = 3 (three appendages), assume that there are T 
systems of D3,,, R of CU, M of C2,,, and A of the C, symmetry. 
Then 

3J, = T +  2R + 3 M +  6A, ’.4, = T +  R + M + A  
(34) 

where 

T =  U(m-3)/6 (m > 2, (35) 

with the generating function x3Uo(x6). Consequently, the 
numbers R are obtained as 

1 
2 u m / ,  = + 2R, = - [ u m / 3  - u(m-3)/6] (36) 

with the generating function U(x3) for Umn. For the systems 
with mirror symmetry it was found 

From 34 and the subsequent equations, in addition to eq 16, 
one finds 

For these numbers 3- G the following generating function 
was deduced. 

1 
6 

3 4 x )  = -[U3(x) + 3x-’u(x2) - 3XUo(X2) + 2U(X3)] = 

1 -  
-X 3[6(1 - x - x3) - (1 - 4~ + 3x2)(1 - 4 ~ ) ” ~  - 12 

3(1 - x2)(1 - 4 ~ ~ ) ” ~  - 2(1 - 4 ~ ~ ) ” ~ ]  = 

x3 + x4 + 6x5 + 19x6 + 76x’ + ... (39) 

The final result for atom-rooted polyenoids concerns 
their total numbers -A,  viz. G = 0G t,, + I -  in, + 

~ ~~~~ 

m D3h Cih c2, CS total ~ t, 
0 1 0 0 0 1 
1 0 0 1 0 1 
2 0 0 1 1 2 
3 1 0 1 4 6 
4 0 0 2 14 16 
5 0 0 5 47 52 
6 0 1 5 164 170 
7 0 0 14 565 579 
8 0 0 14 1982 1996 
9 1 2 41 6977 702 1 

10 0 0 42 24850 24892 
11 0 0 132 89082 89214 
12 0 7 132 321855 321994 
13 0 0 429 1169853 1170282 
14 0 0 429 4276923 4277352 
15 2 20 1428 15713799 15715249 

Figure 5. The atom-rooted polyenoids for m 6 4. Root 
vertices are indicated as black dots. 

*&  A + 3b G .  It was found that 

1 Jr;, = # J m + 2  - um+l + ~U( ,+I )D 3 h 2  + 2 U d  

(m  > 0) (40) 

while 
also determined; in explicit form it reads: 

= 1. The corresponding generating function was 

1 m 

A(x) = c Jz8m = :x-’[6(1 - x2) - 
m=O 12 

(1 - x)( 1 - 4 ~ ) ” ~  - 3( 1 + x)( 1 - 4 ~ ~ ) ” ~  - 
2(1 - 4 ~ ~ ) ’ / ~ ]  (41) 

The numbers to m = 15 are given in Table 3, and the smallest 
forms (for m I 4) are depicted in Figure 5 .  Information 
about the symmetry groups is contained in the above 
material, and the pertinent numbers are included in Table 3. 

Bond-Rooted Polyenoids. The “bond-rooted‘’ polyenoid 
systems emerge by attaching a appendages to the ends of 
an edge, where a = 0, 1, 2, 3, or 4. The symbol will 
be used to denote the number of bond-rooted polyenoids with 
m edges and a appendages. One edge alone is represented 
by 

a1 = 1 (42) 
0 

while Ogm = 0 for m > 1. The corresponding generating 
function reads simply 

G(x) = x (43) 0 
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For a = 1 all the lam systems are unsymmetrical, and it 
is found 

with the generating function 

'@(x) = x U(x) = x2 + 2x3 + 5x4 + 14x5 + 42x6 + ... 
(45) 

For a = 2 three schemes of attachments are distinguished: 

The indicated symmetry types, viz. C2h, CzU(b), and GU(a), 
occur in addition to C,. Denote by C, M(b), and M(a) the 
numbers of C2h, C2,,(b) and C2,(a) systems, respectively. Then 

2Jm-1 = C + 2A = M(b) + 2A = M(a) + 2A (46) 

where 

C = M(b) = M(a) = U(m-1)/2 (m > 2) (47) 

with the generating function xU(x2). There are also the same 
number of A unsymmetrical (C,) systems for each of the 
schemes of attachments. Hence this case is very similar to 
the case of a = 2 for the atom-rooted polyenoids, and one 
finds 

to be compared with eq 32. The pertinent generating 
function is similar to eq 33, viz. 

00 

2 @(x) = C (zLi?m)xm = ~x[~JZ(X)]  = 3x3 + 6x4 + 24x5 + 
72x6 + 255x7 + ... (49) 

For a = 3 all the 3@m systems are unsymmetrical, and 

m=3 

one has simply 

3 'am = Jm-l = Um+, - 4um + 3Um-, (m > 3) (50) 

The pertinent generating function is similar to eq 17, viz. 

@(x) = x[3J(x)] = 3 

x4 + 6x5 + 27x6 + l10x7 + 429x8 + ... (51) 

For a = 4. 

4Jm-l = D + 2C + 2M(b) + 2M(a) + 4A, '.Gm = 
D + C + M(b) + M(a) + A  (52) 

Here 

with the generating function x V ( 2 ) .  These numbers count 
the dihedral (D2h) systems. The numbers of C2h systems are 

J. Chem. In$ Comput. Sci., Vol. 35, No. 4, 1995 747 

given by 

(m-3)/2 
- 2  C u i ~ ( m - 1 ) / 2 - i  - ~(m-1) /2 = D + 2 c  (m > 4) (54) 

i= 1 

These numbers (C) are also equal to the numbers of the 
G ( b )  and the C2,(a) systems. Consequently, 

1 2  
C = M(b) = M(a) = 2[ J(m-1)/2 - U(m-1,/41 = 

1 
Z[u(m+1)/2 - 2u(m-1)/2 - U(m-1)/4] (55) 

with the generating function 1/2[x-'U(xZ) - 2xU(x2) - XUO- 
(A!)]. From eq 52 and the subsequent equations, one finds 

'gm = -[4Jm-1 + 3 0  + 2C + 2M(b) + 2M(a)] = 1 
4 

1 
$um+2 - lo'm - 4um-l + 3U(m+~)/2 - 

6u(m-l)/zl (m ' 1) (56) 

For these numbers the following generating function was 
deduced. 

1 
4 
1 -  -x 3[4(1 - 2x + 2x2 - 4x3 + 2x4) - 
8 

@(x) = -[xLP(x) + 3 ~ - ' (  1 - 2x2)U(x2) - 3x1 = 4 

(1 - 2x)( 1 - 4x + 2x2)( 1 - 4X)'I2 - 
3(1 - 2x2)(1 - 4 ~ ' ) ~ / ~ ]  = x5 + 2x6 + 14x7 + 52x8 + 

238x9 + ... (57) 

The final result for bond-rooted polyenoids, viz. gm = 
Oam + lam + 2@m + 3@m + 4@m, reads 

1 
@m = ,[V,+z - 2um+l 3U(m+1)/2I (m > 2) (58) 

while G?o = 0, @I = 532 = 1. The corresponding generating 
function in explicit form reads 

(1 - 2x)(1 - 4 ~ ) " ~  - 3(1 - 4 ~ ~ ) " ~ ]  (59) 

The numbers to m = 15 are given in Table 4, and the smallest 
forms are depicted in Figure 6 .  The numbers pertaining to 
the different symmetry groups are included in Table 4. 

Symmetrical Free Polyenoids. The next task is to 
enumerate the free (unrooted) polyenoids. The numbers of 
symmetrical systems of this category are obtained relatively 
easily on the basis of the above results for rooted polyenoids. 

The free polyenoids of trigonal symmetries (D3h and C 3 h )  

possess one central vertex each. Hence their numbers are 
identical to those of the atom-rooted polyenoids. For the 
D3h systems eq 24 is sound and should only be supplemented 
by T = 1 for m = 0. Accordingly, the corresponding 
generating function reads 
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Table 4. Numbers of Bond-Rooted Polyenoids, Classified 
According to Svmmetw 

CYVIN ET AL. 

I- 
~~ 

m D2h C2h C2" C, total Um 

I 1 0 0 0 1 
2 0 0 0 1 1 
3 0 1 2 2 5 
4 0 0 0 12 12 
5 1 2 4 38 45 
6 0 0 0 143 143 
7 0 7 14 490 511 
8 0 0 0 1768 1768 
9 2 20 40 6268 6330 

10 0 0 0 22610 22610 
11 0 66 132 81620 81818 
12 0 0 0 297 160 297 160 
13 5 212 424 1086172 1086813 
14 0 0 0 3991995 3991995 
15 0 715 1430 14731290 14733435 

Figure 6. The gm bond-rooted polyenoids for m 5 4. Root edges 
are indicated as heavy lines. 

For the C3h systems eq 36 is valid, and 

The numerical values of the coefficients in eqs 60 and 61 
are included in Table 3.  

The free dihedral (D2h) and centrosymmetrical (C2h) 
polyenoids possess one central edge each. Hence their 
numbers are identical to those of the bond-rooted polyenoids. 
For the D2h systems eq 5 3  is valid and should be supple- 
mented by D = 1 for m = 1. Accordingly, the corresponding 
generating function is (cf. also Table 4) 

4 112 - D ( ~ )  = x ~ 0 ( x 4 )  = !-3[1 - (1 - 4x I - 2 
x + x5 + 2x9 + 5xI3 + ... (62) 

For the C2h systems one should add the contributions from 
2.G?m, eq 47, and from 4@m, eq 55. The result, viz. 

could also be obtained more directly from D, + 2C, = 
U(m+l)/2, and it leads to 

(1 - 4x2)1/2 - 2x2] = x3 + 22 + 7x7 + 2oX9 + ... (64) 

Additional numerical values for the coefficients are found 
in Table 4. 

The free CzV(b) polyenoids are the same in number as the 
corresponding C2h systems, viz., C,. The CzV(a) and D3h 

I- 
Figure 7. A C34H36 polyenoid of D3h q " t r y  with n = 34, m = 
33; n* = 7, m* = 6. 

systems together are counted by Cm + Um/2, where the last 
term had to be added in order to include the systems with 
only one central vertex, which occur for m = 2, 4, 6, ... . In 
conclusion. 

Mm + T, = 2Cm + Um,, 

M m  = '(m+l)i2 + um/2 - U(m-1)14 - ' (m-3 ) /6  (65)  

The smallest numbers of the C2" systems are MO = M I  = 0, 
M2 = 1. The M, systems are distributed into the types C24b) 
and C2,,(a) according to C,  and M, - C,, respectively. The 
generating function for the numbers M, was determined as 

M(x)  = x-yl  + X ) U ( X 2 )  - xU0(x4) - x3U0(x6) = 
1 -  4 112 - 2 1/2 - -x 3[(1 - 4 ~ ) ' / ~  + (1 - 4x 

1 + - 2x2 - h33 = x2  + x3 + 2x4 + 4 2  + 5 2  + ... 
(66) 

(1 + x)(l - 4x ) 
2 

Total Number of Free Polyenoids. The ultimate goal is 
to find the Y, free polyenoids in total. The method of Harary 
with c ~ l l a b o r a t o r s , ~ ~ ' ~ ~ ' ~  based on Otter,19 for passing from 
rooted to unrooted trees, as was explained and applied by 
Harary and Read,3 is also applicable to the present problem. 

Firstly, it is ascertained that for a tree 

n - m = 1  (67) 

Now we shall compute the number of equivalence classes 
for vertices and edges, say n* and m*, respectively, under 
the different symmetry types. 

For a polyenoid of D3h symmetry (see Figure 7) one finds 

1 1 
6 6 6 
( - 4 )  + 2 = -(n + 81, m* = +m - 3) + 1 = n * = - n  

1 1 5 
-(m + 3 ) ,  n* - m* = -(n - m) + - = 1 (68) 6 6 6 

In a similar way, for C3h 

1 1 ( - 1 ) + 1 = - ( n + 2 ) ,  m*=-m n*-m*= 1 
3 3 3 '  

n * = - n  

1 2 -(n - m) + - = 1 (69) 3 3 

The D2h symmetry is especially important in the present 
context; the count of equivalence classes yields in this case 
(see Figure 8) 

1 1 1 -(m + 3) ,  n* - m* = -&n - m) - - = 0 (70) 4 4 
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Table 5. Numbers of Free Polyenoids, Classified According to 
Symmetry 

Figure 8. A C26H28 polyenoid of D2h symmetry with n = 26, m = 
25; n* = 7, m* = 7. 

Figure 9. Two isomers (trans and cis) of C14H16 polyenoids, C2h 
left and CzV(b) right; each of them has n = 14, m = 13; n* = 7, 
m* = 7. 

3 (1) -4w (11) 

Figure 10. Examples of &,(a) polyenoids of two types: (i) only 
one central vertex and (ii) one central edge. 

In a similar way, one obtains for C2h and Czv(b); cf. Figure 
9 

n* = -n 1 1 1 
2 '  2 2 

m* = -(m - 1) + 1 = -(m + l),  n* - m* = 

1 1 -(n - m)  - - = 0 (71) 
2 2 

For C*"(a) two types are distinguished as illustrated in Figure 
10. In the case of i 

1 1 
( - 1 ) + l = - ( n + l ) ,  m*=-m,  n * - m * =  1 

2 2 2 
n * = - n  

1 1 
-(n - m) + - = 1 (72) 2 2 

and in the case ii 

1 1 
2 2 2 
( - 2) + 2 = -(n + 2)' m* = +m - 1) + 1 = n * = - n  

1 1 
2 2 2 
-(m + I), n* - m* = '(n - m )  + - = 1 (73) 

Finally, for a C, polyenoid one has simply 

(74) n* = n, m* = m, n* - m* = n - m = 1 

In conclusion, one finds n* - m* = 1 in all cases but D2h, 

Consider a free polyenoid P. It is clear that P is counted 
n* times among the A,,, atom-rooted polyenoids and m* 
times among the 62" bond-rooted polyenoids. Hence the 
difference -,d, - am catches up every free polyenoid once, 
except those of the symmetry types D2ht C2hr and CZv(b), 
which are missed. Notice that the number of C2h and C*"(b) 
systems is the same. Therefore one obtains ultimately 

C2h, and C2"(b), while n* - m* = 0 for D2h, Czh, and Cz,(b). 

while 8 = 1. Equation 75 was obtained from eqs 40, 53, 
58, and 63. The corresponding generating function was 

1 1  0 0  0 0 0 1 
2 0  0 1  0 0 0 1 
3 0  0 0  0 1 0 1 
4 1  0 0  1 1 0 3 
5 0  0 0  0 2 2 4 
6 0  0 1  2 4 5 12 
7 0  1 0  0 5 21 27 
8 0  0 0  7 14 61 82 
9 0  0 0  0 14 214 228 

10 1 2 2 20 39 669 733 
11 0 0 0  0 42 2240 2282 
12 0 0 0 66 132 7330 7528 
13 0 7 0  0 132 24695 24834 
14 0 0 5 212 424 83257 83898 
15 0 0 0  0 429 284928 285357 
16 2 20 0 715 1428 981079 983244 

Table 6. Numbers of Free Geometrically Planar Polyenoids, 
Classified According to Symmetry 

n D3h C3h D2h C2h c2). CX total I,,' 
1 1 0  
2 0 0  
3 0 0  
4 1 0  
5 0 0  
6 0 0  
7 0  1 
8 0 0  
9 0 0  

10 1 2 
11 0 0 
12 0 0 
13 0 7 
14 0 0 
15 0 0 

Kirby (1992).* 

0 0 0 0 la 
1 0 0 0 1" 
0 0 1 0 1" 
0 1 1 0 3" 
0 0 2 2 4" 
1 2 4 5 12" 
0 0 4 21 26" 
0 7 12 58 7 7" 
0 0 10 194 204" 
2 20 29 570 624a 

1790 1817 0 
0 63 88 5434 5585 
0 0 76 16924 17007 
3 191 247 52362 52803 
0 0 217 163784 164001 

0 27 

obtained from eqs 41, 59, 62, and 64 with the result 
m 

1 
fix) = Cfdm = - ~ ~ [ 1 2 ( 1  + - 2r2) + 

m=O 24 
(1 - 4 ~ ) ~ ' ~  - 3(3 + &)(1 - 4x2)"* - 4(1 - 4 ~ ~ ) " ~ ]  

(76) 
Numerical values are given in Table 5.  In this table, we 
have passed from m to n as the leading parameter; I,+, = 
fm, I(x) = xflx). The distribution into symmetry groups is 
included in Table 5. 

COMPUTER PROGRAMMING 

The systems enumerated by Kirby2 are the geometrically 
planar polyenoids to n = 10. All the polyenoids through n 
= 6 are geometrically planar, and our I,, (n  I 6) numbers 
(Table 5) indeed reproduce the results of Kirby.* For the 
numbers of geometrically planar polyenoids in general, 
however, no mathematical solution is available and is not 
likely to be found. Therefore we resorted to computer 
programming, like Kirby,2 in order to produce these numbers, 
but using quite different methods, which allowed an exten- 
sion of the data to h = 15; see Table 6. 

There is a one-to-one correspondence between the geo- 
metrically planar polyenoids and the catacondensed ben- 
zenoids with equidistant linear segments of a length I > 2. 
An illustration is furnished by Figure 11. This cor- 
respondence was exploited in the present computer program- 
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Figure 11. A catacondensed benzenoid with equidistant linear 
segment of the length 1 = 3 (left) and the corresponding polyenoid 
system (right). 

Figure 12. The I,* geometrically nonplanar polyenoids for n 5 
9. 

ming, using 1 = 3 as the segment length. In fact, the 
unbranched systems of the category in question, referred to 
as nonhelicenic generalized fibonacenes, have been enumer- 
ated before.6-2n In the present work a new program was 
designed, in which the branched systems are taken into 
account. The DAST (dualist angle-restricted spanning tree) 
code' 2,1 3.2 ' was employed. 

COMBINATORIAL CONSTRUCTIONS 

The systems of free polyenoids depicted in Figure 2 were 
generated by hand (on the pen-and-paper level). These 
drawings are consistent with the numbers in Table 5, as they, 
of course, should be. This agreement includes nicely the 
symmetry distributions. The corresponding systems for the 
next two or three n values would still be manageable in the 
same way. However, it is more interesting to consider the 
pen-and-paper generation of geometrically nonplanar poly- 
enoids. 

The smallest geometrically nonplanar polyenoids were 
generated by the method of combinatorial  construction^.^^^^ 
Figure 12 shows the resulting 1, 5, and 24 systems for n = 
7-9, respectively, in perfect consistency with the pertinent 
numbers of Table 7. The 109 geometrically nonplanar 
polyenoids with n = 10 were also constructed: one coiled 
system and attachments to smaller coiled systems according 
to the following scheme; see also Figure 13. 

Case 1. Coiled C I O H I ~ .  
Case 2. Attachments to coiled C ~ H I  I .  

Case 3. Attachments to coiled CsHlo. 
The rest of the constructions (Case 4) are attachments to 

Subcase 4a. The I3 = 5 polyenoids are attached to 

Subcase 4b. The Z? = 2 polyenoids are attached, one at a 

the smallest geometrically nonplanar polyenoid: C7H9. 

different sites, taking the mirror symmetry into account. 

time, to CgHlo, viz. a substituted C7H9. 

0 lQl 

Figure 13. Summary of the combinatorial constructions of the 
geometrically nonplanar polyenoids for n = 10. The number IIO* 
= 109 is obtained on adding the numbers on the drawings. 
Encircled numerals and characters indicate the cases and subcases 
as described in the text. 

Table 7. Numbers of Free Geometrically Nonplanar (Helicenic) 
Pol yenoids Classified According to Symmetry 

7 0 0 0  0 1 0 1 
8 0 0 0  0 2 3 5 
9 0 0 0  0 4 20 24 

1 0 0  0 0 0 10 99 109 
1 1 0 0 0  0 15 450 465 
1 2 0 0 0  3 44 1896 1943 
1 3 0 0 0  0 56 7771 7827 
14 0 0 2 21 177 30895 31095 
1 5 0 0 0  0 212 121144 121356 

Figure 14. The 15 geometrically nonplanar polyenoids with n = 
11. 

Subcase 4c. The ZI = 1 polyenoid is attached to CsHll, 
viz. doubly substituted C7H9. 

The constructions described above resulted in 1 ,2 ,4 ,  and 
10 geometrically nonplanar polyenoid systems of CzV sym- 
metry with n = 7, 8, 9, and 10, respectively, in consistency 
with the predictions of Table 7. Also the 15 Cz,, systems 
depicted in Figure 14 are compatible with Table 7. The 
smallest (n  = 12) geometrically nonplanar polyenoids of C2h 

symmetry are shown in Figure 15. Furthermore, the 
construction of the 21 such systems with n = 14 is indicated 
by numerals therein, similarly as in Figure 13. Finally, the 
two DZh geometrically nonplanar polyenoids are included in 
Figure 15. Geometrically nonplanar polyenoids of the 
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D2h K 

Figure 15. The smallest geometrically nonplanar polyenoids of 
symmetries C Z ~  and D2h. 

symmetries D 3 h  and C 3 h  occur at n = 16, just beyond the 
range of Table 7. 

CONCLUSION 

The main result of the present work is the mathematical 
solution for the numbers of free polyenoids, as given in eqs 
75 and 76;  see also eq 11 for an explicit formula for U,. 
Geometrically planar (free) polyenoids were enumerated by 
computer aid, whereby the numbers of geometrically non- 
planar (free) polyenoids became accessible. The smallest 
such systems were also constructed by hand. Thus the 
present work demonstrates an example of combined enu- 
merations by mathematical methods, computer programming, 
and pen-and-paper constructions. 
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