[go: up one dir, main page]

WO2006008845A1 - 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法 - Google Patents

集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法 Download PDF

Info

Publication number
WO2006008845A1
WO2006008845A1 PCT/JP2004/018250 JP2004018250W WO2006008845A1 WO 2006008845 A1 WO2006008845 A1 WO 2006008845A1 JP 2004018250 W JP2004018250 W JP 2004018250W WO 2006008845 A1 WO2006008845 A1 WO 2006008845A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
light
liquid crystal
resin
layer
Prior art date
Application number
PCT/JP2004/018250
Other languages
English (en)
French (fr)
Inventor
Katsuya Fujisawa
Tokuo Ikari
Kazuo Genda
Atsushi Kumano
Noboru Oshima
Yoshiki Matsuoka
Toshimasa Eguchi
Shigenori Yamaoka
Tatsumi Takahashi
Yoshiyuki Ono
Hisatomo Yonehara
Motoyuki Suzuki
Akimitsu Tsukuda
Norimasa Sekine
Kazushige Takechi
Ken Sumiyoshi
Ichiro Fujieda
Yasuo Tsuruoka
Original Assignee
Kuraray Co., Ltd.
Konica Minolta Holdings, Inc.
Jsr Corporation
Sumitomo Chemical Company, Limited
Sumitomo Bakelite Co., Ltd.
Dainippon Ink And Chemicals, Inc.
Dai Nippon Printing Co., Ltd.
Toray Industries, Inc.
Toppan Printing Co., Ltd.
Nec Corporation
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd., Konica Minolta Holdings, Inc., Jsr Corporation, Sumitomo Chemical Company, Limited, Sumitomo Bakelite Co., Ltd., Dainippon Ink And Chemicals, Inc., Dai Nippon Printing Co., Ltd., Toray Industries, Inc., Toppan Printing Co., Ltd., Nec Corporation, Hitachi Chemical Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to EP04822207A priority Critical patent/EP1770415A4/en
Priority to KR1020067006179A priority patent/KR100756576B1/ko
Priority to US10/571,543 priority patent/US7852435B2/en
Publication of WO2006008845A1 publication Critical patent/WO2006008845A1/ja
Priority to US12/939,407 priority patent/US8477267B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • Condensing film liquid crystal panel and backlight, and method for producing condensing film
  • the present invention relates to a light collecting film, a liquid crystal panel, a backlight, and a method for manufacturing a light collecting film.
  • imaging devices are required to have a large screen for indoor stationary types, and portable types are used in various places. It is essential to be able to do it. Furthermore, both stationary and portable types are required to be lightweight. As a result, the traditional CRT (Cathode Ray Tube) display is being replaced by a flat display.
  • CRT Cathode Ray Tube
  • Information appliances are also being used in indoor applications as portable power. Unlike the stationary type, portable information devices are used in various places.
  • the stationary type requires a large screen and 'high brightness' requires a wide viewing angle, and the portable type is used in a wide variety of places. There is a need for improved impact resistance.
  • Plasma displays As the flat display, a plasma display (Plasma Display Panel), a liquid crystal display (Liquid Crystal Display), and an organic EL display (Organic Light Emitted Display) are known. Plasma displays need to generate high voltage due to their operating principles and are not suitable for portable use. Liquid crystal displays and organic EL displays that can be driven with low power consumption are suitable for portable use.
  • plasma displays were the first display to be enlarged.
  • liquid crystal displays can be made lighter, and can be enlarged in the same way as plasma displays.
  • the size has been increased in the same way as plasma displays.
  • a plasma display must generate a high voltage in terms of operating principle. It is not suitable for mobile use, and it can be driven with low power consumption and an OLED display can be used for mobile use! /
  • liquid crystal displays are the mainstream.
  • OLED displays are expected to grow in the future due to sharp images.
  • the organic EL display and the liquid crystal display are divided into an “active drive type” in which each pixel is provided with an active element to drive the pixel, and a “simple matrix” in which the pixel is driven by two sets of orthogonal strip electrode groups.
  • active drive type can drastically shorten the response time compared to the simple matrix type, and can display a moving image of many pixels.
  • control related to image quality such as contrast and gradation, can be finely tuned, making it possible to display a moving image similar to a CRT.
  • the “active drive type” has become the mainstream of the current drive system.
  • liquid crystal display obtains color by using transmitted light or reflected light.
  • transmissive, reflective, and transflective depending on whether the pixel electrode transmits light, reflects light, or partially transmits light and partially reflects light. being classified.
  • a transmissive liquid crystal display or an organic EL display has a clear image.
  • a transmissive liquid crystal display or an organic EL display has a clear image.
  • the contrast of the image is lowered and the image is difficult to see outdoors when it is brighter than the self-luminous emission intensity.
  • Increasing the intensity of the light source so that the contrast does not decrease even outdoors can cause problems such as glare in indoor image quality and increased power consumption.
  • a reflective liquid crystal display is excellent in visibility outside because it reflects external light and displays an image, but has a drawback that it is difficult to see an image in a dark place. This can be improved by providing a front light.
  • the front light has a drawback in that it is difficult to uniformly irradiate the entire screen even in the case of a small screen such as a portable type.
  • Transflective liquid crystal display as a liquid crystal display having advantages of a transmissive type and a reflective type.
  • Transflective LCDs use both backlight light and external light for display by making the pixel electrodes semi-transparent or providing openings, ensuring visibility both outdoors and indoors. it can. For this reason, most current portable information terminals are semi-transmissive liquids. A crystal panel is used.
  • the image of the transflective liquid crystal display is inferior to the transmissive liquid crystal display or the organic EL display in a dark place, and inferior to the reflective liquid crystal display in a bright place. For this reason, it is necessary to further improve image quality as a portable information terminal.
  • the display is an information terminal such as a mobile phone or a PDA (Personal Digital
  • the characteristics required of a display panel for portable use include screen size, panel thinness, power consumption, and the like.
  • organic EL displays can be made as thin as a single substrate in principle.
  • a liquid crystal display panel can be thinned to the thickness of two substrates for a reflective liquid crystal display, but a transmissive Z transflective liquid crystal display must be thick because it requires a backlight. Absent.
  • a reflective liquid crystal display is advantageous, but if an auxiliary light source is installed, it is equivalent to a transmissive liquid crystal display or an organic EL display.
  • liquid crystal displays have a long history of commercialization compared to organic EL displays, and are considered advantageous in price.
  • organic EL displays have the potential to surpass liquid crystal displays in terms of thinness, light weight, and excellent visibility in the dark, and improvements in luminous efficiency and lifetime have been studied.
  • plasma displays, transmissive liquid crystal displays, and organic EL display power are suitable for stationary applications, and transflective liquid crystal displays are suitable for portable applications.
  • a liquid crystal display is a display with advantages not found in plasma displays and organic EL displays.
  • FIG. 27 shows a cross-sectional view of a conventional transflective liquid crystal display panel.
  • the liquid crystal panel is composed of liquid crystal sandwiched between two substrates.
  • pixels each provided with a thin film transistor 311 and a pixel electrode 310 are regularly arranged, and wiring is also formed to send an electric signal for driving the thin film transistor 311.
  • the pixel electrode 310 is designed with a transmittance of 30-70%. Normally, it is often designed with a transmittance of 70%.
  • a color filter 305 is disposed on one side of the other glass substrate 304.
  • the color filter (CF) 305 is disposed at the pixel electrode and the black matrix (BM) is disposed at a position facing the boundary between the pixel electrodes, and the transparent electrode 307 covers them.
  • Alignment films 307 and 309 for aligning liquid crystals in a desired direction are formed on the surfaces of these two substrates, respectively.
  • these two substrates are fixed by a sealing material B arranged at the periphery of the substrate, and the liquid crystal is sealed in the gap between these two substrates.
  • Film substrates having various optical functions are bonded to the outside of the two substrates sandwiching the liquid crystal.
  • two film substrates of polarizing plates (linear polarizing plates) 302 and 314 and retardation films (1Z4 wavelength plates) 303 and 313 are laminated to provide a function of making incident light circularly polarized.
  • an antireflection plate 301 for preventing reflection of external light is also provided.
  • the knocklight outputs white light, such as a light source C such as a lamp or a light emitting diode (LED)), a light guide 317, a reflector 318, a diffusion sheet 316, and a viewing angle adjustment sheet 315.
  • a light source C such as a lamp or a light emitting diode (LED)
  • a light guide 317 such as a lamp or a light emitting diode (LED)
  • a reflector 318 such as a light guide 317, a reflector 318, a diffusion sheet 316, and a viewing angle adjustment sheet 315.
  • the design of these components is optimal so that the knocklight operates as a uniform surface emitter as much as possible and the light emitted from the light source C is guided as efficiently as possible toward the liquid crystal panel. It has become.
  • a transparent plastic substrate such as polymethylmethacrylate (PMMA) is used as the light guide, and the thickness is about 1. Omm.
  • Reflector 318, diffuser sheet 316, and viewing angle adjustment sheet 315 have been processed to fulfill their optical functions, and the thickness is 2. Omm when all the components of the backlight shown in Fig. 27 are covered. It becomes about.
  • White light emitted from the light source C is incident on the light guide 317, the path is changed by the reflector 318, and is diffused by the diffusion sheet 316.
  • the diffused light is adjusted to have the desired directivity by the viewing angle adjusting sheet 315 and then reaches the liquid crystal panel.
  • This light is in a non-polarized state. Only one linearly polarized light passes through the linear polarizing plate 314 of the liquid crystal panel. This linearly polarized light becomes circularly polarized light by the phase difference plate (1Z4 wavelength plate) 313, and sequentially passes through the glass substrate 312, the pixel electrode 310 formed of a translucent material, and the like. The liquid crystal layer 308 is reached.
  • the alignment state of liquid crystal molecules is controlled by the presence or absence of a potential difference between the transparent electrode (counter electrode) 306 facing the pixel electrode 310. That is, in an extreme alignment state, the circularly polarized light that has entered the downward force in FIG. 27 passes through the liquid crystal layer 308 and the transparent electrode 306 as it is, and light in a specific wavelength range passes through the color filter 305. And reaches the retardation plate (1Z 4 wavelength plate) 313, and passes through the polarizing plate (linear polarizing plate) 314 almost completely. Therefore, this pixel displays the color determined by the color filter brightest.
  • the circularly polarized light that has passed through the polarizing plate (linear polarizing plate) 302 and the retardation plate (1Z4 wavelength plate) 303 passes through the liquid crystal layer. It passes through and 30% of the light is reflected by the pixel electrode and used for display. Therefore, it operates as a reflective liquid crystal display.
  • the pixel electrode is formed of a translucent material, and the operation as a transmissive liquid crystal display is almost as described above.
  • the light transmittance of the pixel electrode is designed to be 70%, for example, 30% of the light is not used for display.
  • the liquid crystal panel from the upper side of FIG. 27, circularly polarized light that has passed through the linear polarizing plate and the 1Z4 wavelength plate passes through the liquid crystal layer, and 30% is reflected by the pixel electrode. Used for display. Therefore, it operates as a reflective liquid crystal display.
  • a glass substrate is used as a substrate on which a thin film transistor is formed so as to withstand high temperatures when the thin film transistor is manufactured.
  • technologies for forming thin film transistors at lower temperatures are also being studied, but with the recent miniaturization, functional elements also drive liquid crystals.
  • the same substrate as the thin film transistor there is a problem in device characteristics, and it has not been put into practical use.
  • a high-temperature polysilicon transistor formed on a quartz substrate a low-temperature polysilicon transistor formed on a glass substrate
  • an amorphous silicon transistor formed on a glass substrate or a plastic substrate In order to reduce the size of liquid crystal panels, driver ICs, which were previously externally attached, are being formed on glass substrates. Amorphous silicon transistors can be manufactured at the lowest temperature, but the characteristics required to operate driver ICs can be put to practical use on plastic substrates. For this reason, it is practical to form a low-temperature polysilicon transistor on a glass substrate with the current manufacturing technology.
  • a transmissive liquid crystal display using a plastic substrate is, for example, a paper by A sano et al. (A. Asano and T. Kinoslma, 'Low-temperature polycrystalline- Silicon TFT color LCD panel made of plastic substrates, "in Society for Information Display International Symposium Digest of Technical Papers (Society for Information Display ⁇ Boston, 2002,) Vol. 33, pp. 1196—1199.) .
  • a polysilicon TFT is formed on a glass substrate provided with an etching stopper layer by a known low-temperature polycrystalline silicon thin film transistor manufacturing method, and a removable adhesive is formed on the polysilicon TFT. Then paste the temporary substrate (Fig. 28 (a)). Next, the glass substrate is removed by etching with hydrofluoric acid (HF) (FIG. 28 (b)). Then, after removing the etching stop layer, a polysilicon TFT is bonded to a plastic substrate with a thickness of 0.2 mm via an adhesive (Fig. 28 (c)). Thereafter, the temporary substrate is removed, and then the removable adhesive is removed (FIG. 28 (d)). Thereafter, an active drive liquid crystal display panel is formed by injecting liquid crystal molecules into the gap between the substrate and a color filter, such as a transparent electrode and facing the substrate.
  • a color filter such as a transparent electrode and facing the substrate.
  • a conventional transmissive Z transflective liquid crystal display becomes thicker and heavier due to the use of a backlight.
  • a configuration using organic EL has been proposed.
  • Japanese Patent Laid-Open No. 2000-29034 shown in FIG. 29 (a) shows an alignment film 623 that has been previously subjected to an alignment treatment in order to prevent deterioration of the organic EL due to the formation of the alignment film by conventional baking.
  • an alignment film 623 that has been previously subjected to an alignment treatment in order to prevent deterioration of the organic EL due to the formation of the alignment film by conventional baking.
  • the liquid crystal display panel of FIG. 29 (a) is obtained by laminating a polymer film on a TFT array substrate 621 manufactured in advance through separate processes and a counter substrate 622 provided with a surface light emitter. By performing a rubbing treatment, an alignment function for the liquid crystal composition 624 is added to the polymer film, so that an alignment film 623 is formed. Thereafter, the alignment film 623 between the TFT array substrate 621 and the counter substrate 622 is opposed to each other, and the liquid crystal composition 624 is filled in the gap.
  • FIG. 29 (a) is the organic EL film in which the alignment film in the prior art diagram shown in FIG. 27 is laminated with the organic film and the knock light is replaced with the organic EL.
  • the power required for the substrate for the conventional light guide plate is several mm, whereas the glass substrate is 0.4 mm, so a thin film is being prepared.
  • Japanese Patent Laid-Open No. 2000-98957 discloses a technique for reducing the thickness by reducing the backlight of a transmissive liquid crystal panel to a conventional fluorescent tube system and using an organic EL light emitting element.
  • Figure 29 (b) shows the structure.
  • the liquid crystal display panel includes a first electrode substrate 650, a second electrode substrate 660, and a liquid crystal layer held between the substrates.
  • the first electrode substrate 650 is composed of a transparent glass substrate 651, and on the surface in contact with the liquid crystal layer, a scanning line 652, a signal line 653 (not shown), a pixel electrode 654, a TFT 655, A storage capacitor 656 (not shown) and a storage capacitor line 657 are formed.
  • a transparent electrode 682 serving as a counter electrode of the liquid crystal is formed on the surface of the transparent glass substrate 681 in contact with the liquid crystal, and the substrate transparent electrode 682 of the glass substrate 681 is formed.
  • an organic EL luminescence apportionment 683, 685, 687, 689 force is formed, and a light emission apportionment 684, 686, 688 force S is formed, which becomes a gap between the emission apportionments 683, 685, 687, 689. It is.
  • 29 (b) shows a light guide plate for a backlight that has been conventionally required by forming a flat light emitting element such as an organic EL cover on the back surface of the substrate on which the counter electrode of the liquid crystal panel is formed.
  • a flat light emitting element such as an organic EL cover
  • Japanese Patent Laid-Open No. 54-126559 a technique of using a long flexible film for a substrate constituting a liquid crystal panel is disclosed in Japanese Patent Laid-Open No. 54-126559.
  • the publication only shows an example of forming a simple matrix-driven black-and-white liquid crystal panel using a long flexible film film on which a transparent electrode and an alignment film are formed.
  • Japanese Patent Application Laid-Open No. 54-126559 manufactures a liquid crystal panel using a long plastic substrate when a large and smooth glass substrate is expensive and difficult to manufacture.
  • Japanese Patent Application Laid-Open Nos. 62-150218 and 6-27448 disclose a technique for holding a liquid crystal in a gap between a long flexible film in which an alignment film is formed on two electrodes. It has been done.
  • Japanese Patent Application Laid-Open No. 2002-358024, Japanese Patent Application Laid-Open No. 2002-148607, and the like describe a long flexible film on a glass substrate.
  • An example of pasting is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-29034
  • Patent Document 2 JP 2002-98957 A
  • Patent Document 3 JP-A-54-126559
  • Patent Document 4 Japanese Patent Laid-Open No. 62-150218
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-358024
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-148607
  • Non-patent literature 1 A. Asano ana T. Kmoshita, 'Low—temperature polycrysta lline— Silicon TFT color LCD panel made of plastic substrates in Society for Information Display International Symposium Digest of Technical Papers (Society for Information Display ⁇ Boston, 200 2 )) Vol. 33, pp. 1196-1199.
  • the liquid crystal panel has a configuration in which the liquid crystal is sandwiched between the electrodes. Therefore, it is necessary to form the drive electrode and the counter electrode on separate substrates.
  • a TFT thin film transistor
  • a glass substrate is considered to be indispensable.
  • a plastic substrate may be used by using a method such as Asano. It has been.
  • the backlight is manufactured in a separate process from the liquid crystal panel, and is disposed on the back surface of the liquid crystal panel.
  • the transflective and transmissive liquid crystal panels require three substrates even when the organic EL is used for the backlight and the TFT is manufactured using a method such as Asano. As a result, the thickness of the liquid crystal panel is about 0.4 mm, the knocklight is about 0.2 mm, and the total thickness is required to be at least 0.6 mm.
  • Thin-film / light-weight display panels require high electronic ink, have a thickness of 0.3mm, and a liquid crystal display panel that is 1 / 10th the thickness of an active matrix device. The company is developing.
  • a liquid crystal display panel is formed by attaching a film having an optical function to a rectangular substrate (glass substrate or plastic substrate). Since a rectangular substrate is used, the following problems are inevitable.
  • Liquid crystal display devices used in mobile phones are required to have a wide variety of display screen sizes, from 2.1 inch sizes to 15, 17 inches for personal computers and 17 inch wide to 40 inch wide sizes for televisions. ing. On the other hand, since it is difficult to provide a production line for each substrate size, it is necessary to use a rectangular large-area substrate.
  • the TFT formation process in manufacturing a liquid crystal display device is similar to the process in which a semiconductor element is formed on a silicon wafer.
  • a single substrate is formed.
  • Increasing the number of formations has led to increased productivity, resulting in increased size.
  • a large one exceeds 40 inches diagonal, so the glass substrate that is the base material has a large area exceeding lm X I.5 m. Something is proposed.
  • the production line needs to use a rectangular large-area substrate in order to cope with various sizes.
  • optical functional films films having optical functions (hereinafter referred to as optical functional films) are attached one by one to a substrate on which TFTs are formed and Z or a substrate on which counter electrodes are formed.
  • the two substrates sandwiching the liquid crystal each have an alignment film on the surface facing the liquid crystal, and an optical functional film such as a retardation film and a polarizing plate on one surface. Is pasted.
  • the thickness of the glass substrate is decreasing, but if the substrate is further enlarged, it becomes impossible to reduce the thickness of the substrate due to its own weight. As is also the case with production lines for semiconductor integrated circuits, it is even necessary to increase the thickness of the substrate.
  • the thickness of the substrate increases as the liquid crystal panel screen increases in size and multiple screens with a small screen size. On the other hand, it is required to reduce the thickness of portable display devices that can be used indoors and outdoors, in bright to dark places, and from sunny to rainy.
  • the manufacturing apparatus is required to have higher accuracy, and the manufacturing apparatus becomes expensive, which hinders cost reduction of the liquid crystal panel due to the increase in the size of the substrate.
  • the transflective liquid crystal display panel by setting the transmittance of the pixel electrode to, for example, about 0.3 to 0.7, it is possible to obtain good visibility in both a bright place and a dark place. The sex is secured. Accordingly, the transflective liquid crystal display has a lower utilization factor of external light and a darker display than a reflective liquid crystal display having the same pixel area. In addition, the efficiency of using the light emitted from the backlight is lower than that of a transmissive liquid crystal display having the same pixel area, and the display is darkened. That is, the conventional transflective liquid crystal display has the problem that the display efficiency is low and the display is dark compared to the reflective liquid crystal display and the transmissive liquid crystal display.
  • the present invention has been devised under the above circumstances. That is, a thin liquid crystal display panel The purpose is to provide. Another object is to reduce the manufacturing cost of the liquid crystal display panel by simplifying the manufacturing process.
  • the present invention is a collection comprising an organic resin on a film having a flexibility with a curvature radius force of S40 mm or less and a thermal expansion coefficient of 50 1! 17 and having a long light diffusion function as follows.
  • the light-collecting film is characterized in that the light bodies are formed in an array and the surface of the light-collecting member facing the surface in contact with the film is flat and narrower than the area of the surface in contact with the film.
  • the film having a light diffusion function preferably has a Young's modulus of 1.5 GPa or more.
  • the film having the light diffusion function is transported to the first roll force and the second roll, and a thin film can be formed on the surface during transport. Furthermore, it is preferable that the change in mechanical and optical properties is ⁇ 5% or less for a thermal history of 200 ° C. Mechanical and optical changes for a thermal history of 250 ° C More preferred is less than 5%.
  • the film having a light diffusion function is preferably transparent particles and contains light diffusion particles having a refractive index different from that of the film.
  • the transparent particles are preferably zinc oxide, ITO or silica, and the particle diameter is preferably 0.5 m or more and the film thickness is 1Z2 or less.
  • the film having the light diffusing function and the grease of the light collector are the same.
  • the resin is preferably made of acrylic resin or cyclic olefin resin.
  • the light condensing film can be laminated on a long film having a light guide function having a thermal expansion coefficient of 50 ppmZ ° C or less on the surface of the light concentrator facing the light diffusion film.
  • the film having a light guiding function preferably has a Young's modulus of 1.5 GPa or more.
  • the film having the light guiding function is conveyed to the first roll force second roll, and the light condensing film in which the light condensing body is formed on the light diffusion layer at the time of transportation is used as the light diffusion of the light condensing body Lamination is possible on the surface facing the membrane.
  • a film having a light guiding function preferably has a change in mechanical and optical characteristics of ⁇ 5% or less with respect to a thermal history of 200 ° C. On the other hand, it is more preferable that the mechanical and optical change is less than 5%.
  • the film having a light guiding function preferably contains an inorganic filler, and the particle size of the inorganic filler is preferably lnm to 380nm.
  • the inorganic filler is preferably made of acid titanium, zinc oxide, alumina, or acid key.
  • the film having a light guide function preferably has a light transmittance of 80% or more.
  • the film having a light guiding function is preferably made of acrylic resin or cyclic olefin resin.
  • the resin of the film having a light diffusion function, the light collector, and the film having a light guide function are preferably made of an acrylic resin or a cyclic olefin resin that is preferably the same. .
  • This functional film and the functional films of the liquid crystal functional thin film, the optical functional thin film, and the alignment film, which have the same power as the pixel electrode of the liquid crystal, are arranged opposite to each other, and the liquid crystal is sandwiched between the alignment films.
  • a liquid crystal panel can be formed.
  • a backlight can be formed by arranging a light source adjacent to at least one surface substantially orthogonal to the surface.
  • the present invention includes a step of filling an uneven portion of a support having irregularities in the shape of a light collector with an organic resin, and the filled resin is formed into a long thin film having a light diffusion function. It is a manufacturing method of the condensing film which has the process to transcribe
  • the present invention provides a process for producing a condensing film comprising a step of forming a thin film made of an organic resin on a long film having a light diffusing function, and a step of transferring the shape of the light collector to the thin film. Is the method.
  • the step of transferring the shape of the light collector can be performed by pressing a mold having irregularities in the shape ability of the light collector.
  • the step of transferring the shape of the light collector may include a step of curing the organic resin in a pressed state. Curing of the organic resin can be performed by ultraviolet irradiation. [0099] A step of laminating a thin film having a light guide function on the light collector may be included.
  • the present invention is characterized in that a liquid crystal panel and Z or various thin films constituting a knock light are produced on a flexible base film by transfer using a roll 'two' roll process. is there.
  • a backlight using a light guide plate can be manufactured using a roll-to-roll process.
  • the optical functional thin film cures the resin using heat or light. If light or heat is further applied to the cured resin, problems such as decomposition of the cured resin or deterioration of properties due to progress of curing occur. For this reason, the case where the optimal hardening conditions of material cannot be selected arises.
  • each functional thin film can be manufactured under the optimum conditions of the film. The reason is that since the heat applied at the time of transfer is low temperature for a short time, the functional thin film does not deteriorate.
  • the film can be produced while forming a plurality of functional thin films on the film by a roll '1' roll process. Even when manufacturing a large display panel or a large number of display panels with a single substrate, it can be transported while being wound on a roll, so that it can be transported between devices in a narrow space. In addition, there are no accidents such as damage during transportation.
  • the functional film and the substrate (base film) which is the main component of the backlight are the same member, warpage of the liquid crystal panel due to the difference in the thermal expansion coefficient of the material can be suppressed.
  • Fig. 1 is a conceptual diagram of the production method of the present invention.
  • FIG. 2 is a conceptual diagram of the production method of the present invention.
  • FIG. 3 is a conceptual diagram of a polarizing film 'retardation film transfer method of the present invention.
  • FIG. 4 is a conceptual diagram of a liquid crystal panel manufacturing method according to the present invention.
  • FIG. 5 shows the structure of the base fill of the present invention.
  • FIG. 6 is a schematic view of an alignment film manufacturing method and an alignment film transfer method.
  • FIG. 7 is a cross-sectional view of the organic EL device of the present invention.
  • FIG. 8 is a conceptual diagram of a production apparatus for producing a barrier film on a base film according to the present invention.
  • FIG. 9 is a process cross-sectional view illustrating a method for manufacturing a thin film transistor of the present invention.
  • FIG. 10 is a process cross-sectional view illustrating a thin film transistor transfer method of the present invention.
  • FIG. 11 is a conceptual diagram showing a method for manufacturing a color filter of the present invention.
  • FIG. 12 is a conceptual diagram showing a method for manufacturing a color filter of the present invention.
  • FIG. 13 is a conceptual diagram showing a method for producing a color filter of the present invention.
  • FIG. 14 is a sectional structural view of a liquid crystal panel of the present invention.
  • FIG. 15 shows a method for manufacturing a liquid crystal panel.
  • FIG. 16 is a sectional structural view of a liquid crystal panel of the present invention.
  • FIG. 17 is a conceptual diagram showing a method for manufacturing a liquid crystal panel of the present invention.
  • FIG. 18 is a sectional structural view of a liquid crystal panel of the present invention.
  • FIG. 22 The relationship between the pitch and height of irregularities, which shows the good characteristics of a reflective film with a concave curved surface structure.
  • FIG. 22 A cross-sectional view of a reflective film having an uneven complex curved surface structure.
  • FIG. 25 A method for flattening the surface of a reflective film having irregularities.
  • FIG. 27 is a sectional structural view of a conventional liquid crystal panel.
  • FIG. 29 is a cross-sectional view of a conventional liquid crystal panel.
  • FIG. 30 is a back light source using a light guide.
  • FIG. 31 is a diagram showing the shape of a light collector.
  • FIG. 32 is an overhead view of the light collector array.
  • FIG. 33 is a diagram showing a manufacturing method of the light collector.
  • FIG. 34 is a view showing a manufacturing method of the light collector.
  • FIG. 35 is a diagram showing a method for manufacturing a light collector.
  • [36] A diagram showing the structure of the light diffusion film and the light collector array.
  • FIG. 39 is a cross-sectional view of a liquid crystal panel.
  • FIG. 40 shows a method for manufacturing a liquid crystal panel. 41] A diagram showing a method for manufacturing a liquid crystal panel. ⁇ 42] A diagram showing a method for manufacturing a liquid crystal panel. Explanation of symbols
  • the present invention provides a liquid crystal panel by forming each optical functional film TFT element and light emitting element on a thin film film made of a long substrate made of an organic resin, and bonding the film together. To manufacture.
  • the liquid crystal panel according to the present invention has a configuration as shown in Figs.
  • the liquid crystal panel is composed of a flat light emitting element portion and a liquid crystal element portion that serve as a backlight.
  • the flat light emitting element portion constituting the backlight is a backlight using the light-collecting film of the present invention.
  • the condensing film has a configuration similar to the configuration using a conventional light guide, and can be configured to be thinner than the light guide, and has an advantage that a proven light source can be used.
  • the knocklight is composed of a functional film having a light collecting function (light collecting film) and a light source.
  • the light collecting film is a laminated film including a light collecting body 366 and a support film 365 on a base film 368.
  • the light source is formed on the side surface of the light collecting film.
  • the light-collecting film of the present invention described above is formed from an organic resin on a film having a light diffusion function.
  • the light collecting body is formed in an array, and is laminated with a film having a light guiding function (hereinafter sometimes referred to as a light guiding body) and a light source disposed at an end portion of the backlight.
  • a light guiding body a film having a light guiding function
  • a light source disposed at an end portion of the backlight.
  • an element functional thin film comprising a color filter 355, a transparent electrode 356, and an alignment film 357, which constitute a part of the function of the liquid crystal element, is laminated.
  • the alignment film 359 of the first functional film and the alignment film 357 of the second functional film in which the optical functional thin film and the element functional thin film are laminated are opposed to each other with a gap between them.
  • a liquid crystal 358 is filled in the gap.
  • optical functional thin films having optical functions and element functional thin films forming part of the functions of the elements are laminated on a support film other than the base film at the time of manufacture. These films are collectively referred to as functional films. Each optical functional thin film and element functional thin film formed on the functional film are collectively referred to as a functional thin film.
  • the knocklight has a light emitting element such as an organic EL element / inorganic EL element formed on the surface, so that the entire surface emits light even though it can be a thin film. It is clear that you don't have to. For example, even a vertical cavity surface emitting laser (VC SEL) or a resonant cavity light emitting diode (RCLED) is a thin film. If it can be formed, it can be used.
  • VC SEL vertical cavity surface emitting laser
  • RCLED resonant cavity light emitting diode
  • the color filter and the alignment film can be said to be an optical functional thin film having an optical function, although the operating force of the liquid crystal panel can be said to be an element functional thin film having an element function.
  • the element functional thin film 'optical functional thin film is not limited to this example and may vary depending on the configuration of the liquid crystal panel.
  • FIG. 1 is a conceptual diagram showing a method for manufacturing a liquid crystal panel using a long film made of an organic resin.
  • the base film 1000 wound up in a roll is tensioned so as not to shrink, and the roll force is also sent to the take-up roll.
  • various functions such as a phase difference function 1001, a polarization function 1002, and an antireflection function 1003 are sequentially given to form a functional film A having an optical function.
  • FIG. 2 (a) is a conceptual diagram showing a manufacturing method for forming an element function on a base film and a manufacturing method for forming an organic EL light emitting element on the base film.
  • An opaque electrode layer is formed by a physical vapor deposition method on the base film 105 fed from the feed roll, and a light emitting layer composed of an organic EL layer made of an organic material is formed by a vapor deposition method or a coating method.
  • a transparent electrode is formed by a physical vapor deposition method in the same manner as an opaque electrode, and a functional film B on which a light emitting element is formed is formed and wound around a winding roll.
  • FIG. 2 (b) is a conceptual diagram showing a process of transferring only a layer having an optical function from the functional film A to which an optical function is imparted to the functional film B on which a light emitting element is formed.
  • Winding roll B force Functional film B is fed to the winding roll, and in the middle of the function film A, the feeding roll force is also fed. Transferred onto the element layer 106 of film B. The functional film B having the optical functional layer 103 transferred onto the element layer 106 is then wound around a winding roll.
  • the characteristics required for the support substrate 102 are the same as those of the base film in terms of thermal expansion coefficient and flexibility.
  • the thermal expansion coefficient and flexibility are preferably the same as the base film. If it is a thermal expansion coefficient, it is preferably 50 ppmZ ° C or less. More preferably, the difference in thermal expansion coefficient from the base film is preferably ⁇ 30% or less ⁇ 15% or less It is more preferable that
  • the thermal expansion coefficient can be reduced by blending an inorganic filler.
  • Inorganic fillers need to be smaller than the wavelength of light in order to maintain the transparency of the film, and when curing resin using ultraviolet rays, the particle size must be less than the required wavelength of ultraviolet rays.
  • the ultraviolet rays used for photocuring are often in the wavelength range of 200nm-300nm. In this case, lnm ⁇ 200 nm or less is preferable, and lnm ⁇ m is more preferable.
  • the photocurable film formed on the supporting substrate 102 can be irradiated with ultraviolet rays having a wavelength of 200 nm to 300 nm through the supporting substrate 102.
  • the inorganic filler is preferably 5% to 90% by weight, more preferably 10% to 50% by weight. If it is 5% by weight or more, an effect of lowering the thermal expansion coefficient is obtained, and if it is 90% by weight or less, it is brittle and easily cracked.
  • An inorganic filler may be blended so as to match the thermal expansion coefficient of the base film within the above range.
  • the cover film has the same thermal expansion coefficient as that of the base film.
  • Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, and oxygenate.
  • Examples of the method of blending the inorganic filler include a method of dispersing dry powdered silicon oxide fine particles using a mixing device having a high dispersion capacity, a colloid (sol) dispersed in an organic solvent, and other blends. The organic solvent is removed by mixing the product and depressurizing while stirring if necessary, colloid (sol) dispersed in the organic solvent and its Examples of the method include mixing other compounds and removing the solvent as necessary, followed by casting to further remove the solvent. A bead mill etc. are mentioned as an apparatus with high dispersion capability.
  • the film formed on the support substrate 102 is deteriorated by moisture in the atmosphere such as a polarizing film, it is preferable to provide a gas noria layer on the surface of the support substrate 102. . When it is provided on one surface of the supporting substrate 102, it is effective to provide it on either surface, but it is more effective if it is provided on the surface on which the film is formed.
  • the gas nolia layer When the film is cured by irradiation with ultraviolet light, the gas nolia layer must be transparent to ultraviolet light. For this reason, as the material of the gas barrier layer, organic materials such as polybutyl alcohol and polysalt-vinylidene, organic materials and clay minerals (Al O
  • Amorphous clay minerals such as SiO-2-3H 2 O and crystalline clay minerals (Si, AD O four sides
  • a thin film of an inorganic material such as acid silicate or acid aluminum. It is possible to reduce the film thickness by using an inorganic material because it is excellent in gas noliativity in a high humidity environment and is effective even if the thickness is small. Furthermore, it is possible to stack two or more of these layers.
  • Organic materials can be used as a coating film 'laminated film' as a gas noria film compared to inorganic materials, so the cost is low. .
  • the thickness of the gas barrier layer is preferably 1 m to 10 m in the case of organic materials and organic-inorganic composite materials, and is preferably 10 nm—: L m in the case of inorganic materials.
  • organic materials and organic-inorganic composite materials if it is 1 ⁇ m or more, normal air components such as oxygen and water vapor can be sufficiently prevented from entering the liquid crystal layer and the organic EL layer. If it is 10 m or less, the physical properties of the base film, such as expansion coefficient, are not affected.
  • a coating method can be used in the case of organic materials and organic-inorganic composite materials, and various thin film deposition methods can be used in the case of inorganic materials.
  • a liquid organic material or a liquid such as a solution thereof is applied on a film, and dried or cured to form a film.
  • Thin film deposition methods include physical growth methods such as vapor deposition, ion plating and sputtering, and chemical vapor deposition methods such as plasma CVD under reduced pressure atmosphere, catalyst CV D, and CVD under atmospheric pressure. .
  • sputtering is particularly preferable because a dense film can be obtained at a low temperature.
  • the film formed on the support substrate 120 is of an ultraviolet curable type, transparency is required, so that the base film detailed in the second embodiment or the like can be used.
  • polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polychlorinated resin resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and acetic acid resin It is possible to use a resin with a light transmission function.
  • a cover film made of a resin having excellent moisture shielding properties and the like can be formed by simply providing a gas barrier layer on the support substrate 120.
  • a resin include polyethylene, polypropylene, polyvinyl alcohol, senololose, polycarbonate, polyesterol, attalinole, polyetherolene, polyamide, polyimide, and polyolefin.
  • celluloses such as triacetyl cellulose, polycarbonates such as polycarbonate and polyethylene terephthalate, and acrylics are preferably used.
  • the cover film is desirably chemically and thermally stable and easily peelable from the thin film layer.
  • a thin sheet-like material such as polyester, polyethylene, polypropylene, polyethylene terephthalate, or polybulualcohol has high surface smoothness and is preferred. You may use what carried out the mold release process on the surface in order to provide peelability.
  • the gas barrier layer can be provided on both sides or one side of the force bar film.
  • the gas barrier layer is provided on one surface of the cover film, it is more effective to provide the gas barrier layer on the surface of the cover film in contact with the film formed on the support substrate 120.
  • FIG. 3 is a conceptual diagram showing a part of the manufacturing process of the method for manufacturing the organic EL light emitting device.
  • the functional film force in which a reflective electrode is formed on the base film 105 is fed from a feed roll to a scraping roll.
  • the functional film on which the reflective electrode is formed is formed into a thin film made of organic material that becomes the next light-emitting layer in the middle of being wound around the winding roll.
  • the organic EL layer 110 is formed by forming an organic EL layer 110 made of an organic material to be a light emitting layer on the reflective electrode by vapor deposition or coating.
  • Fig. 3 (a) shows the coating method as an example. In the case of the coating method, the light emitting layer is formed by coating 1010, dried and cooled 1020, and then wound on a take-up roll. In FIG. 3 (a), since the transparent electrode is not continuously formed, the cover film 111 is laminated on the organic EL layer 110 by the laminating method (cover film pasting 1030), and then wound around the take-up roll. .
  • the cover film is preferably chemically and thermally stable and easily peelable from the thin film layer.
  • a thin sheet-like material such as polyethylene, polypropylene, polyethylene terephthalate, or polybulualcohol having high surface smoothness is preferred. You may use a surface that has been subjected to a mold release treatment to give it releasability.
  • a transparent electrode is then formed on the organic EL layer 110 by vacuum deposition or a sputtering method, thereby completing the organic EL light emitting device.
  • the cover film 111 is formed on the transparent electrode, and the film is scraped off to the scissor opening.
  • the functional film on which the organic EL light emitting element is formed is sent out from the roll roll, the cover film on the functional film is peeled off 1040, and then polarized on the functional thin film layer (transparent electrode) 112 on the functional film. Laminate the film by the laminating method (Transfer of polarizing film 1050).
  • the cover film 111 is peeled off, and then the functional film is transferred by the transfer roller 2000 through the support film 115.
  • a polarizing film 11 3 is laminated on the functional thin film layer (transparent electrode) 112 by a laminating method.
  • the support film 115 is peeled off, the polarizing film 113 is exposed, and the retardation film 116 is laminated on the polarizing film 113 by a laminating method (transfer of the retardation film 106 0)
  • the retardation film 116 is transferred onto the polarizing film 113 by the transfer roller 2000 via the cover film 111 after the support film 115 is peeled off.
  • the image may be transferred directly onto the functional thin film 112 with the transfer roller 2000, but the functional thin film 112 is transferred via the film. It is preferable because dust and scratches do not enter the film 113 and the retardation film 116.
  • the cover film is preferably a protective film having scratch resistance.
  • a polyester resin or polyethylene resin is preferable.
  • the gap between the support film and the cover film may be peeled off first.
  • the transfer using the transfer roller includes a pressure bonding method, a thermocompression bonding method, and a transfer using an adhesive. Which transfer method is used is only a design problem.
  • the cover film 111 may be laminated on the retardation film 116 as in FIG.
  • a peeling layer may be provided between the film and the thin film.
  • a flat base or roller may be provided on the opposite surface through the transfer roller film.
  • an adhesive layer may be provided on the cover film.
  • the adhesive layer preferably adheres when the cover film is laminated to the functional thin film layer and can be easily peeled when peeled.
  • an adhesive whose adhesive strength is lowered by ultraviolet rays or heat is preferable.
  • a method for manufacturing a liquid crystal panel with a backlight will be described with reference to the conceptual diagram shown in FIG. [0164]
  • a barrier layer is formed (barrier layer formation 801) on the thin film having the first organic film force as the base film.
  • the purpose of the barrier layer is to prevent interaction between the material used in the subsequent process and the material of the base film. Inorganic materials such as SiO and SiON are used for this purpose
  • a retardation layer is formed by coating, for example, a polymerizable liquid crystal on the film substrate as a material having optical anisotropy (retardation layer formation 802). Thereafter, a layer having a polarization function is formed on the retardation layer (polarization layer formation 80 3). This step is realized, for example, by laminating a thin film having a polarizing function, which is separately prepared, on a film substrate. Next, a circuit having a thin film transistor force formed by a conventional manufacturing method is transferred onto a glass substrate on a glass substrate to form a TFT circuit layer (TFT transfer 804).
  • TFT transfer 804 TFT transfer 804
  • a color filter layer is formed by transferring the color filter (CF), Z black matrix (BM), and spacers, previously formed on the dry film, to the film substrate all together (color filter formation 805).
  • the first functional film 820 is completed.
  • the color filter material may be applied to the film substrate by an inkjet method.
  • a reflective electrode is formed on the base film (reflective electrode formation 806).
  • an organic EL layer is formed (organic EL layer formation 807).
  • the organic EL material is a low molecular weight material, it is formed using a vapor deposition method, and when it is a high molecular weight material, it is formed using a method such as an inkjet coating method.
  • a transparent electrode made of a conductive transparent material to be the upper electrode of the organic EL is formed (upper electrode formation 808) to complete an organic EL element layer that serves as a light emission source of the backlight.
  • a noria layer is formed on the upper surface of the organic EL element (barrier layer formation 80 9) to form a protective layer, and the retardation layer (retardation layer formation 811) and polarizing layer (polarizing layer) are formed as in the first functional film. Forming 810).
  • the second functional film 830 is completed by uniformly forming a transparent electrode to be the upper electrode of the liquid crystal element (transparent electrode formation 812).
  • first functional film 820 and the second functional film 830 are also cut in roll force. After that, each is subjected to an alignment treatment 813, a sealing material is applied to the periphery of the display area and bonded together, liquid crystal is injected 814, and the injection port is sealed 815 to produce an active matrix liquid crystal panel with backlight. Is done.
  • the sealant is displayed. Applying to the periphery of the area, bonding the first functional film and the second functional film, cutting, injecting liquid crystal, sealing the injection port, and manufacturing an active matrix liquid crystal panel with backlight May be. At this time, the first functional film and the second functional film are bonded together if the functional thin film surfaces 105 of the respective functional films are opposed to each other so that the longitudinal directions of the respective functional films are perpendicular to each other. Alignment is easy (see Fig. 5 (c)).
  • the functional thin film 112 is formed while the film is wound from roll to roll.
  • the roll for feeding is in contact with the functional thin film 112 formed on the base film 105, the roll and the surface of the functional thin film 112 come into contact with each other, causing a problem that dust adheres to the surface of the functional thin film 112. .
  • the optical functional layer and the functional element layer formed on the base film 105 are formed so as to be separated from the end face force orthogonal to the base film sending direction. Since the base film 105 forms a functional element at the time of delivery, it must be designed so that no stagnation occurs on the surface of the base film. The distance from the end surface is determined by the shape of the feed roll, and perforations may be provided on the end surface of the base film 105.
  • Each functional film described in the embodiment can be transported to the next step while being wound around a roll, or can be stored while being wound around a roll.
  • the work of each step is completed in a state of being wound on a roll.
  • the state of being wound on a roll is easy to convey and store, and is narrower than a conventional manufacturing method using a substrate.
  • the base film which is a support substrate for forming the liquid crystal display panel, is thin and highly heat resistant, particularly transparent to the light in the visible light region and optically isotropic, that is, a phase difference. It is required to be a plastic material with a small force S. In addition to the support substrate forming the liquid crystal panel, it can also be used as a support film for a functional thin film.
  • the thickness is no upper limit for the thickness if it is only used for the roll '1' roll process, but it is thinner than 400 m of the glass substrate in consideration of the reduction in size and weight of the entire display device. It is preferable that the thickness is less than 200 m of the plastic substrate. In order to satisfy the demand for small size and light weight of the entire display device, 10 ⁇ m to 150 ⁇ m is preferable, and 10 ⁇ m to 100 ⁇ m is more preferable. If it is 10 ⁇ m or more, no wrinkles or cracks will occur during transportation.
  • the mechanical and optical change is not more than 5% for a temperature history of at least 200 ° C, more preferably for a temperature history of 250 ° C. More preferably, the optical change is 5% or less.
  • Optical change refers to deterioration of light transmission and increase of phase difference due to temperature, and mechanical deformation. Indicates a deterioration in flexibility and a change in dimensions.
  • the visible light (380 nm-800 nm) region is required. At least 450 nm to 700 nm, more preferably 400 nm to 700 nm, and most preferably high transparency in the visible light region of 380 nm to 800 nm! If it is 450nm-700nm and the transparency is high, it is practically acceptable. If it is 400nm-700nm, it is more preferable, but it is almost sufficient even when exact color is required, but more preferably in the visible light region. It is desirable to have high light transmission over the entire 380nm-800nm range! The wider the transparent wavelength region, the more the image display device that can reproduce the color close to the original color can be manufactured. There is no particular problem if the light transmittance (wavelength, 550 nm) is 80% or more, more preferably 85% or more, more preferably 90% or more with respect to the desired base film thickness.
  • the retardation (wavelength, 550 nm) must be negligible for a 1Z4, 2 ⁇ retardation film.
  • the wavelength in the visible light region is 550 nm
  • the value in the normal direction of the plane of the base film is 10% or less (approximately 10 ⁇ m or less) of 1Z4, more preferably 5% or less. (About 5nm or less). If the phase difference (wavelength, 550 nm) is less than lOnm, there will be no problem.
  • acrylic resin or cyclic olefin resin it is preferable to use acrylic resin or cyclic olefin resin.
  • the base film is required to have a small dimensional change during the process of manufacturing the display, and the thermal expansion coefficient is preferably 50 ppmZ ° C or less.
  • Plastic materials can have a low coefficient of thermal expansion by incorporating an inorganic filler.
  • Inorganic fillers need to be smaller than the wavelength of visible light in order to maintain the transparency of the film, and if the particle size is 380 nm or less, the transmittance at the short wavelength end of visible light is impaired, but practically particularly. Does not cause a problem. More preferably, it is 1 lOOnm, and in this case, transparency is not impaired in the entire visible light region. Even if it is less than lnm, there is no problem, but with current technology lnm It is difficult to produce the following fillers.
  • the base film When the base film is used as a support film for the optical functional thin film, it may be hardened by ultraviolet rays.
  • the particle size of the inorganic filler is preferably lnm-200 nm, more preferably lnm-200 nm. There is no problem even if it is less than lnm, but it is difficult to produce fillers less than lnm with the current technology.
  • the inorganic filler is preferably 5% to 90% by weight, more preferably 10% to 50% by weight. If it is 5% by weight or more, an effect of lowering the thermal expansion coefficient is obtained, and if it is 90% by weight or less, it is brittle and easily cracked.
  • Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, and oxygenate.
  • Examples of the method of blending the inorganic filler include a method of dispersing dry powdered silicon oxide fine particles using a mixing device having a high dispersion capacity, a colloid (sol) dispersed in an organic solvent, and other blends. After removing the organic solvent by mixing the product and reducing the pressure while stirring, if necessary, the colloid (sol) dispersed in the organic solvent and the other compound are mixed and desolvated as necessary. And a method of removing the solvent by casting. A bead mill etc. are mentioned as an apparatus with high dispersion capability.
  • the base film of the second embodiment is a thin film made of an organic resin
  • normal air components such as oxygen and water vapor enter the liquid crystal layer and the organic EL layer.
  • a gas barrier layer that prevents the entry of air components may be provided on one side or both sides of the base film. When it is provided on one side of the base film, it can be effective on either side, but it is more effective when provided on the side on which the functional thin film is formed.
  • the gas nolia layer must be transparent because the substrate is required to transmit light.
  • organic materials such as polybutyl alcohol and polysalt-vinylidene, organic materials and clay minerals (Al 2 O 2 SiO 5 5 0, Al 2 O 3 -SiO 2 -2H 2 O 2
  • Amorphous clay minerals such as 2 3 2 2 2 3 2 2 and crystalline clay minerals (Si, AD O tetrahedral sheet, (Al, M
  • Organic-inorganic composite materials with inorganic materials such as (O, OH) octahedral sheet), silicon oxide and acid
  • inorganic materials such as (O, OH) octahedral sheet), silicon oxide and acid
  • a thin film of an inorganic material such as aluminum can be given. It is possible to reduce the film thickness by using an inorganic material because the humidity is high and the gas noria property is excellent in the environment and the effect is high even if the thickness is small. Furthermore, two or more of these layers can be stacked.
  • Organic materials are less expensive because they can be used as a coating film 'laminated film' as a gas noria film compared to inorganic materials, but they cannot be denied that they are inferior to gas noria films that are inorganic materials in terms of temperature dependency and moisture resistance. .
  • the thickness of the gas barrier layer is preferably 1 m to 10 m in the case of organic materials and organic-inorganic composite materials, and is preferably lOnm—: L m in the case of inorganic materials.
  • L m inorganic materials.
  • it is 1 ⁇ m or more, normal air components such as oxygen and water vapor can be sufficiently prevented from entering the liquid crystal layer and the organic EL layer. If it is 10 m or less, the physical properties of the base film, such as expansion coefficient, are not affected.
  • a coating method can be used in the case of organic materials and organic-inorganic composite materials, and various thin film deposition methods can be used in the case of inorganic materials.
  • a liquid organic material or a liquid such as a solution thereof is applied on a film, and dried or cured to form a film.
  • Thin film deposition methods include physical growth methods such as vapor deposition, ion plating and sputtering, and chemical vapor deposition methods such as plasma CVD under reduced pressure atmosphere, catalyst CV D, and CVD under atmospheric pressure. .
  • sputtering is particularly preferable because a dense film can be obtained at a low temperature.
  • the second embodiment it is transparent and optically isotropic with respect to light that is thin and has high heat resistance, particularly light in the visible light region, that is, a phase difference (a light delay amount).
  • a phase difference a light delay amount
  • a small base film is shown, it is possible to use an optically anisotropic film.
  • the base film may have a retardation function and a polarization function.
  • the phase difference of the base film is ⁇ ⁇ 2 and ⁇ ⁇ 4
  • the base film has a polarization function that does not need to provide a retardation function
  • the polarization function is used as a base. There is no need to apply to the film later.
  • the base film when a light emitting function is given to the base film later, it is possible to adopt a structure in which light does not pass through the base fill, as will be described later.
  • the base film is not required to have high light transmittance.
  • the base film itself can have a gas barrier function.
  • the DA converter 'liquid crystal drive circuit, etc. which has been externally attached for the purpose of reducing the number of parts of the liquid crystal display, narrowing the frame, and reducing power consumption, be integrated on the substrate. For this reason, the transistor performance of the pixel driving thin film transistor cannot be lowered.
  • the glass substrate is removed, and a thin film transistor formed on the glass substrate is transferred to a base film.
  • a method of manufacturing a polysilicon thin film transistor includes a high temperature process and a low temperature process.
  • the barrier film is preferably a nitride film or an oxynitride film whose etching rate is preferably low with respect to the glass etching solution.
  • the protective film is required to be made of a material that can withstand a strong acid such as hydrofluoric acid. Also, during etching, it is necessary to prevent the temperature of the etching solution from changing so that the etching proceeds uniformly.
  • the retardation film of the fourth embodiment will be described.
  • the coating type retardation film will be described.
  • a polymerizable liquid crystal composition containing a liquid crystalline compound having a polymerizable group is coated on a support by a general coating method to form a liquid crystal thin film.
  • the surface of the liquid crystal thin film is not in contact with the substrate!
  • the surface is dedusted dry air!
  • the surface is preferably in contact with an inert gas such as nitrogen, more preferably an inert gas such as nitrogen.
  • the polymerizable liquid crystal composition is aligned at a temperature within the liquid crystal phase formation temperature range and then polymerized to form a solid thin film.
  • the thickness and birefringence of the retardation film are selected according to the phase control characteristics required by the liquid crystal display panel.
  • the coating type retardation film directly coats the polymerizable liquid crystal composition on the support, so that the film thickness can be remarkably reduced compared to the bonding type retardation film, and it is 100 ⁇ m or less. Can be used.
  • the film thickness of the coating type retardation film is preferably 0.1 ⁇ m-30 ⁇ m, more preferably 0.3-15 ⁇ m, and further preferably 0.5 m-10 m. Birefringence is usually variable in the range of 0.0 to 0.5 by changing the composition of the polymerizable liquid crystal composition, and the film thickness and birefringence are as required as in 1Z2 and 1Z4 wavelength plates. You can choose from the amount of phase difference and the ease of manufacturing conditions.
  • the polymerizable liquid crystal compound used in the present embodiment is not limited as long as it can be applied to a plastic sheet and can be aligned using the liquid crystal state of the compound.
  • the polymerizable group needs to be a compound containing at least a part of the temperature range so that the polymerizable group does not undergo thermal polymerization in the temperature range to be in a state. Furthermore, it is necessary to be able to apply or align within the temperature range.
  • the film having the phase difference control function in the present invention is preferably as the thickness is thinner, that is, a film having a high birefringence. Specific examples include compositions containing the following compounds.
  • N represents an integer of 0 or 1
  • m represents an integer of 1 to 4
  • Y 1 and Y 2 are each independently a single bond, -CH CH -CH ⁇ -OCH COO OCO C
  • a coating type retardation film is provided with an alignment film on a transparent support, and after rubbing treatment if necessary, a layer containing a polymerizable liquid crystal is coated thereon, and an unnecessary solvent is dried. Then, the liquid crystals are aligned and polymerized by decomposing the added light or thermal polymerization initiator by UV irradiation or heating. If necessary, a protective layer may be applied thereon.
  • the polymerizable liquid crystal is preferably applied after being diluted with an appropriate solvent. Since the properties differ depending on the structure of the liquid crystal, the solvent and concentration to be used generally cannot be specifically limited, but considering the uniformity of the thin film, it is preferable to use a solvent with high solubility, such as halogens such as methylene chloride and chloroform. Compounds, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, dimethylacetamide, dimethylformamide, and amides such as methyl monopyrrolidone, such as isopropanol and perfluoropropanol Naa Lucols are preferably used.
  • a solvent with high solubility such as halogens such as methylene chloride and chloroform.
  • Examples of the alignment film provided on the support include a SiO vapor deposition film of an inorganic oblique vapor deposition film, a polyimide film rubbed with an organic polymer film, and the like.
  • a typical example of the organic alignment film is a polyimide film.
  • polyamic acid for example, AL-1254 manufactured by JSR Corporation, SE-7210 manufactured by Nissan Chemical Co., Ltd.
  • polyamic acid for example, AL-1254 manufactured by JSR Corporation, SE-7210 manufactured by Nissan Chemical Co., Ltd.
  • a coating film of alkyl chain-modified POVAL for example, MP203 manufactured by Kuraray Co., Ltd., R1130, etc.
  • the orientation ability can be imparted only by rubbing as much as necessary.
  • most organic polymer films that form a hydrophobic surface such as polyvinyl butyral and polymethylmetatalylate can impart liquid crystal alignment capability by rubbing the surface.
  • a typical example of an inorganic oblique vapor deposition film is a SiO oblique vapor deposition film.
  • This is an alignment film in which an oblique vapor deposition film having a thickness of about 20 to 200 nm is formed by applying SiO evaporation particles to the support surface in an oblique direction in the vacuum chamber.
  • the optical axis of the liquid crystal layer is directed in a specific direction on a plane perpendicular to the support surface including the locus of the SiO deposited particles flying.
  • Other methods for aligning the polymerizable liquid crystal coated on the support include magnetic field alignment and electric field alignment.
  • a liquid crystal compound can be applied on a support and then oriented obliquely at a desired angle using a magnetic field or an electric field.
  • a general coating method can be used. That is, A liquid crystal thin film can be formed on the support through a drying process by a coating method such as Lexo Mark J, Gravure Mark J, Dip Coat, Curtain Coat, Etrusion Coat and the like.
  • the laminating type retardation film is obtained by laminating a retardation film prepared in advance to a base film via an adhesive and an adhesive.
  • an aromatic polyamide or an aromatic polyimide in that it can achieve an unprecedented thin film film while maintaining the dimensional stability required during LCD production. .
  • the thickness of the retardation functional layer can be suppressed to about several microns.
  • a polycarbonate resin film, a polyethersulfone resin film, a polysulfone film having a thickness of 60 ⁇ m or more, which has been conventionally used, are used.
  • a thin film can be formed as compared with films such as a resin film, a cyclic polyolefin resin film, a cellulose resin film, and an acrylic resin film.
  • aromatic polyamide for example, those containing 50 mol% or more of repeating units represented by the following formulas (2) and Z or formula (3) are preferred, and those having a strength of 70 mol% or more are more preferred.
  • the repeating unit force is preferably 50 mol% or more, more preferably 70 mol% or more.
  • Arl, Ar2, Ar3 are, for example, [0229] [Chemical 5]
  • XY is O 2 —CH 2 CO— —SO 2 S
  • some of the hydrogen atoms on these aromatic rings are halogen groups such as fluorine, chlorine and bromine, nitro groups, alkyl groups such as methyl, ethyl and propyl groups (especially methyl groups), methoxy Group, an ethoxy group, a propoxy group, an alkoxy group such as an isopropoxy group, a group substituted with a substituent such as a hydroxy group, a trifluoromethyl group, etc., and a hydrogen in an amide bond constituting a polymer. In which is substituted by other substituents.
  • halogen groups such as fluorine, chlorine and bromine, nitro groups, alkyl groups such as methyl, ethyl and propyl groups (especially methyl groups), methoxy Group, an ethoxy group, a propoxy group, an alkoxy group such as an isopropoxy group, a group substituted with a substituent such as a hydroxy group, a trifluoromethyl group, etc., and
  • the above aromatic ring is in a para-orientation position, that is, a force in which divalent bonds are bonded coaxially or in parallel. 50% by mole or more, preferably 75% by mole or more of the total aromatic ring Merge is preferred because the film has high rigidity and good heat resistance.
  • the above aromatic ring is in the para-orientation position, that is, a force in which divalent bonds are bonded coaxially or in parallel. 50% by mole or more, preferably 75% by mole or more of the total aromatic ring The coalescence is preferable because the film has high rigidity and good heat resistance.
  • An example of the para-orientation position when there are two aromatic rings is shown in Equation (7).
  • the aromatic polyamide used in the present invention preferably contains 50 mol% or more of the repeating units represented by the general formula (2) and Z or the general formula (3).
  • the returned units may be copolymerized or blended! /.
  • the retardation film used in the present invention has a thickness of 5 mm to reduce the thickness of the display. ⁇ ! ! ! -M is preferred. If the thickness is 1 ⁇ m or more, the aromatic polyamide film has high rigidity and high heat resistance, so that the flatness will not be deteriorated by heating during use, and the phase difference will not become large. . Moreover, if it is 50 m or less, the light transmittance does not become small.
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 2 to 15 m, further preferably 3 to 10 ⁇ m, and most preferably 3 to 8 ⁇ m.
  • the aromatic polyimide in the present embodiment includes one or more aromatic rings and imide rings in a polymer repeating unit, and the repeating unit represented by the formula (8) and Z or the formula (9) Those containing 50 mol% or more are preferred, and more preferably 70 mol% or more. [0237] [Chemical 7]
  • Ar and Ar contain at least one aromatic ring and two carbo-forms that form an imide ring.
  • the ru group is bonded to an adjacent carbon atom on the aromatic ring.
  • This Ar is an aromatic tetracar
  • Z is selected from O—, —CH 1, CO—, 1 SO —, 1 S—, —C (CH 2) etc.
  • Ar is derived from carboxylic anhydride or this halide.
  • Ar, Ar are for example [0241] [Chemical 10]
  • XY is O -CH CO -SO S -C (CH) etc.
  • some of the hydrogen atoms on these aromatic rings are halogen groups (especially chlorine), nitro groups, alkyl groups having 1 to 3 carbon atoms (particularly methyl groups), alkoxy groups having 1 to 3 carbon atoms, etc.
  • halogen groups especially chlorine
  • nitro groups especially nitro groups
  • alkyl groups having 1 to 3 carbon atoms particularly methyl groups
  • alkoxy groups having 1 to 3 carbon atoms etc.
  • the polymer contains an amide bond
  • those in which the hydrogen in the amide bond is substituted by another substituent are also included.
  • the aromatic polyimide of the present invention contains 50 mol% or more of the repeating units represented by the formula (8) and Z or the formula (9), and less than 50 mol% includes other repeating units. It may be polymerized or mixed.
  • the retardation film of the present invention has a retardation of 50-3, OOOnm at a wavelength of 550 ⁇ m. Preferably, it is 60-500 nm, more preferably 60-380 nm, and still more preferably 80-280 nm.
  • the phase difference of the film should be appropriately designed, for example, as a 1/2 ⁇ plate or a 1Z4 ⁇ plate, depending on the application. If the retardation is in the above range, aromatic polyamide or Even if a thin film is formed using an aromatic polyimide, a film having excellent optical properties and processability can be obtained.
  • the retardation film in the present embodiment has a dimensional change rate at 150 ° C in the slow axis direction and the direction perpendicular to the slow axis direction of 2% or less, and when it is processed such as bonding. No wrinkle is generated, and changes in optical properties due to tension fluctuations under heating are suppressed. Therefore, it is preferable. More preferably, it is 1.5% or less, and further preferably 1% or less.
  • the lower limit of the dimensional change rate is preferably as low as possible, most preferably 0%.
  • the slow axis here is the direction in which the phase difference is the largest in the plane, and in the case of a phase difference film, it is generally the direction in which the draw ratio is the largest.
  • the retardation film in this embodiment does not change the phase difference due to the photoelastic effect even when exposed to temperature and external force during processing, and the color tone of the liquid crystal display does not partially decrease. Refraction can be obtained. Furthermore, since it is a film having a large photoelastic coefficient, it can be thinned, and since it has excellent heat resistance and rigidity, distortion hardly occurs even under high temperature and high tension.
  • the light transmittance power is 3 ⁇ 40% or more at all wavelengths from 450 nm to 700 nm. More preferably, the light transmittance is 85% or more, and more preferably 90% or more.
  • the film of the present invention preferably has a light transmittance at 400 nm of 65% or more. More preferably, the light transmittance at 400 nm is 75% or more, and most preferably 90% or more. When the light transmittance at 400 nm in the near-ultraviolet region is 65% or more, better transparency is obtained.
  • the film according to the present embodiment has resistance to the force applied at the time of processing and use, in the measurement according to JIS-C2318, to have a Young's modulus force GPa of at least one direction. Is preferable because it becomes even better.
  • a thin film can be formed by having a Young's modulus force of at least one direction GPa.
  • the Young's modulus in all directions is less than GPa, deformation may occur during processing. In addition, there is no upper limit for Young's modulus, but if the Young's modulus exceeds 20 GPa, the toughness of the film decreases, and film formation and processing may become difficult.
  • the Young's modulus is more preferably 8 GPa or more, and still more preferably lOGPa or more.
  • the film of the present embodiment preferably has a thermal expansion coefficient of 50-OppmZ ° C from 80 ° C to 120 ° C.
  • the coefficient of thermal expansion is measured during the cooling process after the temperature is raised to 150 ° C using TMA.
  • the initial sample length at 25 ° C and 75RH% is the test at LO and temperature T1. If the sample length at the temperature T2 is L2 and the sample length is L2, the thermal expansion coefficient from Tl to T2 can be calculated by the following equation.
  • the coefficient of thermal expansion is more preferably 30-OppmZ ° C, and further preferably 20-OppmZ ° C.
  • the film of the present embodiment preferably has a humidity expansion coefficient of 200-OppmZ% RH from 30% RH to 80% RH at 25 ° C.
  • Humidity expansion coefficient High temperature and high humidity Fix to a lcm width and a test length of 15cm, dehumidify to a certain humidity (about 30% RH), and after the film length becomes constant, humidify (about 80% RH) Then it begins to grow due to moisture absorption. After about 24 hours, the moisture absorption reaches equilibrium and the film elongation reaches equilibrium. Calculate from the elongation at this time using the following formula.
  • Humidity expansion coefficient ((cmZcm) /% RH) Elongation Z (Test length X Humidity difference)
  • the humidity expansion coefficient is more preferably 100-OppmZ% RH, and even more preferably 30-OppmZ% RH. Since the thermal expansion coefficient and humidity expansion coefficient are small, the dimensional change due to the environment is small, and the optical characteristics such as the phase difference are uneven.
  • the film of the present embodiment may be used as a single retardation film, depending on the purpose.
  • They may be laminated with the same or different retardation films.
  • Various methods can be used to obtain the aromatic polyamide.
  • a low temperature solution polymerization method an interfacial polymerization method, a melt polymerization method, a solid phase polymerization method, and the like can be used.
  • low temperature solution polymerization that is, when diamine power with carboxylic acid dichloride is obtained, it is synthesized in an aprotic organic polar solvent.
  • Examples of the carboxylic acid dichloride include terephthalic acid dichloride, 2-chloro-terephthalic acid dichloride, isophthalic acid dichloride, naphthalene dicarboxyl chloride, biphenyl-dicarbol chloride, turf-dicarboxyl chloride and the like. Strength To obtain the aromatic polyamide film of this embodiment, 2-chloro-terephthalic acid dichloride or terephthalic acid dichloride is used.
  • examples of the aprotic polar solvent used include sulfoxide solvents such as dimethyl sulfoxide and jetyl sulfoxide, N, N-dimethylformamide, N, N- Formamide solvents such as jetylformamide, N, N-dimethylacetamide, N, N-acetamide solvents such as cetylacetamide, N-methyl-2-pyrrolidone, N-biluluone, pyrrolidones such as 2-pyrrolidone Solvent, phenol, o-, m- or p-cresol, xylenol, halogenated phenol, catechol and other phenol solvents, hexamethylphosphoramide, ⁇ -butyrolatathone, etc. It is desirable to use it alone or as a mixture.
  • aromatic hydrocarbons such as xylene and toluene can be used.
  • an alkali metal or alkaline earth metal salt can be added to the solvent.
  • the aromatic polyamide of the present embodiment may contain 10% by weight or less of an inorganic or organic additive for the purpose of surface formation, processability improvement, and the like.
  • the additive may be colorless or colored, but a colorless and transparent material is preferred in order not to impair the characteristics of the transparent aromatic polyamide film of the present embodiment.
  • Additives for surface formation include, for example, SiO, TiO, Al 2 O, CaSO, BaSO for inorganic particles
  • Preferred organic particles include, for example, particles having an organic polymer force such as crosslinked polyvinyl benzene, crosslinked acryl, crosslinked polystyrene, polyester particles, polyimide particles, polyamide particles, and fluororesin particles, or the above-mentioned organic particles on the surface.
  • Inorganic particles that have been treated with high molecules such as coating.
  • a dye to the aromatic polyamide of the present embodiment to combine the color tone compensation function.
  • the dye any of inorganic pigments such as cobalt blue and organic dyes such as phthalocyanine can be suitably used.
  • These polymer solutions may be used as a film-forming stock solution as they are, or once the polymer is isolated and then redissolved in the above organic solvent or an inorganic solvent such as sulfuric acid and used as a film-forming stock solution. You may do it.
  • the film-forming stock solution prepared as described above is formed into a film by a so-called solution film-forming method.
  • the solution casting method includes a dry-wet method, a dry method, a wet method, etc., and the film may be formed by a shift method, but here, the dry-wet method will be described as an example.
  • the stock solution is extruded onto a support such as a die-powered drum or endless belt to form a thin film, and then the solvent is scattered from the strong thin film layer until the thin film has self-holding property.
  • dry. Drying conditions can be performed, for example, within a range of room temperature and 220 ° C within 60 minutes.
  • the surface of the drum and endless belt used in this drying process If it is smooth, a film having a smooth surface can be obtained.
  • the film after the dry process is peeled off from the support and introduced into the wet process, desalted and desolvated, and further subjected to stretching, drying and heat treatment to form a retardation film.
  • Stretching is 0.8-8 as a draw ratio as a draw ratio (Area ratio is defined by a value obtained by dividing the film area after stretching by the area of the film before stretching. 1 or less means relaxation) It is preferable that it is within the range of 1. 3-8.
  • heat treatment heat treatment is preferably performed at a temperature of 200 ° C. to 500 ° C., preferably 250 ° C. to 400 ° C. for several seconds and for several minutes. Furthermore, it is effective to slowly cool the film after stretching or heat treatment, and it is effective to cool it at a rate of 50 ° C. or less.
  • the film obtained from the aromatic polyamide of the present embodiment may be a single layer film or a laminated film.
  • a polarizing film will be described as a fifth embodiment of the present invention.
  • a polarizing film that can be preferably used in the present embodiment is one that is formed by the following method (1) or (2), and then only the polarizing functional layer is transferred to the base film by heat, pressure, adhesive, or the like.
  • a release film as a supporting substrate for the polarizing film separately and forming the polarizing functional layer on the release film in a state where it can be peeled off
  • Fixing with pressure, adhesive, etc. is another useful technique.
  • a resin pellet containing iodine and Z or a dichroic dye is formed into a film by a method such as melt extrusion or solution casting, and then the film is stretched to draw iodine and Z or a dichroic dye.
  • the polarizer is strongly uniaxially oriented, and the polarizer is further bonded to the base film with heat, pressure, pressure sensitive adhesive, adhesive, or the like.
  • the resins used here are polybulal alcohol, partially formalized polybulal alcohol, partially saponified polymer of ethylene 'acetate butyl copolymer, and other powerful polybulal alcoholic resins, polyolefin resins, acrylic resins, Examples include polyester resins such as PET (polyterephthalate) and PEN (polyethylene naphthalate), polyamide resins, polyamideimide resins, polyimide resins, polycarbonate resins, and polysulfone resins. it can.
  • a color filter as the sixth embodiment will be described.
  • Film-type color filters form black (black matrix), red, green, and blue (color filters) layers on a support substrate.
  • these four color filter resin layers are formed on a support substrate, and then sequentially transferred onto a color filter support substrate.
  • a photosensitive colored resin or a colored resin may be used.
  • a photosensitive colored resin to be a four-color filter is formed on a separate first support substrate.
  • a cover film is laminated on the photosensitive resin and rolled up.
  • the first support substrate is bonded to the second support substrate through the photosensitive colored resin layer.
  • First support substrate side force Expose through a mask, peel off first support substrate after exposure, develop and dry.
  • the drying differs depending on the type of the crosslinking material contained in the photosensitive resin, it is essential that the temperature is lower than the temperature at which the crosslinking reaction starts. Normally, there is a relationship between the cross-linking material and the production equipment, so the conditions are determined and determined before production, but a temperature 30 ° C-50 ° C lower than the temperature at which the cross-linking reaction starts is adopted. The lower limit is set so that the drying time does not become too long, and the upper limit is determined by removing unnecessary parts by development and not causing the lower part to attract the bottom.
  • the black matrix is first transferred to a second support substrate for color filter (hereinafter abbreviated as CF support substrate) to form a black matrix layer.
  • CF support substrate for color filter
  • exposure, development, and drying are performed from the first support substrate side to sequentially form each color. In this way, all four color filters are on the CF support substrate.
  • the color filter layer is completed by being transferred to and formed on.
  • the completed color filter layer is laminated, for example, on a functional film on which a thin film transistor (hereinafter abbreviated as TFT), wiring, and pixel electrodes are formed.
  • TFT thin film transistor
  • pixel electrodes are formed on the color filter layer.
  • a spacer layer or a transparent electrode that defines the interval between the opposing alignment films may be formed.
  • the photosensitive resin layer is bonded to and peeled from the first support substrate and the cover film, it is preferable that the photosensitive resin layer be weakly adhered.
  • Chromium may be deposited by physical vapor deposition.
  • the ink jet type color filter draws a colored resin composed of a pigment directly on a film by an ink jet method.
  • Black matrix, red, green, and blue color filter layers can be drawn directly on the surface of the functional film where color filters are to be formed, or color filters are formed on the support substrate and transferred to the functional film by the transfer method. You may do it.
  • chromium may be deposited on a supporting substrate (same as a film type CF base material) by physical vapor deposition.
  • An alignment film will be described as a seventh embodiment of the present invention.
  • liquid crystal panel of the present invention can be assembled as follows.
  • a photo-alignment film is formed by performing photo-alignment operation and polymerization operation on each of the cut substrates such as the functional films A and B. Next, after a sealing material serving as a spacer is provided at a desired position on the surface provided with the photo-alignment film, the liquid crystal is dropped and then bonded.
  • 3. 1 and 2 are methods of filling the substrates cut from the functional films A and B with liquid crystal. After applying the photo-alignment material on the support substrate and drying it, the photo-alignment operation and the polymerization operation are carried out. Create an alignment film, transfer the photo-alignment film to functional films A and B (holding the liquid crystal facing each other), and then form a sealant so that the photo-alignment directions of the films are perpendicular to each other. Fill the liquid crystal by the method 1 or 2 and cut it into a panel shape after sealing, or cut it into a panel shape after pasting together with a sealing material, and then fill in the liquid crystal and seal You may do it.
  • the photo-alignment direction is not necessarily orthogonal depending on the characteristics of the liquid crystal and the configuration of the liquid crystal panel.
  • the alignment film there are a case where a photo-alignment film is used and a case where an alignment film is provided with orientation by rubbing the surface of the film coated with a liquid crystal alignment agent. at first. A photo-alignment film and then a method for imparting orientation by rubbing treatment will be described.
  • a photo-alignment material containing a dichroic dye having a polymerizable group is used as the photo-alignment film material.
  • the dichroic dye is a derivative of an azo dye having a polymerizable group or an anthraquinone dye having a polymerizable group.
  • derivatives of azo dyes having a polymerizable group have the formula (4) [0290] [Chemical 11]
  • each R 1 independently represents a group selected from the group consisting of a hydrogen atom, a halogen atom, a carboxyl group, a halogenated methyl group, a halogenated methoxy group, a cyano group and a hydroxyl group.
  • M represents a hydrogen atom.
  • R 2 may have a linking chain
  • derivatives of anthraquinone dyes having a polymerizable group have the formula (5)
  • R and R are each independently a polymerizable group that may have a linking chain, and the other R 3 is a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, or a sulfonic acid group. , Sulfonate group, methyl halide group, cyano group, amino group, formyl group, carboxyl group, piperidino group, and general formula (6) [0293] [Chemical 13]
  • the polymerizable group of the photo-alignment material containing the dichroic dye is at least one group selected from a group force including a (meth) atalyloyl group, a (meth) acrylamide group, a bull group, and a bull ether group. It may be.
  • One of the above photo-alignment films is coated on a substrate, irradiated with polarized light to give liquid crystal alignment ability, and light having a wavelength different from that for heating or liquid crystal alignment ability.
  • a photo-alignment film is produced by polymerizing a polymerizable group by irradiating.
  • FIG. 6 (a) A method for producing a photo-alignment film in the present embodiment will be described with reference to the drawings.
  • the support film 150 is fed from the feed roll to the take-up roll, and the solution of the photo-alignment material is placed on the support film 150 until the support film 150 is taken up by the take-up port.
  • the photo-alignment operation is an operation for imparting liquid crystal alignment ability by irradiating light, and the wavelength of light is selected such that the dichroic dye derivative efficiently photoreacts, and includes visible light, ultraviolet light, and the like.
  • UV power is especially preferred for wavelengths around 300-400nm! / ⁇ .
  • the film thickness is preferably ⁇ , preferably 0.00 ⁇ m—1 ⁇ m, more preferably 0.005 ⁇ —0.
  • examples of polarized light used for photo-alignment include linearly polarized light and elliptically polarized light.
  • Linearly polarized light obtained by obtaining light from an ultraviolet light source 152 such as a senon lamp, a high pressure mercury lamp, or a metal halide lamp through a polarizing filter 153 or a polarizing prism such as Glan Thompson or Grant Taylor is preferable.
  • an ultraviolet light source 152 such as a senon lamp, a high pressure mercury lamp, or a metal halide lamp
  • a polarizing filter 153 or a polarizing prism such as Glan Thompson or Grant Taylor is preferable.
  • a method of irradiating polarized light to the substrate from an oblique direction or a method of irradiating non-polarized light from an oblique direction after irradiating polarized light may be used.
  • the polymerization operation A follows the photo-alignment operation. Generally, it is performed by irradiation with light such as ultraviolet rays or heating. For these polymerizations, a polymerization initiator can be used as necessary. When the polymerization operation is carried out by light irradiation, in order not to disturb the alignment state of the already obtained photo-alignment material, the difference causing the photo-alignment by these dichroic dye molecules.
  • the photo-alignment material is applied as described above and the substrate subjected to the photo-alignment operation is heated.
  • the heating temperature is preferably 100 ° C or more and 300 ° C or less, more preferably 100 ° C or more and 200 ° C or less, in which the alignment state by the photo-alignment operation does not change.
  • photopolymerization initiator it is preferable to use a photopolymerization initiator as the polymerization initiator.
  • a photopolymerization initiator any known and commonly used photopolymerization initiator can be used without any particular limitation.
  • photopolymerization initiators examples include 2-hydroxy-2-methyl-1-phenylpropane-1one (Merck's “Darocur 1173”), 1-hydroxycyclohexylphenol ketone (manufactured by Ciba Geigy Co., Ltd.) “Irgacure 184”), 1 (4 isopropyl phenol) —2-hydroxy 2 methylpropane 1-one (Merck “Darocur 1116”), 2-methyl-1 — [(methylthio) phenol] — 2— Morifolinopropane 1 (Chinoku "Gircure 9 07" manufactured by Gaigi Co., Ltd.), benzyldimethyl ketal (“Irgacure 651” manufactured by Chinoku Gaigi Co., Ltd.), 2, 4-Jetylthioxanthone (Nippon Kayaku Co., Ltd.) "Cacure DETX”) and p-dimethylamino repose Mixture with ethyl perfate (“
  • thermal polymerization initiator it is preferable to use a thermal polymerization initiator as the polymerization initiator.
  • a thermal polymerization initiator any known and commonly used thermal polymerization initiator can be used without any particular limitation.
  • Thermal polymerization initiators include, for example, benzoyl peroxide, 2,4-dichlorobenzoic peroxide, 1,1-di (tertiary butyl peroxide) —3, 3, 5-trimethylcyclohexane. Hexane, ⁇ -Butyl-4,4'-di (tertiary butyl valyl) valerate, peroxides such as dicumyl peroxide; 7-azobisisobutyl nitrile, azo compounds; tetra And methyl thiuram disulfide.
  • the above description is a method for forming an alignment film on a support film.
  • a film for forming an alignment film for example, a transistor layer on a transistor layer formed on a base film.
  • the alignment film may be formed by the above method.
  • the alignment film formed on the support film is transferred onto the transistor layer of the base film 154 on which the transistor layer 155 is formed.
  • the surface of the alignment film that is in contact with the support film is transferred in a state where it is in contact with the transistor layer 155, but the other surface of the alignment film can be transferred to the transistor 735.
  • it is better to transfer by the method of FIG. In the method of transferring from the indicator film, the temperature during the alignment treatment is not directly applied to the base film or the organic material that becomes the light emitting layer of the organic EL, so that the base film and the organic material are not deteriorated. There is.
  • the liquid crystal aligning agent is applied on the support film by a method such as a roll coater method, a spinner method, a printing method, or an ink jet method.
  • the coated surface is formed by heating the coated surface.
  • a functional silane-containing compound, a functional titanium-containing compound, or the like can be applied to the surface in advance.
  • the heating temperature after applying the liquid crystal aligning agent is the temperature below the heat resistance temperature of the support film.
  • the film thickness of the coating film to be formed is preferably 0.001 ⁇ m- ⁇ ⁇ m, more preferably 0.
  • the formed coating film surface is rubbed in a certain direction with a roll to which a cloth having fiber strength such as nylon, rayon, or cotton is attached. Thereby, the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film.
  • liquid crystal aligning agent of the present invention for example, those containing polyamic acid or Z and polyimide can be used, but are not limited thereto.
  • a photocurable resin composition containing a urethane (meth) acrylate oligomer having two or more urethane bonds and unsaturated bonds in one molecule, a maleimide derivative, and a silane coupling agent are preferably used. Since this sealant uses a maleimide derivative and a specific compound, it can be polymerized by ultraviolet rays without using a photopolymerization initiator, and can be used as a sealant for liquid crystal panels for long-term stability and VHR ( Vapor hazard ratio: Vapor pressure specific to each substance Calculated as the value obtained by dividing the saturated concentration in air calculated by the allowable exposure limit concentration (OEL, etc.) This is a sanitary and safety standard.
  • VHR Vapor hazard ratio: Vapor pressure specific to each substance Calculated as the value obtained by dividing the saturated concentration in air calculated by the allowable exposure limit concentration (OEL, etc.
  • a backlight using a condensing film which is an eighth embodiment of the present invention, will be described in detail.
  • FIG. 30 shows an embodiment of a backlight using the light collecting film of the present invention.
  • This backlight is composed of a light guide 701 provided with a light source 705 on the end face side, and a condensing film force that controls the distribution of the emission angles of light emitted from the light source 705.
  • the light collecting film is disposed on the light guide 701, and light incident on the incident surface is emitted from the output surface.
  • the condensing film has flexibility with a radius of curvature S of 40mm or less, and a light diffusing function with a thermal expansion coefficient of 50ppmZ ° C or less.
  • the light guide side tip of the light collector array 703 and the light exit surface of the light guide 701 are in close contact with each other.
  • Each condensing body 703 has a flat surface in close contact with the light guide 701, and the light expansion. It is narrower than the area of the surface in contact with the film having a scattering function.
  • the concentrator array may be a one-dimensional pattern or a two-dimensional pattern, but the elliptical shape as shown in FIG. Is preferable.
  • the thermal expansion coefficient of the film having a light diffusion function in the present invention is required to be 50 ppmZ ° C or less.
  • the coefficient of thermal expansion can be reduced by blending an inorganic filler, and the material described in the first embodiment to be described later can be used as the material of the film having the light diffusion function.
  • Inorganic fillers need to be smaller than the wavelength of visible light in order to maintain the transparency of the film. If the particle size is 380 nm or less, the transmittance at the short wavelength end of visible light is impaired, but this is a particular problem in practice. Does not occur. More preferably, it is 1 lOOnm, and in this case, transparency is not impaired in the entire visible light region.
  • a film having a light diffusing function is a film in which irregularities are formed on the surface of a resin film, a film in which two or more types of transparent resin are mixed in a phase-separated state to form irregularities at the interface, and light scattering particles And the like. In the case of a film with irregularities at the interface, it is not necessary to give the film light diffusibility.
  • the light scattering particles are preferably transparent and made of a material having a refractive index different from that of the light diffusion film. Examples include resin beads, titanium oxide, zinc oxide, alumina, ITO, and silicon oxide. If the particle diameter of the light scattering particles is 0.5 m or more, the diffused light has wavelength dependency and is not colored. More preferably, it is 1. ⁇ ⁇ m or more. Furthermore, the particle size of the light scattering particles is 1Z2 or less of the film thickness of the light diffusion functional thin film. If it is present, it is more preferably 1Z4 or less that does not affect the light diffusion function. Titanium oxide, zinc oxide, ITO, alumina, or silica is preferred for a coefficient of thermal expansion of 50 ppmZ ° C or less.
  • the content of the filler is preferably 0.1 to 90% by weight, more preferably 0.5 to 90% by weight.
  • a light diffusion function of 0.1% by weight or more is sufficient, and if it is 90% by weight or less, it is not brittle and easily broken.
  • zinc oxide, soot, silica, or the like which is an inorganic substance, is used as the filler, if it is 5% by weight or more, the effect of lowering the thermal expansion coefficient is obtained, and 10% by weight or more is more preferable.
  • an organic EL element serving as a knock light source of a liquid crystal panel will be described below.
  • the organic EL element has an organic layer including a light emitting layer having an organic light emitting material force interposed between an anode and a cathode arranged opposite to each other.
  • an organic EL element uses an opaque metal electrode with one electrode being a transparent electrode and the other electrode being a back electrode!
  • An organic EL element is formed by sequentially forming a transparent electrode with high transmittance on a substrate, an organic layer including a light emitting layer made of an organic light emitting material, and a back electrode that does not transmit light, and light emitted from the light emitting layer is formed on the substrate.
  • a bottom emission type that transmits light, a back electrode on the substrate, an organic layer that includes a light emitting layer made of an organic light emitting material, and a transparent electrode are formed in this order, and light emitted from the light emitting layer is transmitted through the transparent electrode.
  • planar light-emitting element in the present embodiment will be described with reference to the drawings.
  • a specific example will be described using an organic EL element. It goes without saying that an inorganic EL element may be used as long as the element structure can be made thin even if it is not an organic EL element.
  • a light-emitting element composed of organic EL includes an anode 122 made of transparent ITO (Indium Tin Oxide) and its anode 122. It is composed of an organic EL layer 121 laminated thereon and a cathode layer 123 having a work function smaller than that of the anode layer 122.
  • Anode layer 122 is made of nickel, gold, platinum, palladium, alloys thereof, metals having a high work function such as tin oxide (Sn 2 O 3), copper iodide, alloys, compounds, or polypyrrole.
  • a conductive polymer such as a steel can be used, and in general, a transparent electrode having an ITO force is often used.
  • the cathode layer 123 is made of a metal material having a low work function (low work function metal material) that can improve the electron injection efficiency, preferably using a material having excellent electron injection properties. Generally, alloys such as aluminum, magnesium silver, and aluminum lithium are used.
  • the organic EL layer 112 has, for example, a two-layer structure in which a positive hole transport layer 124 and an organic light emitting layer 125 are laminated in order on the anode layer 122 side force.
  • N, N'-diphenyl Nlu, N, N, -bis (3 methylphenol) 1, 1, -biphenyl 4, 4, diamine hereinafter abbreviated as TPD
  • TPD diamine
  • Tris (8-hydroxyquinolinato) Aluminum, Alq or the like is used.
  • the organic EL layer 112 has, in a three-layer configuration, a hole transport layer that is in contact with the anode electrode (anode) and efficiently transports holes, and a light emitting layer that includes a light emitting material.
  • the hole and electron transport properties are improved by using a three-layer structure consisting of three layers of an electron transport layer that efficiently transports electrons in contact with the cathode electrode (cathode).
  • a lithium fluoride layer, an inorganic metal salt layer, a layer containing them, or the like may be arranged at an arbitrary position.
  • Light is emitted from the light-emitting layer 125 from the anode side, which is a transparent electrode.
  • FIG. 7 (b) shows a schematic structure of an organic EL element which is another backlight source of the present embodiment.
  • an aluminum lOOnm film serving as a cathode is formed by a normal sputtering method.
  • the light emitting layer 125 to be the organic EL layer 112 and the hole transport layer 124 are formed in this order by a coating method so that the respective thickness forces are SlOOnm, and then the ITO film to be the anode 122 is sputtered. so The film is formed with a thickness of lOOnm.
  • light emitted from the organic EL layer 112 (emitted light B) is emitted from the anode side.
  • FIG. 7 (c) shows a modification of the backlight light source, in which an organic EL element is laminated in the order of an anode 122, a hole transport layer 124, a light emitting layer 125, and a cathode 3.
  • the manufacturing method of the organic EL layer and the thickness of each film are the same as in FIG.
  • the electrode in contact with the hole transport layer 124 is an ITO film 127, and an electrode having a transparent ITO force and an aluminum film having the function of the reflection film 126 are used. It has a laminated structure.
  • the aluminum film can be deposited to a thickness of 1 OOnm by sputtering, just like the cathode in Fig. 7 (b).
  • a transparent electrode film such as an ITO film may be formed after forming an aluminum film with a thickness of lnm-lOnm.
  • aluminum was deposited with a thickness of 5 nm and an ITO film with a thickness of 95 nm. If the film thickness of aluminum is 1 nm or more, the electron injection property is not impaired, and if it is less than lOnm, the transparency is not impaired.
  • light emission from the light emitting layer needs to be white (for example, daylight standard light source D65 (color temperature 6500K)). Since there is no material that emits white light alone, a plurality of colored light is emitted by a plurality of light emitting materials, and white is emitted by mixing colors. As the combination of multiple colored lights, the three primary colors of red, green, and blue may be emitted, or the relationship of complementary colors such as blue and yellow, blue green and orange may be used. The light emission must match the spectral transmittance.
  • a color filter using three color filters of red, green, and blue is used, at least emission of a wavelength that passes through the red filter and transmission through the green filter are required to display a brilliant display. If there is light emission of a wavelength and light emission of a wavelength that passes through a blue filter. If the spectral transmittance of the red filter and the green filter is continuous at the wavelength between them, it does not matter if the red filter and the green filter do not transmit both wavelengths and do not emit the wavelength. Absent. Furthermore, the light emission maximum value is between green and blue, and blue In the case of emission of wavelengths that pass through both the color filter and the green filter, it is not necessary to emit each of the blue and green colors independently.
  • the organic EL element since the light emitting portion is an organic compound, it is necessary to protect the light emitting portion from the external atmosphere (moisture, oxygen, etc.).
  • the light emitting portion is an organic compound, it is necessary to protect the light emitting portion from the external atmosphere (moisture, oxygen, etc.).
  • the external atmosphere moisture, oxygen, etc.
  • the organic EL layer 112 is formed by vapor deposition, it is preferable to form a protective film by sputtering in the same vacuum chamber. In this case, it is preferable to continuously form the organic EL layer 112, the positive electrode 122 made of transparent ITO, and the protective film. SiO, SiN, Al O or A1N
  • An organic EL device can be protected if it has a protective film that is more than lOOnm. There is no upper limit on the thickness, but if it is 1 ⁇ m or less, there is no problem in manufacturing.
  • the protective film is covered with the end surface of the organic EL layer 112, which is the light emitting layer of the thin film light emitting device, and the transparent electrode 111, and the upper surface of the organic EL layer 112 is covered. It is preferable to cover it.
  • a base film will be described as a first embodiment of the present invention.
  • the base film which is a supporting substrate for forming a liquid crystal display panel, is thin and highly heat resistant, especially transparent to the light in the visible light region and optically isotropic, that is, a phase difference (light delay). It is required to be a plastic material.
  • a thin display device such as an electronic book
  • it can be used like a conventional paperback such as a paperback book, so that it can be used without a sense of incongruity.
  • the impact resistance is high and the resistance to dropping is strong.
  • the conventional glass substrate has different impact resistance depending on the location where the impact is applied due to the characteristics of the material. There is a drawback that it breaks easily.
  • the impact resistance is improved compared to glass, but when an impact is applied to the edge, the impact is directly applied to the support substrate and the transistors and wiring mounted on the support substrate. The point is the same as the glass substrate.
  • the thickness is no upper limit on the thickness as long as it is used only in the roll '1' roll process, but it is thinner than 400 m of the glass substrate in consideration of the reduction in size and weight of the entire display device. It is preferable that the thickness is less than 200 m of the plastic substrate. In order to satisfy the requirements for the small size and light weight of the entire display device, 10 to 150 m is preferable, and 10 ⁇ m to 100 ⁇ m is more preferable. Also, if it is 10 ⁇ m or more, wrinkles or cracks may occur during transportation.
  • the mechanical and optical change is not more than 5% for a temperature history of at least 200 ° C, more preferably for a temperature history of 250 ° C. More preferably, the optical change is 5% or less.
  • Optical changes indicate deterioration of light transmittance and increase in phase difference depending on temperature, and mechanical deformations indicate deterioration of flexibility and change in dimensions.
  • the visible light (380 nm-800 nm) region is required. At least 450 nm to 700 nm, more preferably 400 to 700 nm, and most preferably high transmittance in the visible light region of 380 nm to 800 nm! If the transparency is high at 450-700 nm, it is practically acceptable. 400 nm- 700 nm is more preferable even if the most exacting color tone is required. More preferable is the visible light region. It is desirable that the light transmittance is high in the entire range of 380 nm to 800 nm. The wider the transparent wavelength region, the more the image display device that can reproduce the color close to the original color can be manufactured.
  • the light transmittance (wavelength, 550nm) should be 80% or more for the desired base film thickness. In particular, there is no problem, but 85% or more is preferable, and 90% or more is more preferable.
  • acrylic resin or cyclic olefin resin it is preferable to use acrylic resin or cyclic olefin resin.
  • a bifunctional or more preferably trifunctional or higher allylic compound or methacrylic compound for the acrylic resin For example, bisphenol A diatalylate, bisphenol S diatalylate, dicyclopentadi-rudiatalylate, pentaerythritol tritalylate, tris (2-hydroxyethyl) isocyanurate triatalylate, pentaerythritol tetra Atalylate, bisphenol A dimetatalylate, bisphenol S dimethacrylate, dicyclopentagel didimethatalylate, pentaerythritol trimetatalylate, tris (2-hydroxyethyl) isocyanurate trimetatalylate, pentaerythritol tetrametatali Rates, etc. It is also possible to use a mixture of two or more compounds.
  • Cyclic olefin resins are adducts (co) polymers of cyclic olefinic compounds, addition copolymers of ethylene and cyclic olefinic compounds, and hydrogens of ring-opening (co) polymers of cyclic olefinic compounds. Examples are chemicals.
  • the hydrogenated product can be obtained by hydrogenating a ring-opening (co) polymer of cyclic olefin in the presence of a hydrogenated calo catalyst.
  • hepta-5-ene 2 strength rubonic acid (3-ethyl 3-oxeta -L) Methyl-5-triethoxysilyl-bicyclo [2. 2. 1] hepta-2-en, 5-methyldimethoxysilyl-bicyclo [2. 2.
  • hepter 2-en 5- [1, —Methyl-2,5, —Dioxa-1′-silacyclopentyl] -bicyclo [2.2.1] hepta-2-en, 5— [—Methyl-3, 3, 3, 4, 4, 4-tetrahue -Lu 2,5, -Dioxa-1,1-silacyclopentyl] —bicyclo [2.2.1] hepta-2-en, 5— [1,4,4, -trimethyl-2,6 Dioxa-1, 1, silacyclohexyl] -bicyclo [2. 2. 1] hepter 2-ene can be used.
  • the base film is required to have a small dimensional change during the process of manufacturing a display, and the thermal expansion coefficient is preferably 50 ppmZ ° C or less.
  • Plastic materials can have a low coefficient of thermal expansion by incorporating an inorganic filler.
  • Inorganic fillers need to be smaller than the wavelength of visible light in order to maintain the transparency of the film, and if the particle size is 380 nm or less, the transmittance at the short wavelength end of visible light is impaired, but practically particularly. Does not cause a problem. More preferably, it is 1 lOOnm, and in this case, transparency is not impaired in the entire visible light region. There is no problem even if it is less than lnm, but it is difficult to produce a filler less than lnm with the current technology.
  • Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, and oxygenate.
  • Examples of the method of blending the inorganic filler include a method of dispersing dry powdered silicon oxide fine particles using a mixing device having a high dispersion capacity, Method of removing organic solvent by mixing dispersed colloid (sol) and other compound and reducing pressure while stirring if necessary, colloid (sol) dispersed in organic solvent and other compound And then, after removing the solvent as necessary, casting and further removing the solvent.
  • a bead mill etc. are mentioned as an apparatus with high dispersion capability.
  • a melt extrusion method or a solution casting method can be used.
  • acrylic resin can be cast into a solvent-free liquid monomer, cured by irradiation with heat or active energy rays, and processed into a film.
  • Cyclic resins containing acryl groups and methallyl groups in the side chain substituents of monomer units in cyclic olefin-based resins are irradiated with heat and active energy rays, and those containing oxetal groups generate acid.
  • the resin containing hydrolyzable silyl groups can be made into a cured film by hydrolysis with liquid or gaseous heated water and condensation using an acid generator or tin compound as a catalyst. Monkey.
  • the active energy ray used for curing is preferably ultraviolet rays.
  • the lamp that generates ultraviolet rays include a metal halide type and a high-pressure mercury lamp.
  • the photopolymerization initiator used in this case include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxyne chloro roof enyl ketone, and 2,6-dimethylbenzoyl diphenyl.
  • the content of the photopolymerization initiator is preferably 0.01-2 parts by weight with respect to 100 parts by weight of the organic component containing a (meth) acryl group. If the amount is too small, the sensitivity may be poor and curing may be insufficient. If the amount is too large, the sensitivity may be too high, and a curing reaction may occur during compounding, resulting in poor coating.
  • thermal polymerization initiator When performing thermal polymerization by applying heat, a thermal polymerization initiator can be contained as required.
  • thermal polymerization initiators used in this case include benzoyl peroxide, diisopropyl peroxy carbonate, and t-butyl peroxy (2-ethylhexanoate). The amount used is 0.0% with respect to 100 parts by weight of the organic component containing the (meth) acrylic group.
  • the base film of this example preferably has excellent transparency, that is, high light transmittance, and is optically isotropic, that is, has a small phase difference.
  • the light transmittance is 85% or more, more preferably 90% or more at a wavelength of 550 nm.
  • the phase difference preferably has a value in the normal direction of lOnm or less, more preferably 5 nm or less.
  • the base film in the present invention preferably has a thickness of 10 to 300 ⁇ m. If it is less than 10 ⁇ m, wrinkles, cracks, and scuffing will occur during conveyance, and if it exceeds 300 / z m, processing with a roll 'two' roll tends to be difficult.
  • Acrylic resin-type base film consists of 120 parts by weight of dicyclopentagel-didiatalate, isopropyl alcohol-dispersed colloidal acid silicate key [30% by weight of oxide oxide, average particle size 10-20 nm ] 400 parts by weight was mixed, and 200 parts by weight of the volatile component under reduced pressure was removed while stirring at 45 ° C. Then, add 0.6 parts by weight of 1-hydroxyne chloro roof elu ketone ("Irgacure 184" manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator and dissolve it to obtain a resin composition for base film. Obtained.
  • Irgacure 184" 1-hydroxyne chloro roof elu ketone
  • the resin film composition for base film was cured to a film thickness of 100
  • PET / polyethylene terephthalate (PE) film was coated with a die coater so as to be / z m. Subsequently, the volatile components were volatilized in a drying oven controlled at 120 ° C and cured with an ultraviolet irradiation device. After curing, the PET film was peeled off by release treatment to obtain a base film.
  • PE polyethylene terephthalate
  • hepta-2-ene addition copolymer 100 parts by weight, tributyl phosphite 1.5 parts by weight, pentaerythrityl-tetrakis [3— (3, 5--t) as an antioxidant -Butyl-4-hydroxyphenyl) propionate] and tris (2,4-diethylbutylbutyl) phosphite were dissolved in 0.5 parts by weight and 550 parts by weight of xylene, respectively, to obtain a resin composition for a base film. .
  • a die is formed on a PET (polyethylene terephthalate) film.
  • the film was coated with a coater and dried primarily at a temperature of 30 ° C-50 ° C to obtain a film containing 20-50 parts by weight of solvent.
  • the film is peeled off from the PET film and exposed to a 30 ° C toluene vapor atmosphere, followed by secondary drying at 50–200 ° C, followed by a 170 ° C heated water vapor atmosphere.
  • a base film having a cured film thickness of 100 m was obtained.
  • the acrylic resin-type base film had a light transmittance of 90% (550 nm, thickness 100 ⁇ m), a retardation of 3 nm, and a Young's modulus of 5.3 GPa.
  • the cyclic olefin fin type base film had a light transmittance of 91% (550 nm, thickness 100 ⁇ m), a phase difference of 5 nm, and a Young's modulus of 2.9 GPa.
  • Both the acrylic resin type and the cyclic olefin resin type could be rolled into a roll with a radius of 30 mm.
  • the base film is a thin film made of an organic resin
  • normal air components such as oxygen and water vapor enter the liquid crystal layer and the organic EL layer.
  • the gas barrier layer must also be transparent in that the substrate needs to transmit light. For this reason, as the material of the gas nolia layer, organic materials such as polybulal alcohol, organic materials and clay minerals (Al 2 O 3)
  • Amorphous clay minerals such as Al O-SiO-2-3H O and crystalline clay minerals (Si, Al)
  • Organic-inorganic composites with inorganic materials such as O tetrahedral sheet, (Al, Mg) (O, OH) octahedral sheet)
  • the material examples include a thin film of an inorganic material such as an acid silicate or an acid aluminum.
  • the film thickness can be reduced by using an inorganic material because it is excellent in gas noliativity in a high humidity environment and is effective even when the thickness is small. Furthermore, two or more of these layers are stacked to form a film.
  • the thickness of the gas barrier layer is 10 ⁇ m for organic materials and organic-inorganic composite materials.
  • an inorganic material it is preferably lOnm—: m.
  • the thickness is 1 ⁇ m or more, it is possible to sufficiently prevent normal air components such as oxygen and water vapor from entering the liquid crystal layer and the organic EL layer. If it is less than 10 m, it will not affect the physical properties of the base film such as expansion coefficient.
  • it if it is lOnm or more, normal air components such as oxygen and water vapor can be sufficiently prevented from entering the liquid crystal layer and the organic EL layer. If it is 1 ⁇ m or less, there will be no damage IJ during bending.
  • a coating method can be used in the case of an organic material and an organic-inorganic composite material, and various thin film deposition methods can be used in the case of an inorganic material.
  • a liquid organic material or a liquid such as a solution thereof is applied on a film, and dried or cured to form a film.
  • Thin film deposition methods include physical vapor deposition methods such as vacuum deposition, ion plating and sputtering, and chemical vapor deposition methods such as plasma CVD in vacuum, catalytic CVD, and CVD under atmospheric pressure. .
  • sputtering is particularly preferable because a dense film can be obtained at a low temperature.
  • a roll of base film 3 having a thickness of 100 ⁇ m, a width of 30 cm, and a length of 100 m was set on the unwinding roll 2 side of the magnetron sputter roll coater shown in FIG.
  • Reactive sputtering film formation with pulsed DC power source using 0.3Pa, temperature control drum temperature 30 ° C, argon as discharge gas, oxygen as reaction gas, and silicon doped with boron as target went.
  • a gas oxide layer with a thickness of lOOnm SiO: x is 1.6-1.9
  • the gas barrier layer may be formed only on one side of the base film.
  • the gas barrier may be formed again on the other side by the same method, or the target 5 shown in FIG. 8 is provided also on the back side, and the gas barrier film is formed on both sides of the base film once. It is okay to form a film.
  • FIGS. 9 and 10 are diagrams showing a manufacturing process in which a thin film transistor is transferred to a base film with a glass substrate force.
  • an oxide film or a nitride film 202 such as a nitride film is formed on the glass substrate 201 as a hydrofluoric acid etching prevention layer.
  • An amorphous silicon film or a polycrystalline silicon film is formed thereon.
  • an amorphous silicon film 216a was formed at lOOnm.
  • a plasma CDV method or a sputtering method can be used. Thereafter, as shown in FIG.
  • the amorphous silicon film is modified to a polycrystalline silicon film 216b by irradiating laser light C with an excimer laser.
  • a method for modifying the polycrystalline silicon film a solid phase growth method using thermal annealing may be used instead of laser light irradiation.
  • a gate insulating film 217 made of an oxide film is formed by lOOnm by plasma CVD or sputtering.
  • the region where the n-channel transistor is to be formed is covered with a photoresist, and boron is implanted by ion doping to form a p-type region. Form Fa.
  • FIG. 9 (c) After patterning the polycrystalline silicon film 216b into a desired shape, a gate insulating film 217 made of an oxide film is formed by lOOnm by plasma CVD or sputtering.
  • FIG. 9 (d) after forming the gate electrode 218, the region where the n-channel transistor is to be formed is covered with a photoresist, and boron is implanted by ion doping to form a p-type region. Form Fa.
  • FIG. 9 (c) After patterning the polycrystalline silicon film 216b into a desired shape, a gate insulating film 217 made of an oxide film is formed by lOO
  • the region for forming the p-channel transistor is covered with a photoresist 219, and phosphorus is implanted E by ion doping to form an n-type region Fb.
  • a source electrode / drain electrode made of aluminum an interlayer insulating film 220 having a thickness of 200 nm made of an oxide film and a metal electrode 221 made of aluminum are formed. This completes the transistor.
  • the pixel driving transistor section that drives the pixels of the liquid crystal panel may be composed only of n-MOS or p-MOS transistors. A desired circuit can be formed on a glass substrate by arbitrarily arranging such transistor arrays.
  • a transparent conductive film such as ITO is further formed in a region to be an image display portion to form a desired pixel electrode.
  • an oxide film having a thickness of 200 nm is formed as an electrode protective film for protecting the electrode.
  • a protective film 230 is attached to the transistor formation surface of the glass substrate 201 on which the transistor array 229 is formed, using an adhesive.
  • the substrate with the protective film is immersed in a glass etching solution 231 that also has hydrofluoric acid power, and the glass substrate 228 is also etched G by back surface side force. Etching is stopped at the NOR layer 234 after etching the glass substrate 228.
  • a base film 235 is attached to the etched surface as shown in FIG. 10 (c).
  • the protective film 230 and the adhesive are peeled off from the transistor array layer 229, whereby the transfer is completed and the element layer is formed on the base film.
  • the etching film 202 in FIG. 9 (a) has a slow etching rate with respect to the glass etching solution, it functions as an etching stopper layer, and the glass substrate etching process in FIG. 10 (b) is performed with good controllability. Can do.
  • the protective film 230 a material that can withstand strong acid such as hydrofluoric acid is required. Also, during etching, it is necessary to prevent the temperature of the etching solution from changing so that etching proceeds uniformly.
  • a TFT film substrate for a liquid crystal display panel can be produced by the manufacturing process as described above.
  • a glass substrate is used for the support substrate, an etching solution such as hydrofluoric acid is used for removing the support substrate, a nitride film is used for the noor layer, and an adhesive is used for the protective film.
  • this can also be realized by using a quartz substrate or silicon substrate as the substrate and removing the support substrate by a polishing method or using a hot melt sheet or the like that is bonded by heat.
  • the base film described in detail in Example 1 is a film that becomes a substrate constituting the panel when the liquid crystal panel is formed.
  • a base film may be used as the support film for the functional film produced in the intermediate process, but it is not necessarily a base film.
  • Materials that can be used for the support film include polyester, polyethylene, polypropylene, polyethylene terephthalate, polybutyl alcohol, epoxy, polyimide, polyamide, polystyrene, polycarbonate, polypropylene, etc. in addition to the material used for the base film.
  • Polyhalogenated burs such as polyolefin, polychlorinated butyl, poly vinylidene chloride, ethylene bur copolymer, butyl acetate or cellulose resin such as cellulose acetate, nitrocellulose and cellophane may be used. it can.
  • the cover film can be made of the same material as the support film. Function It goes without saying that the material is appropriately changed depending on the conditions at the time of manufacturing the thin film, for example, light transmittance 'temperature conditions at the time of manufacturing.
  • Both the cover film and the support film preferably have a coefficient of thermal expansion of 50 ppmZ ° C or less, and a difference in coefficient of thermal expansion of the base film is ⁇ 30% or less. More preferably, it is preferably 15% or less. Since the functional thin film formed on the support film is transferred onto the functional thin film formed on the base film, it is necessary to match the thermal expansion coefficient of the support film with that of the base film.
  • the particle size of the inorganic filler mixed in the resin is set to lnm-200nm, more preferably lnm-150nm.
  • the lower limit is not limited to lnm, but may be less than lnm as long as it can be manufactured.
  • a retardation film will be described as a third embodiment of the present invention.
  • the retardation film includes a coating type retardation film and a bonding type retardation film. First, the coating type retardation film will be described.
  • Polyimide aligning agent "AL-1254" (manufactured by JSR) is applied as an alignment film to a roll-like base film with polyethersulfone that has been treated with silicon oxide on the surface. And dried for 1 hour, and this was rubbed with a rayon cloth.
  • a coating film of alkyl chain-modified POVAL (for example, MP203 manufactured by Kuraray Co., Ltd., R1130, etc.) can impart the orientation ability only by rubbing as much as necessary.
  • most organic polymer films that form a hydrophobic surface such as polyvinyl butyral and polymethylmetatalylate, can impart liquid crystal alignment capability by rubbing the surface.
  • the diacid / silicon oxide alignment film can be formed in the same manner as in the second embodiment. It should be noted here that the film is formed using an oblique vapor deposition method.
  • a polymerizable liquid crystal composition (A) was prepared.
  • the resulting composition exhibited a nematic phase at room temperature, and the nematic phase force and the transition temperature to the isotropic phase were 47 ° C.
  • n (abnormal light refractive index) at 25 ° C was 1.65
  • Polymerizable liquid crystal yarn composition (A) 100 parts by weight and photopolymerization initiator “IRG-651” (manufactured by Ciba Gaigi Co., Ltd.) 1 part by weight
  • the polymerizable liquid crystal composition (c) is dissolved in methyl ethyl ketone, applied to the previously obtained roll-shaped base film with a gravure coater, and then irradiated with an ultraviolet ray of 365 nm at room temperature for 160 mjZcm 2.
  • the polymerizable liquid crystal composition was cured to form a retardation film having a thickness of 1. It was confirmed that this retardation film has a retardation of 138 nm with respect to light having a wavelength of 550 nm and functions as a 1Z4 wavelength plate.
  • NMP N-methyl-2-pyrrolidone
  • 2- Kuroruparafue be equivalent to 85 mole 0/0 as an aromatic Jiamin components - and Renjiamin
  • 4 corresponds to 15 mole 0/0
  • 2-chloroterephthalic acid dichloride corresponding to 99 mol% was added thereto and stirred for 2 hours to complete the polymerization.
  • This solution was neutralized with lithium hydroxide to obtain an aromatic polyamide solution having a polymer concentration of 10% by weight.
  • the polymer solution was cast on an endless belt, dried with hot air at 150 ° C until self-supporting property was obtained, and then peeled from the belt.
  • the film peeled from the belt was subsequently stretched 1.10 times in the longitudinal direction of the film in a 40 ° C. water bath, and the remaining solvent and inorganic salts were removed and introduced into the tenter.
  • the tenter it was dried and heat-treated with hot air at 280 ° C.
  • the aromatic polyamide film having a thickness of 4.0 m was obtained by stretching 1.5 times in the width direction in the tenter.
  • the slow axis of this film coincides with the width direction, the dimensional change rate in that direction is 0.02%, the dimensional change rate in the orthogonal direction is 0.0%, and the longitudinal direction (MD)
  • the Young's modulus in the width direction (TD) was 10 GPa and 16 GPa, respectively, and had extremely high heat resistance and tensile strength.
  • the minimum value of the light transmittance at 450 to 700 nm of this film was 80%, and the light transmittance at 400 ⁇ m was 24%.
  • the polymer solution was cast on a belt, and then the film having self-supporting property was peeled off by the belt. This film is brought into contact with a roll heated to 100 ° C, and 1. The roll-to-roll stretching was performed 8 times.
  • the film stretched in the MD direction was introduced into a 40 ° C. water bath to remove the remaining solvent, inorganic salts, and the like, and then introduced into the tenter. In the tenter, drying and heat treatment were performed with 300 ° C hot air.
  • the film was stretched by a factor of 2.2 in the width direction in a tenter to obtain an aromatic polyamide film having a thickness of 3.0 m.
  • the slow axis of this film coincides with the longitudinal direction, the dimensional change rate in that direction is 0.04%, the dimensional change rate in the orthogonal direction is 0.0%, and the longitudinal direction (MD)
  • the tang ratio in the width direction (TD) was 19 GPa and 9 GPa, respectively, which were extremely heat-resistant and tensile.
  • the minimum value of the light transmittance at 450 to 700 nm of this film was 79%, and the light transmittance at 400 ⁇ m was 22%.
  • the above retardation film is preferably laminated on a support film.
  • the aromatic polyimide or polyamic acid solution of this example is obtained as follows. That is, the polyamic acid can be prepared by reacting a tetracarboxylic acid dihydrate and an aromatic diamine in an aprotic organic polar solvent such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide or the like.
  • An aromatic polyimide can be prepared by heating a solution containing the above polyamic acid or adding an imidizing agent such as pyridine to obtain a polyimide powder, which is dissolved again in a solvent.
  • the polymer concentration in the stock solution is preferably about 5-40 wt%.
  • a retardation film can be prepared using the above-mentioned stock solution.
  • the resulting retardation film is
  • Measurement diameter ⁇ 5mm Measurement wavelength: 400-800nm
  • phase differences at wavelengths of 450 nm, 550 nm, and 650 nm were R (450), R (550), and R (650), respectively.
  • the sample was placed on a universal stage and observed under a cross-col with a polarizing microscope, and the direction with the greatest birefringence was taken as the slow axis.
  • the orientation meter for example, MOA-2001 A, manufactured by Kanzaki Paper Co., Ltd.
  • MOA-2001 A manufactured by Kanzaki Paper Co., Ltd.
  • T1 is the intensity of light that has passed through the sample
  • TO is the intensity of light that has passed through the air at the same distance except that it has not passed through the sample.
  • UV measuring instrument U-3410 manufactured by Hitachi Measuring Instruments
  • Wavelength range 300nm—800nm
  • the polarizing film used in this example is a polyvinyl alcohol, a partially formalized polybulal alcohol, a partially saponified polymer of an ethylene'-acetate copolymer, or the like.
  • -It is obtained by adsorbing dichroic dyes such as iodine and z or dichroic dyes to a rualcohol-based film and biaxially stretching, followed by boric acid treatment.
  • the thickness of the polarizing film is about 5-50 ⁇ m, but is not limited to this.
  • H film polybutyral film in which a thin film of polyvinyl alcohol is stretched while heated and immersed in a solution containing a large amount of iodine (usually called H ink) to absorb iodine can be used.
  • H ink a solution containing a large amount of iodine
  • An 18 ⁇ m film could be obtained with the H film.
  • a resin pellet containing iodine and Z or a dichroic dye is formed into a film by a method such as melt extrusion or solution casting, and then the film is uniaxially stretched to produce iodine and There is a polarizing film in which Z or dichroic dye is strongly uniaxially oriented.
  • the thickness of the polarizing film is a force of about 1 10 / z m, but is not limited to this.
  • the resin used here is a polyalcohol, partially formalized polybulal alcohol, a polyvinyl alcohol-based resin, a polyolefin resin, an acrylic resin, which can be used as a part of a polymer such as an ethylene 'vinyl acetate copolymer.
  • polyester resins such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate), polyamide resins, polyamideimide resins, polyimide resins, polycarbonate resins, and polysulfone resins.
  • the polarizing film is bonded to the support film by heat, pressure, pressure-sensitive adhesive, adhesive, or the like.
  • the polarizing film is peeled off from the supporting film and bonded to the protective film of the organic EL light emitting element on the functional film, for example.
  • the polarizing film When the polarizing film is formed on the release film as the supporting substrate, only the polarizing functional layer must be bonded to the protective film of the organic EL light emitting device, for example, on the functional film. For this reason, it is necessary that the polarizing film and the support film be bonded in a state where they can be peeled off. However, considering that another layer is further laminated on the surface from which the support film has been peeled, the support film is required to be laminated. It must be treated so that the release agent on the film does not migrate onto the polarizing film upon peeling.
  • the polarizing film needs to be protected from moisture and ultraviolet rays.
  • an optically transparent protective layer is bonded on one or both sides.
  • a resin having excellent thermal stability and moisture shielding properties for the resin forming the protective layer.
  • examples of such a resin include cellulose, polycarbonate, polyester, acrylic, polyethersulfone, polyamide, polyimide, and polyolefin. Of these, cellulose such as triacetyl cellulose, polyester such as polycarbonate and polyethylene terephthalate, acrylic, and the like are preferably used.
  • LEDs Light-emitting diodes
  • organic EL devices contain almost no ultraviolet rays in their light-emitting components.
  • UV resistance is negligible.
  • organic EL devices are used to protect the organic matter that is the light emitting layer of organic EL devices from moisture and oxygen.
  • the polarizing film for the knock light is often arranged immediately above the protective film of the organic EL. In this case, the protective film on one side of the polarizing film can be omitted. For this reason, it is not necessary to provide a protective film on the polarizing film as in the prior art, so that the polarizing film can be made thin.
  • a method of forming a protective film on the polarizing film there is a method in which the protective film of the polarizing film is directly bonded to the polarizing film, but the protective film of the polarizing film and the polarizing film are formed on different supporting substrates. After bonding, there is a method in which the protective film or polarizing film of the polarizing film is bonded to the polarizing film or the protective film of the polarizing film while peeling off the supporting substrate.
  • a polarizing film is formed on the protective film of the organic EL element. It is preferable to match.
  • the film thickness was 6 ⁇ m in total including the polarizing film (3 ⁇ m) and the protective film (3 ⁇ m).
  • a protective film When a protective film is provided on one or both sides of the polarizing film, it is obtained by bonding an optically transparent protective layer.
  • a resin having excellent thermal stability and moisture shielding properties for the resin forming the protective layer like this
  • the resin include cellulose, polycarbonate, polyester, acrylic, polyether sulfone, polyamide, polyimide, and polyolefin.
  • celluloses such as triacetyl cellulose, polyesters such as polycarbonate and polyethylene terephthalate, and acrylics are preferably used.
  • These protective layers may contain an ultraviolet absorber such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex salt compound.
  • an ultraviolet absorber such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex salt compound.
  • a hard coat layer, an anti-reflection layer, an anti-glare layer, and the like may be formed on the surface of the protective layer by performing various surface treatments.
  • the thickness of the protective layer is usually 80 m or less, preferably 40 m or less, from the viewpoints of thin film lightness, protective function, handleability, and resistance to cracking during cutting.
  • An adhesive is used when the protective film and the polarizer are bonded together.
  • the adhesive used here is not particularly limited as long as it adheres the protective film and the polarizer satisfactorily.
  • the adhesive is applied to one or both sides of the polarizer using various methods such as wire bar, doctor blade, and dating, and then bonded to the protective layer.
  • the adhesive layer is dried or cured using hot air, ultraviolet rays, infrared rays or the like in order to ensure the adhesive strength of the bonding. At this time, it is preferable to dry and cure the adhesive layer under the condition that the polarizing performance of the polarizer does not deteriorate.
  • the polarizing film is provided with an adhesive layer in order to be laminated with members having various optical functions such as a liquid crystal cell and a retardation plate in the liquid crystal display panel.
  • a pressure-sensitive adhesive based on an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyether or the like can be used. Above all, like acrylic adhesives, it has excellent optical transparency, retains appropriate wettability and cohesion, has excellent adhesion to substrates, and has weather resistance and heat resistance. However, it is preferable to select and use a material that does not cause peeling problems such as floating or peeling under the condition of heating or humidification.
  • alkyl esters of (meth) acrylic acid having an alkyl group having 20 or less carbon atoms such as methyl group, ethyl group and butyl group, (meth) acrylic acid and (methacrylic acid) (C) Acrylic monomer having a weight average molecular weight of 100,000 or more prepared by blending an acrylic monomer such as hydroxyethyl acrylate with a glass transition temperature of preferably 25 ° C or lower, more preferably 0 ° C or lower. Polymers are useful as the base polymer.
  • the pressure-sensitive adhesive layer is formed on the polarizing film by, for example, dissolving or dispersing the adhesive composition in an organic solvent such as toluene or ethyl acetate to prepare a 10-40 wt% solution, which is then applied to the polarizing film.
  • an organic solvent such as toluene or ethyl acetate
  • Examples include a method of forming an adhesive layer by directly coating on the surface, and a method of forming an adhesive layer by previously forming an adhesive layer on a protective film and transferring it onto a polarizing film.
  • the thickness of the pressure-sensitive adhesive layer is in the range of 1 ⁇ m-50 m, which is determined according to the adhesive strength.
  • the adhesive layer may be filled with a filler or pigment made of glass fiber, glass bead, rosin bead, metal powder or other inorganic powder as necessary, a colorant or an antioxidant, and further salicylic acid.
  • An ultraviolet absorber such as an ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound may be blended.
  • the thickness of the polarizing film described above is 150 m or less, preferably 100 m or less, and has a protective layer on one side in the configuration having a protective layer on both sides (protective layer Z polarizer Z protective layer Z adhesive layer).
  • the structure (protective layer Z polarizer Z adhesive layer) is 100 m or less, preferably 50 m or less.
  • the polarizing film of the present invention when used in a reflective or transflective liquid crystal display panel, it can be used as a circularly polarizing film by being bonded to a retardation plate.
  • the retardation plate a film made of polycarbonate, polybutyl alcohol, polystyrene, polymethyl methacrylate, polyolefin, polyarylate, polyamide or the like is uniaxially or biaxially stretched to control the in-plane refractive index. Furthermore, a film in which the refractive index in the thickness direction is controlled by shrinking the raw resin film under adhesion with a heat-shrinkable film, a discotic liquid crystal or a nematic liquid crystal alignment film, and the like.
  • the retardation plate used here may be used in combination of two or more films for the purpose of improving contrast.
  • a pressure-sensitive adhesive When integrating the polarizing film and the retardation plate, it is preferable to use a pressure-sensitive adhesive from the viewpoint of easy work and prevention of optical distortion. At this time, either one side of the polarizing film or retardation plate is used.
  • the pressure-sensitive adhesive layer can be provided on both sides and subjected to an integration process.
  • the pressure-sensitive adhesive layer to be provided may be an overlapping layer of different composition or type. Further, when an adhesive layer is provided on both sides, adhesive layers of different compositions or types may be used on the front and back of the polarizing film and the optical layer.
  • the angle between the absorption axis of the polarizing film and the retardation axis of the retardation plate is within the range of 45 ° ⁇ 1 ° or 135 ° ⁇ 1 °. It is necessary to paste. If the bonding accuracy exceeds this range, the function as a circularly polarizing film becomes insufficient.
  • the above-mentioned circular polarizing film uses a polarizing film having a protective layer only on one side, and a retardation plate is bonded to one side of the polarizer via an adhesive layer (protective layer Z polarizer Z It is desirable to use a pressure-sensitive adhesive layer Z-phase retardation plate (Z-pressure-sensitive adhesive layer) having a thickness of 150 m or less, preferably 100 ⁇ m or less.
  • the polarizing film according to the present invention and the circular polarizing film using the polarizing film are preferably used for a liquid crystal display panel for a mopile application such as a notebook personal computer or a mobile phone, and an adhesive is applied to one or both sides of these liquid crystal cells. Laminated.
  • the polarizing film or the circular polarizing film provided on both sides of the liquid crystal cell may be the same or different.
  • the polarizing film or the circular polarizing film is cut in advance to the size of a liquid crystal cell, and this is used to roll the liquid crystal cell and the polarizing film or the circular polarizing film using a roll or a press.
  • a force including a method of applying with pressure without causing bubbles to enter between and the liquid crystal cell is not limited to this.
  • a method for manufacturing a film type color filter according to the fifth embodiment will be described with reference to FIG. Red (R) 395, Green (G) 396, color filters on a PET (ethylene terephthalate) film 390 with a film thickness of 30-100 / zm, which is wound around a roll, to be the first support substrate
  • the coating thickness of the photosensitive resin layer 391 is preferably 5 111-20 111, more preferably 8 111-15 111. If it is 5 ⁇ m or more, it works well as a color filter or black matrix, If it is less than m, the light transmission will not be lowered.
  • the photosensitive resin layer 391 has a coating thickness of 10 m, and the color filter layer after drying has a thickness of 1 ⁇ m.
  • the photosensitive resin layer has a composition composed of a solvent component and a solid component, the solid component is composed of a transparent resin component, a dispersant, and a pigment, and the transparent resin component is composed of a polymerization initiator. It consists of a monomer and a thermal crosslinking agent or a photocrosslinking agent.
  • the solvent component is a ketone, ester or ether having a boiling point of 100 ° C-200 ° C and a vapor pressure of lOmmHg or less, and the monomer is preferably a polyfunctional acrylate monomer. If it is less than lOmmHg, drying unevenness will not occur.
  • a thermal crosslinking agent or a photocrosslinking agent is desirable because the (meth) acrylic acid + acrylic acid ester copolymer system increases the visible light transmittance.
  • the photopolymerization initiator an imidazole-based, acetophenone-based, triazine-based or thixanthone-based initiator is preferable because it hardly causes a dark reaction. If the particle diameter is 0.1 ⁇ m or less, the light transmittance is not impaired.
  • poly (ethylene terephthalate) resin polyethylene resin, polypropylene resin, polyester resin, ethylene butyl copolymer resin, polychlorinated butadiene resin, cellulose resin, polyamide resin. It is possible to use light, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin that have a light transmission function.
  • the film having the polymer material strength of the first support substrate also has an advantage that it can be reused by washing and removing the photosensitive resin 391 from the support substrate in a later step.
  • a cover film 392 made of polyester resin is pasted onto the photosensitive colored resin 391 (cover film pasting 1030) and wound on a take-up roll ( Figure ll (a)).
  • chromium may be provided in a thickness of 0.1 ⁇ m—0.2 ⁇ m. Chrome can be provided by physical vapor deposition, but in this case, a film made of organic resin is preferred.
  • the base film 390 which is the first base material in which the cover film 392 is bonded onto the black matrix photosensitive resin 391, is fed from the feeding roll, and the cover film is peeled off (cover film peeling 1040).
  • a second base material 393 of a color filter made of a high heat-resistant resin is stuck on the surface on which the cover film 392 has been formed (CF base material sticking 1070).
  • the base film 390 side force is exposed through the mask 1080, the base film 390 is peeled off (base film peeling 1090), the photosensitive resin 391 is developed and dried 1 100, and a black matrix is formed on the color filter substrate 393. Is done.
  • cover film 392 is attached to the surface on which the black matrix is formed (cover film attachment 1110) (see Fig. 11 (b)).
  • the cover film is a protective film for photosensitive resin 392, black matrix, and color filter, and it is desirable that the cover film be weakly adhered so that it can be easily attached and peeled off.
  • weak adhesion means the function of releasing together with the base material supporting the adhesive layer without causing chemical or physical influence on the counterpart material when peeling, and the cover film is self-adhesive.
  • a sticky material for example, a film using EVA (ethylene butyl acetate) resin, or an adhesive made of acrylic resin is diluted with a solvent, applied in a thin film, dried in hot air, ultraviolet This can be achieved by wire curing or electron beam curing.
  • the photosensitive resin must be weakly adhered to the first supporting substrate.
  • the photosensitive resin can be adhered to the supporting substrate by a method using the self-adhesive property of the photosensitive resin. .
  • a layer made of photosensitive resin 391 is bonded to the CF substrate, it is desirable to block oxygen during exposure when using a film made of polymer resin for the CF substrate. It is preferable to provide an oxygen barrier film with a film thickness of 10nm-50nm, which also has an alumina strength.
  • the oxygen barrier film is the same as the gas noria film of the base film, and is not limited to the acid silicate or alumina.
  • the film thickness is preferably from lOnm to 50 nm. If the film thickness is lOnm or more, the oxygen barrier property is sufficient, and if the film thickness is: L m or less, there is no particular problem in production.
  • a scratch resistant protection made of a polyester resin or a polyethylene resin is used. It is preferable to provide a film. If the film thickness is 10 ⁇ m-200 ⁇ m, a good film thickness is 10 m or more, and if the film thickness is 10 m or more, the scratch resistance of the photosensitive resin 391 is not damaged. If the film thickness is 200 m or less, there is no particular problem in production.
  • the oxygen-blocking film also comprising an oxygen barrier can be produced by, for example, a continuous CVD apparatus.
  • an oxygen barrier film with alumina strength can be made with a continuous PVD device.
  • the exposure there is no particular problem with the exposure as long as it is an exposure method using a commonly used ultrahigh pressure mercury lamp as a light source, such as contact exposure and reduced projection exposure.
  • a laser may be used as a light source for reduced projection exposure.
  • the polymer resin of the photosensitive resin 391 is crosslinked by heating or ultraviolet irradiation.
  • the photosensitive resin becomes stable with improved adhesion to the CF substrate.
  • a red filter is formed on the CF base material 393 on which the black matrix is formed by the same manufacturing method.
  • a green filter and a blue filter are formed to form a color filter layer 399 on the CF substrate (see FIG. 12). This is an example and the order of colors Can be determined arbitrarily.
  • the cover film 392 may not be provided as long as the manufacturing apparatus can continuously apply, dry, and affix to the CF substrate on the base film.
  • a feed roll and a scraping roll are arranged inside, and the film fed from the feed roll is processed. It is desirable that the inside and the outside be cut off, and at least the inside should have a cleanliness class of 1000 or less (0.1 to 0.5 m or less dust, 1000 Zm 3 or less), and nitrogen, helium, More preferably, the atmosphere is an inert gas such as argon.
  • the color filter can form a spacer on the black matrix.
  • a spacer may be provided by the same manufacturing method. .
  • the spacer can be formed into a columnar shape or a prismatic shape by the same process as the color filter.
  • the position is preferably formed on the black matrix and inside the black matrix. When considering the margin of alignment, it is more preferable to design so that it is inside the maximum value of misalignment.
  • the height is preferably 3 ⁇ m-5 ⁇ m.
  • the color filter layer 399 formed on the CF substrate 393 is pulled out from the feed roll to the take-up roll, and the TFT element, wiring, and pixel electrode are formed on the base film 380.
  • the TFT layer 381 is transferred onto the formed functional film.
  • the color filter 399 is transferred onto the TFT layer 401 by the transfer roller 2000 via the cover film 392. After the transfer, the cover film 392 is peeled off.
  • the spacer of the color filter 399 is formed! It is transferred to the TFT layer on the ⁇ side. If the spacer 398 is not formed, the color filter 399 can be transferred to the TFT layer 401 on the surface in contact with the cover film.
  • the cover film 392 may be wound around the scooping roll together with the base film without peeling off. [0465] Force explaining the configuration to transfer the color filter layer formed on CF base material 393 CF support base material can be bonded together with CF support base material 393 using a base film It is.
  • Examples of the resin material used for forming the color filter layer include, but are not limited to, polyimide resin, PVA derivative resin, and acrylic resin.
  • acrylic resins include alkyl acrylates or alkyl methacrylates such as acrylic acid, methacrylic acid, methyl acrylate, and methyl methacrylate, cyclic acrylates or methacrylates, hydroxyethyl acrylate, or methacrylates.
  • Difunctional monomers include bifunctional, trifunctional and polyfunctional monomers.
  • Difunctional monomers include 1,6-xandiol diatalate, ethylene glycol diatalate, neopentyl glycol sialate, and triethylene glycol diatali.
  • trifunctional monomers such as trimethylolpropane tritalylate, pentaerythritol tritalylate, and tris (2-hydroxyethyl) isocyanate, and difunctional monomers such as ditrimethylolpropane tetraatalylate.
  • Addition of diluted monomer The amount is preferably about 20 to 150 parts by weight per 100 parts by weight of acrylic resin.
  • a pigment used for preparing a colored composition as an organic dye, as a red pigment, I. No. 9, 19, 81, 97, 122, 123, 144, 146, 149, 168, 169 , 177, 180, 192, 215, etc., green pigment CI No. 7, 36, etc., blue pigment CI No. 1 5: 1, 15: 2, 15: 3, 15: 4, 15: 6, 22, CI No. 23 as purple pigment such as 60, 64
  • yellow pigments such as 51319, 39 42555: 2, and carbon etc. as black pigments.
  • extender pigments include barium sulfate, barium carbonate, alumina white, and titanium.
  • examples of the dispersant used for the preparation of the coloring composition include surfactants, pigment intermediates, dye intermediates, and Solsperse.
  • derivatives of organic dyes derivatives such as azo, phthalocyanine, quinacridone, anthraquinone, berylene, thioindico, siloxane, and metal complex salts are suitable.
  • organic dye derivatives are appropriately selected from those having a substituent such as a hydroxyl group, a carboxyl group, a sulfone group, a carbonamide group, and a sulfonamide group, in terms of dispersibility.
  • the mixing ratio of the pigment is about 50 to 1 part by weight of the pigment with respect to 100 parts by weight of the acrylic resin, and the mixing ratio of the dispersing agent is about 1 to 10 parts by weight of the pigment. is there.
  • an appropriate pigment is added as needed to adjust the spectral characteristics of the color filter.
  • thermal cross-linking agent used for the preparation of the coloring composition examples include melamine resin and epoxy resin.
  • melamine resin includes alkylated melamine resin (methylated melamine resin, butylated melamine resin, etc.) and mixed etherified melamine resin, which can be either high condensation type or low condensation type. good.
  • Examples of the epoxy resin include glycerol, polyglycidyl ether, trimethylolpropane 'polyglycidyl ether, resorcin' diglycidyl ether, neopentyl glycol. Diglycidyl ether, 1,6-hexanediol 'diglycidyl ether, ethylene Glycol (polyethylene glycol) 'Diglycidyl ether.
  • the mixing ratio of the thermal crosslinking agent is 10 to 50 parts by weight of the thermal crosslinking agent with respect to 100 parts by weight of the acrylic resin. Is preferred.
  • a solvent used for the preparation of the colored composition toluene, xylene, ethyl acetate sorb, ethyl acetate sorb acetate, diglyme, cyclohexanone, lactic acid ethyl, propylene glycol monomethyl ether acetate and the like are suitable.
  • a single or a plurality of solvents are appropriately selected depending on the thermal crosslinking agent, the dilution monomer, and the like.
  • the coloring composition used for forming the color filter layer is composed of the above resin, pigment, dispersant, thermal crosslinking agent, solvent, and the like.
  • this colored composition first, in order to mix the acrylic resin and the pigment, they are kneaded using three rolls to form a chip. Next, a paste is prepared by adding a dispersant and a solvent to the chip. A thermal crosslinking agent and a dilution monomer are added to this paste to form a coating solution for the colored composition.
  • the black (black matrix), red, green, and blue coating liquids are applied in a predetermined pattern onto the support substrate by the inkjet method.
  • the ink jet apparatus there are a piezo conversion method and a heat conversion method depending on the difference in the ink ejection method, and the piezo conversion method is particularly preferable.
  • a device that has an ink particle frequency of about 5 to ⁇ , a nozzle diameter of about 1 ⁇ m to 80 ⁇ m, four heads arranged, and 1 to 1,000 nozzles in one head is suitable.
  • the number of heads varies depending on the number of colors to be applied. For three colors of red, green, and blue, three heads may be arranged. The number of heads is preferably at least the same as the type of color to be applied, and the color is preferably changed for each head.
  • an undercoat layer Prior to coating on the support substrate by the ink jet method, an undercoat layer combined with a coating liquid, a solvent, or the like may be provided in advance in order to adjust ink acceptability and wettability.
  • a coating liquid e.g., polyimide resin, PVA derivative resin, acrylic resin, epoxy resin composition, etc.
  • porous particles such as acid and alumina may be added to these.
  • the matrix-like light shielding layer can be formed by a photolithography method or the transfer method, and may be before or after the color filter layer is formed by an ink jet method.
  • an overcoat layer may be formed on the color filter layer as necessary. This is to supplement the flatness of the color filter layer in terms of appearance, moisture resistance in terms of resistance, chemical resistance, etc., and in order to secure a barrier property that prevents elution from the color filter layer. It is used for.
  • a thermosetting type acrylic copolymer containing maleimide a transparent resin such as an epoxy resin composition is suitable.
  • the color filter formed on the support substrate can be transferred to the functional film in the same process as the film type color filter.
  • the transfer may be performed on the surface facing the overcoat surface of the color filter as described for the film type.
  • the force may be applied directly on a functional film formed in the shape of a support substrate by an ink jet method.
  • the color filter can be formed on the functional film by drying the color filter layer on the functional film.
  • An overcoat layer may be formed on the color filter layer in the same manner as when the color filter is formed on the supporting substrate.
  • a sixth embodiment of the present invention a concentrator array and a back-emitting light source using the concentrator array, will be described in detail with reference to the drawings.
  • FIG. 30 is a schematic cross-sectional view of the back light source of the present example.
  • an acrylic resin type film having a film thickness of 300 ⁇ m and containing 20% by weight of silica having a maximum particle diameter of 100 nm and an average particle diameter of 50 nm was used.
  • a light collector array is formed on the light guide 701.
  • a light diffusion film 704 is formed on the light collector array.
  • the light diffusion film 704 contains 25% by weight of an inorganic filler having a film thickness of 40 ⁇ m, an average particle diameter of 2 ⁇ m, and a maximum particle diameter of 10 ⁇ m and having a silica force. As with the light guide 701, an acrylic resin type film was used.
  • the back light source of the liquid crystal needs to be white light when displaying color, and the light source 705 is a light emitting diode that emits three colors of R (red), G (green), and B (blue). Are arranged (see Fig. 30 (b)). In this embodiment, three primary colors are used, but two colors having a complementary color relationship, for example, blue and yellow, or a white light emitting diode may be used.
  • the light guide 701 When the light guide 701 is thinner than the light emitting diode of the light source, the light can be collected and guided to the light guide 701 by a well-known method.
  • the reflective film 702 If the reflective film 702 is disposed on the surface of the light guide 701 facing the light collector array, the light from the light source can be efficiently used.
  • the reflective film 702 an aluminum thin film having a thickness of lO / zm was used. There is no upper limit on the film thickness, but 20 m is considered the upper limit considering the limit on weight'thickness. On the other hand, if the lower limit is 1 m or more, it functions as a reflective film.
  • the light collector array 703 formed on the light exit surface of the light guide 701 (in FIG. 30 (c), one power is not shown. .) Since the light is taken in and taken out by using total reflection, the reflective film 702 is not particularly necessary, but the reflective film is used on the back surface of the light guide to reuse the reflected light at the interface. And light can be used efficiently.
  • the light collector can take various shapes as shown in Fig. 31, but the area of the surface of the light collector that contacts the light guide is the surface of the light collector that faces the surface. Must be formed narrower than the area
  • the cross-sectional shape is preferably an arc, a parabola, an ellipse, a part of a trapezoid, or a combination thereof. Furthermore, it is preferable that the top is flat in view of the adhesiveness with the light guide.
  • FIG. 32 is an overhead view of the light collector array.
  • b is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more and 70 ⁇ m. If it is 10 ⁇ m or more, no interference fringes are generated in the liquid crystal. If it is 100 / z m or less, the light utilization efficiency is not lowered.
  • a size of 500 ⁇ m force and 10 ⁇ m does not cause a defect in manufacturing a light collector array, and further does not cause a transfer error during transfer.
  • the thickness is preferably not less than bZ3.
  • the size of b of the light collector is preferably 20 ⁇ m or more and 60 ⁇ m or less. If the dimension b of the light collector is 20 ⁇ m or more and 60 ⁇ m or less, the light collector can be formed with a thickness of 7 ⁇ m-20 ⁇ m.
  • the back-emitting light source could be formed with a thickness of 350 ⁇ m (0.35 mm). Compared to 0.8 mm of the conventional light guide, it can be made thinner. In the case of the present invention, it is necessary to increase the film thickness as the size of the conventional light guide increases. There is no need to increase the thickness. Furthermore, since the backside light emitting source of the present invention can use a flexible thin film as a light guide, impact resistance can be remarkably improved.
  • the light collector array 703 can be obtained by coating the female mold with an ultraviolet-cured resin 709 and curing it with the support film 708 pressed from the resin side, and releasing the female mold force after curing ( ( Figure 33).
  • coat 707 on the base film, and with the UV side pressed against the female mold, UV light is applied to the part pressed by the female mold to cure and release from the female mold after curing.
  • the ultraviolet rays can also irradiate the back side force of the support film 708 (see FIG. 34) or the female side force (see FIG. 35).
  • the curing degree of the resin should be such that the shape of the pattern can be maintained without the polymerization of the resin being completely completed.
  • Examples of the ultraviolet curable resin 709 that can be used include an curable resin cured by active energy rays or heat irradiation.
  • the same acrylic resin as that of the support film 708 is used as an example, but it is not limited to acrylic resin! /.
  • the active energy ray used for curing is preferably ultraviolet rays.
  • Examples of the lamp that generates ultraviolet rays include a metal halide type and a high-pressure mercury lamp.
  • photopolymerization initiator that generates radicals.
  • the photopolymerization initiator used in this case include benzophenone, benzoin methyl ether, benzoin propyl ether, jettoxin.
  • examples include sacetophenone, 1-hydroxyne chlororoofenyl ketone, 2,6-dimethylbenzol diphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphosphine oxide, and benzophenone. Two or more of these photopolymerization initiators may be used in combination.
  • the content of the photopolymerization initiator is preferably 0.01-2 parts by weight with respect to 100 parts by weight of the organic component containing a (meth) acryl group. If the amount is too small, the sensitivity may be poor and curing may be insufficient. If the amount is too large, the sensitivity may be too high, and a curing reaction may occur during compounding, resulting in poor coating.
  • thermal polymerization initiator In the case where thermal polymerization is performed by applying heat, a thermal polymerization initiator can be contained as necessary.
  • the thermal polymerization initiator used in this case include benzoyl peroxide, diisopropyl peroxy carbonate, and t-butyl peroxy (2-ethylhexanoate).
  • the amount used contains a (meth) acrylic group. 0.01 to 1 part by weight is preferable for 100 parts by weight of the organic component.
  • the support film 708 has a high transmittance with respect to the wavelength at which the ultraviolet curable resin 709 is mainly cured, ultraviolet light may be irradiated from the film side (Fig. 34). Further, when the transmittance of the support film 708 with respect to the wavelength is low, the female mold is manufactured using a transparent material that is excellent in transparency with respect to the wavelength, and ultraviolet rays are irradiated from the female mold side (FIG. 35).
  • the light diffusion film is formed as a single film as shown in FIG. 36, but is laminated as shown in FIGS. 37 and 38. It may consist of a film.
  • the light diffusion film is formed immediately above the light collector array 703.
  • a light diffusion layer 712 is formed on a support film 708. Any of the configurations shown in FIGS. 36 to 38 may be used.
  • a light collector array is manufactured on the support film by the method shown in Fig. 33-35.
  • the condensing element array is transferred onto the base film serving as the light guide.
  • the support film may be bonded together.
  • a reflective film that also has a metal isotropic force for example, aluminum having a thickness of 10 m, is disposed in advance on the surface of the base film that serves as the light guide, which faces the surface on which the light collector array is formed.
  • a metal isotropic force for example, aluminum having a thickness of 10 m
  • FIG. 39 a schematic cross-sectional view of the liquid crystal structure using the obtained light collector array, the support film in which the light collector array is formed on the substrate is in contact with the substrate and the light collector array.
  • the liquid crystal is formed on the laminated support film.
  • the base films are bonded together without being cut to form a plurality of liquid crystal panels in a single film shape, and then individual liquid crystal panels are formed by precision cutting.
  • the method of manufacturing the liquid crystal panel of FIG. 40 can be manufactured in the same manner as described above, and thus detailed description thereof is omitted.
  • a process (Fig. 41) can be used in which a specific number of liquid crystal cells are cut and then precisely cut to fit the display size. Furthermore, it is possible to apply a process in which a specific number of liquid crystal cells are cut out and bonded to the light guide plate (Fig. 42).
  • Examples of the cutting method performed in this step include cutting by scanning with a laser beam or punching with a Thomson blade. To obtain a liquid crystal panel by precision cutting, it is necessary to cut the sealing material.
  • the width of the liquid crystal sealing material is desirably 2 mm or more. If it is smaller than this, there is a concern about the occurrence of defects such as peeling during cutting. More desirably, it is 3 mm or more.
  • a liquid crystal panel with a backside light source of about 470 ⁇ m could be manufactured even when a condenser was used as the backside light source.
  • the film thickness of the light guide using a film having a film thickness of 300 / zm as the light guide was manufactured at 200 / zm.
  • the film thickness of the liquid crystal panel was about 370 ⁇ m.
  • the light-emitting layer is composed of a single layer or multiple layers of organic compounds or complexes of several tens of nanometers and several hundreds of nanometers inclusive of the light-emitting layer.
  • the electron and hole coupling efficiency in the light source is improved, and the luminous efficiency is improved by the combined excitation energy. improves.
  • a hole transport layer that plays a role of efficiently transporting holes in contact with the anode electrode (anode), a light emitting layer including a light emitting material, a force sword electrode It becomes the three layers of the electron transport layer that contacts the negative electrode and efficiently transports electrons.
  • a lithium fluoride layer, an inorganic metal salt layer, a layer containing them, or the like may be arranged at an arbitrary position.
  • the light emitting layer is used to obtain white light emission, or the hole transport layer or the electron transport layer is not limited to a single layer, in order to efficiently transport holes or electrons. It may be configured.
  • the organic EL device needs to emit white light (for example, daylight standard light source D65 (color temperature 6500K)) for use as a liquid crystal knocklight. Since none of the materials show white light emission, a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing. As a combination of a plurality of emission colors, those containing the three emission maximum wavelengths of the three primary colors of blue, green and blue may be used, or the complementary colors such as blue and yellow, blue green and orange are used 2 Although it may be one containing two emission maximum wavelengths, it is necessary to emit light that matches the spectral transmittance of each color filter.
  • white light for example, daylight standard light source D65 (color temperature 6500K)
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • a combination of a plurality of emission colors those containing the three emission maximum wavelengths of the three primary colors of blue, green
  • OLEDs emit light by using fluorescence from organic materials and once excite organic materials that serve as light-emitting hosts. Some use phosphorescent dopants that emit light. At present, no material that emits phosphorescence alone has been found, but it goes without saying that any organic material that emits phosphorescence alone can be used! /.
  • White light is a combination of these fluorescent organic materials, a combination of phosphorescent organic materials, and a combination of fluorescent organic materials and phosphorescent organic materials. Also good! ,.
  • the combination of the materials of the light emitting layer for obtaining white light is not particularly limited, and may be selected and combined so as to suit the wavelength range according to the spectral transmittance of each color filter.
  • the luminescent host is a force rubazole derivative, bif Examples thereof include materials containing a partial structure as a unit, such as a nil derivative, a styryl derivative, a benzofuran derivative, a thiophene derivative, and an allylsilane derivative. Of these, carbazole derivatives and biphenyl derivatives are preferred luminescent materials exhibiting high 1 ⁇ emission efficiency.
  • the material is not particularly limited, but any material having a function of transmitting holes from the anode electrode to the light emitting layer may be used.
  • a material that is commonly used as a charge injection material for holes or a known medium force that is used for a hole transport layer of an EL element can be selected and used.
  • any material can be selected from conventionally known materials as long as it has a function of transmitting electrons from a force sword electrode that is not limited to the light emitting layer. Can be used.
  • the light emitting layer can be formed by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, a spray method, an inkjet method, a paint method, or a printing method.
  • a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, a spray method, an inkjet method, a paint method, or a printing method.
  • the reflective film preferably has a reflectance of at least 60% in order to efficiently reflect light emitted from the light emitting layer and external light.
  • the transparent electrode layer has a metallic material strength of several tens of force and several hundreds of nanometers with a transmittance of 60% or more.
  • the metal material used as the anode can be selected and used from known metals, metal oxides, alloys, electrically conductive compounds, mixtures thereof, and the like. Work function force eV or more If this material is used, it is preferable because holes can be efficiently injected into the light emitting layer.
  • Examples of the material of the anode include metals such as Au, conductive materials such as Cul, indium tin oxide (ITO), indium zinc oxide (IZO), SnO, and ZnO.
  • the anode having a high reflectance may be formed by laminating the above material and a metal material having a high reflectance such as aluminum.
  • a metal material having a high reflectance such as aluminum.
  • an anode laminated with ITOZ film in order from the light emitting layer may be used, or aluminum may be formed as a reflective foil, and ITO may be used as an anode through an insulating film, for example, an oxide film.
  • the metal material used as the cathode can be selected from known metals, alloys, electrically conductive compounds, mixtures thereof, and the like, but has a work function force of eV or less. Application of this material is preferable because electrons can be efficiently injected into the light emitting layer.
  • metal material of the cathode sodium, sodium potassium alloy, magnesium, lithium, magnesium Z silver mixture, magnesium Z aluminum mixture, magnesium Z aluminum mixture, aluminum, aluminum Z acid-aluminum mixture, rare earth metal, etc. Is mentioned.
  • a thin film cathode material and an anode electrode material having a high transmittance may be laminated.
  • a transparent force sword electrode can be formed by laminating with thin film aluminum ZITO in order from the light emitting layer.
  • Both the cathode and the anode are formed by vapor deposition, sputtering, or the like.
  • the electrode may be formed by coating an electrically conductive compound dispersed in a suitable binder resin.
  • a pattern having a desired shape is formed by photolithography after the electrode is formed, or a mask having an opening having a desired shape is formed during vapor deposition or sputtering. OK.
  • the organic EL element of Configuration 1 uses PVK as a light-emitting host of a polymer material and phosphorescence of Ir6 and Irl2 as phosphorescent dopants.
  • the embodiment of the power organic EL device is a top emission type that emits two emission maximum wavelengths: Ir6, which has a maximum emission wavelength in red, and Irl2, which has a maximum emission wavelength between green and blue.
  • Ir6 which has a maximum emission wavelength in red
  • Irl2 which has a maximum emission wavelength between green and blue.
  • the surface of the base film for forming the organic EL element was etched by oxygen plasma.
  • a metal anode electrode serving as a reflective electrode layer was formed on the etched base film by depositing aluminum with a thickness of 100 nm and ITO with a thickness of 50 nm by sputtering.
  • PEDOTZPSS solution to form a hole transport layer by depositing a film thickness of 100 n m by (polyethylenedioxythiophene O Kishichiofen polysulfone acid-doped body Bayer Baytron) a printing method. After drying by heating, 30 mg of PVK of the light emitting host, 0.2 mg of phosphorescent dopant Ir6, 2.
  • Omg of phosphorescent dopant Ir12, and electron transport material 2— (4-biphenyl) -6 — (4 t-butylphenol) 1,3,4-oxadiazole (OXD) 2 mg was dissolved in 2 ml of dichloromethane, and deposited by a printing method to a film thickness of lOOnm to form a light emitting layer, which was dried by heating.
  • the materials used for the organic EL element of Configuration 2 are CBP, Ir6, Irl2, a NPD, BC, and Alq3.
  • the organic EL device with this configuration is a bottom emission type that emits two emission maximum wavelengths using phosphorescence of low-molecular-weight light-emitting host CBP and phosphorescent dopants Ir6 and Irl 2.
  • the embodiment of the EL element is not limited to this.
  • the surface of the base film for forming the organic EL element was etched by oxygen plasma.
  • ITO was formed into a film with a thickness of 100 ⁇ m on the etched base film by sputtering to form a transparent anode electrode to be a transparent electrode layer.
  • a NPD was deposited at a deposition rate of 0.5 nmZs by resistance heating in a vacuum deposition method in an environment with a vacuum degree of 104 Pa.
  • a hole transport layer was formed to a thickness of 20 nm.
  • the CBP of the luminescent host is deposited by resistance heating with a deposition rate of 0.5 nmZs
  • the phosphorescent dopant Ir6 is deposited with a deposition rate of 0.005 nmZs
  • the phosphorescent dopant Irl2 is deposited with a deposition rate of 0.02 nmZs.
  • the light-emitting layer was formed by co-deposition with a film thickness of 30 nm.
  • BC was vapor-deposited at a deposition rate of 5 A / s by resistance heating on the light-emitting layer by resistance heating, and then deposited to a thickness of 10 nm.
  • lithium fluoride is vapor-deposited at a vapor deposition rate of 0. Olnm / s by resistance heating to form a film with a thickness of 0.5 nm.
  • aluminum was deposited at a deposition rate of InmZs, and a metal sword electrode was formed as a counter electrode layer by forming a film with a thickness of lOOnm.
  • This solution was uniformly applied to each of the functional films A and B from which the roll force had been cut, using a flexographic printing machine, and dried at 100 ° C for 15 minutes.
  • the surface of the coating film thus obtained was irradiated with linearly polarized ultraviolet rays having a wavelength of around 365 nm of 30 jZcm 2 from an ultra-high pressure mercury lamp, and the photo-alignment operation was performed.
  • the same surface was irradiated with unpolarized ultraviolet light having a wavelength of 313 nm of 50 miZcm 2 from the ultrahigh pressure mercury lamp with a cumulative amount of light, and polymerization operation of the aligned photoalignment material was performed.
  • the seal material was synthesized by combining a nitrogen gas introduction tube, a stirrer, and a cooling tube! 444 parts of isocyanate was charged, 0.1 part of tin octylate was added as a catalyst, and the mixture was reacted at 60 ° C for 1 hour. Next, 260 parts of 2-hydroxypropyl acrylate and 0.4 parts of t-butyl nodroquinone as a polymerization inhibitor and octyl as a catalyst 0.2 parts of tin oxide was added, and the mixture was further reacted at 70 ° C for 11 hours to obtain a carboxyl group-containing urethane acrylate having a residual isocyanate of 0.05%.
  • PTG-850 (made by Hodogaya Chemical Co., Ltd .: polytetramethylene glycol with a number average molecular weight of 850) 18 parts, maleimidocaproic acid 9.8 parts, p-toluenesulfonic acid 1.2 parts and 2 , 6 tert-Butyl-p-Talesol 0.06 parts and 15 parts toluene, 240 torr,
  • the reaction was continued with stirring for 4 hours under the condition of 80 ° C. while removing generated water.
  • reaction mixture was dissolved in 200 parts of toluene and washed 3 times with 100 parts of saturated sodium bicarbonate and once with 100 parts of saturated Japanese salt water.
  • the organic layer was concentrated to obtain a maleimide derivative, polytetramethylene glycol bis (maleimidocaproate).
  • Acidic aluminum spheres with a diameter of 3 m were mixed in the desired part of functional film A or functional film B on which a liquid crystal alignment film was formed (for example, the outer edge or the outer edge of each pixel cell).
  • a photocurable resin composition was applied, placed opposite to each other, bonded together, and irradiated with ultraviolet light at 500 mjZcm 2 using a metalno and ride lamp to cure the sealant. Thereafter, a desired liquid crystal was injected and filled, and the photocurable resin composition was similarly cured to seal the injection hole.
  • the liquid crystal aligning agent was applied onto the support film using a printing machine for applying liquid crystal alignment film, and dried on a hot plate at 150 ° C for 90 minutes to form a dry average film thickness of 0.06 m. did.
  • a rubbing machine that has a roll with a rayon cloth wrapped around this coating film, the rubbing process is performed at a rotational speed of 400 rpm, a stage moving speed of 3 cmZ seconds, and a length of pushing the hair foot of 0.4 mm, followed by washing with water. Then, the film was dried on a hot plate at 100 ° C for 5 minutes to obtain an alignment film.
  • An active drive type liquid crystal display panel will be described as a ninth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of the active drive type liquid crystal display panel of the present embodiment.
  • FIG. 14 shows a transflective liquid crystal display panel described in the prior art. The difference from Fig. 27 is that the knock light part is replaced with an LED light source, a backlight using a condensing film, and a glass substrate with a base film.
  • the liquid crystal panel is composed of the first functional film, the second functional film, and the third functional film force.
  • the pixel electrode 360, the element layer 375 including the wiring and the thin film transistor 361, and the alignment film are transferred onto the base film 362 by the above-described method.
  • the color filter 355, the transparent electrode 356, and the alignment film 357 are transferred onto the base film 354 by the method described above.
  • the third functional film is at least a light collector film, and the light collector 366 and the support film 365 are transferred onto the base film 368.
  • the retardation film 363 and the polarizing film 364 may be formed by being transferred onto the transparent electrode 365 or may be formed by being transferred onto the base film 362.
  • the alignment film 359 formed on the second functional film 371 is replaced with the base film of the first functional film 372.
  • An optical functional thin film 376 composed of a retardation film and a polarizing film formed on the third functional film 377 is transferred to 362.
  • the cover film is not formed on the first functional film, the second functional film, and the third functional film, but they may be formed. Further, the optical functional thin film 376 may be transferred onto the support base material 373 in any order. Transfers can be made in order according to the design according to Figure 3 above.
  • the base film 362 in the configuration of FIG. 14 can be omitted by sequentially transferring a condensing film, an optical functional thin film, a pixel electrode, and the like onto the base film 368.
  • FIG. 16 is a cross-sectional view for explaining the configuration of the active drive type liquid crystal display panel of the present invention.
  • the active drive type liquid crystal display panel of this example is composed of a second functional film in which a knocklight is formed and a first functional film in which a thin film transistor is formed. It is comprised across.
  • the thickness of the second functional film on which the knocklight is formed and the thickness of the first functional film on which the thin film transistor is formed are both about 0.2 mm.
  • the first functional film is a plastic substrate to be a support substrate.
  • a thin film transistor circuit 402 On one surface of the (base film), a thin film transistor circuit 402, a pixel electrode 403, a color filter 404 such as red, green, and blue, a spacer A, and an alignment film 405 are formed.
  • a linearly polarizing film and a retardation film are formed on the other surface. It should be noted that the spacer is not particularly problematic when formed on the second functional film.
  • the second functional film B includes a light collector 412, a support film 411, a reflective electrode 413, a polarizing film 410, a retardation film 409, a transparent counter electrode 408 facing the pixel electrode 403 of the liquid crystal element,
  • the alignment film 407 is formed, the alignment film 405 formed on the first functional film and the alignment film 407 formed on the functional film B are arranged to face each other, and the liquid crystal 406 is arranged in the gap. Is.
  • An alignment film for aligning the liquid crystal in a desired direction is formed on the surface of the backlight and the functional film in contact with the liquid crystal, and a spacer A for keeping the distance between the two constant. Arranged below the rack matrix.
  • the arrangement pitch of the pixel electrodes in Fig. 16 is determined by the definition of the active-drive LCD panel. For example, R (red), G (green), and B (blue) with a resolution of 200ppi (pixEL per inch)
  • the thicknesses of the various layers in FIG. 16 are the transparent electrode, the counter electrode, and the pixel electrode made of an ITO film.
  • the thickness is 0.1 ⁇ m—0.2 m.
  • the thin film transistor and the wiring are Polycrystalline silicon film and metal (usually aluminum or aluminum alloy) with a thickness of 0.1 l / zm—O.
  • the thickness of the backlight part using a condensing film is 0.4 mm—0.6 mm, including the thickness of the base film, 2 ⁇ m—6 ⁇ m, and the difference between the liquid crystal 0.5 m—10 ⁇ m (conventional, 100 ⁇ m—300 ⁇ m), polarizing film: 5 ⁇ m—50 ⁇ m (conventional, 100 ⁇ m—250 111), alignment film: 0. Ol / zm—O.2 111 (conventional, 0.04 m—2), color filters can be developed with 1 111-3 111 (conventional, 100 111-200 111).
  • the transistor layer is 0.5 m
  • the color filter is 2.5 m
  • the polarizing film is 8 ⁇ m
  • the retardation film is 7 m
  • the alignment film is 0 .: L m
  • the liquid crystal part is 6 m. It was formed at ⁇ m.
  • the base film was an acrylic resin type film with a thickness of lOOnm.
  • a backlight using a condensing film could be formed at about 470 m.
  • the liquid crystal panel was about 490 / ⁇ ⁇ (0.49 mm) including the knocklight, and the liquid crystal panel could be thinned.
  • the liquid crystal panel can be wound on a roll with a radius of 40 mm, and a liquid crystal panel could be manufactured as if it were a conventional paper-like sensation.
  • the color filter Z phase difference film Z polarization film Z alignment film can be formed significantly thinner than before by devising the manufacturing method 'materials.
  • the distance between the electrode and the reflective electrode can be made sufficiently smaller than the pixel electrode arrangement pitch of about 40 m.
  • the liquid crystal part (3 m), the retardation film (3 m), the polarizing film (6 m), and the alignment film (0.01 m) could be reduced to 15 m or less. .
  • the reflectance of the reflective film can be made equivalent to that of a conventional reflective liquid crystal display panel, and the light utilization rate of the knocklight is the same as that of the conventional transmissive liquid crystal display panel.
  • a liquid crystal display panel equivalent to the liquid crystal display panel can be obtained.
  • the configuration of the liquid crystal display device using the liquid crystal display panel of the present embodiment operates as a reflective liquid crystal display device by reflecting outside light in a bright! / Place, and in a dark place, It operates as a transmissive liquid crystal display device by the back light.
  • the light efficiency of both the external light source and the back light source is improved as compared with the conventional transflective liquid crystal display device.
  • it since it functions as a reflective liquid crystal display device in bright places, an image equivalent to that of a reflective liquid crystal display device can be obtained. In dark places, the light intensity of the backlight can be lower than that of a transflective liquid crystal display device. it can.
  • a liquid crystal display device is a device that displays an image based on image data input from the outside (for example, displays only an image based on an image signal input from an external force such as a display of a personal computer). Means something).
  • Information terminals such as televisions, notebook personal computers, mobile phones, and PDPs with display functions are distinguished from electronic devices equipped with liquid crystal display devices.
  • the backlight in a bright place can be cut off, which contributes to reduction of power consumption.
  • the battery life can be extended.
  • a method for producing functional film A will be described with reference to FIG. As shown in FIG. 17, a first film having a transistor layer 452 formed on a base film 451, a second film having a color filter formed on a support film 453, and a spacer on a support film 453. And a fourth film in which an alignment film 456 is formed on a support film 453 are prepared.
  • the first film on which the transistor layer is formed is fed out and fed to a roll take-up roll. On the way, the force filter 454 formed on the second film is peeled off, and the support film 453 is peeled off. Transferred onto the transistor layer 452.
  • the spacer 455 formed on the third film is transferred to the color filter 454 after peeling off the support film 453, and finally the alignment film 456 formed on the fourth film. After peeling the support film, it is transferred onto the spacer to form the functional film A.
  • the functional film B is manufactured in the same manner as the functional film A.
  • a fifth film in which a reflective electrode is formed on a base film, a sixth film in which an organic light emitting layer is formed on a support film, a seventh film in which a transparent electrode is formed on the support film, An eighth film having a polarizing film formed on a support film, and a retardation film on the support film Prepare a ninth film in which is formed and a tenth film in which an alignment film is formed on the support film.
  • the fifth film on which the reflective electrode is formed is fed out, and the roll force is also fed to the take-up roll, and the organic light emitting layer formed on the sixth film is peeled off from the support film 453 on the way, and then reflected. Transfer onto the electrode.
  • the transparent electrode formed on the seventh film is peeled off, and the polarizing film formed on the eighth film is peeled off from the organic light emitting layer, and transferred to the transparent electrode.
  • a protective film for protecting the organic light emitting layer made of an organic material is formed by physical vapor deposition.
  • the protective film may be an organic substance or a mixture of an organic substance and an inorganic substance. In this case, the protective film may be formed on a support film and formed on the transparent electrode using the same transfer method.
  • the retardation formed on the ninth film is transferred onto the polarizing film, a transparent electrode is formed on the retardation film by physical vapor deposition, and the tenth film is formed on the transparent electrode.
  • the functional film B is completed by transferring the alignment film formed above.
  • the alignment films formed on the functional films A and B are arranged to face each other at a predetermined angle, and a liquid crystal is filled in the gap between the alignment films to complete a liquid crystal panel.
  • the operation as a transmissive liquid crystal display panel will be described.
  • the white light emitted from the base film 413 as a light guide, the condensing film 412 and the backlight 414 as a force is unpolarized, but only one linearly polarized light is transmitted through the polarizing layer 410 and the liquid crystal layer 406.
  • the alignment state of the liquid crystal molecules is controlled by the presence or absence of an applied potential to the pixel electrode 403 which is a transparent electrode of the pixel. That is, in an extreme alignment state, the downwardly polarized linearly polarized light in FIG. 16 is transmitted through the liquid crystal layer as it is, and light in a specific wavelength range passes through the color filter 404 and the pixel electrode 403 composed of a transparent electrode. The light is transmitted and almost completely absorbed by the polarizing layer 400. Therefore, this pixel displays black.
  • FIG. 16 uses the functional film A in which the thin film transistor circuit and the color filter are transferred in the order of the base film as the functional film A. May be used.
  • FIG. 18 is a cross-sectional view showing the configuration of the first modification. The difference from FIG. 16 is the positional relationship between the thin film transistor and the color filter.
  • the color filter 404 is disposed on the liquid crystal side of the functional film A, but these may be disposed on the backlight side of the functional film B.
  • FIG. 17 is a diagram showing a second modification example of the eighth embodiment. The difference from the ninth embodiment, modification 1 and modification 2 is that the color filter 404 is formed on the functional film on the backlight side and is disposed on the liquid crystal side of the transparent electrode of the liquid crystal element. .
  • the film is formed through a process of sequentially providing films having various functions on the functional film.
  • the functional film B on the backlight side should be given functions such as a reflective electrode, a light emitting layer, a transparent electrode, a sealing layer, a polarizing function, and a transparent electrode in order to form a part of the organic EL device and liquid crystal device.
  • functions such as a reflective electrode, a light emitting layer, a transparent electrode, a sealing layer, a polarizing function, and a transparent electrode in order to form a part of the organic EL device and liquid crystal device.
  • the tenth embodiment of the present invention will be described with respect to an example in which unevenness is provided on the reflective electrode.
  • This example is based on the formation of a reflective film after forming irregularities on a base film or a substrate having a functional film force.
  • the reflective film formed on the irregular surface is: 1. a metal thin film By forming the reflection film, a diffuse reflection film can be obtained. At this time, a semi-transmissive film that transmits and reflects light at a desired ratio can be obtained by forming the reflective film thinly or partially. 2.
  • a desired transflective film made of an insulator other than metal can be obtained by providing a refractive index difference between the reflective polarizing film and the medium forming the light diffusion surface instead of the metal film.
  • the transmissivity of the reflective film is determined by the design of the liquid crystal, and translucency may be required or may not be required. If transparency is not required, it can be solved by designing the transmittance to be 0%.
  • the reflective film it is sufficient to select a material appropriately depending on the wavelength region to be reflected.
  • the visible wavelength region is 300 nm to 800 nm, and the reflectance is high!
  • Metal for example, aluminum Gold, silver, or the like is formed by vacuum deposition or sputtering.
  • a known reflection-enhancing film (for example, refer to Optical Overview 2 (Junpei Uchiuchi, Asakura Shoten, published in 1976)) may be laminated by the above method.
  • the thickness of the reflective film is preferably 0.01 ⁇ m-50 m.
  • the reflective film may be patterned only by a photolithography method, a mask vapor deposition method, or the like, if necessary.
  • the function as a semi-transmissive / semi-reflective film can be controlled by the thickness of the reflective film or the aperture ratio of pattern formation according to the desired transmittance.
  • the method for forming irregularities on the reflective film is as follows: an energy-sensitive resin layer is formed on the above-mentioned irregular surface of the substrate, and the energy sensitivity is obtained through a patterned mask or by a direct drawing method. A method of irradiating the active resin layer with active energy rays to remove the exposed or unexposed portion of the resin layer with a developer, and forming a thin film layer on the surface on which the unevenness is to be formed. There are a method of transferring by pressing the surface of the transfer master and a method of laminating a thin film layer on the transfer master and transferring the thin film layer to the surface where the irregularities are to be formed.
  • the method of forming the energy-sensitive resin layer includes roll coater coating and spin coater coating. Spray coating, dip coater coating, curtain flow coater coating, wire bar coater coating, gravure coater coating, air knife coater coating, cap coater coating, etc.
  • the energy-sensitive resin layer is applied on the concave / convex formation planned surface by the above method.
  • the non-turned mask or direct drawing pattern has a regular or irregular pattern consisting of an active energy ray blocking portion and an active energy ray transmitting portion, and the active energy ray blocking portion and the active energy ray.
  • blocking portion, or the distance between the active energy ray transmissive portion and the active energy ray transmissive portion, 1 mu m - and more preferably to 50 mu is preferably to m fixture 5 m-20 mu m.
  • the pattern shape is not particularly limited, and examples thereof include a circle, an ellipse, a ring shape, a polygon, a curve, a straight line, or a collective shape of each shape.
  • Examples of light sources for active energy rays include carbon arc lamps, ultra-high pressure mercury lamps, high-pressure mercury lamps, xenon lamps, metal nanoride lamps, fluorescent lamps, tungsten lamps, and excimer lasers. preferable.
  • the active energy dose is preferably 0. OljZcm 2 — ljZc m 2. 0. OljZcm 2 — 0.5 jZcm 2 is more preferable. 0.05j / cm 2 ⁇ 0. Lj / cm 2 is particularly preferable.
  • the mask where the energy-sensitive resin layer is removed is the active energy ray blocking part, and the rest is the active energy ray transmitting part After the step of irradiating with active energy rays using a mask formed with
  • the energy-sensitive resin layer is developed. That is, inorganic hydroxides such as sodium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium metasilicate, monoethanolamine, diethanolamine, triethanolamine, tetramethylammo -The ability to spray an aqueous solution containing organic bases such as umhydride oxide, triethylamine, n-butylamine, or salt, or immersion in an aqueous solution to remove unexposed areas, or to remove to a desired depth .
  • inorganic hydroxides such as sodium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium metasilicate, monoethanolamine, diethanolamine, triethanolamine, tetramethylammo -The ability to spray an aqueous solution containing organic bases such as umhydride oxide, triethylamine, n-butylamine, or salt, or immersion in an aqueous
  • the energy-sensitive negative-type resin layer where the uneven shape needs to be maintained are collectively heated or irradiated with active energy rays to correct or fix the surface uneven shape.
  • the energy-sensitive resin layer is a negative type.
  • the composition of the energy-sensitive resin layer is not particularly limited, and is negative or positive. Is not particularly limited.
  • Energy sensitive resin layer strength For example, using a negative resist (CR-700) manufactured by Hitachi Chemical Co., Ltd., a surface uneven shape can be obtained by the above method.
  • a negative resist CR-700
  • a positive type resist PC403
  • JSR JSR
  • the unevenness formed by the above-described method can be used as a mold to form a transfer prototype.
  • the shape is opposite to the original surface irregular shape.
  • the surface shape when transferred using the transfer prototype is the same shape as the original surface shape.
  • a surface obtained by the above-described surface unevenness forming method can be used as a direct transfer master, and further, a transfer master using the surface unevenness of the transfer master as a mold can be used. In this case, since the transfer is performed twice, the transfer pattern has the same surface asperity shape as the first surface asperity shape.
  • the method for transferring the surface irregularity shape is not particularly enumerated, the thin film layer in which the surface irregularity shape is transferred in advance by laminating a thin film layer on the transfer prototype in addition to pressing the transfer prototype against the thin film layer. It is also possible to transfer the image. It is a matter of course that the transfer method described in the embodiment and other examples can be used!
  • the transfer master use is made of a substrate, such as a sheet, belt, roll, roll, or part of a curved surface, on which the entire surface or a necessary portion has a number of fine surface irregularities formed. It can be used by being attached to a pressurizing device, or sandwiched between a pressurizing device and a surface on which a surface irregular shape is formed. Heat, light, etc. may be applied in the pressing process.
  • the surface irregularities can be easily made seamless. It is necessary to design the degree of unevenness on the surface of the transfer master in consideration of deformation during the curing of the thin film layer that is normally transferred.
  • the difference in height between the concave and convex portions is 0.1 / ⁇ ⁇ —15 / ⁇ ⁇ , Is 0.1 ⁇ m—5 ⁇ m, and the pitch force of the convex ridge is 0.7 ⁇ m or more
  • 150 m! / ⁇ is the smaller of the pixel pitches, or even 2 ⁇ m or more 150 ⁇ m or It is preferable that the pixel pitch is smaller or smaller.
  • FIG. 19 is a cross-sectional view of an example of a transfer prototype used for forming a surface uneven shape
  • FIG. 21 is a cross-sectional view of an example of a functional film.
  • the pitch of the convex part is 0.7 m or more and 150 m or the pixel pitch, whichever is smaller, or 2 m or more, 150 m or pixels It is preferable that one of the pitches is smaller or smaller.
  • the value of a depends on the material of the thin film layer. Or 1 or 0.7.
  • the irregularities are arranged in a cycle that is divided by the same force or integer as the pixel pitch, or in an irregular arrangement.
  • moiré does not occur as long as it is used intentionally on the LCD as long as it does not intentionally have periodicity.
  • the surface shape of the uneven surface is not particularly limited, but is not limited to a composite plane, but also a concave or convex curved surface, a concave and convex composite curved surface, or a concave curved surface or convex curved surface approximating a spherical surface or a parabolic surface, or an uneven composite surface.
  • a curved surface is preferred. This is because by using a curved surface, diffused light from a wider range of light source positions can be expected.
  • the average height difference H takes into account the cell gap and And (refractive index 'thickness). Smaller is preferable.
  • the pitch P of the convex portion cannot be made so small that light interference occurs, the lower limit of the average height difference H can be obtained from the relational expression of P and H described above. In the following, we will discuss ⁇ as an absolute value for easy understanding.
  • the transfer master can be produced by directly pressing the transfer master onto a deformable support film.
  • a support film formed by a step of providing a deformable undercoat layer on the temporary support film, pressing the transfer pattern directly onto this layer, and a step of curing the undercoat layer as necessary can be used. Heat, light, etc. can also be applied in the pressing process.
  • this can be realized by depositing a flat film after forming a reflective film having surface irregularities on a base film or a substrate having a functional film force.
  • the surface irregularity is formed on the base film or the substrate that also has a functional film force by the above-described method.
  • the surface irregularity is formed by forming a thin film layer such as an energy-sensitive resin layer on the irregular surface of the substrate.
  • the active energy line is irradiated to the energy-sensitive resin layer through a patterned mask or by direct drawing, and the exposed or unexposed part of the resin layer is removed with a developer.
  • a reflective film is formed. The reflective film is also formed without any particular problem by the above-described method.
  • a planarizing film is formed on the reflective film.
  • the flattening film can be formed by coating, formed by a bonding method, formed by a transfer method, or the like. In the figure, by pasting Examples and transcription examples are shown together.
  • the flattening film is required to be deformed according to the surface irregularity shape on the surface in contact with the surface irregularity shape, and the surface on the opposite side of the surface in contact with the surface irregularity shape must be flat.
  • the material is not particularly limited. For example, an organic resin is used.
  • a reflective thin film may be formed in advance on the surface of the transfer pattern, and a thin film layer may be laminated, and the reflective film may be formed by transferring the thin film layer to the surface on which the unevenness is to be formed.
  • a flattened film consisting of a reflective film and an undercoat layer may be formed.
  • polyethylene such as polyethylene and polypropylene, ethylene and butyl acetate, ethylene and acrylate ester, ethylene and ethylene copolymer such as butyl alcohol, polyvinyl chloride, salt butyl and butyl acetate Polymers, Copolymers of vinyl chloride and butyl alcohol, Polyvinylidene chloride, Polystyrene, Styrene copolymers such as styrene and (meth) acrylate, Polybutyltoluene, butyltoluene and (meth) acrylate Such as butyltoluene copolymer, poly (meth) acrylic acid ester, copolymer of (meth) acrylic acid ester such as butyl (meth) acrylate and butyl acetate, cellulose acetate, nitrocellulose, cellophane, etc. Cellulose derivatives, polyamides, polymers Styrene, poly
  • a photoinitiator, a monomer having an ethylenic double bond, or the like may be added in advance as necessary in order to cure after forming the uneven surface shape. There is no problem even if the photosensitive type is negative or positive.
  • a film that is chemically and thermally stable and can be formed into a sheet or a plate can be used.
  • polyolefins such as polyethylene and polypropylene, polyhalogenated beads such as polychlorinated butyl and poly vinylidene chloride, cellulose derivatives such as cellulose acetate, nitrocellulose and cellophane, polyamide, polystyrene and polycarbonate , Polyimide, polyester, aluminum, copper, etc. Metals.
  • biaxially stretched polyethylene terephthalate having excellent dimensional stability is particularly preferred.
  • a composition containing a deformable organic polymer or an inorganic compound, a force capable of using a metal preferably an organic polymer composition that can be applied onto a film and wound into a film Use.
  • dyes, organic pigments, inorganic pigments, powders and composites thereof may be used alone or in combination.
  • a photosensitive resin composition and a thermosetting resin composition can also be used.
  • the dielectric constant, hardness, refractive index, and spectral transmittance of these thin film layers are not particularly limited.
  • a material that has good adhesion to the film and good peelability from the film For example, acrylic resins, polyethylenes such as polyethylene and polypropylene, polyhalogenated vinylols such as polyvinyl chloride and polyvinylidene chloride, cenorelose derivatives such as cenorelose acetate, nitrosanolose and cellophane, polyamides, polystyrene, Polycarbonate, polyimide, polyester, etc. can be used.
  • what has photosensitivity can be used. In some cases, it is possible to use a photosensitive resin that can be developed with alkali or the like so that only the portions that require surface irregularities are left and unnecessary portions are removed.
  • a resin composition that can be cured by heat or light after the formation of surface irregularities can be used. Furthermore, adhesion with a film can be improved by adding a coupling agent or an adhesion-imparting agent. For the purpose of improving adhesion, an adhesion-imparting agent can be applied to the adhesion surface of the film or thin film layer.
  • the alkali-developable resin preferably has an acid value in the range of 20-300 and a weight average molecular weight in the range of 1,500 to 200,000.
  • SM polymers styrene monomer and maleic Copolymers with acids or derivatives thereof
  • unsaturated monomers having a carboxyl group such as acrylic acid or metatalic acid
  • styrene monomers, methyl metatalate, t-butyl metathal are copolymers with monomers such as acrylate, alkyl methacrylate such as hydroxyethyl methacrylate, and alkyl acrylate having the same alkyl group.
  • SM copolymer is styrene, ⁇ -methylstyrene, m or p-methoxystyrene, p- Styrene such as tinole styrene, p-hydroxystyrene, 3-hydroxymethyl-4-hydroxy-styrene or its derivatives (styrene monomers) and maleic anhydride, maleic acid, monomethyl maleate, monoethyl maleate, maleic acid Copolymerized with maleic acid derivatives such as monopropyl propyl, monopropyl maleate, n-butyl maleate, mono-iso-butyl maleate, mono-tert-butyl maleate (hereinafter referred to as copolymer (I)) Say).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Laminated Bodies (AREA)

Abstract

 従来の液晶ディスプレイは、部品点数が多くて製造コストの低減が困難である。更に、大面積の基板は、搬送に問題があった。本発明は、有機樹脂からなる長尺状の薄膜状フィルムに、各光学機能フィルム・TFT素子、発光素子を形成し、該フィルを転写により積層することで液晶パネルを製造するものである。液晶パネルの基板となるベースフィルムは、厚さが10μmから200μmで、曲率半径が40mm以下の可撓性を有し、熱膨張率が50ppm/°C以下であることが好ましい。更に、少なくとも200°Cの熱履歴に対し、機械的及び、光学的な特性の変化が±5%以下であることがより好ましい。

Description

明 細 書
集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造 方法
技術分野
[0001] 本発明は、集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造 方法に関する。
背景技術
[0002] 近年の情報化社会の進展により、画像装置は、室内の据え置き型は大画面化が要 求され、携帯型はさまざまな場所で使われるために、暗所 '明所のいずれでも使用で きることが必須である。更に、据え置き型'携帯型共に軽量ィ匕が要求されている。この 結果として、従来から使われていた CRT (Cathode Ray Tube)ディスプレイは、平 面ディスプレイに置き換わりつつある。
[0003] 情報機器も、室内の据え置き型力 携帯型としての用途が拡大している。据え置き 型と異なり、携帯型の情報機器はさまざまな場所で使われる。据え置き型は、大画面 ィ匕 '高輝度化'視野角の広さが要求され、携帯型は、使用される場所が多岐にわたる ために、暗い場所力 明るい場所までの画像の視認性と落下等の耐衝撃性の向上 が求められている。
[0004] 平面型のディスプレイは、プラズマディスプレイ(Plasma Display Panel)、液晶 ディスプレイ(Liquid Crystal Display)と有機 ELディスプレイ(Organic Light Emitted Display)が知られている。プラズマディスプレイは動作原理から高電圧を 発生させる必要があり携帯には不向きで、低消費電力で駆動可能な液晶ディスプレ ィと有機 ELディスプレイとが携帯用として向 、て 、る。
[0005] 高輝度 ·視野角の広さから、大型化のディスプレイとしては、プラズマディスプレイが 先行したが、液晶ディスプレイは軽量ィ匕が可能であり、大型化もプラズマディスプレイ と同様に可能であるために最近ではプラズマディスプレイ同様に大型化も行われて いる。
[0006] 一方、携帯型として、プラズマディスプレイは動作原理力も高電圧を発生させる必 要があり携帯には不向きで、低消費電力で駆動可能な液晶ディスプレイと有機 ELデ イスプレイとが携帯用として向!、て!/、る。
[0007] 現状では液晶ディスプレイが主流である力 有機 ELディスプレイは画像の鮮明さで 今後伸びてくることが予想されている。
[0008] 有機 ELディスプレイと液晶ディスプレイとは、個々の画素にアクティブ素子を備えて 画素を駆動する"アクティブ駆動型"と、 2組の直交する短冊状の電極群により画素を 駆動する"単純マトリクス型"がある。アクティブ駆動型は、単純マトリクス型に比べ、応 答時間を飛躍的に短くでき、多数の画素の動画表示が可能となる。更に、コントラスト や階調など画質に関連する制御をきめ細力べ行うことができるようになり、 CRT並みの 動画表示を可能とするものである。この結果、 "アクティブ駆動型"が現在の駆動方式 の主流となっている。
[0009] CRT、有機 ELディスプレイは自発光型であるのに対し、液晶ディスプレイは、透過 光、あるいは反射光を用いることで発色を得るものである。液晶ディスプレイは、画素 電極が光を透過するか、反射するか、一部を透過して一部を反射するカゝ、により、そ れぞれ透過型、反射型、半透過型の 3種類に分類される。
[0010] 据え置き型のように、使用場所が室内に限定されている場合、透過型液晶ディスプ レイや有機 ELディスプレイは画像が鮮明である。しかし、自発光の発光強度よりも明 るい屋外では画像のコントラストが下がり、画像が見えにくいという欠点がある。屋外 でもコントラストが下がらないように発光源の強度を上げると、屋内の画質にギラツキ が生じる、消費電力が大きくなるという問題が発生する。
[0011] これに対し、反射型の液晶ディスプレイは、外光を反射して画像を表示するので屋 外での視認性に優れるが、暗い場所では画像が見えにくいという欠点がある。フロン トライトを設けることで改善できるが、フロントライトの場合、携帯型のように小画面の場 合でも、画面全体を一様に照射することが難 、と 、う欠点がある。
[0012] 透過型と反射型の長所を備えた液晶ディスプレイとして半透過型液晶ディスプレイ がある。半透過型液晶ディスプレイは、画素電極を半透過にしたり開口を設けたりす ることによりバックライトの光と外光との両方を表示に利用するため、屋外と室内の両 方で視認性が確保できる。このため現在の携帯用情報端末はほとんど半透過型液 晶パネルが使われて 、る。
[0013] し力しながら、半透過型液晶ディスプレイの画像は、暗い場所では透過型液晶ディ スプレイや有機 ELディスプレイに劣り、明る ヽ場所では反射型液晶ディスプレイに劣 る。このために、携帯情報端末として更なる画質の向上を図る必要がある。
[0014] さらに、ディスプレイは、情報端末、例えば、携帯電話や PDA (Personal Digital
Assistant,パーソナル ·デジタル ·ァシ スタント)等のモパイル機器や、デジタル カメラ、デジタルビディォカメラ等があり、個人用途から業務用途まで幅広く使われ、 使われる場所もさまざまであり、表示装置の堅牢さも必要とされている。
[0015] 携帯用としてディスプレイパネルに要求される特性は、上記の画質以外に、画面サ ィズ、パネルの薄さ、消費電力等がある。
[0016] 堅牢性はパネルの厚さを薄くする、更に、基板を対衝撃に対し割れない基板を用 いる必要がある。パネルの厚さに関しては、有機 ELディスプレイは原理的に基板 1枚 の厚さまで薄型化が可能である。これに対し、液晶ディスプレイパネルは、反射型液 晶ディスプレイは基板 2枚の厚さまで薄型化が可能であるが、透過型 Z半透過型液 晶ディスプレイはバックライトが必要なため厚くならざるを得ない。
[0017] 画質以外の、外形寸法、重さ、壊れ難さ、消費電力、価格等について考察する。外 形寸法と重さは、バックライト等の光源が不要な有機 ELディスプレイが圧倒的に有利 である。有効な封止技術により、原理的にはほぼ支持基板 1枚の厚さまで薄型化、軽 量ィ匕できる。補助光源を搭載しなければ反射型液晶ディスプレイパネルの厚さと重さ は、ほぼ支持基板 2枚分になる力 それでも有機 ELディスプレイに比べて不利である
[0018] 壊れ難さについては同じ基板を用いる限り大差は無い。消費電力については反射 型液晶ディスプレイが有利だが、補助光源を搭載すれば透過型液晶ディスプレイや 有機 ELディスプレイと同等である。
[0019] 一方、半透過型液晶ディスプレイの場合は、明るい場所ではバックライトを消灯して 消費電力を低減できる。更に、液晶ディスプレイは有機 ELディスプレイに比べて長年 の製品化の歴史があり、価格で有利と考えられる。
[0020] 最高性能の液晶ディスプレイは既に人が認知できる精細度や色数の上限にほぼ到 達しており、これ以上の画質の向上は大きな意味を持たない。従って、現在の研究活 動は画質以外の性能の向上にも重点が置かれている。
[0021] 例えば、低温多結晶シリコン薄膜トランジスタ (poly— Si TFT)技術により、従来は 外付けしていた電子回路をガラス基板上に集積できる。これにより、液晶ディスプレイ の部品点数の削減、狭額縁化、消費電力の低減が既に進展している。また、従来の ガラス基板をプラスチック基板で代替した液晶ディスプレイの研究は、薄型化、軽量 ィ匕、落としても壊れないタフさを追求したものである。
[0022] 一方、 有機 ELディスプレイは、薄型、軽量、暗所での優れた視認性において液 晶ディスプレイを凌ぐ可能性を備えており、発光効率と寿命の改善が研究されて 、る
[0023] 以上に説明したように、据え置き用途には、プラズマディスプレイ、透過型液晶ディ スプレイ、有機 ELディスプレイ力 携帯用途には、半透過型液晶ディスプレイが適し ている。
[0024] 据え置き用と携帯用との両方の用途に向く点で、液晶ディスプレイは、プラズマディ スプレイや有機 ELディスプレイにはない長所を備えたディスプレイであるがことが分 かる。
[0025] 図 27に従来の半透過型液晶ディスプレイパネルの断面図を示す。液晶パネルは、 図 27の上半分に示すように、液晶を 2枚の基板で挟んで構成される。一方のガラス 基板 312の片側には、薄膜トランジスタ 311と画素電極 310とを備えた画素が規則正 しく配列され、薄膜トランジスタ 311を駆動するための電気信号を送るために配線も 形成されている。ここで画素電極 310は、透過率が 30— 70%で設計される。通常は 、透過率 70%で設計されることが多い。
[0026] もう一方のガラス基板 304の片側には、カラーフィルタ 305が配置される。カラーフ ィルタ(CF) 305は画素電極、ブラックマトリクス(BM)は画素電極間の境界に対向す る位置にそれぞれ配置され、透明電極 307がこれらを覆っている。これら 2枚の基板 の表面には、液晶を所望の方向へ配向させるための配向膜 307、 309が各々形成さ れている。また、これら 2枚の基板は、基板の周辺部に配置されたシール材 Bにより固 定され、液晶はこれら 2枚の基板の隙間に封入されている。 [0027] このような液晶を挟んだ 2枚の基板の外側には、様々な光学機能を持つフィルム基 板が貼り合わせられる。ここでは、偏光板 (直線偏光板) 302、 314と位相差膜(1Z4 波長板) 303、 313との 2枚のフィルム基板を積層して、入射光を円偏光にする機能 を持たせている。更に、外光の反射を防ぐための反射防止板 301も設けられる。
[0028] シール材 Bを塗布するときには、後の液晶注入のための開口部を残しておく。また ここで 2枚の基板の隙間を一定に保っために、予め隙間の距離 (例えば 6 m程度) に対応したスぺーサを散布しておく。スぺーサの大きさは画素電極よりもかなり小さい 。これを一定の荷重の下で焼成した後に、シール材の開口部力も液晶を注入し、最 後に紫外線硬化材料でシール材の開口部を封止して液晶パネルが完成する。
[0029] 図 27の下半分にはバックライトの構成が示されて!/、る。
[0030] ノ ックライトは、白色光を出力する、ランプや発光ダイオード (LED) )等の光源 C、 導光体 317、反射板 318、拡散シート 316および、視野角調整シート 315と、力もな つている。
[0031] ここで、ノ ックライトができるだけ一様な面発光体として動作するように、また、光源 C が発する光をできるだけ効率良く液晶パネルの方向へ導くように、これらの構成要素 の設計が最適化されている。通常、導光体としてはポリメチルメタタリレート (PMMA) などの透明のプラスチック基板が用いられ、厚さは 1. Omm程度である。反射板 318 、拡散シート 316、視野角調整シート 315は、各々の光学機能を果たすための加工 を施したもので、図 27のバックライトの構成要素を全てカ卩えると厚さは 2. Omm程度 になる。
[0032] 次に、図 27を参照しながら半透過型液晶ディスプレイの、透過型液晶ディスプレイ としての動作を説明する。
[0033] 光源 Cから発せられた白色光は導光体 317に入射し、反射板 318によって進路を 変えられて拡散シート 316で拡散される。拡散光は視野角調整シート 315によって所 望の指向性を持つように調整されたのちに液晶パネルに到る。
[0034] この光は無偏光の状態だ力 ある一方の直線偏光のみが液晶パネルの直線偏光 板 314を透過する。この直線偏光は位相差板(1Z4波長板) 313によって円偏光に なり、ガラス基板 312、半透明な材料で形成された画素電極 310、等を順次透過して 液晶層 308に到る。
[0035] ここで画素電極 310と対向する透明な電極(対向電極) 306との間の電位差の有無 により、液晶分子の配向状態が制御されている。即ち、ある極端な配向状態において は、図 27の下方力も入射した円偏光がそのままの状態で液晶層 308、透明電極 30 6を透過し、ある特定の波長範囲の光がカラーフィルタ 305を透過して位相差板(1Z 4波長板) 313に到り、偏光板 (直線偏光板) 314をほぼ完全に透過する。従って、こ の画素はカラーフィルタで決まる色を最も明るく表示する。
[0036] また、別の極端な配向状態においては逆に、液晶層を通過する光の偏光状態が変 化して、カラーフィルタを透過した光を位相差板(1Z4波長板) 303と偏光板 (直線 偏光板) 302とがほぼ完全に吸収する。従って、この画素は黒を表示する。これら 2つ の状態の中間の配向状態では光が部分的に透過するため、この画素は中間色を表 示すること〖こなる。
[0037] 次に、半透過型液晶ディスプレイの反射型液晶ディスプレイとしての動作を説明す る。
[0038] 外光が図 27の上方カゝら液晶パネルに入射した場合には、偏光板 (直線偏光板) 30 2と位相差板(1Z4波長板) 303を透過した円偏光が液晶層を通過し、画素電極によ つてその 30%が反射されて表示に利用される。従って、反射型液晶ディスプレイとし て動作する。
[0039] 次に、半透過型液晶ディスプレイの動作を説明する。
[0040] 半透過型液晶ディスプレイの場合は、画素電極は半透明な材料で形成されており 、透過型液晶ディスプレイとしての動作はほぼ前述の通りである。但し、画素電極の 光の透過率を例えば 70%に設計した場合には、 30%の光が表示に用いられないこ と〖こなる。一方、外光が図 27の上方カゝら液晶パネルに入射した場合には、直線偏光 板と 1Z4波長板を透過した円偏光が液晶層を通過し、画素電極によってその 30% が反射されて表示に利用される。従って、反射型液晶ディスプレイとして動作する。
[0041] 従来は、薄膜トランジスタを形成する基板は、薄膜トランジスタを製造する際の高温 に耐えるようにガラス基板が用いられている。一方、より低温で薄膜トランジスタを形 成する技術も研究されているが、近年の小型化に伴い、機能素子も液晶を駆動する 薄膜トランジスタと同じ基板形成するためには素子特性に問題があり実用化されては いない。
[0042] 薄膜トランジスタは、石英基板上に形成する高温ポリシリコントランジスタ 'ガラス基 板上に形成する低温ポリシリコントランジスタ 'ガラス基板またはプラスチック基板上に 形成するアモルファスシリコントランジスタの 3種類がある。液晶パネルの小型化のた め、従来外付けであったドライバ ICをガラス基板上に形成する事が行われている。ァ モルファスシリコントランジスタは最も低温で製造が可能であるが、ドライバ ICを動作 するだけの特性をプラスチック基板上で実用化することはできて ヽな 、。このために、 現状の製造技術では低温ポリシリコントランジスタをガラス基板上に形成することが現 実的である。
[0043] 図 28に示すように、プラスチック基板を用いた透過型液晶ディスプレイは、例えば A sanoらの論文 (A. Asano and T. Kinoslma、 'Low— temperature polyc rystalline— Silicon TFT color LCD panel made of plastic substrates 、 " in Society for Information Display International Symposium Dig est of Technical Papers (Society for Information Display ^ Boston、 2002、) Vol. 33、 pp. 1196— 1199. )【こ見るよう【こ試作されて!ヽる。
[0044] 上記論文では、エッチング阻止層を設けたガラス基板上に、既知の低温多結晶シリ コン薄膜トランジスタの製造方法によりポリシリコン TFTを形成し、ポリシリコン TFT上 に取り外し可能な接着剤を形成し、仮基板を貼り付ける(図 28 (a) )。次に、フッ酸 (H F)によりガラス基板をエッチング除去する(図 28 (b) )。その後、エッチング阻止層を 除去後、接着剤を介して厚さ 0. 2mmのプラスチック基板にポリシリコン TFTを接着さ せる(図 28 (c) )。その後、仮基板を除去し、次に、取り外し可能な接着剤を除去する (図 28 (d) )。その後、該基板と、カラーフィルタ '透明電極等が形成され基板と対向さ せ間隙に液晶分子を注入することでアクティブ駆動液晶表示パネルを形成する。
[0045] 従来の透過型 Z半透過型液晶ディスプレイはバックライトを用いるために厚くなり、 且つ、重くなる。この課題を解決する手法として,有機 ELを用いる構成が提案されて いる。
[0046] 有機 ELをバックライトに使ったもの力 特開 2000— 29034号公報ゃ特開 2002—9 8957に開示されている。以下、図 29を用いて説明する。
[0047] 図 29 (a)に示される特開 2000—29034号公報は、従来の焼成による配向膜の形 成による有機 ELの劣化防止のために、予め配向処理を施した配向膜 623を表示駆 動基板 621及び対向基板 622にラミネートすることで従来の焼成による配向膜を形 成する際の高温による有機 ELの劣化が防止される。
[0048] 図 29 (a)の液晶表示パネルは、予め別々の工程で製造された TFTアレイ基板 621 と、面発光体を備えた対向基板 622に、ポリマーフィルム をラミネートし、その後、通 常のラビング処理を行うことに より、上記のポリマーフィルムに液晶組成物 624に対 する配向機能を付加し、配向膜 623を形成する。その後、 TFTアレイ基板 621と対 向基板 622との配向膜 623を対向させその間隙に液晶組成物 624を充填したもので ある。
[0049] 図 29 (a)の構造は、図 27に示した従来技術の図における配向膜が有機フィルムを ラミネートした点および、ノ ックライトを有機 ELに置き換えたもので、有機 ELを形成す るための基板は必要である力 従来の導光板が数 mmであるのに対し、ガラス基板が 0. 4mmであることから薄膜ィ匕が図られている。
[0050] 一方、特開 2000— 98957に、透過型の液晶パネルのバックライトを従来の蛍光管 方式に変えて、有機 EL発光素子を用いることで薄膜化'軽量ィ匕を図るものがある。図 29 (b)に構造を示す。
[0051] 液晶表示パネルは、第 1電極基板 650、第 2電極基板 660及びこれら基板間に保 持された液晶層を備えている。
[0052] 第 1電極基板 650は、透明なガラス基板 651で構成されており、液晶層と接する側 の表面には、走査線 652、信号線 653 (図示せず)、画素電極 654、 TFT655、補助 容量 656 (図示せず)、及び補助容量線 657が形成されている。
[0053] 第 2電極基板 680は、透明なガラス基板 681上の液晶と接する面に液晶の対向電 極となる透明電極 682が形成され、ガラス基板 681の基板透明電極 682が形成され て ヽる面と対向する面には有機 ELの発光咅分 683、 685、 687, 689力形成され、 発光咅分 683、 685, 687, 689の間隙となる 発光咅分 684、 686, 688力 S形成さ れている。 [0054] 図 29 (b)は、液晶パネルの対向電極が形成された基板の裏面に有機 ELカゝらなる 平面発光素子を形成することで、従来必要とされていたバックライト用の導光板を無く すことで薄膜ィ匕を達成するものである。この結果、基板を図 29 (a)の基板が 3枚必要 な構成に比べ、基板を 2枚に減らすことが可能となり、液晶パネルの薄膜ィ匕が可能と なる。
[0055] 一方、液晶パネルを構成する基板に長尺状のフレキシブルフィルムを用いる技術 は特開昭 54-126559号公報に開示されている。し力しながら同公報には、透明電 極と配向膜が形成された長尺状のフレキシブルフィルムフィルムを用いて単純マトリツ タス駆動型の白黒液晶パネルを形成する例が示されているに過ぎない。特開昭 54— 126559号公報は、大型で平滑なガラス基板が高価であり、製造が困難であった時 代に長尺のプラスチック基板を用いて液晶パネルを製造するものである。更に、特開 昭 62— 150218号公報、特開平 6— 27448号公報には、 2枚の電極上に配向膜が形 成された長尺のフレキシブルフィルムの間隙に液晶を狭持する技術が開示されてい る。
[0056] し力しながら、液晶パネルのカラー化、動画を表示することが要求された。応答速度 を高速ィ匕するため、駆動方式が液晶の画素を直接薄膜トランジスタで駆動するァクテ イブマトリックス駆動に切り替わった。更に、カラー表示のため、光学機能膜も、配向 膜以外に位相差膜、偏光膜等が必要となる。また表示の視認性の向上も要求され透 過型'反射型'半透過型の種々のタイプの液晶パネルが開発され、これらに対応でき る技術ではな力つた。
[0057] 昭和 50年前後はガラス基板の大型化 ·平坦性が問題視されていたが、これらの問 題もガラス基板の製造技術の改善により課題が克服され、薄膜トランジスタを用いた アクティブ駆動型液晶パネルにはガラス基板が最適であるとされている。
[0058] 一方、透過型 ·反射型 ·半透過型の種々のタイプのカラー液晶パネルは、複数の光 学機能膜を基板に貼り付けていくことが必要となる。この工程は液晶パネルに 1枚 1 枚貼り付けるため、光学機能薄膜を貼り付ける工程が多い。
[0059] これに対して、貼り付け工程の簡易化を目的として、特開 2002-358024号公報、 特開平 2002— 148607号公報等に、ガラス基板上に長尺状のフレキシブルフィルム を貼り付ける例が開示されている。
特許文献 1:特開 2000— 29034号公報
特許文献 2:特開 2002— 98957号公報
特許文献 3 :特開昭 54— 126559号公報
特許文献 4:特開昭 62-150218号公報
特許文献 5:特開 2002— 358024号公報
特許文献 6:特開平 2002 - 148607号公報
非特干文献 1 :A. Asano ana T. Kmoshita、 'Low— temperature polycrysta lline— Silicon TFT color LCD panel made of plastic substrates in Society for Information Display International Symposium Digest of Technical Papers (Society for Information Display ^ Boston、 200 2、) Vol. 33、 pp. 1196-1199.
発明の開示
発明が解決しょうとする課題
[0060] 以上に説明したように、液晶パネルは電極間に液晶を狭持する構成である。このた めに、駆動電極と対向電極とを各々別々の基板上に形成する必要がある。
[0061] 従来、 TFT (薄膜トランジスタ)は高温の熱処理を必要とするために、ガラス基板が 必須と考えられて 、たが、 Asano等の方法を用いることでプラスチック基板を用いる ことの可能性が示唆されて 、る。
[0062] 一方、液晶の製造方法は周知であるが、駆動電極が形成された一方の基板と、対 向電極が形成された他方の基板との両方の基板上に、偏光 '位相差'配向等の機能 を持つ膜を貼り合わせることで液晶パネルが製造されている。
[0063] バックライトは液晶パネルとは別の工程で製造され、液晶パネルの背面に配置され る。
[0064] 半透過型及び透過型液晶パネルの構成は、有機 ELをバックライトに用い、 TFTに Asano等の方法を用いて製造した場合も、基板が 3枚必要となる。この結果、液晶パ ネルの厚さが 0. 4mm程度、ノ ックライトが 0. 2mm程度となり、全体の厚さは、最低 でも 0. 6mmは必要である。 [0065] 薄膜 ·軽量型の表示パネルの要求は高ぐ電子インクを用い、厚さが 0. 3mmで、 液晶表示パネル 10分の 1の厚さで、アクティブマトリックス方式装置を米ィー 'インク 社が開発している。
[0066] 液晶ディスプレイパネルは、矩形の基板 (ガラス基板または、プラスチック基板)に光 学機能を持つフィルムを貼り付けて構成されて ヽる。矩形の基板を用いるために下記 の問題点が避けられない。
[0067] 液晶表示装置は、携帯電話に使用される、 2. 1インチサイズから、パーソナルコン ピュータの 15、 17インチから、テレビ用の 17インチワイドから 40インチワイドサイズの 多岐の表示画面サイズが要求されている。これに対し、生産ラインを基板のサイズ毎 に設けることは困難であるため矩形の大面積の基板を用いる必要がある。
[0068] 液晶表示装置を製造する際の TFT形成工程は、シリコンウェハ上に半導体素子を 形成する際の工程と類似のものであり、枚葉加工を行う際には 1枚の母材上に多数 を形成したほうが生産性が上がることから大型化が進んできている。しかし、液晶表 示装置の場合、数センチのサイズである半導体装置と異なり大きいものでは対角 40 インチを超えるサイズとなることから、母材であるガラス基板は lm X I. 5mを超える大 面積のものが提案されて 、る。
[0069] 生産ラインは多種類のサイズに対応するために矩形の大面積の基板を用いる必要 がある。
[0070] 液晶パネルは、 TFTが形成された基板および Zまたは、対向電極が形成された基 板に光学機能を有する膜 (以下、光学機能膜と称す。)を一枚一枚貼り付けている。 図 27に示した液晶パネルでは、液晶を狭持する 2枚の基板は、液晶と対向する面は 各々配向膜が、一方の面には、位相差膜、偏光 (板)等の光学機能膜が貼り付けら れている。
[0071] これらの膜は、一枚一枚、基板上に貼り付ける必要があり、製造工程が長くなり、製 造のターンアラウンド(Turn around time : TAT)が長くなるという欠点もあった。
[0072] 更に、矩形の基板を用いる場合、基板を搬送は、 1枚ごとまたは、カセットに収納し て行われる。しかし、最近の 1. 5m角を越えるような基板の大型化に伴い、下記の問 題が生じている。 [0073] ガラス基板の場合、(1)枚葉での搬送は、ガラス下面を支持して行うため、ガラス基 板の大型化に伴い装置の設置面積が著しく大型化し、巨大な製造装置が必要となつ ている。また、カセットによる搬送では、基板同士が接触しないように空間をあけて挿 入できるカセットを用いるが、カセットの大型化 ·重量増大に伴い搬送が困難になる。 (2)従来、ガラス基板の厚みは薄くなる方向であるが、更に基板が大型化すると基板 の自重により、基板の厚さを薄くできなくなる。半導体集積回路の製造ラインでも生じ ているように、基板の膜厚を厚くする必要すら生じる。
[0074] プラスチック基板の用いた場合、(1)プラスチック基板は可撓性があるため、搬送時 に橈みを考慮した設計を行わないと、加工装置への挿入できない等の問題を生じる
[0075] 一方、これに対し、プラスチック基板をガラス等の硬 、基板に貼り合せてカ卩ェするこ とが提案されている。しかし、この場合、ガラス基板を用いた際の(1)と同じ問題が発 生する。更に、貼り合わせ、剥離の工程が増え、ガラス基板も必要となるために、その 材料費が増える。
[0076] 液晶パネル画面の大型化、小画面サイズの多面取りにより、基板の厚さは厚くなつ ていく。一方、室内 ·室外、明るい場所から暗い場所、晴天から雨天と使用状況が多 岐にわたる携帯用の表示装置は薄型化が要求される。
[0077] 大型基板を用いて、基板の薄型化に対応すると、製造装置はより精度が要求され 製造装置が高価になり、基板の大型化による液晶パネルの原価低減を阻害する。
[0078] 更に、従来の半透過型液晶ディスプレイパネルでは、画素電極の透過率を例えば 0. 3から 0. 7程度に設定することにより、周囲が明るい所と暗い所の両方で良好な視 認性を確保している。従って、同じ画素面積を持つ反射型液晶ディスプレイに比較し て半透過型液晶ディスプレイの外光の利用率は低くなり、表示が暗くなる。また、同じ 画素面積を持つ透過型液晶ディスプレイに比較してバックライトの発する光を利用す る効率が低くなり、表示が暗くなる。即ち、従来の半透過型液晶ディスプレイは、反射 型液晶ディスプレイや透過型液晶ディスプレイに比較して光の利用効率が低ぐ表示 が暗いという課題がある。
[0079] 本発明は上記の事情のもとに考案されたものである。即ち、薄型の液晶表示パネル を提供することを目的とする。また、製造工程の簡略ィ匕により、液晶表示パネルの製 造コストを低減することを目的とする。
課題を解決するための手段
[0080] 本発明は、曲率半径力 S40mm以下の可撓性を有し、熱膨張係数が 50 1!17で以 下の長尺状の光拡散機能を有するフィルム上に、有機樹脂からなる集光体がアレイ 状に形成され、集光体のフィルムと接する面と対向する面は平坦で、且つ、フィルムと 接する面の面積よりも狭 、ことを特徴とする集光フィルムである。光拡散機能を有す るフィルムは、ヤング率が、 1. 5GPa以上であることが好ましい。
[0081] 光拡散機能を有するフィルムは、第 1のロール力 第 2のロールに搬送され、搬送 時に表面に薄膜が形成可能である。更に、 200°Cの熱履歴に対し、機械的及び、光 学的な特性の変化が ± 5%以下であることが好ましぐ 250°Cの熱履歴に対し、機械 的及び、光学的変化が士 5%以下であることがより好ま 、。
[0082] 光拡散機能を有するフィルムは、透明な粒子で、フィルムと屈折率が異なる光拡散 粒子を含有することが好ましい。透明な粒子が酸ィ匕亜鉛、 ITOまたは、シリカであり、 粒径が 0. 5 m以上で、フィルムの膜厚の 1Z2以下であることが好ましい。
[0083] 光拡散機能を有するフィルムと集光体の榭脂は同一であることが好ましい。更に、 榭脂は、アクリル榭脂または、環状ォレフィン榭脂からなることが好ましい。
[0084] 上記の集光フィルムの集光体の光拡散膜と対向する面で熱膨張係数が 50ppmZ °C以下である長尺状の導光機能を有するフィルムに積層することができる。
[0085] 導光機能を有するフィルムは、ヤング率が、 1. 5GPa以上であることが好ましい。
[0086] 更に、導光機能を有するフィルムは、第 1のロール力 第 2のロールに搬送され、搬 送時に光拡散層上に集光体を形成した集光フィルムを集光体の光拡散膜と対向す る面で積層することがでさる。
[0087] 導光機能を有するフィルムは、 200°Cの熱履歴に対し、機械的及び、光学的な特 性の変化が ± 5%以下であることが好ましぐ 250°Cの熱履歴に対し、機械的及び、 光学的変化が士 5%以下であることがより好ま U、。
[0088] 導光機能を有するフィルムは、無機フィラーが配合されていることが好ましぐ無機 フィラーの粒径は lnm— 380nmであることが好ましい。 [0089] 無機フイラ一は酸ィ匕チタン、酸化亜鉛、アルミナまたは、酸ィ匕ケィ素カゝらなることが 好ましい。
[0090] 更に、導光機能を有するフィルムは、光透過率が、 80%以上であることが好ましい
[0091] また、導光機能を有するフィルムは、アクリル榭脂または、環状ォレフィン榭脂から なることが好ましい。
[0092] 更に、光拡散機能を有するフィルム、集光体および、導光機能を有するフィルムの 榭脂は同一であることが好ましぐアクリル榭脂または、環状ォレフィン榭脂からなるこ とが好ましい。
[0093] 光拡散機能を有するフィルム、集光体および、導光機能を有するフィルムが形成さ れた集光フィルムの、光拡散機能を有するフィルム上に、光学機能を有する薄膜と、 液晶素子の透明な対向電極と対向電極上に配向膜と形成した機能フィルムがある。 この機能フィルムと、液晶の画素電極等力 なる液晶機能薄膜と光機能薄膜と配向 膜と有する機能フィルムの各々の配向膜を対向して配置し、配向膜の間隙に液晶を 狭持することで液晶パネルが形成できる。
[0094] 光拡散機能を有するフィルム、集光体および、導光機能を有するフィルムが形成さ れた集光フィルムを所望の形状に分割し、導光体の集光体が載置された面と略直交 する少なくとも 1つの面に隣接して光源を配することでバックライトが形成できる。
[0095] 本発明は、集光体の形状の凹凸を有する支持体の凹凸部に有機榭脂を充填する 工程と、該充填された榭脂を、光拡散機能を有する長尺状の薄膜に転写する工程を 有する集光フィルムの製造方法である。
[0096] 更に本発明は、光拡散機能を有する長尺状のフィルムに有機樹脂からなる薄膜を 形成する工程と、薄膜に集光体の形状を転写する工程とを有する集光フィルムの製 造方法である。
[0097] 集光体の形状を転写する工程は、集光体の形状能の凹凸を有する型を押圧する 事で行える。
[0098] 集光体の形状を転写する工程は、押圧状態で有機榭脂を硬化する工程を含んで も良い。有機樹脂の硬化は紫外線照射で行うことができる。 [0099] 集光体上に導光機能を有する薄膜を積層する工程を含んでいても良い。
発明の効果
[oioo] 本発明は、可撓性のあるベースフィルム上に液晶パネルおよび Zまたは、ノ ックラ イトを構成する各種薄膜を、ロール 'ツー'ロールプロセスを用いて転写により製造す る点に特徴がある。
[0101] 特に、導光板を用いるバックライトをロール 'ッゥ 'ロールプロセスを用いて製造する ことができるという点に特徴がある。
[0102] 本発明は、フィルム間で転写を行うために、基板とフィルムとの間で転写を行う際の 間欠動作を行う必要がない。このために転写する装置の構成が単純ィ匕される。更に、 基板を用いる場合は、基板毎に転写する必要がある。このためにフィルム上に形成 する機能薄膜を基板サイズに合わせて形成する、あるいは、基板に転写後機能薄膜 をフィルム力も切り離す必要がある。
[0103] また、ベースフィルム上に直接各種の機能薄膜を形成する場合、光機能薄膜は、 榭脂を熱または光を用いて硬化させる。いったん硬化した榭脂に更に光や熱を加え ると硬化した榭脂が分解するあるいは、硬化が進み特性の劣化が生じる等の問題が 発生する。このため、材料の最適な硬化条件を選択できない場合が生じる。
[0104] 本発明によれば、各機能薄膜はその膜の最適条件で製造できる。理由は、転写時 に印加される熱は低温で短時間であるので機能薄膜の劣化は生じないからである。
[0105] 可撓性のあるベースフィルムにロール'ツ^ ~ ·ロールプロセスを用いて支持フィルム 上に形成された各種の機能薄膜は、ベースフィルムと同等の可撓性を有している。こ の結果、液晶パネルを構成する機能薄膜が、基板の橈みにより剥がれることがない。 ベースフィルムと支持フィルムの熱膨張率をあわせておくとベースフィルム上に転写 される機能薄膜にフィルムの膨張率の差によるストレスがない。この結果、転写された 膜の剥がれの原因を除くことができる。
[0106] 更に、ノ ックライトに導光体を用いても、液晶パネルの軽量ィ匕が計られ、更にベース フィルムと同等の可撓性を有するので、落下等の衝撃を基板となるベースフィルムが 橈むことで吸収することができ、耐衝撃性が格段と向上する。
[0107] 携帯型の表示装置のようにあらゆる場所での使用が想定される機器の表示装置に 使う場合、機器の落下による表示装置の破損を低減できる。
[0108] また、ロール 'ッ一'ロールプロセスでフィルム上に、複数の機能薄膜を形成しなが ら製造できる。大型のディスプレイパネルや、一枚の基板力も多数のディスプレイパ ネルを製造する場合でも、ロールに巻き取られた状態で搬送できるので、狭いスぺー スで、装置間の搬送が可能となる。また、搬送時の破損等の事故がおきない。
[0109] 更に、液晶パネルが大型化されても導光板となるフィルムの膜厚を厚くする必要が ないので液晶パネルの薄型ィ匕 '軽量ィ匕が阻害されることがない。
[0110] 従来のガラス基板では、ガラス基板の硬度により基板と基板上に形成される光学機 能薄膜との熱膨張率の違いによる基板のそりは問題視されていな力つた。一方、ガラ ス基板の膜厚を更に薄くした場合および、プラスチック基板を用いる場合基板の熱膨 張の差によるそりが予想されている。
[0111] 本発明では、機能フィルムとバックライトの主な構成要素である基板 (ベースフィル ム)が同一の部材であるので材料の熱膨張率の違いに起因する液晶パネルの反りを 抑制できる。
図面の簡単な説明
[0112] [図 1]本発明の製造方法の概念図。
[図 2]本発明の製造方法の概念図。
[図 3]本発明の偏光膜'位相差膜の転写方法の概念図。
[図 4]本発明の液晶パネルの製造方法の概念図。
[図 5]本発明のベースフィルの構造。
[図 6]配向膜の製造方法および、配向膜の転写方法の概略図。
[図 7]本発明の有機 EL素子の断面構造図。
[図 8]本発明の、ベースフィルム上にバリア膜を製造する製造装置の概念図。
[図 9]本発明の薄膜トランジスタの製造方法を示す工程断面図。
[図 10]本発明の、薄膜トランジスタの転写方法を示す工程断面図。
[図 11]本発明のカラーフィルタの製造方法を示す概念図。
[図 12]本発明のカラーフィルタの製造方法を示す概念図。
[図 13]本発明のカラーフィルタの製造方法を示す概念図。 [図 14]本発明の液晶パネルの断面構造図。
[図 15]液晶パネルの製造方法。
[図 16]本発明の液晶パネルの断面構造図。
[図 17]本発明の液晶パネルの製造方法を示す概念図。
[図 18]本発明の液晶パネルの断面構造図。
圆 19]凹凸を薄膜に形成する転写ローラの断面図。
[図 20]反射特性の測定装置。
圆 21]凹曲面構造の反射膜の断面図。
[図 22]凹曲面構造の反射膜の良好な特性を示す、凹凸のピッチと高さの関係。 圆 23]凹凸複合曲面構造の反射膜の断面図。
[図 24]凹凸複合曲面構造の反射膜の良好な特性を示す、凹凸のピッチと高さの関係
[図 25]凹凸をもった反射膜の表面を平坦化する方法。
圆 26]凹凸をもった反射膜の液晶パネルの構造断面図。
[図 27]従来技術の液晶パネルの断面構造図。
圆 28]従来技術の TFTの転写の製造方法示す工程説明図。
[図 29]従来技術の液晶パネルの断面構造図。
[図 30]導光体を用いた裏面光源。
[図 31]集光体の形状を示す図。
[図 32]集光体アレイの俯瞰図。
[図 33]集光体の製造方法を示す図。
[図 34]集光体の製造方法を示す図。
[図 35]集光体の製造方法を示す図。
圆 36]光拡散膜と集光体アレイの構造を示す図。
圆 37]光拡散膜と集光体アレイの構造を示す図。
圆 38]光拡散膜と集光体アレイの構造を示す図。
[図 39]液晶パネルの断面図。
[図 40]液晶パネルの製造方法を示す図。 圆 41]液晶パネルの製造方法を示す図。 圆 42]液晶パネルの製造方法を示す図。 符号の説明
1 真空チャンノ ー
2 卷さ出しローノレ
3 ベースフイノレム
4 排気ポンプ
5 ターゲット
6 排気ポンプ
7 温調ドラム
8 反応ガス導入管
9 放電ガス導入管
10 排気ポンプ
11 卷取りロール
100 偏光膜
101 機能フィルム A
102 支持基材
103 光学機能層
104 機能フィルム B
105 ベースフイノレム
106 不透明電極
107、 110 有機 EUi
111 カノくーフイノレム
112 機能フィルム
113 偏光膜
115 支持フィルム
116 位相差膜
151 配向膜 152 紫外線光源
153 偏光フィルタ
154 ベースフィルム
155 トランジスタ層
321 表示駆動基板
323 配向膜
322 対向基板
324 液晶組成物
351 反射防止膜
352 偏光膜
353 位相差膜
354 ベースフィルム
355 カラーフィルタ
356 透明電極
357 配向膜
358 液晶
359 配向膜
360 画素電極
361 配線、薄膜トランジスタ
362 ベースフィルム
363 位相差膜
364 偏光膜
365 透明電極
366 有機 EL層
367 反射電極
368 ベースフィルム
371 第 2の機能フィルム
372 第 1の機能フィルム 373 支持基材
374 支持基材
375 素子層
376 光学機能薄膜
377 第 3の機能フィルム
380 ベースフィルム
381 TFT層
390 ベースフィルム
391 感光性榭脂
392 カバーフィルム
393 CF基材
394 ブラックマ卜リックス
395 R (赤)
396 G (緑)
397 B ( )
398 スぺーサ
399 カラーフィルタ 401 ベースフィルム
402 薄膜トランジスタ、配線
403 画素電極
404 カラーフィノレタ
405 配向膜
406 液晶
407 配向膜
408 対向電極
409 位相差膜
410 偏光膜
411 透明電極 412 有機 EUi
413a 透明電極
413 反射膜
414b 平坦化膜
414a フイノレム
414 ベースフィルム
A スぺーサ
451 ベースフィルム
452 トランジスタ層
453 支持フィルム
454 カラーフィルタ
455 スぺーサ
456 配向膜
621 表示駆動基板
623 配向膜
622 対向基板
624 液晶組成物
650 第 1電極基板
660 第 2電極基板
654 透明電極
655 TFT
682 透明電極
683、 685、 687、 689 発光部分
684, 686, 688 非発光部 701 導光体
702 反射膜
703 集光体アレイ
704 光拡散膜 705 光源
706 発光ダイオード
707 樹脂
708 支持フィルム
709 紫外線硬化榭脂
710 紫外線照射装置
711 光拡散材
712 光拡散層
Figure imgf000024_0001
714 封止材料
715 対向基材フィルム
716 液晶セノレ
717 集光体アレイ付ベースフィルム
718 導光板
719 精密裁断
720 荒裁断
721 貼り合わせ
801 バリア層形成
802 位相差層形成
803 偏光層形成
804 TFT転写
805 カラーフィルタ(CF)形成
806 反射電極形成
807 有機 EL形成
808 上部電極形成
809 バリア層形成
810 偏光層形成
811 位相差層形成 812 透明電極形成
813 配向処理
814 液晶を注入
815 封止
820 第 1の機能フィルム 830 第 2の機能フィルム
1000ノ 一スフイノレム
1001 位相差機能
1002 偏光機能
1003 反射防止機能
1010 塗
1020 乾燥,冷却
1030 カバーフィルム貼り付け
1040 カバーフィルム剥離
1050 偏光膜の転写
1060 位相差膜の転写
1070 CF基材の貼り付け
1080 露光
1090 ベースフィルム剥離
1100 現像,乾燥
1110 カバーフィルム貼り付け
1120 シール材
1130 スぺーサ
1140 仮基板
1150 取り外し可能な接着剤
1160 ポリシリコン TFT
1170 エッチング阻止層
1180 ガラス基板 1190 接着剤
1200 プラスチック基板
2000 転写ローラ
A 重合操作
B 出射光
BU 青
C レーザー光
D ボロンイオンドーピング
E リンィ才ンドーピング
F p型化した領域
G エッチング
GR 緑
BM ブラックマ卜リックス
R 赤
発明を実施するための最良の形態
[0114] 本発明は、有機樹脂からなる長尺状の基板カゝらなる薄膜フィルム上に、各光学機 能フィルム 'TFT素子、発光素子を形成し、該フィルを貼り合わせることで液晶パネル を製造するものである。
[0115] 本発明における、液晶パネルは、例えば、図 14、 16、 18に示されるような構成をし ている。液晶パネルは、バックライトとなる平面発光素子部、液晶素子部から構成され る。以下、図 14を用いて構成の概略を説明する。図 14においてバックライトを構成す る平面発光素子部は本発明の集光フィルムを用 、たバックライトである。
[0116] 集光フィルムは、従来の導光体を用いる構成と類似した構成で、導光体よりも薄く 構成でき、且つ、実績のある光源を使えるという利点がある。
[0117] ノ ックライトは、集光の機能を有する機能フィルム (集光フィルム)と光源とから構成 されている。集光フィルムは、ベースフィルム 368上に、集光体 366および支持フィル ム 365からなる積層膜である。光源は集光フィルムの側面に形成されている。
[0118] 上記の本発明の集光フィルムは、光拡散機能を有するフィルム上に有機樹脂から なる集光体がアレイ状に形成されたものであり、導光機能を有するフィルム(以下、こ れを導光体と称する場合がある。 )と積層され端部に配置される光源とともにバックラ イトを構成する。
[0119] 液晶素子部は、第 1のベースフィルム 362の一方の側は、光学機能を有する光学 機能薄膜である位相差膜 363、偏光膜 364が形成されている。第 1のベースフィルム 362の他方の側には、液晶素子の機能の一部を構成する、配線、薄膜トランジスタ 3 61、画素電極 360および、配向膜 359からなる素子機能薄膜が積層されている。
[0120] 液晶素子部を構成する第 2のベースフィルム 354の一方の側は、光学機能を有す る光学機能薄膜である位相差膜 353、偏光膜 352、反射防止膜 351が形成されてい る。第 2のベースフィルムの他方の側には、液晶素子の機能の一部を構成する、カラ 一フィルタ 355、透明電極 356及び、配向膜 357からなる素子機能薄膜が積層され ている。
[0121] 液晶素子部は、これら光学機能薄膜や素子機能薄膜が積層された、第 1の機能フ イルムの配向膜 359と第 2の機能フィルムの配向膜 357とを間隙を介して対向させ、 該間隙に液晶 358を充填することで形成されている。
[0122] これら光学的機能を有する光学機能薄膜や、素子の機能の一部をなす素子機能 薄膜は、製造時には、ベースフィルム以外の支持フィルム等に積層されている。これ らのフィルムを総称して機能フィルムと称している。また、該機能フィルム上に形成さ れた各光学機能薄膜や素子機能薄膜を総称し機能薄膜と称している。
[0123] 配線、薄膜トランジスタ、画素電極以外に能動素子 ·受動素子を形成する場合もあ り、更に、配線、薄膜トランジスタ、画素電極及び、他の能動素子、受動素子は 1層で 形成されて ヽな 、場合もあるので、これらの層の各々も素子機能薄膜と ヽつても良 ヽ
[0124] ノ ックライトは、上述の集光フィルム以外にも、有機 EL素子 ·無機 EL素子のような 発光素子が面上に形成され、薄膜ィ匕できるものであってもよぐ面全体が発光してい なくとも良いことは明白である。例えば、垂直共振器型面発光レーザダイオード (VC SEL ; Vertical Cavity Surface Emitting Laser)や共鳴共振器型発光ダイォ ード(RCLED ; Resonant Cavity Light Emitting Diode)等であっても薄膜 に形成することができれば使用できることは 、うまでもな 、。
[0125] カラーフィルタや配向膜は、液晶パネルの動作力もは、素子機能を有する素子機 能薄膜といえるが、光学機能を有する光学機能薄膜とも言える。
[0126] 素子機能薄膜'光学機能薄膜はこの例に限るものではなぐ液晶パネルの構成によ り変わる事があることは自明である。
[0127] 図 1を用いて本発明の第 1の実施の形態を説明する。図 1は、有機樹脂からなる長 尺状のフィルムを用いた液晶パネルの製造方法を示す概念図である。ロール状に卷 き取られたベースフィルム 1000は、縮まないようにテンションをかけて送りだしロール 力も巻き取りロールへ送られる。ベースフィルムは途中で、例えば、位相差機能 1001 、偏光機能 1002及び反射防止機能 1003等の様々な機能を順次付与され、光学機 能を付与された機能フィルム Aが形成される。
[0128] 図 2 (a)は、ベースフィルム上に素子機能を形成する製造方法で、有機 EL発光素 子をベースフィルム上に形成する製造方法を示す概念図である。送りだしロールから 送り出されたベースフィルム 105上に、物理的蒸着法により不透明電極層が形成さ れ、蒸着法または、塗布法により、有機材料からなる有機 EL層からなる発光層が形 成され、その後透明電極が不透明電極と同様に物理的蒸着法により形成され、発光 素子が形成された機能フィルム Bが形成され、巻き取りロールに巻き取られる。
[0129] 図 2 (b)は、発光素子が形成された機能フィルム Bに、光学機能が付与された機能 フィルム Aから光学機能を有する層のみを転写する工程を示す概念図である。
[0130] 巻き取りロール B力 機能フィルム Bが巻き取りロールに送り出され、その途中で、 同様に送りだしロール力も送り出された機能フィルム Aは、光学機能層 103が支持基 材 102から剥離され、機能フィルム Bの素子層 106上に転写される。素子層 106上に 光学機能層 103が転写された機能フィルム Bはその後、巻き取りロールに巻き取られ る。
[0131] 支持基材 102に要求される特性は、熱膨張係数と可撓性がベースフィルムと同等 であることが好ま 、。熱膨張係数と可撓性はベースフィルム同等であることが好まし い。熱膨張係数であれば 50ppmZ°C以下であることが好ましい。より好ましくは、ベ 一スフイルムとの熱膨張係数の差が ± 30%以下であることが好ましぐ ± 15%以下 であることがより好ましい。
[0132] フィルム間の可撓性及び熱膨張係数の整合を行っておくことで、転写される膜にス トレスが蓄積されることがなぐ剥がれの原因とならない。
[0133] 熱膨張係数は、無機フィラーを配合することで熱膨張係数を小さくすることができる 。無機フイラ一は、フィルムの透明性を維持するため、光の波長より小さいことが必要 であり、紫外線を用いて榭脂の硬化を行う場合は要求される紫外線の波長以下の粒 径である必要がある。光硬化に用いられる紫外線は 200nm— 300nmの波長である ことが多い。この場合は、 lnm— 200nm以下が好ましぐより好ましくは lnm— ΙΟΟη mである。 200nm以下であれば、支持基材 102上に形成された光硬化性の膜を波 長 200nm— 300nmの紫外線を支持基材 102を介して照射することができる。支持 基材 102を介して紫外線を照射することができるので、支持基材 102の上面に製膜 する機構を、支持基材 102の下面に紫外線照射機構を設けることができる。この場合 、支持基材 102の上面に、製膜する機構と紫外線照射機構とを設けなくとも良い。装 置設計の余裕度が高くなり、更に、製造装置を小型化できるという効果がある。
[0134] 無機フィラーの粒径は lnm以下であっても問題はないが現在の技術では lnm以 下のフィラーを製造することは困難である。
[0135] 無機フイラ一は 5重量%以上 90重量%以下が好ましぐ 10重量%以上 50重量% 以下であるほうがより好ましい。 5重量%以上であれば熱膨張率を下げる効果が得ら れ、 90重量%以下であれば脆く割れやすくなると 、うこともな 、。
[0136] 上記範囲内でベースフィルムの熱膨張係数と整合するように無機フィラーを配合す れば良い。
[0137] 尚、カバーフィルムも支持フィルムと同様に熱膨張係数をベースフィルムと整合を取 つておくことが好ましい。
[0138] 無機フィラーの例としては、酸化チタン,酸化亜鉛,アルミナ,酸ィ匕ケィ素などが挙 げられる。無機フィラーを配合する方法としては、例えば、分散能力の高い混合装置 を用いて乾燥した粉末状の酸化ケィ素微粒子を分散させる方法や、有機溶媒に分 散されたコロイド (ゾル)とその他の配合物を混合し必要に応じて撹拌しながら減圧す ることにより有機溶媒を除去する方法、有機溶媒に分散されたコロイド (ゾル)とその 他の配合物を混合し必要に応じて脱溶媒した後流延してさらに脱溶媒させる方法、 などが挙げられる。分散能力が高い装置としては、ビーズミル等が挙げられる。
[0139] 更に、支持基材 102上に形成される膜が偏光膜等の大気中の水分等で劣化が生 じる場合は、支持基材 102の表面にガスノリア層を設けておくことが好ましい。支持 基材 102の一方の面に設ける場合、どちらの面に設けても効果はあるが、膜を形成 する面に設けるとより効果的である。
[0140] 膜が紫外線を照射することで硬化する場合ガスノリア層は、紫外線に対し透明でな くてはならない。このため、ガスバリア層の材料としては、ポリビュルアルコール、ポリ 塩ィ匕ビユリデン等の有機材料,有機材料と粘土鉱物 (Al O
2 3一 2SiO · 5Η 0
2 2 、 Al O
2 3
•SiO - 2-3H O等の非晶質粘土鉱物や、結晶質粘土鉱物である(Si, AD O四面
2 2 4 体シート、 (Al, Mg) (O, OH)八面体シート)等の無機物との有機無機複合材料,
6
酸ィ匕ケィ素ゃ酸ィ匕アルミニウムなどの無機材料の薄膜が挙げられる。湿度が高 ヽ環 境でのガスノリア性に優れることと、厚さが薄くても効果が高 、ことから無機材料を用 いるほうが膜厚を薄くすることができる。さらに、これらの層を 2層以上重ねて積層する ことちでさる。
[0141] 有機材料は、ガスノリア膜として無機材料に比べ塗膜'積層膜として使えるので低 コストではあるが、温度依存性'耐湿性の点では無機材料力 なるガスノリア膜に劣 ることは否めない。
[0142] ガスバリア層の厚さは、有機材料および有機無機複合材料の場合は 1 m— 10 mであることが、無機材料の場合 10nm—: L mであることが好ましい。有機材料およ び有機無機複合材料の場合、 1 μ m以上であれば酸素や水蒸気等の通常の空気の 成分が液晶層や有機 EL層への侵入することを十分に防止することができる。 10 m 以下であれば膨張率等のベースフィルムの物性に影響を与えることがない。
[0143] 無機材料の場合、 10nm以上であれば酸素や水蒸気等の通常の空気の成分が液 晶層ゃ有機 EL層への侵入することを十分に防止することができ、 1 μ m以下であれ ば屈曲時に割れることもな 、。
[0144] ガスノリア層をフィルム上に形成する方法としては、有機材料および有機無機複合 材料の場合は塗布法を、無機材料の場合は各種の薄膜成膜法を用いることができる 。塗布法は液状の有機材料またはその溶液等の液体をフィルム上に塗布し、乾燥や 硬化することで製膜するものである。薄膜成膜法としては、蒸着,イオンプレーティン グ,スパッタリングなどの物理的成長法、減圧雰囲気下でのプラズマ CVD,触媒 CV D,大気圧下での CVDなどの化学気相成長法が挙げられる。これらの中で、低温で 緻密な膜を得られることからスパッタリングが特に好ましい。
[0145] 支持基材 120上に形成される膜が紫外線硬化型の場合は透明性が要求されるの で第 2の実施の形態等で詳細が示されているベースフィルムを用いることができる。 更に、ポリエチレン榭脂、ポリプロピレン榭脂、ポリエステル榭脂、エチレンビニル共 重合体榭脂、ポリ塩化ビュル榭脂、セルロース榭脂、ポリアミド榭脂、ポリイミド榭脂、 ポリカーボネート榭脂、ポリスチレン榭脂、酢酸ビュル榭脂で光透過機能があるもの を使うことができる。
[0146] 膜を、水分や紫外線から保護する必要がある場合は、支持基板 120上にガスバリ ァ層を設けるだけでなぐ水分遮蔽性などに優れる榭脂からなるカバー膜を積層して おくことが好ましい。このような榭脂として、ポリエチレン、ポリプロピレン、ポリビニルァ ノレコーノレ、セノレロース、ポリカーボネート、ポリエステノレ、アタリノレ、ポリエーテノレスノレホ ン、ポリアミド、ポリイミド、ポリオレフインなどがあげられる。なかでも、トリァセチルセル ロースなどのセルロース、ポリカーボネート、ポリエチレンテレフタレートなどのポリエス テル、アクリルなどが好ましく用いられる。
[0147] カバーフィルムとしては、化学的および熱的に安定で、薄膜層との剥離が容易であ るものが望ましい。具体的にはポリエステル、ポリエチレン、ポリプロピレン、ポリエチレ ンテレフタレート、ポリビュルアルコール等の薄いシート状のもので表面の平滑性が 高!、ものが好ま 、。剥離性を付与するために表面に離型処理をしたものを用いても よい。
[0148] 更に、カバーフィルムにガスノ リア層を形成すると効果的である。ガスバリア層は力 バーフィルムの両面または一方の面に設けることができる。ガスバリア層をカバーフィ ルムの一方の面に設ける場合は、カバーフィルムの支持基材 120上に形成された膜 と接する面に設ける方が効果的である。
[0149] 図 3をもちいて、ベースフィルム上に、機能素子層や光学機能層を形成する製造方 法についてより詳細に説明する。図 3は、有機 EL発光素子の製造方法の一部の製 造工程を示す概念図である。
[0150] ベースフィルム 105に反射電極が形成された機能フィルム力 送りだしロールから 卷取りロールに送り出される。反射電極が形成された機能フィルムは卷取りロールに 巻き取られる途中で次の発光層となる有機物力 なる薄膜が形成される。有機 EL層 110は、反射電極上に蒸着法または、塗布法により発光層となる有機物からなる有 機 EL層 110を形成する。図 3 (a)は塗布法を例としている。塗布法の場合は、発光層 を塗布 1010により形成後、乾燥 ·冷却 1020を行った後、卷取りロールに巻き取られ る。図 3 (a)では、透明電極を連続して成膜しないので、有機 EL層 110上にカバーフ イルム 111をラミネート法で積層(カバーフィルム貼り付け 1030)後、卷取りロールに 巻き取られている。
[0151] カバーフィルムとしては、化学的および熱的に安定で、薄膜層との剥離が容易であ るものが望ましい。具体的にはポリエチレン、ポリプロピレン、ポリエチレンテレフタレ ート、ポリビュルアルコール等の薄いシート状のもので表面の平滑性が高いものが好 ま 、。剥離性を付与するために表面に離型処理をしたものを用いてもょ 、。
[0152] 有機 EL層 110が形成されている機能フィルムは、その後、有機 EL層 110上に透 明電極を真空蒸着あるいはスッパッタ法で形成し、有機 EL発光素子が完成する。有 機 EL層 110形成時と同様に透明電極上にカバーフィルム 111を形成し、卷取り口一 ラに卷き取る。有機 EL発光素子が形成された機能フィルムに偏光膜と位相差膜とを 積層する製造方法を、図 3 (b)を用いて説明する。
[0153] 有機 EL発光素子が形成された機能フィルムを送り出しロールカゝら送り出し、機能フ イルム上のカバーフィルムを剥離 1040し、次に、機能フィルム上の機能薄膜層(透明 電極) 112上に偏光膜をラミネート法で積層する (偏光膜の転写 1050)。支持フィル ム 115上に偏光膜 113が形成され、偏光膜 113上にカバーフィルム 111が積層され た機能フィルムは、カバーフィルム 111が剥離され、その後、支持フィルム 115を介し 、転写ローラ 2000により機能フィルムの機能薄膜層(透明電極) 112上に偏光膜 11 3をラミネート法により積層する。次に、支持フィルム 115を剥離し、偏光膜 113を露 出し、位相差膜 116を偏光膜 113上にラミネート法により積層 (位相差膜の転写 106 0)する。
[0154] 位相差膜 116は、支持フィルム 115を剥離後に、カバーフィルム 111を介して転写 ローラ 2000により偏光膜 113上に転写される。
[0155] 転写ローラを介しラミネート法を用いて転写する場合は、転写ローラ 2000で直接機 能薄膜 112上に転写しても良いが、フィルムを介して転写するほうが機能薄膜 112、 転写される偏光膜 113及び位相差膜 116に塵や傷が入らな 、ので好ま 、。
[0156] 転写時に機能薄膜にローラによる傷をつけないためにはカバーフィルムが耐擦傷 性のあるプロテクトフィルムであることが好まし 、。耐擦傷性のある材料としてはポリエ ステル樹脂またはポリエチレン榭脂が好ましい。
[0157] 支持フィルムとカバーフィルムとの間に機能薄膜が形成された機能フィルムの場合
、支持フィルムとカバーフィルムの 、ずれを先に剥離してもよ 、。
[0158] 転写ローラによる転写は、圧着法、熱圧着法、接着剤による転写等があり、どの転 写法を用いるかは設計上の問題に過ぎな 、。
[0159] 図 3 (b)では、偏光膜 113を転写後、位相差膜 116を連続して転写しているが、図 3
(a)のように、ロールからロールのプロセスで偏光膜 113のみを転写し、次に同様の プロセスで位相差膜 116を転写しても問題はな ヽ。
[0160] 位相差膜 116を転写後、図示しないが、図 3 (a)と同様にカバーフィルム 111を位 相差膜 116上にラミネートしてもよい。
[0161] 転写、剥離を容易にするために、フィルムと薄膜との間に、剥離層を設けておくこと もできる。図 3において転写ローラは 1個しか設けていないが、転写ローラのフィルム を介して反対の面に、平面な台や、ローラを設けても良い。ロール'ッ一'ロールプロ セスの場合、平面な台よりも 1対のローラの間で加圧する方がフィルムに傷が入らな いので好ましいといえる。
[0162] カバーフィルムと機能薄膜との密着性を改善するために、カバーフィルムに接着層 を設けることもできる。接着層は、カバーフィルムを機能薄膜層にラミネートする際は 密着し、剥離する際は簡単に剥離できることが好ましぐ例えば、紫外線や熱により密 着力が落ちる接着剤が好ましい。
[0163] バックライト付の液晶パネルの製造方法を図 4に示す概念図を用いて説明する。 [0164] ベースフィルムとなる第 1の有機フィルム力もなる薄膜上に、バリア層を形成 (バリア 層形成 801)する。バリア層の目的は、後の工程で使用される材料とベースフィルム の材料との相互作用を防止することである。 SiO、 SiON等の無機材料がこの目的
2
に適している。次に、位相差の機能を付与するため、光学異方性を持つ材料として 例えば重合性液晶をフィルム基板に塗布することにより位相差層を形成 (位相差層 形成 802)する。その後、偏光機能を持つ層を位相差層の上に形成 (偏光層形成 80 3)する。この工程は、例えば、別途作成した偏光機能を持つ薄膜をフィルム基板にラ ミネートすることにより実現される。次に、ガラス基板上に従来の製造方法によって形 成された薄膜トランジスタ力もなる回路をフィルム基板へ転写し、 TFT回路層を形成 ( TFT転写 804)する。最後に、ドライフィルム上に予め形成したカラーフィルタ (CF) Zブラックマトリックス (BM)、スぺーサを一括してフィルム基板に転写する(カラーフ ィルタ形成 805)ことによりカラーフィルタ層を形成して、第 1の機能フィルム 820が完 成する。ここでカラーフィルタ層は、インクジェット法によりカラーフィルタ材料をフィル ム基板へ塗布してもよい。
[0165] 次に、ノ ックライトの製造工程を説明する。ベースフィルムに反射電極を形成 (反射 電極形成 806)する。続けて有機 EL層を形成 (有機 EL層形成 807)する。有機 EL 材料が低分子材料の場合は蒸着法、高分子材料の場合はインクジェットによる塗布 法等の手法を用いて形成する。次に、有機 ELの上部電極となる導電性透明材料か らなる透明電極を形成 (上部電極形成 808)してバックライトの発光源となる有機 EL 素子層が完成する。その後、有機 EL素子の上面にノリア層を形成 (バリア層形成 80 9)して保護層とし、第 1の機能フィルムと同様に位相差層 (位相差層形成 811)と偏 光層(偏光層形成 810)とを形成する。最後に、液晶素子の上部電極となる透明電極 を一様に形成 (透明電極形成 812)して第 2の機能フィルム 830が完成する。
[0166] 最後に、第 1の機能フィルム 820と第 2の機能フィルム 830とをロール力も切断する 。その後、それぞれに配向処理 813を施し、シール材を表示領域の周辺に塗布して 貼り合わせ、液晶を注入 814して注入口を封止 815することによりバックライト付ァク ティブマトリックス液晶パネルが製造される。
[0167] 第 1の機能フィルムと第 2の機能フィルムとに配向処理を施した後、シール材を表示 領域の周辺に塗布し、第 1の機能フィルムと第 2の機能フィルムとを貼り合わせた後に 、切断し液晶を注入し、注入口を封止することでバックライト付アクティブマトリックス液 晶パネルを製造してもよい。この際、第 1の機能フィルムと第 2の機能フィルムとは、各 々の機能フィルムの機能薄膜面 105を対向させ、各々の機能フィルムの長手方向が 直角になるように貼り合わせると、貼り合わせる際の位置合わせが容易になる(図 5 (c )参照)。
[0168] 本実施の形態においては、フィルムがロールからロールに巻き取られながら機能薄 膜 112が形成されていく。ベースフィルム 105上に形成される機能薄膜 112上に送り のためのロールが接触しているとロールと機能薄膜 112の表面とが接触し、機能薄 膜 112表面に塵が付着するという問題が生じる。図 5 (a)、 (b)に示すように、ベース フィルム 105上に形成する光学機能層や機能素子層は、ベースフィルムの送付方向 と直行する端面力も離して形成することが好ましい。ベースフィルム 105は送付時に 機能素子を形成して 、くので、ベースフィルム表面に橈みが生じな 、ように設計する 必要がある。端面との離間距離は、送りロールの形状で決まり、ベースフィルム 105 の端面にパーフォレーシヨンを設けても良い。
[0169] 実施の形態で説明した各機能フィルムは、ロールに巻き取られた状態で、次工程に 搬送することも、ロールに巻き取られた状態で保管することもできる。
[0170] 本実施の形態の機能フィルムは、ロールに巻き取られた状態で各工程の作業が終 了する。ロールに巻き取られた状態は、搬送'保管が容易で且つ、従来の基板を使 つた製造方法に比べ狭 、保管スペースで良!、。
[0171] 次に、本発明の第 2の実施の形態である、有機榭脂からなるベースフィルムについ て説明する。
[0172] 液晶表示パネルを形成する支持基板となるベースフィルムは、薄ぐ耐熱性が高ぐ 光、特に可視光領域の光に対し透明で且つ、光学的に等方的である、即ち位相差 力 S小さ 、プラスチック材料であることが要求される。液晶パネルを形成する支持基板 以外に、機能薄膜の支持フィルムとして用いることもできる。
[0173] さらに、可撓性については、耐曲げ性として、曲率半径、 r=40mm以下であること が望ましい。最低でも r= 40mmであれば、ロール'ッ一'ロールプロセスで用いられ る最小直径が φ = 100mmのロールを用いることが可能となる。更に、可撓性が高い 支持基板を使った液晶パネル、液晶表示装置は、落下による衝撃に対しても、橈む ことで衝撃を吸収することで耐えることができる。 r= 20mm以上であれば、ロール'ッ 一 ·ロールでの搬送中に、フィルムが割れたり、皺がよったりすることがない。
[0174] また、電子ブックのように薄型の表示装置を形成した場合でも、従来の文庫本等の ぺーパ一.バックスの感覚を保つことができる。
[0175] 携帯用途に用いられる装置に表示用装置として搭載される場合、耐衝撃性が高い 、落下に対する耐性が強いことは重要である。従来のガラス基板は、材料の特性から 、耐衝撃性は落下により衝撃が加わる場所によって異なり、縁に衝撃が加わった場 合は簡単に割れてしまうという欠点がある。一方、プラスチック基板を用いた場合、ガ ラスよりも耐衝撃性は向上するが、縁に衝撃が加わった場合は、支持基板及び、支 持基板に搭載されているトランジスタや配線に衝撃が直接加わる点はガラス基板と同 様である。
[0176] 支持基板の可撓性を上げるだけでなぐ液晶表示パネルの支持基板を薄くすること で、液晶パネルの軽量ィ匕を図ることで質量低減により耐衝撃性を向上することができ る。
[0177] 厚みとしては、ロール 'ッ一'ロールプロセスに用いるだけであれば、厚さの上限は ないが、表示装置全体の小型化、軽量化を考慮すると、ガラス基板の 400 mよりも 薄いほう力好ましく、さらに、プラスチック基板の 200 mより薄いほうがより好ましい。 表示装置全体の小型ィ匕 '軽量化の要求を満たすためには、 10 μ m— 150 μ mであ ることが好ましぐ 10 μ m— 100 μ mである方がより好ましい。また 10 μ m以上あれば 、搬送中に皺を生じたり割れたりすることもない。
[0178] 耐熱性に関しては、機能性の膜を形成する際に使われる、温度に対して、光学的、 機械的な変形がないことが要求される。このためには、少なくとも 200°Cの温度履歴 に対し、機械的及び、光学的な変化が 5%以下であることが好ましぐより好ましくは、 250°Cの温度履歴に対し、機械的及び、光学的な変化が 5%以下であることがより好 ましい。
[0179] 光学的変化とは、温度により、光透過性の劣化、位相差の増加を示し、機械的変形 とは可撓性の劣化、寸法の変化を示す。
[0180] 透明性に関しては、可視光(380nm— 800nm)領域での透過性が要求される。少 なくとも 450nm— 700nm、より好ましくは 400nm— 700nm、もっとも好ましくは可視 光領域である 380nm— 800nmでの透過性が高!、ことである。 450nm— 700nmで 透過性が高ければ、実用上問題なぐ 400nm— 700nmであればさらに好ましぐも つとも厳密な色合いを要求される場合でもほぼ十分であるといえるが、さらに好ましく は可視光領域である 380nm— 800nm全域で光透過度が高!、ことが望まし!/、。透明 な波長領域が広いほど、本来の色に近い色再現が可能な画像表示装置が製造でき る。所望のベースフィルムの厚さに対し光透過率 (波長、 550nm)は、 80%以上、更 に好ましくは、 85%以上、より好ましくは 90%以上であれば特に問題はない。
[0181] ベースフィルムの厚さに対し、位相差(波長、 550nm)は、 1Z4え、 ΐΖ2 λ位相差 膜に対し無視できる値である必要がある。通常は、可視光領域の波長、 550nmで、 範囲でベースフィルムの平面の法線方向における値が 1Z4えの 10%以下(約 10η m以下)であることが好ましぐさらに好ましくは 5%以下 (約 5nm以下)である。位相 差(波長、 550nm)は、 lOnm以下であれば、問題は生じない。
[0182] ベースフィルムに位相差機能を持たせるのであれば、 1Z4 λ、 1/2 λの値であつ ても良い。
[0183] ベースフィルムに用いることができるプラスチック材料として、耐熱性については、ァ クリル樹脂,エポキシ榭脂,環状ォレフィン榭脂,ポリイミド,ポリアミドなどが挙げられ る。一方、透明性に優れ光学等方的であるためには、アクリル榭脂,環状ォレフィン 榭脂を用いることが好ましい。
[0184] また、ベースフィルムはディスプレイを製造するプロセス中での寸法変化が小さいこ とが必要であること力も熱膨張率は、 50ppmZ°C以下であることが好ましい。プラス チック材料は、無機フィラーを配合することで熱膨張率を小さくすることができる。無 機フイラ一は、フィルムの透明性を維持するため、可視光の波長より小さいことが必要 であり、粒径が 380nm以下であれば可視光の短波長端の透過性は損なうが実用上 特に問題を生じない。より好ましくは、 1一 lOOnmで、この場合、可視光領域全体で 透明性を損なうことはない。 lnm以下であっても問題はないが現在の技術では lnm 以下のフィラーを製造することは困難である。
[0185] 尚、ベースフィルムを光学機能薄膜の支持フィルムとして使う場合、紫外線により硬 化させる場合がある。この際は、ベースフィルムは紫外線の透過率が高いことが好ま しいので、無機フィラーの粒径は、 lnm— 200nmが好ましぐ lnm— 200nmがより 好ましい。 lnm以下であっても問題はないが現在の技術では lnm以下のフィラーを 製造することは困難である。
[0186] 無機フイラ一は 5重量%以上 90重量%以下が好ましぐ 10重量%以上 50重量% 以下であるほうがより好ましい。 5重量%以上であれば熱膨張率を下げる効果が得ら れ、 90重量%以下であれば脆く割れやすくなると 、うこともな 、。
[0187] 無機フィラーの例としては、酸化チタン,酸化亜鉛,アルミナ,酸ィ匕ケィ素などが挙 げられる。無機フィラーを配合する方法としては、例えば、分散能力の高い混合装置 を用いて乾燥した粉末状の酸化ケィ素微粒子を分散させる方法や、有機溶媒に分 散されたコロイド (ゾル)とその他の配合物を混合し必要に応じて撹拌しながら減圧す ることにより有機溶媒を除去する方法、有機溶媒に分散されたコロイド (ゾル)とその 他の配合物を混合し必要に応じて脱溶媒した後流延してさらに脱溶媒させる方法、 などが挙げられる。分散能力が高い装置としては、ビーズミル等が挙げられる。
[0188] 尚、本第 2の実施の形態のベースフィルムは、有機榭脂からなる薄膜であるために 、酸素や水蒸気等の通常の空気の成分が液晶層や有機 EL層に侵入する。液晶素 子においては気泡の発生や比抵抗の低下などの悪影響が、有機 EL素子において は、発光領域に非発光部が発生するなどの悪影響が発生する。このために、ベース フィルムの一方の面又は、両方の面に空気の成分の進入を防止するガスバリア層を 設けてもよい。ベースフィルムの一方の面に設ける場合、どちらの面に設けても効果 はあるが、機能薄膜を形成する面に設けるとより効果的である。
[0189] ガスノリア層は、基板が光を透過する必要があることから透明でなくてはならない。
このため、ガスバリア層の材料としては、ポリビュルアルコール、ポリ塩ィ匕ビユリデン等 の有機材料,有機材料と粘土鉱物(Al O— 2SiO · 5Η 0、 Al O - SiO - 2-3H O
2 3 2 2 2 3 2 2 等の非晶質粘土鉱物や、結晶質粘土鉱物である(Si, AD O四面体シート、 (Al, M
4
g) (O, OH)八面体シート)等の無機物との有機無機複合材料,酸化ケィ素や酸ィ匕 アルミニウムなどの無機材料の薄膜が挙げられる。湿度が高 、環境でのガスノリア性 に優れることと、厚さが薄くても効果が高いことから無機材料を用いるほうが膜厚を薄 くすることができる。さらに、これらの層を 2層以上重ねて積層することもできる。
[0190] 有機材料は、ガスノリア膜として無機材料に比べ塗膜'積層膜として使えるので低 コストではあるが、温度依存性'耐湿性の点では無機材料力 なるガスノリア膜に劣 ることは否めない。このために、有機材料は、液晶パネルの外光と対向する面に設け ることが望ましい。
[0191] ガスバリア層の厚さは、有機材料および有機無機複合材料の場合は 1 m— 10 mであることが、無機材料の場合 lOnm—: L mであることが好ましい。有機材料およ び有機無機複合材料の場合、 1 μ m以上であれば酸素や水蒸気等の通常の空気の 成分が液晶層や有機 EL層への侵入することを十分に防止することができる。 10 m 以下であれば膨張率等のベースフィルムの物性に影響を与えることがない。
[0192] 無機材料の場合、 lOnm以上であれば酸素や水蒸気等の通常の空気の成分が液 晶層ゃ有機 EL層への侵入することを十分に防止することができ、 1 μ m以下であれ ば屈曲時に割れることもな 、。
[0193] ガスノリア層をフィルム上に形成する方法としては、有機材料および有機無機複合 材料の場合は塗布法を、無機材料の場合は各種の薄膜成膜法を用いることができる 。塗布法は液状の有機材料またはその溶液等の液体をフィルム上に塗布し、乾燥や 硬化することで製膜するものである。薄膜成膜法としては、蒸着,イオンプレーティン グ,スパッタリングなどの物理的成長法、減圧雰囲気下でのプラズマ CVD,触媒 CV D,大気圧下での CVDなどの化学気相成長法が挙げられる。これらの中で、低温で 緻密な膜を得られることからスパッタリングが特に好ましい。
[0194] 第 2の実施の形態として、薄ぐ耐熱性が高ぐ光、特に可視光領域の光に対し透 明で且つ、光学的に等方的である、即ち位相差 (光遅延量)が小さいベースフィルム について示したが、光学的に異方性のある膜を使うことが可能である。
[0195] ベースフィルムに位相差機能'偏光機能を持たせても良い。
[0196] 例えば、ベースフィルムの位相差が λ Ζ2、 λ Ζ4であれば、ベースフィルムに位相 差機能を後力 付与する必要がなぐ偏光機能を持っていれば、偏光機能をベース フィルムに後から付与する必要がなくなる。
[0197] さらに、ベースフィルムに後から発光機能を付与する場合、後述するように、光がベ ースフィルを透過しない構造をとることが可能である。この場合、ベースフィルムは光 透過性が高 ヽことを要求されな ヽ。このような場合ベースフィルム自体にガスバリア機 能を持たせることができる。
[0198] 本発明の第 3の実施の形態として、周辺機能回路及び、画素駆動用の薄膜トランジ スタをベースフィルム上へ転写する製造方法について説明する。
[0199] 液晶ディスプレイの部品点数の削減、狭額縁化、消費電力の低減を目的として従 来は外付けしていた DAコンバータ '液晶駆動回路等も基板上に集積することが重要 である。このために、画素駆動用の薄膜トランジスタのトランジスタ性能を落とすことは できない。このために、本実施の形態では、ガラス基板上に従来の方法で薄膜トラン ジスタを形成後、ガラス基板を除去し、ガラス基板上に形成された薄膜トランジスタを ベースフィルムに転写するものである。
[0200] ポリシリコン薄膜トランジスタの製造方法は、高温プロセスと低温プロセスとがある。
高温のプロセスの場合は、高温に耐えるガラス基板、例えば、石英基板や溶融石英 基板を使う必要がある。石英基板や溶融石英基板はエッチング除去が困難 Z時間 がかかる等の問題があるので、普通のガラス基板が使える低温プロセスのほうが好ま しい。
[0201] ガラス基板をエッチング除去する際にトランジスタにダメージを与えな 、ようにガラス 基板上にエッチングを阻止するバリア膜を、トランジスタ表面には保護膜を設けておく 必要がある。バリア膜は、ガラスエッチング溶液に対してエッチングレートが遅いこと が好ましぐ窒化膜、酸窒化膜であることが望ましい。
[0202] 保護膜は、フッ酸等の強酸に耐えられる材質が要求される。またエッチング時には 、均一にエッチングが進むようにエッチング液の温度の変化が生じな 、ようにする必 要がある。
[0203] 第 4の実施の形態の位相差フィルムにつ 、て説明する。位相差フィルムは、塗布型 位相差フィルムと貼り合わせ型位相差フィルムとがあり、初めに、塗布型位相差フィル ムについて説明する。 [0204] 塗布型位相差フィルムは、重合性基を有する液晶性化合物を含む重合性液晶組 性物を一般的な塗布法により支持体上に塗布し液晶薄膜を形成する。液晶薄膜の 基板と接しな!/、面は除塵された乾燥空気ある!ヽは、窒素等の不活性ガスと接する事 が好ましぐより好ましくは、窒素等の不活性ガスである。その後、重合性液晶組性物 を、液晶相形成温度範囲内の温度で配向させた後、重合して固体薄膜とする。位相 差膜の膜厚と複屈折は、液晶ディスプレイパネルが要求する位相制御特性により選 択される。
[0205] 塗布型の位相差膜は、重合性液晶組成物を直接支持体に塗布するため、貼り合わ せ型の位相差フィルムに比べて膜厚を著しく薄くすることが可能で 100 μ m以下にす ることができる。塗布型の位相差フィルムの膜厚は好ましくは 0. 1 μ m— 30 μ mであ り、より好ましくは 0. 3— 15 μ m、更に好ましくは 0. 5 m— 10 mである。複屈折は 重合性液晶組成物の組成を変化することによって通常 0. 0から 0. 5の範囲で可変で あり、膜厚と複屈折は 1Z2波長板や 1Z4波長板のような必要とする位相差量および 製造条件の容易さから選ぶことができる。
[0206] 次に、塗布型位相差フィルムに使用される材料を示す。
[0207] 本実施の形態で使用される重合性液晶化合物としては、プラスチックシートに塗布 可能であって該化合物の液晶状態を利用して配向可能なものであれば制限はない 力 該化合物の液晶状態となる温度範囲中に重合性基が熱重合を起こさな 、温度 範囲を少なくとも一部含む化合物である必要がある。更に、該温度範囲内で塗布もし くは配向処理可能であることも必要である。また、本発明における位相差制御機能を 有する膜は厚さが薄いほど好ましぐすなわち高い複屈折を有するものが好ましい。 具体的には例えば次の化合物を含む組成物等が挙げられる。
[0208] 単官能アタリレート又はメタタリレートが式(1)
[0209] [化 1]
Figure imgf000041_0001
(式中、 Xは水素原子又はメチル基を表し、 6員環 A、 B及び Cはそれぞれ独立的に、 [0210] [化 2]
Figure imgf000042_0001
を表し、 nは 0又は 1の整数を表わし、 mは 1から 4の整数を表し、 Y1及び Y2はそれぞ れ独立的に、単結合、 -CH CH -CH Ο -OCH COO OCO C
2 2 2 2
≡C CH = CH CF = CF CH ) CH CH CH O OCH CH
2 4 2 2 2 2 2
CH CH = CHCH CH CH CH CH = CH—を表し、 Y3は水素原子、ハロ
2 2 2 2 2
ゲン原子、シァノ基、炭素原子数 1から 20のアルキル基、アルコキシ基、ァルケ-ル 基又はアルケニルォキシ基を表す。 )で表される重合性液晶組成物である。
[0211] 次に、塗布型位相差膜の製造方法をより詳細に説明する。
[0212] 塗布型位相差膜は、透明支持体上に配向膜を設け、必要ならばラビング処理を行 つた後、その上に重合性液晶を含む層を塗布し、不要な溶媒などを乾燥後、該液晶 を配向させ、あら力じめ添加してある光あるいは熱重合開始剤を UV照射あるいは加 熱により分解することによって該液晶同士を重合させる。必要に応じその上に保護層 を塗布してもよい。
[0213] 重合性液晶は適当な溶媒によって希釈して塗布することが好ましい。液晶の構造 によって性質が異なるため、一概に用いる溶媒、濃度を特に限定できないが、薄膜 の均一性を考慮すると、溶解度の高い溶媒を用いるのが好ましぐ塩化メチレン、クロ 口ホルムのようなハロゲン化合物、アセトン、メチルェチルケトンのようなケトン類、酢 酸ェチルのようなエステル類、ジメチルァセトアミド、ジメチルホルムアミド、 Ν メチル 一ピロリドンのようなアミド類ゃイソプロパノール、パーフルォロプロパノールのようなァ ルコール類が好ましく用いられる。
[0214] 配向膜の作用により、液晶相形成時の分子配向がしばしば大きな影響を受けること は、液晶の場合にはよく知られた事実であり、無機または有機の配向膜が用いられて いる。支持体表面をラビング処理し、その上に塗布するだけで有効な配向が得られる 液晶と支持体の組み合わせもある力 最も汎用性が高 、方法は配向膜を使う方法で ある。
[0215] 支持体上に設けられる配向膜としては、無機物斜方蒸着膜の SiO蒸着膜、また有 機高分子膜をラビングしたポリイミド膜等を代表的な例として挙げることができる。
[0216] 例えば有機配向膜としては代表的なものとしてポリイミド膜がある。これはポリアミツ ク酸 (例えば、 JSR (株)製 AL— 1254、日産化学 (株)製 SE— 7210)を支持体面に塗 布し 100°Cから 300°Cで焼成後ラビングすることにより、液晶を配向させることができ る。また、アルキル鎖変性系ポバール (例えば、クラレ (株)製 MP203、同 R1130な ど)の塗膜ならば焼成は必要なぐラビングするだけで該配向能が付与できる。その 他、ポリビニルブチラール、ポリメチルメタタリレート、など疎水性表面を形成する有機 高分子膜ならば大抵のものがその表面をラビングすることにより液晶配向能を付与で きる。
[0217] また、無機物斜方蒸着膜としては代表的なものに SiO斜方蒸着膜がある。これは、 真空槽内において支持体面に斜め方向力も SiO蒸発粒子を当て、約 20— 200nm 厚の斜め蒸着膜を形成させて配向膜とするものである。この蒸着膜によって液晶が 配向をすると該液晶層の光軸は、 SiO蒸着粒子が飛んできた軌跡を含み該支持体 面に垂直な平面上の特定の方向を向く。
[0218] 配向膜として酸化ケィ素 (SiO)斜方蒸着膜を用いた場合、第 2の実施の形態で説 明したベースフィルムのガスノリア膜を使用できると!、う利点もある。この場合酸化ケ ィ素は SiO (X= l. 6— 1. 9)であることが望ましい。
[0219] 支持体上に塗布された重合性液晶を配向させる上記以外の方法として、磁場配向 や電場配向がある。この方法においては液晶化合物を支持体上に塗布後、所望の 角度に磁場、或いは電場等を利用して斜めに配向させることができる。
[0220] 位相差膜の製造方法では、一般的な塗布法を利用することができる。すなわち、フ レキソ印 J、グラビア印 J、ディップコート、カーテンコート、エタストルージョンコート などの塗布法により、乾燥工程を経て支持体上に液晶薄膜として形成できる。
[0221] 次に、本実施の形態の別の実施の形態である、貼り合わせ型位相差膜について説 明する。
[0222] 貼り合わせ型の位相差膜は、予め用意された位相差フィルムをベースフィルムへ粘 着剤、接着剤を介して貼り合わせるものである。
[0223] 本実施の形態においては、 LCD製造時に要求される寸法安定性を維持しながら 従来にない薄膜ィ匕を達成することができる点で芳香族ポリアミドあるいは芳香族ポリイ ミドを用いることが好ましい。これにより、位相差機能層の厚みを数ミクロン程度に押さ え込むことが出来る。
[0224] この結果、必要な位相差および自己支持性を得るために、 60 μ m以上の厚みがあ る、従来使われていた、ポリカーボネート榭脂フィルム、ポリエーテルスルホン榭脂フ イルム、ポリサルホン榭脂フィルム、環状ポリオレフイン榭脂フィルム、セルロース系榭 脂フィルム、アクリル系榭脂フィルムなどのフィルムに比べて薄膜ィ匕が可能となる。
[0225] 芳香族ポリアミドとしては、たとえば次の式(2)および Zまたは式(3)で表わされる 繰り返し単位を 50モル%以上含むものが好ましぐ 70モル%以上力もなるものがより 好ましい。
[0226] フィルムの剛性及び、耐熱性を考慮すると、繰り返し単位力 50モル%以上、より好 ましくは 70モル%以上であることが好ましい。
[0227] [化 3]
-(-NH— Α — NHCO— Ar2— CO-)- ( 2 )
[0228] [化 4]
+NH— Ar3 - CO十 ( 3 )
ここで、 Arl, Ar2、 Ar3は、例えば、 [0229] [化 5]
Figure imgf000045_0001
フルオレン残基などが挙げられ、 X Yは、 O -CH CO— -SO S
2 2
-C (CH ) -CF C (CF )一等を用いることがでさるが、これらに限定されるち
3 2 2 3 2
のではない。
[0230] 更にこれらの芳香環上の水素原子の一部が、フッ素、塩素、臭素などのハロゲン基 、ニトロ基、およびメチル基、ェチル基、プロピル基などのアルキル基(特にメチル基) 、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基などのアルコキシ基、ヒドロ キシル基、トリフルォロメチル基などの置換基で置換されているものも含み、また、重 合体を構成するアミド結合中の水素が他の置換基によって置換されているものも含 む。
[0231] 特性面からは上記の芳香環がパラ配向位、つまり、 2価の結合が同軸あるいは平行 に結合されたもの力 全芳香環の 50モル%以上、好ましくは 75モル%以上を占める 重合体が、フィルムの剛性が高く耐熱性も良好となるため好まし 、。
[0232] 特性面からは上記の芳香環がパラ配向位、つまり、 2価の結合が同軸あるいは平行 に結合されたもの力 全芳香環の 50モル%以上、好ましくは 75モル%以上を占める 重合体が、フィルムの剛性が高く耐熱性も良好となるため好ましい。ここで芳香環が 2 個の場合のパラ配向位の一例を式 (7)に示す。 [0233] [化 6]
Figure imgf000046_0001
[0234] 本発明で用いる芳香族ポリアミドは、一般式 (2)および Zまたは一般式 (3)で表さ れる繰り返し単位を 50モル%以上含むものが好ましぐ 50モル%未満は他の繰り返 し単位が共重合、またはブレンドされて ヽても差し支えな!/、。
[0235] 本発明に用いられる位相差フィルムは、ディスプレイの薄膜ィ匕を図るために、厚み カ!^!!!ー mであることが好ましい。厚みが 1 μ m以上あれば、芳香族ポリアミド フィルムは、高剛性、高耐熱性であるので、使用時の加熱により平面性が悪ィ匕したり 、位相差斑が大きくなつたりすることがない。また、 50 m以下であれば、光線透過 率が小さくなることがない。厚みは好ましくは 2 μ m— 30 μ mであり、より好ましくは 2 一 15 m、更に好ましくは 3 μ m— 10 μ m、最も好ましくは 3 μ m— 8 μ mである。
[0236] 次に、芳香族ポリイミドについて説明する。本実施の形態における芳香族ポリイミド とは、重合体の繰り返し単位の中に芳香環とイミド環を 1つ以上含むものであり、式 (8 )および Zまたは式(9)で示される繰り返し単位を 50モル%以上含むものが好ましく 、より好ましくは 70モル%以上である。 [0237] [化 7]
Figure imgf000047_0001
[0238] [化 8]
Figure imgf000047_0002
ここで Ar 、 Arは少なくとも 1個の芳香環を含み、イミド環を形成する 2つのカルボ-
4 6
ル基は芳香環上の隣接する炭素原子に結合している。この Arは、芳香族テトラカル
4
ボン酸あるいはこの無水物に由来する。代表例としては次の様なものが挙げられる。
[化 9]
Figure imgf000047_0003
ここで Zは、 O—, -CH 一, CO—, 一 SO —、 一 S—、 -C (CH )一等から選ばれるが
、これに限定されるものではない。
[0240] また、 Arは無水カルボン酸あるいはこのハライドに由来する。 Ar 、 Arは例えば、 [0241] [化 10]
Figure imgf000048_0001
等が挙げられ、 X Yは、 O -CH CO -SO S -C (CH ) 等
2 2 3 2 力 選ばれる力 これに限定されるものではない。
[0242] 更にこれらの芳香環上の水素原子の一部が、ハロゲン基 (特に塩素)、ニトロ基、炭 素数 1から 3のアルキル基 (特にメチル基)、炭素数 1から 3のアルコキシ基等の置換 基で置換されているものも含み、また、重合体中にアミド結合を含む場合は、アミド結 合中の水素が他の置換基によって置換されて 、るものも含む。
[0243] 本発明の芳香族ポリイミドは、式 (8)および Zまたは式(9)で表される繰り返し単位 を 50モル%以上含むものであって、 50モル%未満は他の繰り返し単位が共重合、ま たは混合されていても差し支えない。また、本発明の位相差フィルムは、波長 550η mにおける位相差が 50— 3, OOOnmである。好ましくは、 60— 500nm、より好ましく は 60— 380nm、更に好ましくは、 80— 280nmである。
[0244] フィルムの位相差は用途により、例えば、 1/2 λ板、 1Z4 λ板のように適切に設計 されるべきものであるが、位相差が上記範囲であると、芳香族ポリアミドまたは、芳香 族ポリイミドを用いて薄膜ィ匕しても光学特性、加工適性に優れたフィルムとすることが できる。
[0245] 貼り合わせるベースフィルムに位相差の機能を付加することで、位相差フィルムの 厚さを薄くすることが可能となることは 、うまでもな 、。
[0246] 本実施の形態における位相差フィルムは、遅相軸方向および遅相軸方向と直交す る方向の 150°Cにおける寸法変化率が 2%以下であれば、貼り合わせなどの加工時 に皺が発生せず、また、加温下での張力変動による光学特性の変化が抑えられるた め好ましい。より好ましくは、 1. 5%以下であり、更に好ましくは 1%以下である。寸法 変化率の下限は、低いほど好ましぐ最も好ましくは 0%である。
[0247] ここでいう遅相軸とは平面内において、位相差が最も大きくなる方向であり、位相差 フィルムの場合、一般に最も延伸倍率が大きい方向となる。
[0248] 本実施の形態における位相差膜は、加工時に温度、外力に曝されても、光弾性の 効果により位相差が変化し、液晶ディスプレイの色調が部分的に低下することもなぐ 大きな複屈折を得ることができる。更に、光弾性係数の大きいフィルムであるため、薄 膜化が可能であり、且つ、耐熱性、剛性に優れているため、高温下、高張力下でも歪 みが発生しにくい。
[0249] また、液晶表示装置 (LCD)とした時の色調の変化が生じないようにするためには、 450nmから 700nmまでの全ての波長において光線透過率力 ¾0%以上であること が好ましい。さらに好ましくは光線透過率が 85%以上、より好ましくは 90%以上であ る。
[0250] 更に、本発明のフィルムは 400nmの光線透過率が 65%以上であることが好ましい 。さらに好ましくは 400nmの光線透過率が 75%以上、最も好ましくは 90%以上であ る。近紫外領域である 400nmの光線透過率が 65%以上であることにより、さらに良 好な透明度となる。
[0251] 本実施の形態のフィルムは、 JIS— C2318に準拠した測定において、少なくとも一 方向のヤング率力 GPa以上であることが加工時、使用時に負荷される力に対して 抵抗でき、平面性が一層良好となるため好ましい。また少なくとも一方向のヤング率 力 GPa以上であることにより薄膜ィ匕が可能になる。
[0252] 全ての方向のヤング率力 GPa未満であると、加工時に変形を起こすことがある。ま た、ヤング率に上限はないがヤング率が 20GPaを超えると、フィルムの靱性が低下し 、製膜、加工が困難になることがある。ヤング率は、より好ましくは、 8GPa以上であり 、更に好ましくは、 lOGPa以上である。
[0253] 本実施の形態のフィルムは、 80°Cから 120°Cの熱膨張係数が 50— OppmZ°Cで あることが好ましい。熱膨張係数は、 TMAを用いて 150°Cまで昇温した後に降温過 程に於いて測定する。 25°C、 75RH%における初期試料長を LO、温度 T1の時の試 料長を LI、温度 T2の時の試料長を L2とすると Tlから T2の熱膨張係数は以下の式 で求められる。
熱膨張係数 (PpmZ°C) = ( (L2-L1) /LO) / (T2/T1) X 106
熱膨張係数はより好ましくは 30— OppmZ°Cであり、さらに好ましくは 20— OppmZ °Cである。また、本実施の形態のフィルムは 25°Cにおける 30%RHから 80%RHの 湿度膨張係数が 200— OppmZ%RHであることが好ま 、。湿度膨張係数高温高 湿槽に幅 lcm、試長 15cmになるように固定し、一定湿度(約 30%RH)まで脱湿し、 フィルム長が一定になった後、加湿 (約 80%RH)すると吸湿により伸び始める。約 24 時間後吸湿は平衡に達してフィルムの伸びも平衡に達する。この時の伸び量から下 式により計算する。
湿度膨張係数( (cmZcm) /%RH) =伸び量 Z (試長 X湿度差)
湿度膨張係数はより好ましくは 100— OppmZ%RHであり、さらに好ましくは 30— OppmZ%RHである。熱膨張係数、湿度膨張係数が小さいことで環境による寸法変 化が小さくなり、位相差などの光学特性に関しムラが生じに《なる。
[0254] 本実施の形態のフィルムは、 1枚で位相差フィルムとして用いても、また目的に応じ
、同種、異種の位相差フィルムと積層して用いても差し支えない。
[0255] 次に芳香族ポリアミドフィルムを製造する例を説明する。
[0256] 芳香族ポリアミドを得る方法は種々の方法が利用可能であり、例えば、低温溶液重 合法、界面重合法、溶融重合法、固相重合法などを用いることができる。低温溶液重 合法つまりカルボン酸ジクロライドとジァミン力 得る場合には、非プロトン性有機極 性溶媒中で合成される。
[0257] カルボン酸ジクロライドとしてはテレフタル酸ジクロライド、 2—クロローテレフタル酸ジ クロライド、イソフタル酸ジクロライド、ナフタレンジカルボ-ルクロライド、ビフヱ-ルジ カルボ-ルクロライド、ターフ -ルジカルボ-ルクロライドなどが挙げられる力 本実 施の形態の芳香族ポリアミドフィルムを得るためには、 2—クロローテレフタル酸ジクロラ イドまたは、テレフタル酸ジクロライドが用いられる。
[0258] 芳香族ポリアミド溶液は、単量体として酸ジクロライドとジァミンを使用すると塩ィ匕水 素が副生するが、これを中和する場合には水酸ィ匕カルシウム、炭酸カルシウム、炭酸 リチウムなどの無機の中和剤、またエチレンオキサイド、プロピレンオキサイド、アンモ 二了、トリエチルァミン、トリエタノールァミン、ジエタノールァミンなどの有機の中和剤 が使用される。また、イソシァネートとカルボン酸との反応は、非プロトン性有機極性 溶媒中、触媒の存在下で行なわれる。
[0259] 2種類以上のジァミンを用いて重合を行う場合、ジァミンは 1種類ずつ添カ卩し、該ジ ァミンに対し 10— 99モル%の酸ジクロライドを添カ卩して反応させ、この後に他のジァ ミンを添加して、さらに酸ジクロライドを添加して反応させる段階的な反応方法、およ びすベてのジァミンを混合して添加し、この後に酸ジクロライドを添加して反応させる 方法などが利用可能である。また、 2種類以上の酸ジクロライドを利用する場合も同 様に段階的な方法、同時に添加する方法などが利用できる。いずれの場合において も全ジァミンと全酸ジクロライドのモル比は 95— 105 : 105— 95が好ましぐこの値を 外れた場合、成形に適したポリマー溶液を得ることが困難となる。
[0260] 本実施の形態の芳香族ポリアミドの製造において、使用する非プロトン性極性溶媒 としては、例えば、ジメチルスルホキシド、ジェチルスルホキシドなどのスルホキシド系 溶媒、 N, N—ジメチルホルムアミド、 N, N—ジェチルホルムアミドなどのホルムアミド 系溶媒、 N, N—ジメチルァセトアミド、 N, N—ジェチルァセトアミドなどのァセトアミド 系溶媒、 Nーメチルー 2—ピロリドン、 N—ビ-ルー 2—ピロリドンなどのピロリドン系溶媒、 フエノール、 o—、 m—または p—クレゾール、キシレノール、ハロゲン化フエノール、カテ コールなどのフエノール系溶媒、あるいはへキサメチルホスホルアミド、 γ—ブチロラタ トンなどを挙げることができ、これらを単独又は混合物として用いるのが望ましい。更 にはキシレン、トルエンのような芳香族炭化水素の使用も可能である。
[0261] 更に、ポリマーの溶解を促進する目的で溶媒には 50重量%以下のアルカリ金属、 またはアルカリ土類金属の塩を添加することができる。
[0262] また、単量体として芳香族ジ酸クロリドと芳香族ジァミンを用いると塩ィ匕水素が副生 するが、これを中和する場合には、水酸ィ匕カルシウム、炭酸カルシウム、炭酸リチウム などの周期律表 I族力 Π族のカチオンと水酸ィ匕物イオン、炭酸イオンなどのァ-オン 力 なる塩に代表される無機の中和剤、またエチレンオキサイド、プロピレンォキサイ ド、アンモニア、トリエチルァミン、トリエタノールァミン、ジエタノールァミンなどの有機の 中和剤が使用される。また、基材フィルムの湿度特性を改善する目的で、塩化べンゾ ィル、無水フタル酸、酢酸クロリド、ァ-リン等を重合の完了した系に添加し、ポリマー —の末端を封鎖しても良い。また、イソシァネートとカルボン酸との反応は、非プロトン 性有機極性溶媒中、触媒の存在下で行なわれる。
[0263] 更に、本実施の形態の芳香族ポリアミドには、表面形成、加工性改善などを目的と して 10重量%以下の無機質または有機質の添加物を含有させてもよい。添加物は 無色であっても有色であっても構わな 、が、本実施の形態の透明芳香族ポリアミドフ イルムの特徴を損ねな 、ためには無色透明の物が好まし 、。表面形成を目的とした 添加剤としては例えば、無機粒子では SiO、 TiO、 Al O、 CaSO、 BaSO
2 2 2 3 4 4、 CaCO
、カーボンブラック、カーボンナノチューブ、フラーレン、ゼォライト、その他の金属微
3
粉末等が挙げられる。また、好ましい有機粒子としては、例えば、架橋ポリビニルベン ゼン、架橋アクリル、架橋ポリスチレン、ポリエステル粒子、ポリイミド粒子、ポリアミド粒 子、フッ素榭脂粒子等の有機高分子力 なる粒子、あるいは、表面に上記有機高分 子で被覆等の処理を施した無機粒子が挙げられる。
[0264] 更に、本実施の形態の芳香族ポリアミドに色素を添加し、色調補償機能を複合する ことも可能である。色素としてはコバルトブルーなどの無機顔料、フタロシアニンなど の有機色素のいずれも好適に使用することができる。
[0265] これらのポリマー溶液はそのまま製膜原液として使用してもよぐあるいはポリマーを 一度単離してから上記の有機溶媒や、硫酸等の無機溶剤に再溶解して製膜原液と して使用しても良い。
[0266] 次にフィルム化について説明する。上記のように調製された製膜原液は、いわゆる 溶液製膜法によりフィルム化が行なわれる。溶液製膜法には乾湿式法、乾式法、湿 式法などがあり 、ずれの方法で製膜されても差し支えな 、が、ここでは乾湿式法を例 にとつて説明する。
[0267] 乾湿式法で製膜する場合は該原液を口金力 ドラム、エンドレスベルト等の支持体 上に押し出して薄膜とし、次いで力かる薄膜層から溶媒を飛散させ薄膜が自己保持 性をもつまで乾燥する。乾燥条件は例えば、室温一 220°C、 60分以内の範囲で行う ことができる。またこの乾燥工程で用いられるドラム、エンドレスベルトの表面はなるだ け平滑であれば表面の平滑なフィルムが得られる。乾式工程を終えたフィルムは支 持体から剥離されて湿式工程に導入され、脱塩、脱溶媒などが行なわれ、さらに延 伸、乾燥、熱処理が行なわれて位相差フィルムとなる。
[0268] 延伸は延伸倍率として面倍率で 0. 8— 8 (面倍率とは延伸後のフィルム面積を延伸 前のフィルムの面積で除した値で定義する。 1以下はリラックスを意味する。)の範囲 内にあることが好ましぐより好ましくは 1. 3— 8である。また、熱処理としては 200°C 一 500°C、好ましくは 250°C— 400°Cの温度で数秒力も数分間熱処理が好ましく実 施される。さらに、延伸あるいは熱処理後のフィルムを徐冷することは有効であり、 50 °CZ秒以下の速度で冷却することが有効である。本実施の形態の芳香族ポリアミドか ら得られるフィルムは単層フィルムでも、積層フィルムであっても良 、。
[0269] 本発明の第 5の実施の形態として偏光膜を説明する。本実施の形態として好ましく 採用できる偏光膜は、下記(1)あるいは(2)と方法で形成した後、偏光機能層のみを ベースフィルムに熱や圧力、接着剤等によって転写するものである。また、別途偏光 膜の支持基材となる離型フィルムを準備し、該離型フィルム上に偏光機能層を剥離 可能な状態で形成した後、偏光機能層のみをベースフィルムに転写し、熱や圧力、 接着剤等によって固着することも有用な技術である。
[0270] 2通りの方法がある。 (1)ヨウ素や二色性染料を強く一軸方向に分子配向した高分 子フィルムに配向吸着せしめた偏光膜を熱、圧力、粘着剤、接着剤等によってべ一 スフイルムに貼り合わせる方法。 (2)ヨウ素および Zまたは二色性染料を含む榭脂ぺ レットを溶融押出もしくは溶液キャストなどの方法を用いてフィルム化した後、該フィル ムを延伸することでヨウ素および Zまたは二色性染料が強く一軸方向に配向した偏 光子とし、さらに偏光子を熱、圧力、粘着剤、接着剤等によってベースフィルムに貼り 合わせる方法。
[0271] ここで使用する榭脂は、ポリビュルアルコールや部分ホルマール化ポリビュルアル コール、エチレン '酢酸ビュル共重合体の部分ケン化ポリマーなど力 なるポリビュル アルコール系榭脂、ポリオレフイン榭脂、アクリル榭脂、 PET (ポリテレフタル酸ェチレ ン)や PEN (ポリエチレンナフタレート)などのポリエステル榭脂、ポリアミド榭脂、ポリ アミドイミド榭脂、ポリイミド榭脂、ポリカーボネート榭脂、ポリサルホン榭脂などが例示 できる。
[0272] 第 6の実施の形態である、カラーフィルタについて説明する。本実施の形態である カラーフィルタは、フィルムタイプのカラーフィルタと、インクジェット法を用いた直描タ イブのカラーフィルタの 2種類がある。
[0273] はじめに、フィルムタイプのカラーフィルタ、次に直描タイプのカラーフィルタについ て説明する。
[0274] (第 6の実施の形態:フィルムタイプのカラーフィルタ)
フィルムタイプのカラーフィルタは、支持基板上に、黒 (ブラックマトリックス)、赤、緑 及び、青 (カラーフィルタ)の層を形成する。本実施の形態では、支持基板に、これら 4色のカラーフィルタ用榭脂層を形成後、カラーフィルタ支持基材上に、順次転写し ていくものである。
[0275] 4色のカラーフィルタ用榭脂層は、感光性着色榭脂を用いても、着色樹脂のいずれ を用いても良い。
[0276] 以下、感光性着色榭脂を用いた場合を説明する。 4色のカラーフィルタとなる感光 性着色榭脂を別々の第 1の支持基板上に製膜する。次に、感光性榭脂上にカバー フィルをラミネートし巻き上げる。第 2の支持基板に感光性着色榭脂層を介して第 1の 支持基板を貼合する。第 1の支持基板側力 マスクを介し露光し、露光後に第 1の支 持基板を剥離し、現像,乾燥を行う。
[0277] 乾燥は、感光性榭脂に含有されている架橋材の種類により異なるが、架橋反応が 開始する温度よりも低い温度であることが必須である。通常は、架橋材と製造装置と の関係があるので製造前に条件出しを行い決定するが、架橋反応が開始する温度よ りも 30°C— 50°C低い温度が採用される。下限は、乾燥時間が長くなりすぎないように 設定され、上限は、現像で不要部が除去され、且つ、下部が裾を引力ないことで決 定される。
[0278] 通常、ブラックマトリックスをはじめにカラーフィルタ用の第 2の支持基材 (以下、 CF 支持基材と略す)に転写し、ブラックマトリックス層を形成する。この際、各カラーフィ ルタを CF支持基材に転写するにあたり、第 1の支持基板側から露光、現像、乾燥を 行い、順次各色を形成する。このように 4色のカラーフィルタがすべて CF支持基材上 に転写 ·形成されることでカラーフィルタ層が完成する。
[0279] 完成したカラーフィルタ層は、例えば、薄膜トランジスタ(以下、 TFTと略す)、配線 、画素電極が形成された機能フィルム上にラミネートされる。カラーフィルタ層上には 、対向する配向膜の間隔を規定するスぺーサ層または、透明電極を形成してもよい。
[0280] 感光榭脂層は、第 1の支持基板、カバーフィルム、と貼り合わせ、剥離を行うので、 弱粘着して 、ることが好ま 、。
[0281] 感光着色榭脂だけでなぐ着色榭脂を用いることもできる。この場合、着色榭脂は、 転写後フォトレジストを介して不要部をエッチング除去する必要があるので、エツチン グ除去時には弱粘着しており、乾燥後は固着している必要がある。
[0282] 尚、 4色のカラーフィルタの中で、黒のみは、クロムを使うことができる。クロムは、物 理蒸着法で成膜してもよい。
[0283] 次に、本実施の形態の他の実施の形態であるインクジェット法を用いたカラーフィル タについて詳細に説明する。
[0284] (第 6の実施の形態:インクジェットタイプのカラーフィルタ)
本実施の形態であるインクジェットタイプのカラーフィルタは、顔料からなる着色榭 脂をインクジェット法でフィルム上に直接描画するものである。機能フィルムのカラー フィルタを形成したい面にブラックマトリックス、赤、緑および、青のカラーフィルタ層を 直接描画してもよいし、支持基板上にカラーフィルタを形成し、転写法により機能フィ ルムに転写しても良い。ブラックマトリックスに関しては、支持基板 (フィルムタイプの C F基材と同じ)にクロムを物理蒸着法により成膜してもよい。 3色をインクジェットによる 描画する場合を例に説明する。赤、緑および青を同時に描画しても、赤、緑および、 青の順に描画しても良い。赤、緑、青の順に描画する場合は、 1色を描画後乾燥し、 その後次の色を描画することも可能である。尚、各色の順序はこの説明による順序に 制限されるものでな 、ことは言うまでもな 、。
[0285] 本発明の第 7の実施の形態として、配向膜について説明する。
[0286] 本発明の液晶パネル組み立ては以下のように行うことができる。
1. 機能フィルム Aおよび Bカゝら切断された基板の各々に光配向材料を塗布し乾燥 後、光配向操作及び重合操作を行い、光配向膜を作成する。次に光配向膜を設け た面を、スぺーサを介してかつ互いの光配向方向が直交するように対向させ、シー ル材を表示領域の周辺に塗布して貼り合わせ,液晶を注入して注入口を封止する事 で行う。
2. 機能フィルム A及び Bカゝら切断された基板の各々に、光配向操作及び重合操作 を行い、光配向膜を作成する。次に、光配向膜を設けた面に、スぺーサとなるシール 材を所望の位置に設けた後、液晶を滴下した後に貼り合わせる事もできる。
3. 1、 2は機能フィルム A及び Bから切断された基板に液晶を充填する方法である 力 支持基材上に、光配向材料を塗布し乾燥後、光配向操作及び重合操作を行い 、光配向膜を作成し、機能フィルム A、 B (液晶を対向して狭持する)に、光配向膜を 転写し、その後シール材を形成し、フィルムの状態で互いの光配向方向が直交する ように対向させ、 1または 2の方法で液晶を充填し、封止後にパネルの形状に切断す る、あるいは、シール材を介し貼り合わせた後パネル形状に切断し、その後液晶を充 填し封止しても良い。
[0287] 尚、上記 1及び 2の組み立て方法で、光配向方向は、液晶の特性、液晶パネルの 構成により必ずしも直交だけとは限らない。
[0288] 配向膜は、光配向膜を使う場合と、液晶配向剤を塗布した膜の表面をラビング処理 行うことで配向性を持たせた配向膜とがある。初めに。光配向膜、次に、ラビング処理 により配向性を持たせる方法を説明する。
[0289] (光配向膜)
光配向膜材料としては、重合性基を有する二色性染料を含有する光配向材料が用 いられる。ここで、二色性染料が重合性基を有するァゾ染料の誘導体又は重合性基 を有するアントラキノン染料の誘導体であることが望まし 、。特に重合性基を有するァ ゾ染料の誘導体では式 (4) [0290] [化 11]
Figure imgf000057_0001
(式中、 R1は各々独立して、水素原子、ハロゲン原子、カルボキシル基、ハロゲンィ匕 メチル基、ハロゲン化メトキシ基、シァノ基及び水酸基からなる群より選ばれる基を表 す。 Mは水素原子、アルカリ金属原子、又は NHを表す。 R2は連結鎖を有していても
4
良い重合性基を表す。)で表される光配向材料であるほうがより好ましい。
[0291] 更に、重合性基を有するアントラキノン染料の誘導体では式 (5)
[0292] [化 12]
Figure imgf000057_0002
(式中、 R ま、各々独立して、少なくとも 1つが連結鎖を有していても良い重合性基で あり、かつ他の R3が水素原子、ハロゲン原子、水酸基、ニトロ基、スルホン酸基、スル ホン酸塩基、ハロゲン化メチル基、シァノ基、アミノ基、ホルミル基、カルボキシル基、 ピペリジノ基、および一般式 (6) [0293] [化 13]
H OFT -NHCOR4 — C=NR 4' - C二 CHR4
II O
-c— s- -R' 4 II H .
-C— N— R4 -SFT ( 6 )
N— N o N N
II \
-R' - S— FT
o 、S
(式中、 R4は水素原子、アルキル基、シクロアルキル基、フエ-ル基、ピペリジノ基;及 びこれらの基にアルキル基、シクロアルキル基、フエ-ル基、アルコキシル基、シクロ v o=>
アルコキシル基又はフエノキシ基が結合した有機基を表す。 )力らなる群より選ばれる
1つ以上の基を表す。)で表される光配向材料であることが好ましい。
[0294] 更に、二色性染料を含有する光配向材料の重合性基が、(メタ)アタリロイル基、(メ タ)アクリルアミド基、ビュル基、ビュルエーテル基力もなる群力 選ばれる少なくとも 1 つの基であってもよい。
[0295] 上記の光配向膜のいずれか 1つの光配向材料を基板上に塗布し、偏光を照射して 液晶配向能を付与し、加熱又は液晶配向能を付与する際とは異なる波長の光を照 射することによって重合性基を重合させることで光配向膜を製造するものである。
[0296] 本実施の形態における光配向膜の製造方法を、図面を参照して説明する。図 6 (a) は、送りだしロールから巻き取りロールへ支持フィルム 150を送りだし、巻き取り口一 ルに支持フィルム 150が巻き取られるまでの間に、支持フィルム 150上に、光配向材 料の溶液をスピンコーティング法、印刷法等の方法によって塗布し、乾燥後、光配向 操作及び重合操作を行って光配向膜を製造する概念図である。光配向膜を形成後 、光配向操作を行うことで配向性を持たせている。光配向操作とは光を照射すること で液晶配向能を付与する操作のことあり、光の波長は二色性染料誘導体が効率よく 光反応する波長が選ばれ、可視光線、紫外線等が挙げられるが、特に波長が 300— 400nm付近の紫外線力好まし!/ヽ。膜厚 ίま、好ましく ίま 0. 001 μ m— 1 μ mであり、よ り好ましくは 0. 005 μ πι— 0. である。
[0297] また、光配向に用いられる偏光は、直線偏光や楕円偏光が挙げられるが、特にキ セノンランプ、高圧水銀ランプ、メタルノヽライドランプ等の紫外光源 152からの光を偏 光フィルタ 153やグラントムソン、グランテーラー等の偏光プリズムを通して得られる直 線偏光が好ましい。このとき、液晶分子のプレチルトを得るために、偏光を基板に対 して斜め方向から照射する方法や、偏光照射後に斜め方向から無偏光の光を照射 する方法を用いても良い。
[0298] 光配向膜を形成する化合物中に重合性基を有するものの場合は、重合により配向 性能の経時変化を抑制することが可能であり、多くの場合重合操作 Aは光配向操作 に続いて行われ、一般に紫外線等の光照射あるいは加熱によって行われる。これら の重合には必要に応じて重合開始剤を用いることができる。重合操作を光照射で行 う場合は、既に得られている光配向材料の配向状態を乱さないようにするために、こ れらの二色性染料分子による光配向の原因となっている異方的光吸収を示す部分( 例えば、ァゾ染料の誘導体におけるァゾベンゼン部、又はアントラキノン染料の誘導 体におけるアントラキノン骨格が挙げられる)に対し吸収のない波長、すなわち液晶 配向能を付与する波長とは異なる波長の光で行われることが好ましい。
[0299] 具体的には 200— 320nmの波長の無偏光の紫外光を照射することが好ましい。一 方、重合操作を加熱によって行う場合は、上記のように光配向材料を塗布し光配向 操作を行った基板を加熱することによって行われる。加熱温度は、光配向操作による 配向状態が変化しない、 100°C以上 300°C以下が好ましぐ 100°C以上、 200°C以 下がさらに好ましい。
[0300] 光重合の場合には、重合開始剤として光重合開始剤を用いることが好ましい。光重 合開始剤としては公知慣用の光重合開始剤をいずれも特に限定なく用いることが出 来る。光重合開始剤としては、例えば、 2-ヒドロキシ -2-メチル -1-フエニルプロパン — 1 オン(メルク社製「ダロキュア 1173」)、 1—ヒドロキシシクロへキシルフエ-ルケトン (チバ'ガイギ一社製「ィルガキュア 184」)、 1 (4 イソプロピルフエ-ル)—2—ヒドロ キシー 2 メチルプロパン 1 オン (メルク社製「ダロキュア 1116」)、 2—メチルー 1— [ ( メチルチオ)フエ-ル]— 2—モリホリノプロパン 1 (チノく'ガイギ一社製「ィルガキュア 9 07」)、ベンジルジメチルケタール(チノく'ガイギ一社製「ィルガキュア 651」)、 2, 4— ジェチルチオキサントン(日本化薬社製「カャキュア DETX」)と p—ジメチルァミノ安息 香酸ェチル (日本化薬社製「カャキュア EPA」 )との混合物、イソプロピルチォキサン トン (ワードプレキンソップ社製「カンタキユア ITX」 )と ρ—ジメチルァミノ安息香酸ェ チルとの混合物、ァシルフォスフィンォキシド(BASF社製「ルシリン TPO」)等が挙げ られる。
[0301] 熱重合の場合は、重合開始剤として熱重合開始剤を用いることが好ましい。熱重合 開始剤としては公知慣用の熱重合開始剤をいずれも特に限定なく用いることが出来 る。
[0302] 熱重合開始剤としては、例えば、ベンゾィルパーオキサイド、 2, 4ージクロ口べンゾィ ルパーオキサイド、 1, 1ージ(ターシャリーブチルパーォキシ )—3, 3, 5—トリメチルシ クロへキサン、 η—ブチルー 4, 4'ージ(ターシャリーブチルバ一才キシ)バレレート、ジク ミルパーオキサイドの如き過酸化物類; 7—ァゾビスイソブチル二トリルの如きァゾ化合 物類;テトラメチルチウラムジスルフイド等が挙げられる。
[0303] 上記の説明は、支持フィルム上に配向膜を形成する方法である力 支持フィルムに 替えて、配向膜を形成するフィルム、例えばベースフィルム上にトランジスタ層が形成 されたフィルムのトランジスタ層上に配向膜を上記の方法で製膜しても良い。
[0304] 支持フィルムに製膜された配向膜は、トランジスタ層 155が形成されたベースフィル ム 154のトランジスタ層上に転写される。図 6においては、配向膜の支持フィルムと接 する面がトランジスタ層 155と接する状態で転写されているが、配向膜の他方の面で トランジスタそう 735に転写することも可能である。後述の表面をラビング処理により配 向させた配向膜の場合は、図 6の方法で転写するほうが良い。指示フィルムから転写 する方法は、配向処理の際の温度が直接ベースフィルムや有機 ELの発光層となる 有機材料に印加されな 、のでベースフィルムや有機材料の劣化が生じな 、と 、う効 果がある。
[0305] (ラビング法による配向膜)
光配向膜と同様に、支持フィルム上に、液晶配向剤を、例えばロールコーター法、 スピンナ一法、印刷法、インクジェット法などの方法によって塗布する。次いで、塗布 面を加熱することにより塗膜を形成する。液晶配向剤の塗布に際しては、機能性フィ ルム Αおよび機能フィルム Βと塗膜との接着性をさらに良好にするために、基板の該 表面に、官能性シラン含有化合物、官能性チタン含有化合物などを予め塗布するこ ともできる。液晶配向剤塗布後の加熱温度は、支持フィルムの耐熱温度以下の温度
、好ましくは 80— 230°Cとされ、より好ましくは 100— 200°Cとされる。
[0306] 形成される塗膜の膜厚は、好ましくは 0. 001 μ m- ΐ μ mであり、より好ましくは 0.
005 μ m— 0. 5 μ mである。
[0307] 形成された塗膜面を、例えばナイロン、レーヨン、コットンなどの繊維力もなる布を卷 き付けたロールで一定方向に擦るラビング処理を行う。これにより、液晶分子の配向 能が塗膜に付与されて液晶配向膜となる。
[0308] 本発明の液晶配向剤としては、例えばポリアミック酸または Z及びポリイミドを含有 するものを用いることが出来るがこれらに限定されるものではな 、。
[0309] シール材料としては、 1分子中にウレタン結合及び不飽和結合を 2以上有するウレ タン (メタ)アタリレートオリゴマーとマレイミド誘導体とシランカップリング剤とを含有す る光硬化性榭脂組成物が好適に用いられる。このシール剤はマレイミド誘導体と 、う 特定の化合物を使用するので、光重合開始剤を使用しなくても、紫外線により重合し 、液晶パネル用のシール剤として使用することによって長期安定性および VHR (べィ パー ·ハザード 'レシオ:各物質ごとに固有の蒸気圧力 算出された空気中での飽和 濃度を、それぞれの許容暴露限界濃度 (OEL等)で除した値として算出される、化学 物質評価の衛生安全基準である。 )が良い特性を示すという特徴を有する。
[0310] 本発明の第 8の実施の形態である、集光フィルムを用いたバックライトについて詳細 に説明する。
[0311] 図 30に本発明の集光フィルムを用いたバックライトの実施の形態を示す。このバッ クライトは、端面側に光源 705が設けられた導光体 701と、光源 705から出射された 光の出射角度の分布を制御する集光フィルム力 成っている。集光フィルムは導光 体 701上に配置され、入射面に入射した光が出射面から出射される。集光フィルム は、曲率半径力 S40mm以下の可撓性を有し、熱膨張係数が 50ppmZ°C以下の光 拡散機能を有するフィルム 704上に、有機樹脂からなる集光体 703がアレイ状に形 成されており、この集光体アレイ 703の導光体側先端と導光体 701の出射面とが密 着している。各集光体 703は、導光体 701と密着する面は平坦で、且つ、前記光拡 散機能を有するフィルムと接する面の面積よりも狭くなつている。集光体アレイは 1次 元配置のパターンであっても 2次元配置のパターンであってもよいが、図 31で示され るような長円状の形状が発光輝度の面内均一性の点で好ましい。
[0312] 光源 705から導光体 701の端面へ入射した光は、導光体 701内を全反射を繰り返 し伝播していく。この伝搬光が導光体 701の出射面と集光フィルムの集光体 703との 密着部から集光フィルムに取り込まれる。これにより、導光体 701内を伝搬する光は 密着部から順次、集光フィルムに取り込まれ、取り込まれた光は集光体 703の壁面で 全反射されながら集光フィルムの出射面から出射される。
[0313] 本発明における光拡散機能を有するフィルムの可撓性については、耐曲げ性とし て、曲率半径力 0mm以下であることが必要である。曲率半径力 0mmの可撓性を 有していれば、ロール'ッ一'ロールプロセスで用いられる最小直径が φ = 100mm のロールを用いることが可能となる。
[0314] 本発明における光拡散機能を有するフィルムの熱膨張率は、 50ppmZ°C以下で あることが必要である。プラスチック材料は、無機フィラーを配合することで熱膨張率 を小さくすることができ、前記光拡散機能を有するフィルムの材質として、後述する第 1の実施例で説明されるものが使用できる。無機フイラ一は、フィルムの透明性を維持 するため、可視光の波長より小さいことが必要であり、粒径が 380nm以下であれば 可視光の短波長端の透過性は損なうが実用上特に問題を生じない。より好ましくは、 1一 lOOnmで、この場合、可視光領域全体で透明性を損なうことはない。
[0315] 光拡散機能を有するフィルムは、榭脂フィルムの表面に凹凸が形成されたもの、 2 種類以上の透明榭脂を相分離状態で混合し界面に凹凸を形成したフィルム、光散 乱粒子を混合した榭脂フィルム等である。界面に凹凸を形成したフィルムの場合、膜 に光拡散性を持たせる必要はな 、。
[0316] 光散乱粒子を混合した榭脂膜の場合は、光散乱粒子は、透明な粒子で光拡散膜 と屈折率の異なる材質であることが好ましい。例えば、榭脂製のビーズ、酸化チタン、 酸化亜鉛、アルミナ、 ITO、酸ィ匕シリコン等がある。光散乱粒子の粒径は、 0. 5 m 以上であれば拡散光に波長依存性が生じ着色することはない。より好ましくは 1. Ο μ m以上である。更に、光散乱粒子の粒径は、光拡散機能薄膜の膜厚の 1Z2以下で あれば、光拡散機能に影響を及ぼすことがなぐ 1Z4以下であるほうがより好ましい。 熱膨張係数を 50ppmZ°C以下にするためには、酸化チタン、酸化亜鉛、 ITO、アル ミナまたはシリカが好ま 、。
[0317] フイラ一は 0. 1重量%以上 90重量%以下が好ましぐ 0. 5重量%以上 90重量% 以下がより好ましい。光拡散機能は 0. 1重量%以上あれば十分であり、 90重量%以 下であれば脆く割れやすくなるということもない。フィラーに無機物である、酸化亜鉛、 ΙΤΟ、シリカ等を用いた場合 5重量%以上であれば熱膨張率を下げる効果が得られ 、 10重量%以上であるほうがより好ましい。
[0318] 光の拡散はヘイズが 30%以上であることが好ましぐ上記の構成を採用することで 、 30%以上のヘイズを得ることができる(ヘイズ = (拡散透過率 Ζ全光線透過率) X 1 00%) ο
[0319] 本発明の第 9の実施の形態として、液晶パネルのノ ックライト光源となる有機 EL素 子について以下に説明する。
[0320] 有機 EL素子は、対向して配置された陽極と陰極との間に有機発光材料力もなる発 光層を含む有機層を介在させたものである。通常、有機 EL素子は、一方の電極を透 明電極で、他方の電極を背面電極として不透明な金属電極が用いられて!/ヽる。
[0321] 有機 EL素子は、基板上に透過率の高い透明電極、有機発光材料からなる発光層 を含む有機層、光を透過しない背面電極を順に形成し、発光層から発光された光が 基板を透過するボトムェミッションタイプと、基板上に背面電極、有機発光材料からな る発光層を含む有機層、透明電極を順に形成し、発光層から発光された光が透明電 極を透過するトップェミッションタイプの 2つのタイプがある。発光層には、低分子系の 材料と高分子系の材料を用いるものがある。
[0322] 次に、本実施の形態における平面発光素子の構造を、図を用いて説明する。具体 的な例として有機 EL素子を用いて説明する。有機 EL素子以外であっても、素子構 造を薄く形成できるものであれば無機 EL素子であってもかまわないことは言うまでも ない。
[0323] 有機 ELで構成された発光素子の概念を、図 7 (a)を用いて説明する。有機 ELで構 成された発光素子は、透明な ITO (Indium Tin Oxide)からなる陽極 122と、その 上に積層した有機 EL層 121と、陽極層 122よりも仕事関数の小さな陰極層 123とか ら構成されている。このような構成の有機 EL素子の一対の電極 122、 123の間に図 示しない電源から所望の電力を供給することにより、電極 122、 123の間に挟まれた 有機 EL層 112から発光(出射光 B)が生じる。
[0324] 陽極層 122は、ニッケル、金、白金、パラジウムやこれらの合金或いは酸化錫(Sn O )、沃化銅などの仕事関数の大きな金属やそれらの合金、化合物、更にはポリピロ
2
ール等の導電性ポリマーなどを用いることができ、一般には ITO力もなる透明な電極 が多く用いられている。
[0325] 陰極層 123は、電子注入性に優れた材料を用いることが好ましぐ電子注入効率の 向上が図れる仕事関数の小さな金属材料 (低仕事関数金属材料)が用いられている 。一般的にはアルミニウムや、マグネシウム 銀、アルミニウム リチウム等の合金が用 いられている。有機 EL層 112は、例えば陽極層 122側力も順に正孔輸送層 124と有 機発光層 125を積層した 2層構造のものがある。正孔輸送層としては N, N'—ジフエ 二ルー N, N,—ビス(3 メチルフエ-ル) 1, 1,ービフエ-ルー 4, 4,ージァミン(Triphen yldiamine,以下 TPDと略記する)を、有機発光層としてはトリス(8—ヒドロキシキナリ ナト)アルミニウム(Tris (8-hydroxyquinolinato) Aluminium, Alqと略される)等 が用いられている。
[0326] 有機 EL層 112は、上記の構造以外にも、 3層構成では、アノード電極(陽極)と接し て正孔を効率よく輸送する役割の正孔輸送層、発光材料を備える発光する層、カソ ード電極(陰極)と接して電子を効率良く輸送する電子輸送層の 3層とからなる 3層構 造にすることにより正孔と電子の輸送性を向上させている場合が多い。また、これに カロえて、フッ化リチウム層や無機金属塩の層、それらを含有する層などが任意の位置 に配置してもよい。
[0327] 発光層 125で発光は、透明電極である陽極側から出射される。
[0328] 図 7 (b)に本実施の形態の他のバックライト光源となる有機 EL素子の概略構造を示 す。基板 114上に、陰極となるアルミニウム lOOnmを通常のスパッタ法により成膜す る。次に有機 EL層 112となる発光層 125、正孔輸送層 124をこの順に、各々の厚さ 力 SlOOnmになるように塗布法で製膜し、次に、陽極 122となる ITO膜をスパッタ法で lOOnmの厚さで成膜する。この結果、有機 EL層 112の発光(出射光 B)は、陽極側 力 出射される。
[0329] 図 7 (c)は、バックライト光源の変形例で、基板上に、有機 EL素子が、陽極 122、正 孔輸送層 124、発光層 125、陰極 3の順に積層されている。有機 EL層の製造方法 および、各膜の厚さともに図 7 (b)と同様であるので省略する。
[0330] 陽極 122に反射膜としての機能を持たせるため、正孔輸送層 124と接する電極は I TO膜 127を用い、透明な ITO力もなる電極と反射膜 126の機能を持つアルミニウム 膜との積層構造としている。アルミニウム膜は、図 7 (b)の陰極と同様にスパッタ法で 1 OOnmの厚さに成膜すれば良!ヽ。
[0331] 陰極 123側に光を出射するために、アルミニウム膜を、透明性を損なわないように 薄く形成し、 ITO膜との積層膜とする必要がある。アルミニウム膜を lnm— lOnmの 厚さで形成後、 ITO膜のような透明な電極膜を成膜すればよい。この実施例におい てはアルミニウムを 5nm、 ITO膜を 95nmの厚さで成膜した。アルミニウムの膜厚は 1 nm以上であれば電子注入性を損なうことはなく、 lOnm以下であれば透明性を損な うことがない。
[0332] カラー表示液晶パネル (装置)のバックライト光源とするには、発光層からの発光は 、白色 (例えば、昼光標準光源 D65 (色温度 6500K) )である必要がある。単独で白 色光を発する材料がな 、ために、複数の発光材料により複数の発色光を発光させて 混色により白色を発光させている。複数の発色光の組み合わせとしては、赤色、緑色 、青色の三原色を発光させても良いし、青色と黄色、青緑色と橙色等の補色の関係 を利用しても良いが、各色のカラーフィルタの分光透過率に合わせた発光である必 要がある。
[0333] 赤色、緑色、青色の 3色のフィルタを用いたカラーフィルタを用いるのであれば、力 ラー表示を行うためには少なくとも赤色のフィルタを透過する波長の発光、緑色のフ ィルタを透過する波長の発光および、青色のフィルタを透過する波長の発光があれ ばよ 、。仮に赤色のフィルタと緑色のフィルタの分光透過率がその間の波長で連続し て ヽな 、場合、赤色のフィルタと緑色のフィルタとの両フィルタを透過しな 、波長を発 光していなくともかまわない。更に、発光極大値が緑色と青色との中間にあって、青 色のフィルタと緑色のフィルタの両方のフィルタ透過する波長の発光である場合は、 青色、緑色の 2色の各々を独立して発光させなくとも良い。
[0334] 有機 EL素子は、発光部が有機化合物であるために、発光部を外部雰囲気 (水分、 酸素等)から保護する必要がある。このために、 SiO、 SiN、 Al Oまたは、 A1Nから
2 2 3
なる保護膜を、有機 EL層 112の形成後連続して形成することが望ま ヽ。
[0335] 有機 EL層 112を蒸着法で形成する場合は同一真空室中で、スパッタ法を用いて 保護膜を形成することが好ましい。この場合、有機 EL層 112、透明な ITOカゝらなる陽 極 122、保護膜を連続して成膜することが好ましい。 SiO、 SiN、 Al Oまたは、 A1N
2 2 3
力もなる保護膜は、 lOOnm以上あれば有機 EL素子を保護できる。厚さの上限は特 にないが、 1 μ m以下であれば製造上の問題はない。
[0336] 保護膜は、図 7 (d)に示すように、薄膜発光素子の発光層である有機 EL層 112の 端面及び、透明電極 111で覆われて 、な 、有機 EL層 112の上面を覆っておくこと が好ましい。
[0337] 本発明の第 1の実施例として、ベースフィルムを説明する。
(第 1の実施例 ベースフィルム)
液晶表示パネルを形成する支持基板となるベースフィルムは、薄ぐ耐熱性が高ぐ 光、特に可視光領域の光に対し透明で且つ、光学的に等方的である、即ち位相差( 光遅延量)が小さ 、プラスチック材料であることが要求される。
[0338] さらに、可撓性については、耐曲げ性として、曲率半径、 r=40mm以下であること が望ましい。最低でも r= 40mmであれば、ロール'ッ一'ロールプロセスで用いられ る最小直径が φ = 100mmのロールを用いることが可能となる。更に、可撓性が高い 支持基板を使った液晶パネル、液晶表示装置は、落下による衝撃に対しても、橈む ことで衝撃を吸収することで耐えることができるので耐衝撃性が向上する。
[0339] また、電子ブックのように薄型の表示装置を形成した場合でも、従来の文庫本等の ペーパー ·バックスと同様に橈ませることができるので違和感なく使用できる。
[0340] 携帯用途に用いられる装置に表示用装置として搭載される場合、耐衝撃性が高い 、落下に対する耐性が強いことは重要である。従来のガラス基板は、材料の特性から 、耐衝撃性は落下により衝撃が加わる場所によって異なり、縁に衝撃が加わった場 合は簡単に割れてしまうという欠点がある。一方、プラスチック基板を用いた場合、ガ ラスよりも耐衝撃性は向上するが、縁に衝撃が加わった場合は、支持基板及び、支 持基板に搭載されているトランジスタや配線に衝撃が直接加わる点はガラス基板と同 様である。
[0341] 支持基板の可撓性を上げるだけでなぐ液晶表示パネルの支持基板を薄くすること で、液晶パネルの軽量ィ匕を図ることで質量低減により耐衝撃性を向上することができ る。
[0342] 厚みとしては、ロール 'ッ一'ロールプロセスに用いるだけであれば、厚さの上限は ないが、表示装置全体の小型化、軽量化を考慮すると、ガラス基板の 400 mよりも 薄いほう力好ましく、さらに、プラスチック基板の 200 mより薄いほうがより好ましい。 表示装置全体の小型ィ匕 '軽量ィ匕の要求を満たすためには、 10— 150 mであること が好ましぐ 10 μ m— 100 μ mである方がより好ましい。また 10 μ m以上あれば、搬 送中に皺を生じたり割れたりすることもな 、。
[0343] 耐熱性に関しては、機能性の膜を形成する際に使われる、温度に対して、光学的、 機械的な変形がないことが要求される。このためには、少なくとも 200°Cの温度履歴 に対し、機械的及び、光学的な変化が 5%以下であることが好ましぐより好ましくは、 250°Cの温度履歴に対し、機械的及び、光学的な変化が 5%以下であることがより好 ましい。
[0344] 光学的変化とは、温度により、光透過性の劣化、位相差の増加を示し、機械的変形 とは可撓性の劣化、寸法の変化を示す。
[0345] 透明性に関しては、可視光(380nm— 800nm)領域での透過性が要求される。少 なくとも 450nm— 700nm、より好ましくは 400— 700nm、もっとも好ましくは可視光 領域である 380nm— 800nmでの透過性が高!、ことである。 450— 700nmで透過 性が高ければ、実用上問題なぐ 400nm— 700nmであればさらに好ましぐもっとも 厳密な色合いを要求される場合でもほぼ十分であるといえる力 さらに好ましくは可 視光領域である 380nm— 800nm全域で光透過度が高 、ことが望まし 、。透明な波 長領域が広いほど、本来の色に近い色再現が可能な画像表示装置が製造できる。 所望のベースフィルムの厚さに対し光透過率(波長、 550nm)は、 80%以上であれ ば特に問題は生じないが、 85%以上のほうが好ましぐ 90%以上であることがより好 ましい。
[0346] ベースフィルムに用いることができるプラスチック材料として、耐熱性については、ァ クリル樹脂、エポキシ榭脂、環状ォレフィン榭脂、ポリイミド、ポリアミドなどが挙げられ る。一方、透明性に優れ光学等方的であるためには、アクリル榭脂、環状ォレフィン 榭脂を用いることが好ましい。
[0347] アクリル榭脂は、高い耐熱性を得るため、 2官能以上好ましくは 3官能以上のアタリ ルイ匕合物またはメタタリルイ匕合物を用いることが好まし 、。好まし 、ものの例を挙げる と、ビスフエノール Aジアタリレート,ビスフエノール Sジアタリレート,ジシクロペンタジ ェ -ルジアタリレート,ペンタエリスリトールトリアタリレート, トリス(2—ヒドロキシェチル) イソシァヌレートトリアタリレート,ペンタエリスリトールテトラアタリレート,ビスフエノール Aジメタタリレート,ビスフエノール Sジメタクリレート,ジシクロペンタジェ -ルジメタタリ レート,ペンタエリスリトールトリメタタリレート, トリス(2—ヒドロキシェチル)イソシァヌレ ートトリメタタリレート,ペンタエリスリトールテトラメタタリレート等である。また、 2種類以 上の化合物を混合して用いてもかまわな 、。
[0348] 環状ォレフィン榭脂は環状ォレフィンィ匕合物の付カ卩(共)重合体、エチレンと環状ォ レフインィ匕合物の付加共重合体、環状ォレフィン化合物の開環(共)重合体の水素化 体が挙げられる。上記水素化体は、環状ォレフィンの開環(共)重合体を、水素添カロ 触媒の存在下で水素化して得られる。
[0349] 環状ォレフィン化合物として、ビシクロ [2. 2. 1]ヘプター 2—ェン、 5—メチルービシク 口 [2. 2. 1]ヘプター 2—ェン、 5—ェチルービシクロ [2. 2. 1]ヘプター 2—ェン、 5—プロ ピルービシクロ [2. 2. 1]ヘプター 2—ェン、 5—へキシルービシクロ [2. 2. 1]ヘプター 2 —ェン、 5—デシルービシクロ [2. 2. 1]ヘプター 2—ェン、 5, 6—ジメチルービシクロ [2. 2. 1]ヘプター 2—ェン、 5—メチルー 5—ェチルービシクロ [2. 2. 1]ヘプター 2—ェン、 5— フエ-ルービシクロ [2. 2. 1]ヘプター 2—ェン、 5—シクロへキシルービシクロ [2. 2. 1] ヘプタ一 2—エントリシクロ [4. 3. 0. I2'5]デカ一 3—ェン、テトラシクロ [4. 4. 0. I2'5. 1 7'10]ドデ力— 3—ェン、 3—メチル—テトラシクロ [4. 4. 0. 12'517'10]ドデ力— 8—ェン、 3— ェチルーテトラシクロ [4. 4. 0. 12'517'1()]ドデ力— 8—ェン、 2—メチルービシクロ [2. 2. 1 ]ヘプター 5—ェンー 2—力ルボン酸メチル、アクリル酸 2—メチルービシクロ [2. 2. 1]へ プタ一 5—ェン、メタクリル酸 2—メチルービシクロ [2. 2. 1]ヘプタ一 5—ェン、ビシクロ [2 . 2. 1]ヘプタ— 5—ェン— 2, 3—ジカルボン酸ジメチル、ビシクロ [2. 2. 1]ヘプター 5— ェンー 2, 3—ジカルボン酸ジェチル、 3—メチルー 3—メトキシカルボ-ルーテトラシクロ [ 4. 4. 0. I2'5. I7'10]ドデ力一 8—ェン、ビシクロ [2. 2. 1]ヘプタ一 5—ェンー N—シクロへ キシルー 2, 3—マレインイミド、ビシクロ [2. 2. 1 ]ヘプタ— 5—ェンー 2—スピロ— 3,一 N— フエ-ルサクシンイミド、ビシクロ [2. 2. 1 ]ヘプタ— 5—ェンー 2—スピロ— 3,一 N—シクロ へキシルサクシンイミド、 2— [ (3—ェチルー 3—才キセタ -ル)メトキシ]ビシクロ [2. 2. 1 ]ヘプタ— 5—ェン、 2— [ (3—ェチルー 3—才キセタ -ル)メトキシメチル]ビシクロ [2. 2. 1]ヘプタ— 5—ェン、ビシクロ [2. 2. 1]ヘプタ— 5—ェンー 2—力ルボン酸(3—ェチルー 3 ーォキセタ -ル)メチルー 5—トリエトキシシリルービシクロ [2. 2. 1]ヘプタ— 2—ェン、 5— メチルジメトキシシリル—ビシクロ [2. 2. 1]ヘプター 2—ェン、 5— [1,—メチル—2,, 5,— ジォキサ— 1 'ーシラシクロペンチル]ービシクロ [2. 2. 1]ヘプタ— 2—ェン、 5— [ —メ チルー 3,, 3,, 4,, 4,ーテトラフエ-ルー 2,, 5,ージォキサ一 1,ーシラシクロペンチル] —ビシクロ [2. 2. 1]ヘプタ— 2—ェン、 5— [1,, 4,, 4,—トリメチル—2,, 6しジォキサ— 1,ーシラシクロへキシル]—ビシクロ [2. 2. 1]ヘプター 2—ェンなどから一種または二種 以上選ばれたィ匕合物を用いることができる。
[0350] また、ベースフィルムはディスプレイを製造するプロセス中での寸法変化が小さいこ とが必要であること力も熱膨張率は、 50ppmZ°C以下であることが好ましい。プラス チック材料は、無機フィラーを配合することで熱膨張率を小さくすることができる。無 機フイラ一は、フィルムの透明性を維持するため、可視光の波長より小さいことが必要 であり、粒径が 380nm以下であれば可視光の短波長端の透過性は損なうが実用上 特に問題を生じない。より好ましくは、 1一 lOOnmで、この場合、可視光領域全体で 透明性を損なうことはない。 lnm以下であっても問題はないが現在の技術では lnm 以下のフィラーを製造することは困難である。
[0351] 無機フィラーの例としては、酸化チタン、酸化亜鉛、アルミナ、酸ィ匕ケィ素などが挙 げられる。無機フィラーを配合する方法としては、例えば、分散能力の高い混合装置 を用いて乾燥した粉末状の酸化ケィ素微粒子を分散させる方法や、有機溶媒に分 散されたコロイド (ゾル)とその他の配合物を混合し必要に応じて撹拌しながら減圧す ることにより有機溶媒を除去する方法、有機溶媒に分散されたコロイド (ゾル)とその 他の配合物を混合し必要に応じて脱溶媒した後流延してさらに脱溶媒させる方法、 などが挙げられる。分散能力が高い装置としては、ビーズミル等が挙げられる。
[0352] プラスチック材料をフィルムにカ卩ェする方法としては、溶融押出法や溶液流延法を 用いることができる。アクリル榭脂、環状ォレフィン榭脂を加工する場合には溶液流延 法を用いることが好ましい。また、アクリル榭脂は無溶剤の液状モノマーを流延し、熱 や活性エネルギー線の照射により硬化を行 、フィルムに加工することもできる。環状 ォレフィン系榭脂の中で単量体単位の側鎖置換基にアクリル基、メタリル基、を含む 榭脂は、熱、活性エネルギー線の照射により、ォキセタ-ル基を含む榭脂は酸発生 剤により、また加水分解性シリル基を含む榭脂は液体または気体の加熱水による加 水分解と酸発生剤またはスズィ匕合物を触媒とする縮合より、硬化されたフィルムとす ることがでさる。
[0353] 硬化を行う際に使用する活性エネルギー線としては、紫外線が好ま 、。紫外線を 発生させるランプとしては、例えば、メタルハライドタイプ、高圧水銀灯ランプ等が挙 げられる。紫外線等の活性エネルギー線により硬化させる場合は、ラジカルを発生す る光重合開始剤を含有させることが好ましい。その際に用いる光重合開始剤としては 、例えばべンゾフエノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジ エトキシァセトフエノン、 1ーヒドロキシーンクロへキシルーフエ二ルケトン、 2, 6—ジメチ ルベンゾィルジフヱ-ルホスフィンォキシド、 2, 4, 6 トリメチルベンゾィルジフヱ-ル ホスフィンォキシド、ベンゾフヱノンが挙げられる。これらの光重合開始剤は 2種以上 を併用しても良い。光重合開始剤の含有量は、(メタ)アクリル基を含有する有機成分 100重量部に対し、 0. 01— 2重量部が好ましい。少ないと感度が悪く硬化不足にな る場合があり、多すぎると感度が高すぎ配合中に硬化反応が起こって塗工不良を生 じる場合がある。
[0354] 熱をかけて熱重合させる場合は、必要に応じて、熱重合開始剤を含有させることが できる。その際に用いる熱重合開始剤としては、ベンゾィルパーォキシド、ジイソプロ ピルパーォキシカーボネート、 t ブチルパーォキシ(2—ェチルへキサノエート)等が 挙げられ、使用量は、(メタ)アクリル基を含有する有機成分 100重量部に対し、 0. 0
1一 1重量部が好ましい。
[0355] 本実施例のベースフィルムは透明性に優れる即ち光線透過率が高いとともに、光 学等方的である即ち位相差が小さいことが好ましい。光線透過率は、波長 550nmに おいて 85%以上であり、さらに好ましくは 90%以上である。位相差は法線方向にお ける値が lOnm以下であることが好ましぐさらに好ましくは 5nm以下である。
[0356] 本発明中のベースフィルムは厚さが 10— 300 μ mであることが好ましい。 10 μ m未 満では、搬送中に皺を生じたり割れたりしゃすくなり、 300 /z m越えるとロール 'ツー' ロールによる加工が困難になる傾向がある。
[0357] 以下、ベースフィルムの具体的な製造方法を説明する。
[0358] アクリル榭脂タイプのベースフィルムは、ジシクロペンタジェ -ルジアタリレート 120 重量部、イソプロピルアルコール分散型コロイダル酸ィ匕ケィ素 [酸化ケィ素含量 30重 量%、平均粒子径 10— 20nm]400重量部を混合し、 45°Cで撹拌しながら減圧下揮 発分を 200重量部除去した。その後、光重合開始剤として 1ーヒドロキシーンクロへキ シルーフエ-ルーケトン(チバスぺシャリティケミカル社製「ィルガキュア 184」 )を 0. 6重 量部添加し溶解させ、ベースフィルム用榭脂組成物を得た。
[0359] 塗工機(図示せず。)を用いて、ベースフィルム用榭脂組成物を硬化後膜厚が 100
/z mになるように離型処理 PET (ポリテレフタル酸エチレン)フィルム上にダイコータ により塗工した。続いて 120°Cに制御した乾燥炉で揮発分を揮発させ、紫外線照射 装置により硬化した。硬化後、離型処理により PETフィルムを剥離してベースフィルム を得た。
[0360] 次に、環状ォレフィン榭脂タイプのベースフィルムは、重量平均分子量 23万の 5—ト リエトキシシリルービシクロ [2. 2. 1]ヘプタ— 2—ェン 3モル0 /0を含むビシクロ [2. 2. 1] ヘプタ- 2 -ェン付加共重合体 100重量部、亜リン酸トリブチル 1. 5重量、酸化防止 剤としてペンタエリスリチルーテトラキス [3— (3, 5—ジー tーブチルー 4ーヒドロキシフエ- ル)プロピオネート]およびトリス(2, 4—ジー t ブチルフエ-ル)ホスファイトをそれぞれ 0. 5重量部、をキシレン 550重量部に溶解し、ベースフィルム用榭脂組成物を得た。
[0361] 塗工機(図示せず。)を用いて、 PET (ポリテレフタル酸エチレン)フィルム上にダイ コータにより塗工し、 30°C— 50°Cの昇温下で 1次乾燥し、溶剤を 20— 50重量部含 むフィルムを得た。このフィルムを PETフィルムから剥離し、 30°Cのトルエン蒸気雰囲 気下に曝した後、さらに 50— 200°Cで 2次乾燥し、続いて 170°Cの加熱水蒸気雰囲 気下に曝し、硬化された膜厚 100 mのベースフィルムを得た。
[0362] アクリル榭脂タイプのベースフィルムは、光透過率が、 90% (550nm、厚さ 100 μ m)、位相差は、 3nm、ヤング率 5. 3GPaが得られた。又、環状ォレフィン榭脂タイプ のベースフィルムは、光透過率が、 91% (550nm、厚さ 100 μ m)、位相差は、 5nm 、ヤング率 2. 9GPaが得られた。
[0363] 平均粒径が 300nm (最大粒径 400nm)の酸化ケィ素を 25重量%添加することで 光透過率、位相差及びヤング率の変化はなカゝつた。無機フィラーを添加することで熱 膨張係数はアクリル榭脂タイプで 85ppmZ°Cから 35ppmZ°Cに、環状ォレフィン榭 脂タイプで 80ppm/°Cから 38ppm/°Cに改善された。
[0364] アクリル榭脂タイプ、環状ォレフィン榭脂タイプ共に可撓性は半径が 30mmのロー ルに卷くことができた。
[0365] 270°C、 24時間の高温保管後も初期の値を保持し、高温保管での機械的 ·光学的 劣化は認められな力つた。
[0366] 次に、ベースフィルム上にガスバリア層を形成する具体的な製造方法を説明する。
[0367] ベースフィルムは、有機樹脂からなる薄膜であるために、酸素や水蒸気等の通常の 空気の成分が液晶層や有機 EL層に侵入する。ガスバリア層は、基板が光を透過す る必要があること力も透明でなくてはならない。このため、ガスノリア層の材料としては 、ポリビュルアルコール等の有機材料、有機材料と粘土鉱物(Al O
2 3一 2SiO · 5Η Ο
2 2
、 Al O - SiO - 2-3H O等の非晶質粘土鉱物や、結晶質粘土鉱物である(Si, Al)
2 3 2 2
O四面体シート、 (Al, Mg) (O, OH)八面体シート)等の無機物との有機無機複合
4 6
材料、酸ィ匕ケィ素ゃ酸ィ匕アルミニウムなどの無機材料の薄膜が挙げられる。湿度が 高い環境でのガスノリア性に優れることと、厚さが薄くても効果が高いことから無機材 料を用いるほうが膜厚を薄くできる。さらに、これらの層を 2層以上重ねて成膜するこ とちでさる。
[0368] ガスバリア層の厚さは、有機材料および有機無機複合材料の場合は 1一 10 μ mで あることが、無機材料の場合 lOnm—: mであることが好ましい。有機材料および有 機無機複合材料の場合、 1 μ m以上であれば酸素や水蒸気等の通常の空気の成分 が液晶層や有機 EL層への侵入することを十分に防止することができる。 10 m以下 であれば膨張率等のベースフィルムの物性に影響を与えることがな 、。無機材料の 場合、 lOnm以上であれば酸素や水蒸気等の通常の空気の成分が液晶層や有機 E L層への侵入することを十分に防止することができる。 1 μ m以下であれば屈曲時に 害 IJれることちない。
[0369] ガスノ リア層をフィルム上に形成する方法としては、有機材料および有機無機複合 材料の場合は塗布法を、無機材料の場合は各種の薄膜成膜法を用いることができる 。塗布法は液状の有機材料またはその溶液等の液体をフィルム上に塗布し、乾燥や 硬化することで製膜するものである。薄膜成膜法としては、真空蒸着、イオンプレーテ イング、スパッタリングなどの物理気相成長法、真空中でのプラズマ CVD、触媒 CVD 、大気圧下での CVDなどの化学気相成長法が挙げられる。これらの中で、低温で緻 密な膜を得られることからスパッタリングが特に好ましい。
[0370] 以下、ガスバリア層の具体的な製造方法を示す。
[0371] 厚さ 100 μ m、幅 30cm、長さ 100mのベースフィルム 3のロールを図 8に示すマグ ネトロンスパッタロールコーターの巻き出しロール 2側にセットした。成膜圧力 0. 3Pa 、温調ドラム温度 30°Cで、放電ガスとしてアルゴンを、反応ガスとして酸素を導入し、 ターゲットにボロンをドープしたシリコンを用いパルス DC電源により反応性スパッタリ ング成膜を行った。入力電力と搬送速度を調整することにより厚さ lOOnmの酸化ケィ 素(SiO :xは 1. 6— 1. 9)のガスノ リア層を成膜した。成膜後、真空チャンバーを大 気圧に戻してから開放し、巻き取りロール 11側力もガスノ リア層付きフィルムをとりだ した。
[0372] 本実施例では、ベースフィルムの一方の面にのみガスバリア層を形成した力 両面 に形成しても良い。この場合、片面に形成後、再度同様の方法で他方の面にガスバ リアを形成しても良いし、図 8の、ターゲット 5を裏面側にも設け 1回でベースフィルム の両面にガスバリア膜を成膜しても良 ヽ。
[0373] 本実施例では、マグネトロンスパッタを用いた力 他のスパッタ法ゃ蒸着法を用いて も良い。化学的成膜法を用いることも可能であるが、物理的成膜法を用いるほうが製 造装置の構成が簡単である。
[0374] 第 2の実施例として、図 9、 10は、ガラス基板力もベースフィルムへ薄膜トランジスタ を転写する製造工程を示す図である。
[0375] (第 2の実施例 薄膜トランジスタ)
まず図 9を用いて、ガラス基板上に薄膜トランジスタ(TFT: Thin Film Transist or)を作成する工程を説明する。図 9 (a)に示すように、ガラス基板 201上にフッ酸の エッチング阻止層となる酸ィ匕膜あるいは、窒化膜等のノ リア膜 202を成膜する。その 上に非晶質シリコン膜あるいは多結晶シリコン膜を成膜する。この実施例においては 、非晶質シリコン膜 216aを lOOnm成膜した。これらの薄膜の成膜には、プラズマ CV D法やスパッタ法等を用いることができる。その後、図 9 (b)に示すように、エキシマレ 一ザによりレーザー光 Cを照射することにより非晶質シリコン膜を多結晶シリコン膜 21 6bに改質する。ここで多結晶シリコン膜に改質する手法としては、レーザー光照射の 代わりに、熱ァニールによる固相成長法でもよい。
[0376] 図 9 (c)に示すように、多結晶シリコン膜 216bを所望の形状にパターユング後、ブラ ズマ CVD法ゃスパッタ法等により酸ィ匕膜からなるゲート絶縁膜 217を lOOnm成膜す る。続いて図 9 (d)に示すように、ゲート電極 218を形成した後、 nチャネルトランジス タを形成する領域をフォトレジストで被覆してボロンをイオンドーピング法で注入 Dし、 p型化した領域 Faを形成する。続いて、図 9 (e)に示すように、 pチャネルトランジスタ を形成する領域をフォトレジスト 219で被覆してリンをイオンドーピング法で注入 Eして n型化した領域 Fbを形成する。その後、図 9 (f)に示すように、アルミからなるソース電 極'ドレイン電極を形成後、酸ィ匕膜からなる厚さ 200nmの層間絶縁膜 220とアルミか らなる金属電極 221を形成してトランジスタが完成する。液晶パネルの画素を駆動す る画素駆動用トランジスタ部は、 n— MOSあるいは、 p— MOSトランジスタのみで構成 されていても良い。このようなトランジスタアレイを任意に配列することにより、所望の 回路をガラス基板上に形成することができる。その後、画像表示部となる領域には、 更に ITO等の透明導電膜を成膜し、所望の画素電極を形成する。最後に、厚さ 200 nmの酸ィ匕膜を、電極を保護する電極保護膜として形成する。以上の工程により、液 晶表示パネル用 TFTガラス基板が完成する。
[0377] 続いて図 10を用いて、上記液晶表示パネル用トランジスタをガラス基板力もベース フィルム上に転写して、ベースフィルム上に素子膜を形成する方法を説明する。
[0378] 図 10 (a)に示すように、トランジスタアレイ 229が形成されたガラス基板 201のトラン ジスタ形成面に保護フィルム 230を、接着剤を用いて貼り付ける。続いて図 10 (b)に 示すように、この保護フィルム付基板をフッ酸力もなるガラスエッチング溶液 231に浸 し、ガラス基板 228を裏面側力もエッチング Gする。エッチングはガラス基板 228をェ ツチング除去後、ノ リア層 234で停止する。
[0379] ガラスエッチング溶液としては、フッ酸以外にも、ノ ッファードフッ酸などが適する。
ガラス基板を全てエッチングした後、図 10 (c)に示すように、エッチング面にベースフ イルム 235を貼り付ける。最後に、図 10 (d)に示すように、トランジスタアレイ層 229か ら保護フィルム 230及び接着剤を剥離 Hすることで、転写が完了し素子層がベースフ イルム上に形成される。ここで、図 9 (a)のノ リア膜 202が、ガラスエッチング溶液に対 してエッチングレートが遅ければエッチングストッパ層としても働き、図 10 (b)のガラス 基板エッチング工程を制御性良く行うことができる。また保護フィルム 230に関しては 、フッ酸等の強酸に耐えられる材質が要求される。またエッチング時には、均一にェ ツチングが進むようにエッチング液の温度の変化が生じな 、ようにする必要がある。
[0380] 以上のような製造工程により、液晶表示パネル用 TFTフィルム基板を作成すること ができる。
[0381] 本実施例においては、支持基板にガラス基板、支持基板の除去にフッ酸等のエツ チング溶液、ノ リア層には窒化膜、保護膜は接着剤を用い接着する例であるが、基 板に、石英基板、シリコン基板を用い、研磨法で支持基板を除去する、あるいは、熱 で接着するホットメルトシート等を用いても実現できることは言うまでもな 、。
[0382] 以下、位相差膜等の機能薄膜を、実施例を用いて詳細に説明する。実施例の説明 の前に機能薄膜を形成するフィルムについて詳細な説明を行っておく。
[0383] 実施例 1で詳細な説明を行ったベースフィルムは、液晶パネルが形成されたときに パネルを構成する基板となるフィルムである。途中の中間工程で製造される機能フィ ルムの支持フィルムはベースフィルムを用いても良 、が、必ずしもベースフィルムであ る必要はない。支持フィルムに用いることができる材料としては、ベースフィルムに用 いる材料以外に、ポリエステル、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレ ート、ポリビュルアルコール、エポキシ、ポリイミド、ポリアミド、ポリスチレン、ポリカーボ ネート、ポリプロピレン等のポリオレフイン、ポリ塩化ビュル、ポリ塩化ビ-リデン等のポ リハロゲン化ビュル類、エチレンビュル共重合体、酢酸ビュルまたは、セルロースァ セテート、ニトロセルロース、セロハン等のセルロース誘導体からなる榭脂を用いるこ とができる。カバーフィルムも支持フィルムと同様の材料を用いることができる。機能 薄膜製造時の条件、例えば、光に対する透過性'製造時の温度条件等により適宜材 料を変える事は言うまでもな 、。
[0384] カバーフィルム及び支持フィルムはともに熱膨張係数が 50ppmZ°C以下で、ベー スフイルムの熱膨張係数の差が ± 30%以下であることが好ましい。より好ましくは、士 15%以下であることが好ましい。ベースフィルム上に形成された機能薄膜上に、支持 フィルム上に形成された機能薄膜を転写するので、特に支持フィルムはベースフィル ムとの熱膨張係数を整合させておく必要がある。
[0385] 以下の実施例にお!、て、支持フィルムの特性は特に示して 、な 、が、上記の条件 に適合したフィルムを用いたことは言うまでもな 、。
[0386] 特に、光機能薄膜が熱硬化性の榭脂ではなぐ光硬化性の榭脂である場合は榭脂 に混入する無機フィラーの粒径を lnm— 200nm、より好ましくは lnm— 150nmに する必要がある。下限は lnmに限定されるものではなぐ製造可能であれば lnm以 下であっても良い。
[0387] 実施例 1のアクリル榭脂タイプのベースフィルムに添加する無機フィラー(酸化ケィ 素)の粒径を平均粒径が 150nm (最大粒径 200nm)で 30重量%添加した結果、 20 Onm— 300nmの波長の紫外線の透過率は 80%でありフィルム上に形成した光硬 化型榭脂にフィルムの下面力 紫外線を照射して硬化させるに十分な透明度を有し ていた。
[0388] 本発明の第 3の実施例として位相差膜を説明する。
(第 3の実施例:位相差膜)
(塗布型位相差膜) 位相差膜は、塗布型位相差膜と、貼り合わせ型位相差膜とがあり、初めに、塗布型 位相差膜について説明を行う。
[0389] 表面が酸化ケィ素で処理されたポリエーテルスルホン力 なるロール状ベースフィ ルムに配向膜としてポリイミド配向剤「AL— 1254」(JSR社製)をフレキソ印刷機で塗 布後、 180°Cで 1時間乾燥し、これをレーヨン布でラビング処理を行った。
[0390] これ以外にも、アルキル鎖変性系ポバール (例えば、クラレ (株)製 MP203、同 R1 130など)の塗膜ならば焼成は必要なぐラビングするだけで該配向能が付与できる 。その他、ポリビニルブチラール、ポリメチルメタタリレート、など疎水性表面を形成す る有機高分子膜ならば大抵のものがその表面をラビングすることにより液晶配向能を 付与できる。
[0391] 二酸ィ匕ケィ素配向膜は、第 2の実施の形態と同様に成膜することができる。ここで注 意することは斜め蒸着法を用いて形成することである。
[0392] 重合性液晶組成物としては、式(10) 50重量部
[0393] [化 14]
( 1 0 )
Figure imgf000077_0001
及び式(11) 50重量部
[0394] [化 15]
Figure imgf000077_0002
カゝらなる重合性液晶組成物 (A)を調製した。得られた組成物は室温でネマチック相 を示し、ネマチック相力も等方相への転移温度は 47°Cであった。また 25°Cにおける n (異常光屈折率)は 1. 65であり、 n (常光屈折率)は 1. 52であった。重合性液晶糸且 成物 (A) 100重量部と光重合開始剤「IRG— 651」(チバガイギ一社製) 1重量部とか らなる重合性液晶組成物(c)を、メチルェチルケトンに溶解し、先に得られたロール 状ベースフィルムにグラビアコーターにて塗布し、次いで室温において 365nmの紫 外線を 160mjZcm2だけ照射して重合性液晶組成物を硬化し、厚さ 1. の位 相差フィルムを形成した。この位相差膜は波長 550nmの光に対し位相差が 138nm であり、また 1Z4波長板として機能することを確認した。
[0395] (貼り合わせ型位相差膜)
次に、貼り合わせ型の実施例を説明する。
[0396] N—メチルー 2—ピロリドン(以下、 NMP)に芳香族ジァミン成分として 85モル0 /0に相 当する 2—クロルパラフエ-レンジァミンと、 15モル0 /0に相当する 4、 4,ージアミノジフエ -ルエーテルとを溶解させ、これに 99モル%に相当する 2—クロルテレフタル酸ジクロ リドを添加し、 2時間撹拌して重合を完了した。この溶液を水酸化リチウムで中和して ポリマー濃度 10重量%の芳香族ポリアミド溶液を得た。
[0397] このポリマー溶液をエンドレスベルト上にキャストし、 150°Cの熱風で自己支持性を 得るまで乾燥後、ベルトから剥離した。ベルトから剥離されたフィルムは、続いて 40°C の水浴中にてフィルムの長手方向に 1. 10倍の延伸を施しつつ、残存の溶媒、無機 塩等を除去し、テンターに導入した。テンター中では、 280°Cの熱風により乾燥'熱処 理を行った。また、テンター中で幅方向に 1. 5倍の延伸を行い、厚さ 4. 0 mの芳香 族ポリアミドフィルムを得た。
[0398] このフィルムの位相差は、 R(550) = 140nm、 R(450) = 164nm、 R(650) = 126 nmと従来の lZlO以下の厚さのフィルムであっても、 1Z4 λ板用フィルムとして機 能しうる位相差を持つものであった。
[0399] また、このフィルムの遅相軸は、幅方向と一致しており、その方向の寸法変化率は 0 . 02%、直交方向の寸法変化率は 0. 0%、長手方向(MD)、幅方向(TD)のヤング 率はそれぞれ 10GPa、 16GPaと極めて耐熱性、抗張力性の高いものであった。
[0400] また、このフィルムの 450— 700nmにおける光線透過率の最低値は 80%、 400η mにおける光線透過率は 24%であった。
[0401] 次に、このポリマー溶液をベルトにキャスト後、自己支持性を得たフィルムをベルト 力 剥離した。このフィルムを、 100°Cに加熱したロールに接触させ、長手方向に 1. 8倍のロール間延伸を施した。次いで、 MD方向に延伸したフィルムを 40°Cの水浴中 に導入し、残存の溶媒、無機塩等を除去し、テンターに導入した。テンター中では、 3 00°Cの熱風により乾燥'熱処理を行った。また、テンター中で幅方向に 2. 2倍の延 伸を行い、厚さ 3. 0 mの芳香族ポリアミドフィルムを得た。このフィルムの位相差は 、 R(550) = 278nm、 R(450) = 326nm、 R (650) = 252nmと従来の lZlO以下 の厚さのフィルムであっても、 1/2 λ板用フィルムとして機能しうる位相差を持つもの であった。
[0402] また、このフィルムの遅相軸は、長手方向と一致しており、その方向の寸法変化率 は 0. 04%、直交方向の寸法変化率は 0. 0%、長手方向(MD)、幅方向(TD)のャ ング率はそれぞれ 19GPa、 9GPaと極めて耐熱性、抗張力性の高いものであった。
[0403] また、このフィルムの 450— 700nmにおける光線透過率の最低値は 79%、 400η mにおける光線透過率は 22%であった。
[0404] 上記の位相差膜は、支持フィルム上にラミネートしておくほうが好ましい。
[0405] 本実施例の、芳香族ポリイミドあるいはポリアミド酸の溶液は次のようにして得られる 。即ち、ポリアミド酸は N—メチルピロリドン、ジメチルァセトアミド、ジメチルホルムアミド 等の非プロトン性有機極性溶媒中で、テトラカルボン酸二水物と芳香族ジァミンを反 応させて調製することができる。また芳香族ポリイミドは前記のポリアミド酸を含有する 溶液を加熱する、あるいはピリジンなどのイミド化剤を添加してポリイミドの粉末を得、 これを再度溶媒に溶解して調製できる。製膜原液中のポリマ濃度は 5— 40wt%程度 が好ましい。
[0406] 上記製膜原液を用いて位相差膜を作ることができる。この結果得られる位相差膜は
、芳香族ポリアミドからなる位相差膜と同等の特性が得られた。
[0407] 尚、本発明における物性の測定方法、効果の評価方法は次の方法に従って行った
(1)位相差
下記測定器を用いて測定した。
装置:セルギャップ検査装置 RETS— 1100 (大塚電子社製)
測定径: Φ 5mm 測定波長: 400— 800nm
上記測定で、波長 450nm, 550nm、 650nmの時の位相差をそれぞれ R (450)、 R (550)、R (650)とした。
(2) 150°Cでの寸法変化率
A.遅相軸の決定
サンプルをユニバーサルステージ上に置き、偏光顕微鏡にてクロス-コル下で観察 し、最も複屈折性の大きくなる方向を遅相軸とした。また、配向計 (例えば、神崎製紙 (株)製 MOA— 2001 A)を用いて、分子配向の最も大きくなる方向を採っても差し支 えない。
B.寸法変化率の測定 遅相軸方向およびそれと直交する方向に、 150mm (幅 10 mm)の大きさにサンプルを切り出し、長さ方向に 100mm間隔の標線を入れる。この サンプルを熱風オーブン中に荷重が掛カもないように設置し、 150°C、 10分間熱処 理後、サンプルを採りだし、常温まで冷却後、塩ビシート上にしわが入らないように展 開して、標線間の距離 (L : mm)を測定し、以下の式で求める。
寸法変化率(%) = ( I L— 100 I /100) X 100
(3)フィルムの透明性 (光線透過率)
下記装置を用いて測定し、各波長の光に対応する透過率(%)を求めた。
透過率(%) =T1ZT0
ただし T1は試料を通過した光の強度、 TOは試料を通過しない以外は同一の距離 の空気中を通過した光の強度である。
装置: UV測定器 U-3410 (日立計測社製)
波長範囲: 300nm— 800nm
測定速度: 120nmZ分
測定モード:透過
(4)ヤング率 ロボットテンシロン RTA (オリエンテック社製)を用いて、温度 23°C、相 対湿度 65%において測定した。試験片は 10mm幅で 50mm長さ、引張速度は 300 mmZ分である。但し、試験を開始して力 荷重が 1Nを通過した点を伸びの原点とし [0408] 次に、本発明の第 4の実施例である、偏光膜について説明する。
[0409] (第 4の実施例:偏光膜)
次に、本発明の第 4の実施例である、偏光膜について説明する。
[0410] 本実施例で用いる偏光膜は、ポリビュルアルコールや部分ホルマール化ポリビュル アルコール、エチレン '酢酸ビュル共重合体の部分ケン化ポリマーなどからなるポリビ
-ルアルコール系フィルムにヨウ素および zまたは二色性染料などの二色性色素を 吸着させて 2軸延伸させた後、ホウ酸処理を施して得られる。偏光膜の厚さは 5— 50 μ m程度であるが、これに限定されるものではない。
[0411] ポリビニルアルコールの薄膜を加熱しながら延伸し、ヨウ素を多量に含む溶液 (通 常、 Hインクと呼ばれる)に浸漬させヨウ素を吸収させた、いわゆる H膜 (ポリビュルブ チラール膜)が使える。 H膜で 18 μ mの膜を得ることができた。
[0412] 上記以外に、ヨウ素および Zまたは二色性染料を含む榭脂ペレットを溶融押出もし くは溶液キャストなどの方法を用いてフィルム化した後、該フィルムを 1軸延伸すること でヨウ素および Zまたは二色性染料が強く一軸方向に配向した偏光膜がある。偏光 膜の厚さは、 1一 10 /z m程度である力 これに限定されるものではない。
[0413] この場合でも、膜厚 10 μ m— 20 μ mの偏光膜が得られる。ここで使用する榭脂は、 ポリビュルアルコールや部分ホルマール化ポリビュルアルコール、エチレン '酢酸ビ -ル共重合体の部分ケンィ匕ポリマーなど力もなるポリビニルアルコール系榭脂、ポリ ォレフィン榭脂、アクリル榭脂、 PET (ポリテレフタル酸エチレン)や PEN (ポリエチレ ンナフタレート)などのポリエステル榭脂、ポリアミド榭脂、ポリアミドイミド榭脂、ポリイミ ド榭脂、ポリカーボネート榭脂、ポリサルホン榭脂などが例示できる。
[0414] 偏光膜を、熱、圧力、粘着剤、接着剤等によって支持フィルムに貼り合わせる。偏 光膜は、支持フィルム力 剥離し、機能フィルム上の、例えば、有機 EL発光素子の 保護膜に貼り合わせる。
[0415] 偏光膜を支持基材となる離型フィルム上に形成した場合、偏光機能層のみを機能 フィルム上の、例えば、有機 EL発光素子の保護膜に貼合しなければならない。この ため、偏光膜と支持フィルムとは剥離が可能な状態で貼合されていることが必要とな るが、支持フィルムを剥離した面にさらに他層が積層されることを考慮すると、支持フ イルム上の離型剤が剥離とともに偏光膜上に移行しないよう処理されていなければな らない。
[0416] 偏光膜を、水分や紫外線から保護する必要がある。このために片面もしくは両面に 、光学的に透明な保護層を貼合して得られる。保護層を形成する榭脂には光学的な 透明性や機械的強度のほかに、熱安定性や水分遮蔽性などに優れる榭脂を使用す る必要が生じている。このような榭脂として、セルロース、ポリカーボネート、ポリエステ ル、アクリル、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリオレフインなどがあげら れる。なかでも、トリァセチルセルロースなどのセルロース、ポリカーボネート、ポリェチ レンテレフタレートなどのポリエステル、アクリルなどが好ましく用いられる。
[0417] 発光ダイオード (LED)や、有機 EL素子は、発光の成分に紫外線はほとんど含ま れていない。液晶パネルのバックライトに発光ダイオード (LED)や、有機 EL素子を 使った場合は、耐紫外線は無視できる。更に、有機 EL素子は、水分や酸素から有機 EL素子の発光層となる有機物を保護するために、 SiO、 SiN、 Al O、 A1N等の光
2 2 3
学的に透明な無機物力もなつている。
[0418] ノ ックライトに対する偏光膜は、有機 ELの保護膜の直上に配されることが多ぐこの 場合、偏光膜の、一方の側の保護膜は省略することができる。このために、従来のよ うに、偏光膜に、保護膜を設けなくとも良いので偏光膜を薄膜化できる。
[0419] 偏光膜に保護膜を形成する方法として、偏光膜に偏光膜の保護膜を直接貼り合わ せる方法もあるが、各々別の支持基材上に、偏光膜の保護膜および、偏光膜を貼り 合わせた後、偏光膜の保護膜あるいは偏光膜を支持基材力 剥離しながら、偏光膜 あるいは偏光膜の保護膜上に貼り合わせていく方法がある。液晶パネルの偏光膜と して使う場合、例えば、有機 EL素子をバックライトとして使う場合は、有機 EL素子の 保護膜上に偏光膜を形成するので、偏光膜の保護膜上に偏光膜を貼り合わせるほう が好ましい。
[0420] 本実施例の場合、膜厚は、偏光膜 (3 μ m)、保護膜 (3 μ m)の計 6 μ mであった。
[0421] 偏光膜の片面もしくは両面に保護膜を設ける場合、光学的に透明な保護層を貼合 して得られる。保護層を形成する榭脂には光学的な透明性や機械的強度のほかに、 熱安定性や水分遮蔽性などに優れる榭脂を使用する必要が生じている。このような 榭脂として、セルロース、ポリカーボネート、ポリエステル、アクリル、ポリエーテルスル ホン、ポリアミド、ポリイミド、ポリオレフインなどがあげられる。なかでも、トリァセチルセ ルロースなどのセルロース、ポリカーボネート、ポリエチレンテレフタレートなどのポリ エステル、アクリルなどが好ましく用いられる。
[0422] これら保護層には、サリチル酸エステル系化合物、ベンゾフヱノール系化合物、ベ ンゾトリアゾール系化合物、シァノアクリレート系化合物、ニッケル錯塩系化合物など 紫外線吸収剤が配合されていてもよい。さらに保護層の表面には、各種表面処理を 行うことでハードコート層、アンチリフレクション層、アンチグレア層などが形成させら れていてもよい。
[0423] 保護層の厚さは、薄膜軽量性や保護機能、取扱い性や切断加工時の耐クラック性 などの観点から、通常 80 m以下、好ましくは 40 m以下である。尚、偏光子の両 面に保護層を設ける場合、その表裏で異なる榭脂からなる保護層を設けてもよい。
[0424] また、保護膜と偏光子とを貼合する際には接着剤が使用される。ここで使用される 接着剤は、保護膜と偏光子を良好に接着するものであれば特に限定されない。接着 剤はワイヤバー、ドクターブレード、デイツビングなど各種方式を利用して偏光子の片 面あるいは両面に塗工されたのち保護層と貼合される。さらに、貼合の接着力を確保 するために熱風、紫外線、赤外線などを用いて接着剤層を乾燥もしくは硬化させる。 この際、偏光子の偏光性能が低下しない条件で接着剤層を乾燥'硬化させることが 好ましい。
[0425] さらに、偏光膜には液晶表示パネル中の液晶セルや位相差板など各種光学機能 を有する部材と積層するため、粘着剤層が設けられる。
[0426] 粘着剤には、アクリル系重合体やシリコーン系ポリマー、ポリエステルやポリウレタン 、ポリエーテルなどをベースポリマーとした粘着剤を用いることができる。なかでも、ァ クリル系粘着剤のように光学的な透明性に優れ、適度な濡れ性や凝集力を保持し、 基材との接着性にも優れ、さらには耐候性や耐熱性などを有し、加熱や加湿の条件 下で浮きや剥がれ等の剥離問題を生じな 、ものを選択して用いることが好ま 、。
[0427] アクリル系粘着剤としては、メチル基やェチル基やブチル基等の炭素数が 20以下 のアルキル基を有する(メタ)アクリル酸のアルキルエステルと、(メタ)アクリル酸や (メ タ)アクリル酸ヒドロキシェチルなど力もなるアクリル系モノマーを、ガラス転移温度が 好ましくは 25°C以下、さらに好ましくは 0°C以下となるように配合した重量平均分子量 が 10万以上のアクリル系共重合体がベースポリマーとして有用である。
[0428] 偏光膜への粘着層の形成は、例えばトルエンや酢酸ェチルなどの有機溶媒に粘 着剤組成物を溶解または分散させて 10— 40重量%の溶液を調整し、これを偏光膜 上に直接塗工して粘着剤層を形成する方式や予め保護膜上に粘着剤層を形成して おき、それを偏光膜上に移着することで粘着剤層を形成する方式などがあげられる。 粘着層の厚さは、その接着力などに応じて決定される力 1 μ m— 50 mの範囲で ある。
[0429] また、粘着層には必要に応じてガラス繊維やガラスビーズ、榭脂ビーズ、金属粉や その他の無機粉末などからなる充填剤や顔料、着色剤や酸化防止剤、さらにはサリ チル酸エステル系化合物やべンゾフエノール系化合物、ベンゾトリアゾール系化合物 ゃシァノアクリレート系化合物、ニッケル錯塩系化合物など紫外線吸収剤などが配合 されていてもよい。上述した偏光膜の厚さは、両面に保護層を有した構成 (保護層 Z 偏光子 Z保護層 Z粘着剤層)で 150 m以下、好ましくは 100 m以下、片面に保 護層を有した構成 (保護層 Z偏光子 Z粘着剤層)で 100 m以下、好ましくは 50 m以下である。
[0430] 本発明における偏光膜を反射型もしくは半透過反射型の液晶表示パネルに使用 する場合、位相差板と貼り合わせて円偏光膜として利用することができる。
[0431] 位相差板としては、ポリカーボネート、ポリビュルアルコール、ポリスチレン、ポリメチ ルメタタリレート、ポリオレフイン、ポリアリレート、ポリアミドなどよりなるフィルムを一軸も しくは二軸延伸し面内の屈折率を制御したフィルム、さらには熱収縮性フィルムとの 接着下に該原料樹脂フィルムを収縮させることで厚み方向の屈折率を制御したフィ ルム、ディスコティック液晶ゃネマチック液晶の配向フィルムなどがあげられる。ここで 用いる位相差板は、コントラストの向上を目的として 2枚以上のフィルムを組み合わせ て使用してもよい。
[0432] 偏光膜と位相差板の一体化処理に際しては、作業の簡便性や光学歪の発生防止 など観点から、粘着剤を用いることが好ましい。この際、偏光膜や位相差板の片面ま たは両面に粘着剤層を設けて一体化処理に供することができる。設ける粘着剤層は 異なる組成または種類のものの重畳層であってもよい。さらに両面に粘着剤層を設け る場合、偏光膜や光学層の表裏にぉ ヽて異なる組成または種類等の粘着層であつ てもよい。
[0433] また、位相差板として 1Z4波長板を用いた場合、偏光膜の吸収軸と位相差板の遅 相軸とのなす角度が 45° ± 1° または 135° ± 1° の範囲内で貼合することが必要 である。貼合の精度がこの範囲を越えると円偏光膜としての機能が不十分となる。
[0434] 上述した円偏光膜では、片面にのみ保護層を有する偏光膜を使用し、偏光子の片 面に粘着剤層を介して位相差板を貼合した構成 (保護層 Z偏光子 Z粘着剤層 Z位 相差板 Z粘着剤層)を用いることが好ましぐ該構成の円偏光膜の厚みは 150 m 以下、好ましくは 100 μ m以下であることが望ましい。
[0435] 本発明による偏光膜やこれを用いた円偏光膜は、ノート型パーソナルコンピュータ や携帯電話などモパイル用途向けの液晶表示パネルに好ましく利用され、これらの 液晶セルの片側又は両側に粘着剤を介して積層される。液晶セルの両側に設ける 偏光膜もしくは円偏光膜は、同一であっても異なるものであってもよい。また、液晶セ ルへの積層は、偏光膜もしくは円偏光膜を予め液晶セル程度の大きさに切断してお き、これをロールやプレスなどを用いて、液晶セルと偏光膜もしくは円偏光膜との間に 気泡が入ることなぐかつ液晶セルを破損することのな 、圧力で印加する方法などが 挙げられる力 これに限定されるものではない。
[0436] 第 5の実施例であるカラーフィルタについて詳細に説明する。
(フィルムタイプカラーフィルタ)
図 11を用いて第 5の実施例であるフィルムタイプのカラーフィルタの製造方法を示 す。ロールに巻き取られた、第 1の支持基板となる膜厚 30— 100 /z mの PET (ポリテ レフタル酸エチレン)フィルム 390上にカラーフィルタとなる、赤(R) 395、緑(G) 396 、青 (B) 397及び、ノラックマトリックスとなる黒 (BK) 394のいずれかとなる塗膜厚 10 μ mの感光榭脂層 391をグラビアコート法等の塗布法で形成する。感光榭脂層 391 の塗膜厚 ίま、 5 111ー20 111カ好ましく、8 111ー15 111のまぅカょり好まし1ヽ。 5 μ m以上であればカラーフィルタまたは、ブラックマトリックスとして十分に機能し、 20 μ m以下であれば光の透過度を下げることもな 、。
[0437] 尚、感光榭脂層 391は、塗膜厚 10 mで、乾燥後のカラーフィルタ層の膜厚が 1 μ mの厚さとなる。
[0438] 感光性榭脂層は、組成が溶剤成分と固形成分とで構成され、固形成分は透明な榭 脂成分と分散剤と顔料とで構成され、透明な榭脂成分は重合開始剤とモノマーと熱 架橋剤または、光架橋剤とから構成されている。溶剤成分は沸点が 100°C— 200°C で蒸気圧が lOmmHg以下であるケトン類、エステル類、エーテル類であり、モノマー は多官能アタリレート系モノマーが好まし 、。 lOmmHg以下であれば乾燥ムラが発 生することがない。熱架橋剤または、光架橋剤は (メタ)アクリル酸 +アクリル酸エステ ル共重合体系が可視光の透過率を高くすることで望ましい。光重合開始剤は、イミダ ゾール系、ァセトフエノン系、トリアジン系、チォキサントン系の開始剤が暗反応を起こ しにくいで好ましい。顔料は、粒径が 0. 1 μ m以下であれば光の透過度を損なうこと がない。
[0439] 支持基板の材料はポリテレフタル酸エチレン榭脂以外に、ポリエチレン榭脂、ポリプ ロピレン榭脂、ポリエステル榭脂、エチレンビュル共重合体榭脂、ポリ塩化ビュル榭 脂、セルロース榭脂、ポリアミド榭脂、ポリイミド榭脂、ポリカーボネート榭脂、ポリスチ レン榭脂、酢酸ビニル榭脂で光透過機能があるものを使うことができる。
[0440] 第 1の支持基板の高分子材料力 なるフィルムは、後の工程で、支持基板から感光 榭脂 391を剥離した後、洗浄して、再利用できるという利点もある。
[0441] ブラックマトリックスを形成する工程を、図面を用いて詳細に説明する。 PETフィル ム 390上に、粒子径が 5nm— 200nmのカーボンブラック、アセチレンブラックまたは 、ランプブラック等力 選ばれた材料と、カルボキシル基を有する架橋材、例えば (メ タ)アクリルアミド、 N, N-ジメチル (メタ)アタリアミド等とを含む感光性着色榭脂 391 を PETフィルム 390上にダイヘッド法またはグラビアロール法等で塗布 1010し、温 風、赤外線または、遠赤外線を用いて、 180°Cで乾燥する。その後涼風をあて常温 まで冷却後(乾燥 ·冷却 1020)、ポリエステル榭脂からなるカバーフィルム 392を感光 性着色榭脂 391上に貼り付け (カバーフィルム貼り付け 1030)、巻き取りロールに卷 き取る(図 l l (a) )。 [0442] ブラックマトリックスに限り、クロムを 0. 1 μ m— 0. 2 μ mの厚さで設けても良い。クロ ムは物理的蒸着法で設けることが可能であるが、この場合は、有機樹脂からなるフィ ルムのほうが望ましい。
[0443] 以下、同様に、カラーフィルタの R (赤)、 G (緑)、 B (青)となる感光榭脂を塗布した ベースフィルム製造する。
[0444] 次に、送りだしロールから、ブラックマトリックス用の感光榭脂 391上にカバーフィル ム 392を貼り合わせた第 1の基材であるベースフィル 390を送りだし、カバーフィルム を剥離 (カバーフィルム剥離 1040)する、次にカバーフィルム 392が形成されていた 面に、高耐熱性榭脂からなるカラーフィルタの第 2の基材 393を貼り付 (CF基材の貼 り付け 1070)ける。その後、ベースフィルム 390側力 、マスクを介し露光 1080し、ベ 一スフイルム 390を剥離 (ベースフィルム剥離 1090)し、感光榭脂 391を現像'乾燥 1 100しブラックマトリックスがカラーフィルタ基材 393に形成される。その後、カバーフ イルム 392をブラックマトリックスの形成されている面に貼り付 (カバーフィルム貼り付 け 1110)ける(図 11 (b)参照)。
[0445] カバーフィルムは、感光性榭脂 392、ブラックマトリックス、カラーフィルタの保護膜 であり、貼り付け、剥離が容易に行えるように、弱粘着していることが望ましい。
[0446] ここで、弱粘着とは、剥離の際に、相手材に化学的、物理的影響を与えずに、粘着 層を支持する基材とともに離形する機能を意味し、カバーフィルムに自己粘着性の性 質がある材料、例えば、 EVA (エチレンビュルアセテート)榭脂を用いたフィルム、あ るいは、アクリル系榭脂からなる接着剤を溶剤に希釈し薄膜塗布し、温風乾燥、紫外 線硬化、電子線硬化することで実現できる。
[0447] 上記のカバーフィルムは、カラーフィルタの製造時に用いるだけでなぐ他の光学 機能フィルム製造時にも用いることができることは言うまでもない。
[0448] 感光性榭脂は、第 1の支持基板とも弱粘着している必要があり、この場合は、感光 性榭脂の自己粘着性を利用した方法で当該支持基板と粘着させることができる。
[0449] CF基材 393に感光榭脂 391からなる層を貼り合わせる際には、感光榭脂 391から なる層の対向する面の両側、あるいはどちらか一方の側から 60°Cになるように加熱し 、 2kgZcm2の加重で加圧する。この際、感光榭脂 391からなる層が均一に加熱され るように電磁誘導のような方法で、金属ロールを加熱する必要がある。また、加圧も均 一に加圧する必要があり、 1対のロールの間を通し、線圧をかけるような加圧方式をと ることが望ましい。この際に、 1対のロールの一方または、両方のロールを加熱し、該 ロール力 の熱を伝導することで加熱しても良い。
[0450] CF基材に感光榭脂 391からなる層を貼り合わせるので、 CF基材に高分子榭脂か らなるフィルムを用いる場合は、露光時に酸素を遮断することが望ましぐ酸化ケィ素 やアルミナ力もなる膜厚 10nm— 50nmの酸素遮断膜を設けることが好ま U、。酸素 遮断膜はベースフィルムのガスノリア膜と同等であり酸ィ匕ケィ素ゃアルミナに限るも のではない。酸化ケィ素やアルミナのような無機物の場合膜厚は、 lOnmから 50nm が好ましい。膜厚が lOnm以上であれば、酸素の遮断性は十分にあり、膜厚が: L m 以下であれば、製造上特に問題になることはない。
[0451] また、貼り合わせ時に、感光榭脂 391から成る層に傷をつけないために、高分子榭 脂からなる CF基材の場合、ポリエステル榭脂またはポリエチレン榭脂からなる耐擦傷 性のプロテクトフィルムを設けて置くことが好ましい。フィルム厚は 10 μ m— 200 μ m であれば良ぐ膜厚が 10 m以上であれば、耐擦傷性は問題なく感光榭脂 391に 傷がつくことはない。膜厚が 200 m以下であれば製造上特に問題はない。
[0452] プロテクトフィルムはカラーフィルタの製造にかかわるだけでなぐ貼り合わせ時の耐 擦傷性を改善するために設けることが好ま 、ことは言うまでもな 、。
[0453] 酸ィ匕ケィ素カも成る酸素遮断膜は、例えば連続 CVD装置で作ることができる。また 、アルミナ力も成る酸素遮断膜は、連続 PVD装置で作ることができる。
[0454] 露光は、密着露光、縮小投影露光等の通常用いられている超高圧水銀灯を光源と する露光法であれば特に問題はない。縮小投影露光の光源には、レーザを用いても 良い。現像後、過熱、あるいは紫外線照射を行って、感光榭脂 391の高分子榭脂を 架橋する。
[0455] この結果、感光榭脂は CF基材と密着性が改善すると同時に、安定な状態になる。
[0456] その後、ブラックマトリックスが形成された CF基材 393上に同様の製造方法で赤の フィルタを形成する。以下同様に、緑のフィルタ、青のフィルタを形成して CF基材上 にカラーフィルタ層 399が形成される(図 12参照)。これは一例であって、色の順番 は任意に決定できる。
[0457] ベースフィルムへ塗布、乾燥、 CF基材への貼り付けを連続して行える、ある 、は、 連続して行える製造装置であれば、カバーフィルム 392を設けなくとも良い。
[0458] 製造装置は、内部に送りだしロールと卷取りロールとが配置され、送りだしロールか ら送り出されたフィルムを加工する。内部と外部とは遮断され、内部は少なくとも、清 浄度がクラス 1000以下(0. 1-0. 5 m以下の塵埃が 1000個 Zm3以下)であるこ と力望ましく、更に、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であると更に好 ましい。
[0459] カラーフィルタは、ブラックマトリックス上に、スぺーサを形成することができる。この 場合は、図 12に示すように、のカラーフィルタとなる R (赤)、 G (緑)、 B (青)をすベて 形成後に、同様の製造方法でスぺーサを設けても良い。
[0460] スぺーサは、円柱状または角柱状をカラーフィルタと同様のプロセスで作ることがで きる。位置は、ブラックマトリックス上で、ブラックマトリックスの内側に形成することが好 ましい。位置合わせのマージンを考えると、位置ずれの最大値よりも内側になるように 設計するほうがより好ましい。高さは、 3 μ m— 5 μ mが好ましい高さである。
[0461] CF基材 393上に形成されたカラーフィルタ層 399は、図 13に示すように、送りだし ロールから巻き取りロールへ引き出される、ベースフィルム 380上に TFT素子、配線 、画素電極が形成された TFT層 381が形成された機能フィルム上に転写される。
[0462] 図 13では、カラーフィルタ 399の CF基材を剥離後、カラーフィルタ 399を、カバー フィルム 392を介し、転写ローラ 2000で TFT層 401上に転写する。転写後、カバー フィルム 392を剥離する。
[0463] 図 13では、カバーフィルム 392とカラーフィルタ 399とが接する面にスぺーサ 398 が形成されて 、ることを想定し、カラーフィルタ 399のスぺーサが形成されて!、な!/ヽ 側の面で、 TFT層に転写している。スぺーサ 398が形成されていない場合は、カラ 一フィルタ 399のカバーフィルムと接する面で TFT層 401に転写することも可能であ る。
[0464] カバーフィルム 392は、剥離せずにベースフィルごと卷取りロールに巻き取っても良 い。 [0465] CF基材 393上に形成されたカラーフィルタ層を転写する構成を説明した力 CF支 持基材に、ベースフィルムを使って、 CF支持基材 393を含めて貼り合わせることも可 能である。
[0466] 感光榭脂 391、カラーフィルタ層 399は、カバーフィルム 392以外の、第 1の支持基 板 390も剥離するので、基板との接着はカバーフィルムと同じように弱粘着であること が必要である。
[0467] 本実施例では、感光性榭脂を用いた例を示したが、着色榭脂を用いても実現可能 である。着色榭脂を用いた場合は、図示しないが、着色樹脂にフォトレジストを塗布し 、フォトレジストを露光 ·現像 ·乾燥後にエッチングにより不要部の着色層を除去するこ とで実施できる。
[0468] 第 5の実施例であるカラーフィルタのインクジェットタイプにっ 、て説明する。
(第 5の実施例:インクジェットタイプ)
カラーフィルタをインクジェットにて作製するには、例えば以下のように行うことがで きる。
[0469] カラーフィルタ層の形成に用いる榭脂材料としては、ポリイミド榭脂、 PVA誘導体榭 脂、アクリル榭脂などあげられるが特に限定されるものではない。例えば、アクリル榭 脂としては、アクリル酸、メタクリル酸、メチルアタリレート、メチルメタタリレートなどのァ ルキルアタリレートまたはアルキルメタタリレート、環状のアタリレートまたはメタタリレー ト、ヒドロキシェチルアタリレートまたは、メタタリレートなどの内力も 3— 5種類程度のモ ノマーを用いて、分子量 5 X 103 — 100 X 103 程度に合成した榭脂が好適である。
[0470] また、カラーフィルタ層の粘度、硬化性などの性能を調整するために、必要に応じ て希釈モノマーをカ卩えてもよい。希釈モノマーとしては、 2官能、 3官能、多官能モノ マーがあり、 2官能モノマーとして、 1, 6 キサンジオールジアタリレート、エチレン グリコールジアタリレート、ネオペンチルグリコールシアタリレート、トリエチレングリコー ルジアタリレートなどがあり、 3官能モノマーとして、トリメチロールプロパントリアタリレ ート、ペンタエリスリトールトリアタリレート、トリス(2—ヒドロキシェチル)イソシァネートな どがあり、多官能モノマーとして、ジトリメチロールプロパンテトラアタリレート、ジペンタ エリスリトールペンタおよびへキサアタリレートなどがあげられる。希釈モノマーの添カロ 量は、アクリル榭脂 100重量部に対し 20— 150重量部程度が好適である。
[0471] また、着色組成物の調製に用いる顔料としては、有機色素としては、赤色顔料とし て I. No. 9、 19、 81、 97、 122、 123、 144、 146、 149、 168、 169、 177、 180 、 192、 215など、緑色顔料として C. I. No. 7、 36など、青色顔料として C. I. No. 1 5 : 1、 15 : 2、 15 : 3、 15 :4、 15 : 6、 22、 60、 64など、紫色顔料として C. I. No. 23
51319、 39 42555 : 2など、黄色顔料として C. I. No. 83、 138、 139、 101、 3 、 74、 13、 34など、黒色顔料としてカーボンなどがあげられる。また、体質顔料として 硫酸バリウム、炭酸バリウム、アルミナホワイト、チタンなどがあげられる。
[0472] また、着色組成物の調製に用いる分散剤としては、界面活性剤、顔料の中間体、 染料の中間体、ソルスパースなどがあげられる。有機色素の誘導体としては、ァゾ系 、フタロシアニン系、キナクリドン系、アントラキノン系、ベリレン系、チォインジコ系、ギ ォキサン系、金属錯塩系などの誘導体が好適である。これらの有機色素の誘導体は 、水酸基、カルボキシル基、スルホン基、カルボンアミド基、スルホンアミド基、などの 置換基を有したものの中から分散性のょ 、ものが適宜選択されるものである。
[0473] 顔料の混合割合は、アクリル榭脂 100重量部に対し顔料 50重量部一 150重量部 程度であり、また、分散剤の混合割合は、この顔料の 1重量部一 10重量部程度であ る。また、カラーフィルタの分光特性を調整する為に、適切な顔料が随時添加される ものである。
[0474] また、着色組成物の調製に用いる熱架橋剤としては、メラミン榭脂、エポキシ榭脂な どがあげられる。例えば、メラミン榭脂ではアルキル化メラミン榭脂 (メチル化メラミン榭 脂、ブチル化メラミン榭脂など)、混合エーテル化メラミン榭脂などがあり、高縮合タイ プ、低縮合タイプのいずれであっても良い。
[0475] 上記エポキシ榭脂としては、グリセロール、ポリグリシジルエーテル、トリメチロール プロパン 'ポリグリシジルエーテル、レゾルシン'ジグリシジルエーテル、ネオペンチル グリコール.ジグリシジルエーテル、 1, 6—へキサンジオール'ジグルシジルエーテル 、エチレングリコール(ポリエチレングリコール) 'ジグリシジルエーテルなどがあげられ る。
[0476] 熱架橋剤の混合割合は、アクリル榭脂 100重量部に対し熱架橋剤 10— 50重量部 が好適である。また、着色組成物の調製に用いる溶剤としては、トルエン、キシレン、 ェチルセ口ソルブ、ェチルセ口ソルブアセテート、ジグライム、シクロへキサノン、乳酸 ェチル、プロピレングリコールモノメチルエーテルアセテートなどが好適である力 モ ノマ一組成、熱架橋剤、希釈モノマーなどによって単一または複数の溶剤が適宜選 択されるちのである。
[0477] また、カラーフィルタ層の形成に用いる着色組成物は、上記のような榭脂、顔料、分 散剤、熱架橋剤、溶剤などで構成されている。この着色組成物の調製方法は、先ず 、アクリル系榭脂と顔料とを混合するために 3本ロールを用いて練り合わせてチップと する。次に、このチップに分散剤、溶剤を加えペーストを作成する。このペーストに熱 架橋剤、希釈モノマーを添加して着色組成物の塗工液とするものである。
[0478] 上記黒色 (ブラックマトリックス)、赤色、緑色、青色の塗工液をインクジェット法により 支持基板上へ所定のパターンに塗工する。インクジェット装置としては、インクの吐出 方法の相違によりピエゾ変換方式と熱変換方式があり、特にピエゾ変換方式が好適 である。インクの粒子化周波数は 5— ΙΟΟΚΗζ程度、ノズル径としては 1 μ m— 80 μ m程度、ヘッドを 4個配置し 1ヘッドにノズルを 1一 1, 000個組み込んだ装置が好適 である。
[0479] ヘッドの数は、塗布する色が何色あるかにより変わり、赤、緑、青の 3色の場合へッ ドは 3個配置すればよい。ヘッドの数は、塗布する色の種類と少なくとも同じ数を配し 、ヘッド毎に色を変えることが好ましい。
[0480] 支持基板上へインクジェット法により塗工する前に、予めインクの受容性やぬれ性 を調整するために塗工液の榭脂、溶剤などと合わせた下引き層を設けてもよい。下 引き層としてはポリイミド榭脂、 PVA誘導体榭脂、アクリル榭脂、エポキシ榭脂組成物 などを用いることができ、これらに酸ィ匕ケィ素、アルミナなどの多孔質粒子を添加して も良い。マトリックス状遮光層は、フォトリソ法や前記転写法により形成することもでき、 インクジェット法によりカラーフィルタ層を形成する前でも後でも良い。
[0481] また、必要に応じカラーフィルタ層の上にオーバーコート層を形成してもよい。これ はカラーフィルタ層の外観面での平坦性、耐性面での耐湿性、耐薬品性などの性能 を補うため、また、カラーフィルタ層からの溶出物を阻止するバリア性を確保するため に用いられるものである。用いる材料としては、熱硬化型でマレイミドを含むアクリル 系共重合体、エポキシ榭脂組成物などの透明樹脂が好適である。支持基板上に形 成されたカラーフィルタは、フィルムタイプのカラーフィルタと同様のプロセスで機能フ イルムに転写することができる。
[0482] オーバーコート層を設けて力 転写する場合は、フィルムタイプでも説明したように カラーフィルタのオーバーコート面と対向する面側で転写すればよい。
[0483] 尚、本実施例にお!、ては支持基板状に形成した力 直接機能フィルム上に、インク ジェット法により塗布しても良い。この場合は、機能フィルム上でカラーフィルタ層を乾 燥させることで機能フィルム上にカラーフィルタが形成できる。カラーフィルタ層上に カバーフィルムを設けて置くことで、保管時にカラーフィルタが劣化することもない。支 持基板上にカラーフィルタを形成した場合と同様に、カラーフィルタ層上にオーバー コート層を形成してもよい。
[0484] 本発明の第 6の実施例である、集光体アレイ及び、集光体アレイを用いた裏面発光 光源を、図面を用いて詳細に説明する。
[0485] 図 30は本実施例の裏面光源の概略断面図である。
[0486] 導光体 701は、最大粒径が 100nm、平均粒径 50nmのシリカを 20重量%含有し た膜厚が 300 μ mのアクリル榭脂タイプのフィルムを用いた。
[0487] 導光体 701上には、集光体アレイが形成されている。該集光体アレイ上には、光拡 散膜 704が形成されている。
[0488] 光拡散膜 704は、膜厚 40 μ mで、平均粒径が 2 μ m、最大粒径が 10 μ mのシリカ 力もなる無機フィラー 25重量%を含有している。導光体 701と同様にアクリル榭脂タ イブのフィルムを用いた。
[0489] 液晶の裏面光源はカラーを表示する場合白色光であることが必要であり、光源 705 は、 R (赤)、 G (緑)、 B (青)の三色を発光する発光ダイオード 706が配列されて 、る ( 図 30 (b)参照)。本実施例では、 3原色を用いたが、補色の関係にある二色、たとえ ば、青と黄色とを用いても、白色の発光ダイオードを用いてもかまわない。
[0490] 導光体 701の膜厚が薄ぐ光源の発光ダイオードよりも薄くなる場合は、周知の方 法で、光を集光して導光体 701に導くことができる。 [0491] 導光体 701の集光体アレイに対向する面に反射膜 702を配置しておくと光源の光 を効率よく理由できる。反射膜 702は、膜厚が lO /z mのアルミの薄膜を用いた。膜厚 の上限は特にないが、重量'厚みの制限を考慮すると、 20 mが上限と考えられる。 一方、下限は 1 m以上であれば反射膜として機能する。
[0492] 尚、本実施例においては図 30 (c)に示すように、導光体 701の出射面に形成した 集光体アレイ 703 (図 30 (c)では、 1個し力示していない。)内部に光を取り込み、全 反射を利用して光を取り出すので、特に反射膜 702は不要であるが、界面での反射 光を再利用するために、反射膜を導光体裏面に用いると効率的に光が利用できる。
[0493] 集光体は、図 31のような種々の形状を取ることができるが、集光体の導光体に接す る面の面積が、集光体の該面と対向する面の面積よりも狭く形成しなければならな 、
[0494] 集光体は図 31に示す以外にも、断面形状が、円弧状、放物線状、楕円状、台形状 の一部を切り出したもの、あるいはこれらの組み合わせたものが好ましい。さらに導光 体との接着性を鑑みて、頂部が平坦であることが好ま 、。
[0495] 図 32は集光体アレイの俯瞰図である。集光体は、 bは 10 μ m以上 100 μ m以下が 好ましぐ 20 μ m以上 70 μ mであることがより好ましい。 10 μ m以上であれば液晶に 干渉縞が生じることがなぐ 100 /z m以下であれば、光の利用効率を下げることはな い。
[0496] aは寸法に対する制限はないが、 500 μ m力ら 10 μ mが集光体アレイの製造時に 不良を生じることもなぐ更に転写時の転写ミスが生じないサイズである。
[0497] 厚さは、 bZ3以上であることが好ましい。薄膜ィ匕を図るためには集光体の bの寸法 は、 20 μ m以上 60 μ m以下であることが好ましい。集光体の bの寸法が、 20 μ m以 上 60 μ m以下であれば、集光体の厚さは 7 μ m— 20 μ mの厚さで形成することがで きる。
[0498] 本実施例では、 & = 200 111、1)= 50 111、厚さ 10 の集光体を用いた。
[0499] この結果、裏面発光光源は、 350 μ m (0. 35mm)の厚さで形成できた。従来の導 光体の 0. 8mmに比べ薄型化が可能となった。従来の導光体は寸法が大きくなると 膜厚を厚くする必要があつたが、本発明の場合は、寸法が大きくなつても導光体の膜 厚を厚くする必要がない。更に、本発明の裏面発光光源は、可撓性のある薄膜を導 光体に使えるので耐衝撃性も格段に向上させることができる。
[0500] 次に、集光体アレイの作製方法について説明する。集光体アレイ 703は、雌型に紫 外線硬化榭脂 709をコートし榭脂側から支持フィルム 708を押さえつけた状態で硬 化させ、硬化後に雌型力も離形することで得ることができる(図 33)。もしくはベースフ イルム上に榭脂 707をコートし、榭脂側を雌型に押さえつけた状態で紫外線照射装 置により雌型で押さえつけた部分に紫外線を照射して硬化させ、硬化後に雌型から 離形することで得ることができる(図 34、 35)。詳細は後述するが、紫外線は、支持フ イルム 708の裏面側力も照射させる(図 34参照)、あるいは雌型側力も照射する(図 3 5参照)ことができる。
[0501] 紫外線硬化榭脂 709に変えて熱硬化榭脂を使うことも可能であるが、雌型で押さえ つけた部分のみ熱をカ卩える必要があるので、紫外線硬化型榭脂を使う方が好ま Uヽ
[0502] この際、榭脂の硬化度合いは、榭脂の重合が完全に完了している必要はなぐバタ ーンの形状が保持できる程度であればょ 、。
[0503] 用いることのできる紫外線硬化榭脂 709としては、活性エネルギー線や熱照射によ り硬化する榭脂が挙げられる。
[0504] 本実施例においては、支持フィルム 708と同じアクリル榭脂を用いた場合を例示す るが、アクリル榭脂に限定されるものではな!/、。
[0505] 集光体の材料を導光体となる支持フィルム 708と同じ材料を用いた場合、導光体と 集光体との屈折率がほぼ同一であるので、導光体と集光体との界面で光が反射する ことがないので、光の利用効率が上がる。
[0506] 硬化を行う際に使用する活性エネルギー線としては、紫外線が好ま 、。紫外線を 発生させるランプとしては、例えば、メタルハライドタイプ、高圧水銀灯ランプ等が挙 げられる。
[0507] 紫外線等の活性エネルギー線により硬化させる場合は、ラジカルを発生する光重 合開始剤を含有させることが好ましい。その際に用いる光重合開始剤としては、例え ばべンゾフエノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジェトキ シァセトフエノン、 1ーヒドロキシーンクロへキシルーフエ二ルケトン、 2, 6—ジメチルベン ゾィルジフエ-ルホスフィンォキシド、 2, 4, 6—トリメチルベンゾィルジフエ-ルホスフ インォキシド、ベンゾフ ノンが挙げられる。これらの光重合開始剤は 2種以上を併用 しても良い。光重合開始剤の含有量は、(メタ)アクリル基を含有する有機成分 100重 量部に対し、 0. 01— 2重量部が好ましい。少ないと感度が悪く硬化不足になる場合 力 Sあり、多すぎると感度が高すぎ配合中に硬化反応が起こって塗工不良を生じる場 合がある。
[0508] 熱をかけて熱重合させる場合は、必要に応じて、熱重合開始剤を含有させることが できる。その際に用いる熱重合開始剤としては、ベンゾィルパーォキシド、ジイソプロ ピルパーォキシカーボネート、 t ブチルパーォキシ(2—ェチルへキサノエート)等が 挙げられ、使用量は、(メタ)アクリル基を含有する有機成分 100重量部に対し、 0. 0 1一 1重量部が好ましい。
[0509] 紫外線硬化型榭脂を用いる際は、支持フィルム 708が紫外線硬化榭脂 709を主に 硬化させる波長に対して透過率が高い場合には、フィルム側から紫外線を照射すれ ばよい(図 34)。また、支持フィルム 708の該波長に対する透過率が低い場合には、 該波長に対し透過性に優れる透明材料を用いて該雌型を作製し、雌型側から紫外 線を照射すればよい(図 35)。
[0510] 光散乱粒子を含有する支持フィルム 708を用いた場合、光拡散膜は、図 36に示す ように、単一の膜から構成されていても、図 37、図 38に示すように積層膜からなって いても良い。図 37は、光拡散膜が集光体アレイ 703の直上に形成されている。図 38 は、支持フィルム 708上に光拡散層 712が形成されている。図 36—図 38のいずれ の構成であっても良い。
[0511] 次に、図 31の構成の裏面光源の製造方法を説明する。図 33— 35の方法で支持フ ルム上に集光体アレイを製造する。次に、導光体となるベースフィルム上に集光体ァ レイを転写する。光散乱機能を持たせた支持フィルムの場合は、支持フィルムごと貼 り合わせても良い。
[0512] 反射膜は、導光体となるベースフィルムの集光体アレイを形成する面と対向する面 に、予め金属等力もなる反射膜、例えば膜厚、 10 mのアルミニウムを配置する。反 射膜上の機能フィルムは第 8に実施例で説明した製造法を用いればよいので詳細な 説明は省略する。
[0513] 得られた集光体アレイを用いた液晶構造の概略断面図を図 39に示すように、基板 上に集光体アレイが形成された支持フィルを基板と集光体アレイとが接するように張 り合わせ支持フィルム上に液晶が形成されている。
[0514] 図 40では、ベースフィルムを切断することなく貼り合わせて複数の液晶パネルをべ 一スフイルム状に形成後、精密裁断により個々の液晶パネルとするものである。
[0515] 図 40の液晶パネルの製造方法は上述と同様に製造できるので詳細な説明は省略 する。
[0516] 導光板と液晶セルを貼り合わせた後、各液晶表示素子のサイズに合わせ精密裁断
(図 40)、もしくは液晶セルを特定の個数に切り出した後、表示サイズに合わせて精 密に裁断するプロセス(図 41)を用いることが可能である。さらにあら力じめ液晶セル を特定の個数に切り出した後、導光板と貼り合せるプロセスも可能である(図 42)。
[0517] この工程で行う切断方法としては、レーザー光線の走査による切断あるいはトムソン 刃による打ち抜き、などが挙げられる。精密裁断により、液晶パネルを得るには封止 材料上を切断する必要がある。この液晶封止材料の幅は 2mm以上が望ましい。これ より小さい場合には裁断時に剥離等の不良発生が懸念される。さらに望ましくは 3m m以上である。
[0518] 切り代の幅の上限は特にないが、広すぎるとロスが多くなる、パネルの面積が大きく なる等の問題が生じるので 5mmくらいが上限と考えられる。
[0519] 裏面光源に集光体を用いた場合でも、約 470 μ mの裏面光源つき液晶パネルを製 造することができた。本実施例では導光体に膜厚 300 /z mのフィルムを用いた力 導 光体の膜厚を 200 /z mで製造した場合も問題はなカゝつた。この場合、液晶パネルの 膜厚は約 370 μ mとなった。
[0520] 次に、第 7の実施例である有機 EL素子の構成について以下に説明する。
[0521] 発光層は、発光する層を含む数十 nm力 数百 nmの有機化合物または錯体の単 層、複数層からなり、適切に組み合わせた複数層の構成は、単層に比べて発光層に おける電子と正孔の結合効率が向上し、結合した励起エネルギーにより発光効率が 向上する。
[0522] 発光層の構成として、例えば、 3層構成では、アノード電極(陽極)と接して正孔を効 率よく輸送する役割の正孔輸送層、発光材料を備える発光する層、力ソード電極 (陰 極)と接して電子を効率良く輸送する電子輸送層の 3層となる。また、これに加えて、 フッ化リチウム層や無機金属塩の層、それらを含有する層などが任意の位置に配置 してちよい。
[0523] 上記において、発光する層は白色発光を得るために、あるいは、正孔輸送層ゃ電 子輸送層は、正孔ゃ電子を効率良く輸送するために、単層に限らず複数層の構成と しても良い。
[0524] 有機 EL素子の発光は、液晶のノ ックライトとして使用するためには白色 (例えば、 昼光標準光源 D65 (色温度 6500K) )発光とする必要があるが、現在のところ単一の 発光材料で白色発光を示すものがないため、複数の発光材料により複数の発光色を 同時に発光させて混色により白色発光を得ている。複数の発光色の組み合わせとし ては、青色、緑色、青色の 3原色の 3つの発光極大波長を含有させたものでも良いし 、青色と黄色、青緑と橙色等の補色の関係を利用した 2つの発光極大波長を含有し たものでも良いが、各色のカラーフィルタの分光透過率に合わせた発光である必要 がある。
[0525] 有機 ELの発光は、有機材料からの蛍光を利用するものと、一旦発光ホストとなる有 機材料を励起し、この励起状態と多重度の異なるスぺ外ル項間の遷移で燐光を発 光する燐光ドーパントを利用するものとがある。現状では、燐光を単独で発光する材 料は見出されていないが、単独で燐光を発する有機材料があればそれを用いること ができること言うまでもな!/、。
[0526] 白色光は、これら蛍光を発する有機材料の組み合わせ、燐光を発する有機材料の 対の組み合わせ及び、蛍光を発する有機材料と燐光を発する有機材料の対を組み 合わせたものの 、ずれであっても良!、。
[0527] 白色光を得るための発光層の材料の組み合わせは特に制限はなぐ各色のカラー フィルタの分光透過率に合わせた波長範囲に適合するように、選択して組み合わせ てれば良い。特に、燐光を利用する場合、発光ホストは、力ルバゾール誘導体、ビフ ニル誘導体、スチリル誘導体、ベンゾフラン誘導体、チォフェン誘導体、ァリールシ ラン誘導体等の部分構造を単位として含む材料が挙げられる。なかでもカルバゾー ル誘導体とビフエ二ル誘導体は高 1ヽ発光効率を示す好ま ヽ発光材料である。
[0528] 正孔輸送層を設ける場合は、材料に特に制限はないが、アノード電極からの正孔 を発光する層に伝達する機能を有していれば良ぐ従来、光導電材料において、正 孔の電荷注入材料として慣用されて ヽるものや、 EL素子の正孔輸送層に用いられ て 、る公知のものの中力 任意のものを選択して用いることができる。
[0529] 電子輸送層を設ける場合においても、特に制限がなぐ力ソード電極からの電子を 発光する層に伝達する機能を有して 、れば、従来公知の材料の中から任意のものを 選択して用いることができる。
[0530] 発光層の形成は、真空蒸着法、スピンコート法、キャスト法、スプレー法、インクジェ ット法、ペイント法、印刷法等の公知の薄膜形成法により形成することができる。
[0531] 反射膜は、発光層からの発光や外光を効率良く反射するため反射率が少なくとも 6 0%以上であることが好まし 、。
[0532] 透明電極層は、透過する外光や発光層からの光の損失を低減させるために、透過 率 60%以上となる数十力も数百 nm膜厚の金属材料力もなつている。
[0533] 陽極として用いる金属材料は、公知の金属、金属酸化物、合金、電気伝導性化合 物、及びこれらの混合物等から任意のものを選択して用いることができる力 仕事関 数力 eV以上の材料が適用すると、正孔を発光層に効率良く注入できるので好まし い。
[0534] 陽極の材料としては、 Au等の金属、 Cul、インジウムチンオキサイド (ITO)、インジ ゥムジンクオキサイド (IZO)、 SnO、 ZnO等の導電性材料等が挙げられる。
2
[0535] 陽極に反射機能を持たせる場合、反射率の高い陽極は、上記の材料と、アルミニゥ ム等の反射率の高い金属材料を積層しても良い。例えば、発光層から順に ITOZァ ルミ-ゥムと積層した陽極でも良いし、アルミニウムを反射まくとして形成し、絶縁膜例 えば、酸ィ匕膜を介して ITOを陽極としても良い。
[0536] 陰極として用いる金属材料は、公知の金属、合金、電気伝導性化合物、及びこれら の混合物等から任意のものを選択して用いることができるが、仕事関数力 eV以下 の材料が適用すると、電子を発光層に効率良く注入できるので好ましい。
[0537] 陰極の金属材料としては、ナトリウム、ナトリウム カリウム合金、マグネシウム、リチウ ム、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zィ ンジゥム混合物、アルミニウム、アルミニウム Z酸ィ匕アルミニウム混合物、希土類金属 等が挙げられる。
[0538] 陰極を透明電極にする場合は、薄膜の陰極材料と、透過率の高いアノード電極の 材料を積層すれば良い。例えば、発光層から順に薄膜アルミニウム ZITOと積層し て透明な力ソード電極を形成することができる。
[0539] 陰極、陽極ともに、蒸着法、スパッタ法等により形成する。また、電気導電性化合物 を適当なバインダ榭脂に分散させて塗布により電極を形成しても良 、。
[0540] 電極パターンを形成するときは、電極形成後にフォトリソグラフィ一法により所望する 形状のパターンを形成するか、あるいは、蒸着やスパッタリング時に所望する形状の 開口を備えたマスクを利用して形成しても良 、。
[0541] 次に具体的な有機 EL素子の発光層の製造について以下に説明する。製作に使 用した材料の PVK、 Ir6、 Irl2、 CBP、 a NPD、 BC、 Alq3、の構造式を示す。
[化 16] lr-6
lr-12
Figure imgf000101_0001
CBP
Figure imgf000101_0002
α -NPD
Figure imgf000101_0003
構成 1の有機 EL素子は、高分子材料の発光ホストの PVKと、燐光ドーパントの Ir6 、 Irl 2の燐光を利用したものである。赤色に発光の極大波長を有する Ir6と緑色と青 色の中間に発光の極大波長を有する Irl2との 2つの発光極大波長を発光するトップ ェミッションタイプである力 有機 EL素子の実施態様はこれに限定されるものではな い [0544] まず、酸素プラズマにより有機 EL素子を形成するベースフィルム表面のエッチング を行った。次に、エッチングを行ったベースフィルム上にスパッタ法によりアルミニウム を 100nm、 ITOを 50nmの膜厚で積層して成膜し、反射電極層となるメタルアノード 電極を形成した。次に、反射電極層の上に、 PEDOTZPSS溶液 (ポリエチレンジォ キシチォフェン ポリスルフォン酸ドープ体;バイエル製 baytron)を印刷法により 100 nmの膜厚で付着させて正孔輸送層を形成した。加熱乾燥を行った後、この上に、発 光ホストの PVKを 30mg、燐光ドーパント Ir6を 0. 2mg、燐光ドーパント Ir 12を 2. Om g、電子輸送材料 2— (4ービフエ-ルイル )ー6— (4 t ブチルフエ-ル) 1、 3, 4ーォキ サジァゾール(OXD) 2mgをジクロロメタン 2mlに溶解させて、印刷法により lOOnm の膜厚で付着させて発光層を形成し、加熱乾燥した。
[0545] その後、所定の電極形状の開口部をもつステンレスマスクを利用して、スパッタ法に より、フッ化リチウムを 0. 5nmの膜厚で成膜した後、アルムニゥム 10nm、 ΙΤΟΙΟΟη mを積層して透明電極層となる透明な力ソード電極を形成した。
[0546] 構成 2の有機 EL素子に使用した材料は CBP、 Ir6、 Irl2、 a NPD、 BC、 Alq3で ある。
[0547] 本構成の有機 EL素子は、低分子材料の発光ホストの CBPと、燐光ドーパントの Ir6 、 Irl 2の燐光を利用した 2つの発光極大波長を発光するボトムェミッションタイプであ る力 有機 EL素子の実施態様はこれに限定されるものではない。
[0548] まず、酸素プラズマにより有機 EL素子を形成するベースフィルム表面のエッチング を行った。次に、エッチングを行ったベースフィルム上にスパッタ法により ITOを 100η mの膜厚で成膜し、透明電極層となる透明なアノード電極を形成した。次に、 100m m X 100mmの開口部をもつステンレンス薄膜板をマスキングに利用して、真空度 10 4paの環境下で、真空蒸着法の抵抗加熱により a NPDを蒸着レート 0. 5nmZsで 蒸着して 20nm膜厚で成膜して正孔輸送層とした。次に、正孔輸送層の上にマスクを 利用して抵抗加熱により発光ホストの CBPを蒸着レート 0. 5nmZs、燐光ドーパント I r6を蒸着レート 0. 005nmZs、燐光ドーパント Irl 2を蒸着レート 0. 02nmZsで共蒸 着して 30nmの膜厚で成膜して発光層とした。次に、発光層の上にマスクを利用して 抵抗加熱により BCを蒸着レート 5A/sで蒸着して 10nm膜厚で成膜した後、 Alq3 を蒸着レート 5AZsで蒸着して 40nm膜厚で成膜して積層の電子輸送層とした。
[0549] 次に、所定の電極パターン形状の開口部を持つステンレスマスクを利用して、抵抗 加熱によりフッ化リチウムを蒸着レート 0. Olnm/sで蒸着して 0. 5nmの膜厚で成膜 した後、アルミニウムを蒸着レート InmZsで蒸着して lOOnmの膜厚で成膜して反電 極層となるメタル力ソード電極を形成した。
[0550] 本発明の第 7の実施例であるパネルの組み立てにつ 、て説明する。
(第 8の実施例 パネルの組み立て)
光配向膜の形成は、
[0551] [化 17]
Figure imgf000103_0001
[0552] (12)式で表される化合物 99重量部に、光重合開始剤「ィルガキュア- 651」(チバ ガイギ一社製) 1重量部を添加し、ジメチルホルムアミドに溶カゝして、固形分 5%溶液 とした。この溶液を 0. 1 μ mのフィルタで濾過し、光配向材料溶液とした。
[0553] この溶液を、ロール力も切断した機能フィルム Aおよび Bの各々にフレキソ印刷機を 用いて均一に塗布し、 100°Cで 15分間乾燥した。このようにして得られた塗膜表面 に超高圧水銀ランプより、積算光量で 30jZcm2の波長 365nm付近の直線偏光した 紫外線を照射し、光配向操作を行った。続いて、同じ表面に超高圧水銀ランプより積 算光量で 50miZcm2の波長 313nm付近の無偏光の紫外線を照射し、配向した光 配向材料の重合操作を行った。
[0554] 厚さ、 0. 02 μ mの配向膜が得られた。
[0555] 次に、シール材料による貼り合わせについて説明する。
[0556] シール材の合成は、窒素ガス導入管、撹拌機及び冷却管のつ!、た反応容器に力 ルボキシル基含有ジオールのプラクセル 205BA (ダイセル化学製:数平均分子量 500) 500部とイソホロンジイソシァネート 444部を仕込み、触媒としてォクチル酸錫 を 0. 1部加え、 60°Cで 1時間反応させた。次に、 2—ヒドロキシプロピルアタリレートを 260部、重合禁止剤として tーブチルノヽイドロキノンを 0. 4部及び触媒としてオタチル 酸錫 0. 2部をカ卩え、さらに 70°Cで 11時間反応させて、残存イソシァネートが 0. 05% のカルボキシル基含有ウレタンアタリレートを得た。
[0557] 反応容器に PTG— 850 (保土谷ィ匕学社製:数平均分子量 850のポリテトラメチレン グリコール) 18部とマレイミドカプロン酸 9. 8部と p—トルエンスルホン酸 1. 2部と 2, 6 tert—ブチルー p タレゾール 0. 06部及びトルエン 15部を仕込み、 240トル(torr)、
80°Cの条件で、生成する水を除去しながら 4時間撹伴しながら反応を続けた。
[0558] 反応混合物をトルエン 200部に溶解して飽和炭酸水素ナトリウム 100部で 3回、飽 和食塩水 100部で 1回洗浄した。有機層を濃縮してマレイミド誘導体、ポリテトラメチ レングリコールビス(マレイミドカプロエート)を得た。
[0559] 上記、カルボキシル基含有ウレタンアタリレート 55部及び、上記、ポリテトラメチレン グリコールビス(マレイミドカプロエート) 5部、シランカップリング剤 KBM— 803 (信越 化学)を 5部及びイソボル-ルアタリレート 40部をフラスコに仕込み、サンプル中の融 解して 、な 、ィ匕合物が無くなるまで、フラスコ内を撹拌しながら 80°Cで 1時間溶融混 合させて光硬化性榭脂組成物を得た。
[0560] 液晶配向膜が形成された機能性フィルム Aまたは機能性フィルム Bの所望の部分( 例えば、外縁や、各画素セルの外縁)に、直径 3 mの酸ィ匕アルミニウム球を混合し た光硬化性榭脂組成物を塗布し対向配置させて貼り合わせ、メタルノ、ライドランプを 用いて紫外線を 500mjZcm2照射し、シール剤を硬化した。この後、所望の液晶を 注入充填し、光硬化性榭脂組成物を用いて同様に硬化し注入孔を封止した。
[0561] 次に、ラビング法による配向膜の具体的な実施例を説明する。
[0562] 液晶配向剤を、液晶配向膜塗布用印刷機を用いて支持フィルム上に塗布し、 150 °Cのホットプレート上で 90分間乾燥し、乾燥平均膜厚 0. 06 m塗膜を形成した。こ の塗膜にレーヨン製の布を巻き付けたロールを有するラビングマシーンにより、ロー ルの回転数 400rpm、ステージの移動速度 3cmZ秒、毛足押し込み長さ 0. 4mmで ラビング処理を行い、水洗を行った後、 100°Cのホットプレート上で 5分間乾燥し配向 膜を得た。
[0563] 本発明の第 9の実施例として、アクティブ駆動型液晶表示パネルを説明する。
[0564] 図 14は本実施例のアクティブ駆動型液晶表示パネルの断面図である。 [0565] 図 14は、従来技術で説明した、半透過型液晶表示パネルである。図 27と異なる部 分は、ノ ックライト部を LED光源から、集光フィルムを用いたバックライトにおよび、ガ ラス基板をベースフィルムに置き換えた点にある。
[0566] 液晶パネル部は、第 1の機能フィルム、第 2の機能フィルムおよび第 3の機能フィル ム力 各機能フィルム力 構成されて 、る。
[0567] 第 1の機能フィルムは、ベースフィルム上に画素電極 360および、配線、薄膜トラン ジスタ 361からなる素子層 375と配向膜とが上述の方法でベースフィルム 362上に転 写されている。第 2の機能フィルムは、カラーフィルタ 355、透明電極 356および、配 向膜 357が上述の方法でベースフィルム 354上に転写されて!、る。第 3の機能フィル ムは、少なくとも集光体フィルムで、集光体 366および支持フィルム 365がベースフィ ノレム 368上【こ転写されて!、る。
[0568] 位相差膜 363、および偏光膜 364は、透明電極 365上に転写して形成しても、ベ 一スフイルム 362上に転写して形成しても良い。
[0569] ベースフィルムの両側に機能薄膜を転写する方法を、図 15を用いて説明する。
[0570] 第 1の機能フィルム 372のベースフィルム 362上に形成された素子層 375上に、第 2の機能フィルム 371上に形成されている配向膜 359を、第 1の機能フィルム 372の ベースフィルム 362に、第 3の機能フィルム 377上に形成されている位相差膜および 偏光膜からなる光学機能薄膜 376を転写する。
[0571] 図 15では、第 1の機能フィルム、第 2の機能フィルムおよび、第 3の機能フィルム上 にカバーフィルムを形成していないが、形成しても良い。また、光学機能薄膜 376は 支持基材 373上にどの様な順序で転写してもよい。上述の図 3に従い、設計に従つ た順序になるように転写することができる。
[0572] 図 14の構成におけるベースフィルム 362は、ベースフィルム 368上に集光フィルム 、光学機能薄膜、画素電極等を順次転写すことで省略することもできる。
[0573] 図 14に示される従来技術と同じ構造であっても、基板に可撓性ベースフィルムを使 つているので、基板の厚さを薄ぐ且つ、柔構造で形成できるので、衝撃を基板の橈 みで吸収することができるので耐衝撃性が格段に向上する。図 14における画素電極 は半透過性であり、従来の技術で表面に凹凸が形成されている。 [0574] 次に、第 9の実施例のアクティブ駆動型液晶表示パネルを、図面を用いて詳細に 説明する。
[0575] 図 16は、本発明のアクティブ駆動型液晶表示パネルの構成を説明するための断面 図である。本実施例のアクティブ駆動型液晶表示パネルは、図 16の下方に示すよう に、ノ ックライトが形成されている第 2の機能フィルムと、薄膜トランジスタが形成され て 、る第 1の機能フィルムとで液晶を挟んで構成される。ノ ックライトが形成されて ヽ る第 2の機能フィルムと、薄膜トランジスタが形成されている第 1の機能フィルムとの厚 さは共に約 0. 2mmである。
[0576] ここで、図 16に示すように、第 1の機能フィルムは、支持基板となるプラスチック基板
(ベースフィルム)の一方の表面に薄膜トランジスタ回路 402、画素電極 403、赤、緑 、青とカゝらなるカラーフィルタ 404、スぺーサ Aおよび、配向膜 405が形成されている 。もう一方の表面には、図示していないが、直線偏光膜及び、位相差膜が形成されて いる。尚、スぺーサは、第 2の機能フィルムに形成しても特に問題はない。
[0577] 第 2の機能フィルム Bには、集光体 412、支持フィルム 411反射電極 413、偏光膜 4 10、位相差膜 409、液晶素子の画素電極 403に対向する、透明な対向電極 408、 配向膜 407が形成され、第 1の機能フィルム上に形成された、配向膜 405と機能フィ ルム B上に形成された配向膜 407とを対向して配置し、その間隙に液晶 406を配した ものである。
[0578] バックライトと機能フィルムの液晶に接する表面には、液晶を所望の方向へ配向さ せるための配向膜が形成され、両者の間の距離を一定に保っためのスぺーサ Aがブ ラックマトリックスの下方に配置される。
[0579] 図 16の画素電極の配列ピッチはアクティブ駆動型液晶表示パネルの精細度により 決められ、例えば 200ppi (pixEL per inch)の精細度で R (赤)、 G (緑)、 B (青)の 3種のカラーフィルタを備えるアクティブ駆動型液晶表示パネルの場合には、画素電 極の酉己歹 IJピッチは 25400 μ m/200/3 =42. 3 μ mである。
[0580] また、図 16の各種の層の膜厚は、透明電極、対向電極、画素電極は、 ITO膜から なり、厚さは 0. 1 μ m— 0. 2 m、薄膜トランジスタ、配線は、多結晶シリコン膜及び 、金属(通常はアルミニウムまたは、アルミニウム合金)で、厚さは 0. l /z m—O. 2 μ m、集光フィルムを用いたバックライト部は、厚さは、ベースフィルムとしての厚さを含 めて 0. 4mm— 0. 6mm、液晶咅 ま 2 μ m— 6 μ m、位ネ目差膜 ίま、 0. 5 m— 10 μ m (従来、 100 μ m— 300 μ m)、偏光膜は、 5 μ m— 50 μ m (従来、 100 μ m— 250 111)、配向膜は、0. Ol /z m—O. 2 111 (従来、0. 04 m— 2 )、カラーフィルタ は、 1 111ー3 111 (従来、 100 111ー200 111)で开成できる。
[0581] 本実施例では、トランジスタ層が 0. 5 m、カラーフィルタが 2. 5 m、偏光膜が 8 μ m、位相差膜が 7 m、配向膜 0.: L m、液晶部が 6 μ mで形成できた。ベースフ イルムは膜厚 lOOnmのアクリル榭脂タイプのフィルムを用いた。集光フィルムを用い たバックライトは、約 470 mで形成できた。この結果、液晶パネルは、ノ ックライトを 含めても約 490 /ζ πι (0. 49mm)となり、液晶パネルの薄膜ィ匕を行うことができた。
[0582] 液晶パネルは、半径 40mmのロールに巻くことが可能であり、紙の感覚を持った従 来にな 、液晶パネルが製造できた。
[0583] 本発明の場合、製造方法'材料を工夫することで、カラーフィルタ Z位相差膜 Z偏 光膜 Z配向膜の膜厚を従来よりも著しく薄く形成することができるので、カラーフィル タと反射電極との間の距離を、約 40 mである画素電極の配列ピッチに比べて十分 に小さくなるように構成することができる。本実施例では、液晶部(3 m)、位相差膜 (3 m)、偏光膜(6 m)、配向膜 (0. 01 m)であったので、 15 m以下にするこ とができた。
[0584] この結果、半透過型液晶表示パネルと比較した場合、反射膜での反射率を、従来 の反射型液晶表示パネルと同等にすることができ、ノ ックライトの光利用率は従来の 透過型液晶表示パネルと同等な液晶表示パネルを得ることができる。
[0585] 即ち、本実施例の液晶表示パネルを用いた液晶表示装置の構成は、明る!/、場所 では外光を反射させることで、反射型液晶表示装置として動作し、暗い場所では、バ ックライトにより透過型液晶表示装置として動作する。この結果、従来の半透過型液 晶表示装置に比べて外光 ·裏面光源ともに光の効率が上がる。更に、明るい場所で は反射型液晶表示装置として機能するので、反射型液晶表示装置と同等の画像が 得られ、暗い場所では、半透過型液晶表示装置よりもバックライトの光強度を下げる ことができる。 [0586] 液晶表示装置とは、外部から入力された画像データに基づいて画像を表示する装 置(例えば、パーソナルコンピュータのディスプレイのような外部力 入力された画像 信号に基づいて画像のみを表示するものを示す。)を意味する。表示機能を有する テレビジョン、ノート型のパーソナルコンピュータ、携帯電話、 PDP等の情報端末は、 液晶表示装置を搭載した電子機器と区別している。
[0587] 表示装置表面に、照度をモニタする装置を設けておけば、明るい場所でのバックラ イトを切っておくことができるので、消費電力の低減にも寄与する。電池で駆動される 携帯機器、例えば、携帯電話であれば、電池の寿命を延ばすことができるという効果 もめる。
[0588] 更に、カラーフィルタと反射膜の距離を電極の配列ピッチに比べ十分に小さくでき るので、反射膜で反射された光が、別の色のフィルタに混じることがなく光利用効率 が下がると!、うこともな 、まったく新 、液晶表示パネル得るものである。
[0589] 次に、本実施例の製造方法を、図面を用いて説明する。
[0590] 機能フィルム Aの製造方法を、図 17を用いて説明する。図 17に示すように、ベース フィルム 451上にトランジスタ層 452が形成された第 1のフィルムと、支持フィルム 453 上にカラーフィルタが形成された第 2のフィルムと、支持フルム 453上にスぺーサが 形成された第 3のフィルムと、支持フィルム 453上に配向膜 456が形成された第 4の フィルムを用意する。次に、トランジスタ層が形成された第 1のフィルムを送りだしロー ルカ 巻き取りロールに送りだし、その途中で、第 2のフィルム上に形成されている力 ラーフィルタ 454を、支持フィルム 453を剥離後、トランジスタ層 452上に転写する。 次に、第 3のフィルム上に形成されているスぺーサ 455を、支持フィルム 453を剥離 後、カラーフィルタ 454上に転写し、最後に、第 4のフィルム上に形成されている配向 膜 456を、支持フィルムを剥離後、スぺーサ上に転写し機能フィルム Aが形成される
[0591] 機能フィルム Bは、図示しな 、が、機能フィルム Aと同様に製造される。ベースフィル ム上に反射電極が形成された第 5のフィルムと、支持フィルム上に有機発光層が形成 された第 6のフィルムと、支持フィルム上に透明電極が形成された第 7のフィルムと、 支持フィルム上に偏光膜が形成された第 8のフィルムと、支持フィルム上に位相差膜 が形成された第 9のフィルと、支持フィルム上に配向膜が形成された第 10のフィルム とを用意する。次に、反射電極が形成された第 5のフィルムを送りだしロール力も巻き 取りロールに送りだし、その途中で、第 6のフィルム上に形成されている有機発光層 を、支持フィルム 453を剥離後、反射電極上に転写する。次に、第 7のフィルム上に 形成されて ヽる透明電極を剥離し有機発光層に、第 8のフィルム上に形成されて 、る 偏光膜を支持フィルム力 剥離し、透明電極に転写する。透明電極を転写後、有機 物からなる有機発光層を保護する保護膜を物理蒸着法により成膜する。尚、保護膜 は有機物、有機物と無機物との混合物でもよぐこの場合は支持フィルム上に保護膜 を形成し、同様の転写法を用いて透明電極上に製膜してもよい。
[0592] 次に、第 9のフィルム上に形成された位相差を偏光膜上に転写し、位相差膜上に 透明電極を物理蒸着法で成膜し、透明電極上に、第 10のフィルム上に形成された 配向膜を転写することで機能フィルム Bが完成する。
[0593] 機能フィルム Aおよび Bに形成された配向膜を所定の角度になるように位置を合わ せて対向配置し、配向膜間の間隙に液晶を充填することで液晶パネルが完成する。
[0594] 次に、図 16を参照しながら本実施例の動作を説明する。
[0595] 第一に、透過型液晶表示パネルとしての動作を説明する。導光体となるベースフィ ルム 413と集光フィルム 412と力もなるバックライト 414から発せられた白色光は無偏 光の状態だが、ある一方の直線偏光のみが偏光層 410を透過し、液晶層 406に到る 。ここで画素の透明電極である画素電極 403への印加電位の有無により、液晶分子 の配向状態が制御されている。即ち、ある極端な配向状態においては、図 16の下方 力 入射した直線偏光がそのままの状態で液晶層を透過し、ある特定の波長範囲の 光がカラーフィルタ 404と透明電極からなる画素電極 403を透過して、偏光層 400で ほぼ完全に吸収される。従って、この画素は黒を表示する。
[0596] また、別の極端な配向状態においては逆に、液晶層 406を通過する光の偏光状態 が変化して、カラーフィルタ 404を透過した光が偏光層 400をほぼ完全に透過する。 従って、この画素はカラーフィルタで決まる色を最も明るく表示する。これら 2つの中 間の配向状態では光が部分的に透過するため、この画素は中間色を表示することに なる。 [0597] ここで、カラーフィルタの材料が導電性であれば、液晶に決まった電圧を印加する ために画素の透明電極に印加する電圧を低減することができる。従って、カラーフィ ルタの材料は導電性であることが望まし 、。
[0598] 次に、第 9の実施例の変形例 1を、図面を用いて説明する。第 9の実施例の変形例 1は、図 16の構成が、機能フィルム Aとしてベースフィルムに薄膜トランジスタ回路、 カラーフィルタの順に転写したものを用いたが、カラーフィルタ、薄膜トランジスタ回路 の順に転写した機能フィルムを用いてもよい。図 18は変形例 1の構成を示す断面図 である。図 16と異なる点は、薄膜トランジスタとカラーフィルタの位置関係である。
[0599] 第 9の実施例の変形例 2として、カラーフィルタを、バックライトを形成する機能フィ ルム 2側で液晶の透明電極の液晶側に配置した構成を示す。
[0600] 第 9の実施例、変形例 1は、カラーフィルタ 404は機能フィルム Aの液晶側に配置さ れるが、これらを機能フィルム Bのバックライト側に配置してもよい。図 17は、第 8の実 施例の変形例 2を示す図である。第 9の実施例、変形例 1及び、変形例 2と異なるの は、カラーフィルタ 404がバックライト側の機能フィルムに形成され、液晶素子の透明 電極の液晶側に配置されて 、る点である。
[0601] 以下、図示しないが、種々の変形例も第 10の実施例で説明した製造方法で作れる ことはいうまでもない。
[0602] 第 9の実施例では、ノ ックライトと液晶素子を同時に機能フィルムに作りこむ例を説 明したが、機能フィルム上に様々な機能を持つ膜を順次付与する工程を経て形成さ れる。特にバックライト側の機能フィルム Bは、有機 EL素子と液晶素子の一部を作りこ むために、反射電極、発光層、透明電極、封止層、偏光機能、透明電極、というよう に付与すべき機能が多ぐ製造工程が長くなる。ロール 'ツー'ロールで一貫生産す ることによる生産効率の利点はある力 これら個々の製造工程の良品率は 1でないた め、特にバックライト側の機能フィルム Bの歩留りが低くなるという課題がある。この課 題を解決するためには、様々な機能を一つのフィルム基板へ集中して付与するので はなぐ複数のフィルム基板を用いて、付与する機能をそれらの基板の間で調整す ればよい。即ち、ユニット化による高歩留り化を目指すことが望ましい。
[0603] 本発明の第 10の実施例である、反射電極に凹凸を設ける例について説明する。 [0604] 本実施例は、ベースフィルムあるいは機能フィルム力 なる基板上に凹凸を形成後 、反射膜を形成することを骨子とするもので、凹凸面に形成する反射膜は、 1.金属 薄膜により反射膜を形成することにより拡散反射膜が得られる。このとき反射膜の膜 厚を薄く形成するか、部分的に形成することにより所望の比率で光を透過 Z反射す る半透過膜が得られる。 2.金属膜に換えて、反射性の偏光膜や、光拡散面を形成 する媒質間に屈折率差をつけることで、金属以外の絶縁物からなる所望の半透過膜 が得られる。
[0605] 反射膜の透過性は、液晶の設計により決定され、半透過性が要求される場合もあ れば、透過性が要求されない場合もある。透過性が要求されない場合は、透過率が 0%になるように設計することで解決する。
[0606] 反射膜としては、反射したい波長領域によって材料を適切に選択すれば良ぐ可視 光波長領域である 300nmから 800nmにお!/、て反射率の高!、金属、例えばアルミ- ゥムゃ金、銀等を真空蒸着法またはスパッタリング法等によって形成する。また公知 の反射増加膜 (例えば、光学概論 2 (辻内順平、朝倉書店、 1976年発行)参照)を上 記の方法で積層してもよい。反射膜の厚みは、 0. 01 μ m— 50 mが好ましい。また 反射膜は、必要な部分だけフォトリソグラフィ一法、マスク蒸着法等によりパターン形 成してもよい。半透過半反射膜としての機能は、所望の透過率に応じ反射膜の厚み あるいはパターン形成の開口率で制御できる。
[0607] 次に、表面凹凸形状により光拡散機能を提供する光拡散膜と光拡散膜により前述 の基板面に凹凸を形成する方法を説明する。
[0608] 反射膜に凹凸をつける方法は、前述の基板の凹凸形状予定面に感エネルギー性 榭脂層を形成しておき、パターン形成されたマスクを介して、あるいは、直接描画法 で感エネルギー性榭脂層に活性エネルギー線を照射し、榭脂層の露光部分又は未 露光部分を現像液で除去する方法、凹凸形成予定面に薄膜層を形成しておき、そ の薄膜層に対して転写原型表面を押しあてることにより転写する方法、転写原型に 薄膜層を積層しておき凹凸形成予定面に前記薄膜層を転写する方法がある。
[0609] まず、感エネルギー性榭脂層から凹凸を得る方法について説明する。
[0610] 感エネルギー性榭脂層の形成方法としては、ロールコータ塗布、スピンコータ塗布 、スプレー塗布、ディップコータ塗布、カーテンフローコータ塗布、ワイヤバーコータ 塗布、グラビアコータ塗布、エアナイフコータ塗布、キャップコータ塗布等がある。凹 凸形成予定面上に上記の方法で感エネルギー性榭脂層を塗布する。
[0611] ノターン形成されたマスクまたは直接描画パターンは、活性エネルギー線遮断部と 活性エネルギー線透過部カゝらなる規則的あるいは不規則的なパターンを有し、活性 エネルギー線遮断部と活性エネルギー線遮断部、又は活性エネルギー線透過部と 活性エネルギー線透過部との距離を、 1 μ m— 50 μ mとすることが好ましぐ 5 m— 20 μ mとすることがより好ましい。
[0612] パターン形状は、特に制限されないが、例えば、円形、楕円形、円輪形、多角形、 曲線、直線、あるいは各形の集合形などが挙げられる。活性エネルギー線の光源とし ては、カーボンアーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ、メタルノヽライ ドランプ、蛍光ランプ、タングステンランプ、エキシマレーザ等が挙げられ、 436nm以 下の波長を備える光源が好ましい。活性エネルギー線量は、 0. OljZcm2— ljZc m2が好ましぐ 0. OljZcm2— 0. 5jZcm2がより好ましぐ 0. 05j/cm2-0. lj/c m2が特に好ましい。
[0613] 感エネルギー性榭脂層がネガ型榭脂層の場合、感エネルギー性榭脂層を除去す る箇所のマスクを活性エネルギー線遮断部とし、それ以外を活性エネルギー線透過 部としたパターンが形成されたマスクを用い、活性エネルギー線を照射する工程の後
、前記感エネルギー性榭脂層を現像する。すなわち、水酸化ナトリウム、水酸化力リウ ム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、メタケイ酸 ナトリウム等の無機アルカリ、モノエタノールァミン、ジエタノールァミン、トリエタノール ァミン、テトラメチルアンモ -ゥムハイド口オキサイド、トリェチルァミン、 n—ブチルアミ ン等の有機塩基、又は塩を含む水溶液を吹き付ける力、水溶液に浸漬するなどして 未露光部を除去、あるいは、所望の深さだけ除去することができる。
[0614] さらに必要に応じ、感エネルギー性ネガ型榭脂層の凹凸形状保持が必要な箇所す ベてを一括して加熱や活性エネルギー線照射して、表面凹凸形状を補正しあるいは 固定する。以上は、感エネルギー性榭脂層がネガ型である場合を説明したが、感ェ ネルギー性榭脂層の組成は、特に制限されるものではなぐかつ、ネガ型かポジ型か は、特に限定されない。
[0615] 感エネルギー性榭脂層力 例えば、日立化成工業のネガ型レジスト(CR— 700)等 を用いて、上記方法で表面凹凸形状を得ることができる。感エネルギー性榭脂層が、 例え «JSR社のポジ型レジスト(PC403)に代表される、ポジ型である場合は、上記 パターンを反転することで、同様の表面凹凸形状を得ることができる。
[0616] 次に、本実施例の他の形態である凹凸形成予定面に薄膜層を形成しておき、その 薄膜層に対して転写原型表面を押しあてる方法にっ 、て説明する。
[0617] 上述の方法で形成した凹凸を型として用い、転写原型とすることができる。この場合 、元の表面凹凸形状と反対の形状となる。その転写原型を用いて転写した場合の表 面形状は、元の表面形状を反映し同じ形状のものとなる。
[0618] また、上記の表面凹凸形成方法で得られたものを直接転写原型とし、さらに、その 転写原型の表面凹凸形状を型とする転写原型とすることもできる。この場合、 2度転 写しているので、最初の表面凹凸形状と同じ表面凹凸形状をした転写原型となる。
[0619] 凹凸形成予定面に薄膜層を形成しておき、その薄膜層に対して転写原型表面を押 しあてることにより転写することで、表面凹凸形状を形成することもができる。
[0620] 表面凹凸形状を転写する方法は特に列挙しないが、転写原型を薄膜層に押圧す る以外に、予め、転写原型に薄膜層を積層しておき、表面凹凸形状が転写された該 薄膜を転写することでも実現可能である。転写方法は実施の形態や他の実施例で説 明した方法がとれることは 、うまでもな!/、。
[0621] 転写原型は、シート状、ベルト状またはロール状または巻物状または曲面の一部等 の基材の表面に全面または必要な部分に多数の微細な表面凹凸形状が形成された ものを用いることができ、加圧装置に貼り付ける、あるいは、表面凹凸形状を形成す る面と加圧装置との間に挟み込んで用いてもよい。押し当てる工程で熱、光等を与え てもよい。
[0622] また、ベルト状、ロール状、巻物状転写原型をシームレスに形成することで、表面凹 凸形状も容易にシームレス化が可能である。転写原型表面の表面凹凸形状の程度 は、通常転写される、薄膜層の硬化の際、変形することを考慮し設計する必要がある 。薄膜層の硬化後の形状として、凹部と凸部の高さの差が 0. 1 /ζ πι—15 /ζ πι、さらに は、 0. 1 μ m— 5 μ m、凸咅のピッチ力0. 7 μ m以上、 150 mある!/ヽは画素ピッチ のいずれか小さい方以下、さらには 2 μ m以上 150 μ mあるいは画素ピッチのいずれ か小さ 、方以下であることが好まし 、。
[0623] 図 19は表面凹凸形状の形成に使用される転写原型の一例の断面図であり、図 21 は機能フィルムの一例の断面図であり、ベースフィルム 521、凹凸膜 522、反射膜 52 3、薄膜層 524、化学的に安定な薄膜 525、芯材 526で構成されている。
[0624] 尚、図示していないが金属ベルトの表面に表面凹凸形状を形成し、この面に塗布 することで凹凸を形成することもできる。
[0625] 図 20に拡散反射膜の反射特性の測定装置を示す。反射光線 527と入射光線 528 のなす角度を Θとすると、必要とされる Θの範囲で拡散反射膜の法線方向で観測さ れる輝度すなわち反射強度を大きくすれば反射特性に優れる拡散反射膜が得られ る。必要とされる 0の範囲が 60° — 60° である場合、図 21に示すような凹曲面で 表面凹凸形状が形成されている拡散反射膜は、図 22に示したように凹部と凸部の高 さ Hと、凸部のピッチ Pの関係が P = 7 X Hの関係式で示される直線付近であれば、 反射特性に優れる拡散反射膜が得られる。
[0626] また、 0カ 15° — 15° の場合は、 P = 30 X Hの関係式で示される直線付近であ れば反射特性に優れる拡散反射板が得られる。このことは、法線に対し拡散反射を 6 0度の範囲の光源で得ようとし、さらに 15度の範囲でより強く得ようとする場合、 P = 7 X Hの関係式と P = 30 X Hの関係式で示される 2つの直線付近の領域を複合した形 状にできればよいことを示す。むろん、前述の 2つの直線付近の範囲にすべての凹 凸が含まれるとは制限しない。なぜなら表面凹凸形状作製プロセス上複数の形状が 形成されることは当然である力もである。また、液晶層のギャップ均一性や光の干渉 の影響を考慮しなければならな 、。
[0627] したがって、薄膜層の硬化による変形率を aとすると、転写原型表面の凹凸の程度 は、凸曲面で凹部と凸部の高さの差が 0. l X a iu m- 15 X a iu m,さらには、 0. I X a ^ m— 5 X a iu m,凸部のピッチが 0. 7 m以上 150 mあるいは画素ピッチのい ずれか小さい方以下、さらには 2 m以上、 150 mあるいは画素ピッチのいずれか 小さい方以下であることが好ましい。 aの値は、薄膜層の材質により異なり、例えば、 2 であったり、 1あるいは 0. 7であったりすることがある。
[0628] 図 23に示すような凹凸複合の曲面で反射膜の表面凹凸形状を形成した場合、法 線に対し 60度以内の光源からの反射特性は、図 24に示すような凹部と凸部の高さ Hと、凸部のピッチ Pの関係が P = 3. 5 X Hの関係式で示される直線付近であれば 優れる。表面凹凸形状は、面内に周期的に並んでいる必要はなぐ不規則であって ちょい。
[0629] LCDの場合、表面凹凸形状の周期性が、画素ピッチと異なるとモアレが発生する。
凹凸の周期性は、画素ピッチと同じ力または整数で割れる周期、あるいは不規則な 配列で凹凸が並んでいることが好ましい。なお、転写原型表面の表面凹凸形状を不 規則な配列で並べることで、故意に周期性をつけな ヽ限り LCDに用 、てモアレが発 生することはない。
[0630] また、凹凸の面形状は特に制限されないが、複合平面だけでなく凹曲面あるいは 凸曲面、凹凸複合の曲面、さらには球面や放物面に近似した凹曲面あるいは凸曲面 、凹凸複合の曲面であることが好ましい。曲面とすることで、より広範囲の光源位置か らの拡散光を期待できるからである。
[0631] 特に半透過半反射型 LCD用拡散反射膜の場合、 LCDセル内に光拡散面を形成 する必要から、平均高低差 Hは、セルギャップや A nd (屈折率'厚み)を考慮し、小さ いほど好ましい。しかし、凸部のピッチ Pを、光の干渉が生じるほど小さくはできない ので、前述の Pと Hの関係式から、平均高低差 Hの下限が求まる。以下では、理解し やすいように Θを絶対値で論じる。
[0632] LCDセルの屈折率 nは、その構造により異なり、例えば n= 1. 3の場合必要とされ る拡散方向 Θは、 50. 3度未満の領域である。 50. 3度以上の拡散方向は、 LCDセ ルと大気の界面で全反射を起こす。したがって、 50. 3度以上の拡散方向の反射強 度 Rを低く抑え、 50. 3度未満の反射強度 Rを高める必要がある。例えば n= l. 5の 場合必要とされる拡散方向 Θは、 41. 8度未満の領域である。 41. 8度以上の拡散 方向は、 LCDセルと大気の界面で全反射を起こす。したがって、 41. 8度以上の拡 散方向の反射強度 Rを低く抑え、 41. 8度未満の反射強度 Rを高める必要がある。
[0633] 一般に人が LCDをみる場合、 LCDの正面から見る。この場合、人の目のある方向 力も LCDへ入射する光は少なぐ人の目のある方向から 10度以上の角度をなす方 向からの入射光が多い。例えば、 n= l. 5の場合、 22. 8度の大気からの入射光が L CDセルと大気の界面通過で 15度となる。したがって、 LCDセル内に形成する拡散 反射膜の Θ = 15度方向付近の反射強度 Rを特に高める必要がある。
[0634] 例えば、 n= l. 3の場合、 19. 7度の大気からの入射光が LCDセルと大気の界面 通過で 15度となる。したがって、 LCDセル内に形成する拡散反射膜の Θ = 15度方 向付近の反射強度 Rを特に高める必要がある。反射型 LCD用拡散反射膜に用いる 光拡散面を製造するには、以上のような反射強度特性を鑑み、関係式をたて、平均 高低差 Hと、ピッチ Pを設計する必要がある。
[0635] 転写原型は、直接転写原型を変形可能な支持フィルムに押し当てることによって製 造することができる。また、仮支持フィルムに、変形可能な下塗り層を設け、この層に 直接転写原型を押し当てる工程、下塗り層を必要により硬化する工程により形成した 支持フィルムが使用できる。押し当てる工程で熱、光等を与えることもできる。
[0636] 反射膜上に、有機 EL素子や無機 EL素子のような薄膜平面発光素子または液晶 素子を形成する場合、反射膜の表面を平坦にする必要がある。
[0637] 上述のように、ベースフィルムあるいは機能フィルム力 なる基板上に表面凹凸形 状を形成した反射膜を製膜後、平坦ィ匕の膜を貼り付けることで実現できる。
[0638] 以下、図 25を参照に説明する。ベースフィルムあるいは機能フィルム力もなる基板 上に、上述の方法で、表面凹凸形状を形成する、表面凹凸形状は、基板の凹凸形 状予定面に感エネルギー性榭脂層カゝらなる薄膜層を形成しておき、パターン形成さ れたマスクを介して、あるいは、直接描画法で感エネルギー性榭脂層に活性エネル ギ一線を照射し、榭脂層の露光部分又は未露光部分を現像液で除去する方法、凹 凸形成予定面に薄膜層を形成しておき、その薄膜層に対して転写原型表面を押しあ てることにより転写する方法、転写原型に薄膜層を積層しておき凹凸形成予定面に 前記薄膜層を転写する方法のいずれを用いてもよい。次に、反射膜を形成する。反 射膜も上述の方法で特に問題なく形成される。
[0639] 最後に、平坦化膜を反射膜上に製膜する。平坦化膜は、塗布により製膜、貼り合わ せ法による製膜および、転写法による製膜等が可能である。図では、貼り付けによる 例と、転写による例を併記している。
[0640] 平坦化膜は、表面凹凸形状と接する面は表面凹凸形状にしたがって変形し、表面 凹凸形状と接する面の対向する側の面は平坦であること必要であり、前記機能を備 えればその材料は特に限定されるものではなぐ例えば有機樹脂が用いられる。
[0641] 転写原型の表面凹凸形状にあらかじめ反射薄膜を形成した上で、薄膜層を積層し ておき、凹凸形成予定面に前記薄膜層を転写する方法により反射膜を形成してもよ い。
[0642] また、下塗り層を備えた転写原型の表面凹凸形状にあらかじめ反射薄膜を形成し た上で、薄膜層を積層しておき、凹凸形成予定面に前記薄膜層を転写する方法によ り反射膜と下塗り層からなる平坦化膜を形成してもよ ヽ。
[0643] 下塗り層としては例えばポリエチレン、ポリプロピレンなどのポリオレフイン、エチレン と酢酸ビュル、エチレンとアクリル酸エステル、エチレンとビュルアルコールのようなェ チレン共重合体、ポリ塩化ビニル、塩ィヒビュルと酢酸ビュルの共重合体、塩化ビニル とビュルアルコールの共重合体、ポリ塩化ビ-リデン、ポリスチレン、スチレンと(メタ) アクリル酸エステルのようなスチレン共重合体、ポリビュルトルエン、ビュルトルエンと( メタ)アクリル酸エステルのようなビュルトルエン共重合体、ポリ(メタ)アクリル酸エステ ル、 (メタ)アクリル酸ブチルと酢酸ビュルのような(メタ)アクリル酸エステルの共重合 体、セルロースアセテート、ニトロセルロース、セロハン等のセルロース誘導体、ポリア ミド、ポリスチレン、ポリカーボネート、ポリイミド、ポリエステル、合成ゴム、セルローズ 誘導体等力 選ばれた、少なくとも 1種類以上の有機高分子を用いることができる。
[0644] 表面凹凸形状形成後硬化させるために必要に応じて光開始剤やエチレン性二重 結合を有するモノマ等を予め添加することができる。また感光タイプをネガ型材、ポジ 型材としても支障はない。
[0645] 本発明で使用する仮支持フィルムとしては、化学的、熱的に安定であり、シートまた は板状に成形できるものを用いることができる。具体的には、ポリエチレン、ポリプロピ レン等のポリオレフイン、ポリ塩化ビュル、ポリ塩化ビ-リデン等のポリハロゲン化ビ- ル類、セルロースアセテート、ニトロセルロース、セロハン等のセルロース誘導体、ポリ アミド、ポリスチレン、ポリカーボネート、ポリイミド、ポリエステル、あるいはアルミ、銅等 の金属類等である。これらの中で特に好まし 、のは寸法安定性に優れた 2軸延伸ポ リエチレンテレフタレートである。
[0646] 薄膜層としては変形可能な有機重合体を含む組成物または無機化合物、金属を 用いることができる力 好ましくはフィルム上に塗布しフィルム状に巻き取ることが可能 な有機重合体組成物を用いる。またこの中に必要に応じて、染料、有機顔料、無機 顔料、粉体及びその複合物を単独または混合して用いてもょ 、。
[0647] 薄膜層には感光性榭脂組成物、熱硬化性榭脂組成物を用いることもできる。これら 薄膜層の誘電率、硬度、屈折率、分光透過率は特に制限されない。
[0648] そのようなものの中で、フィルムに対する密着性が良好で、且つ、フィルムからの剥 離性がよいものを用いるのが好ましい。たとえばアクリル榭脂、ポリエチレン、ポリプロ ピレン等のポリオレフイン、ポリ塩化ビニル、ポリ塩化ビ-リデン等のポリハロゲン化ビ 二ノレ類、セノレロースアセテート、ニトロセノレロース、セロハン等のセノレロース誘導体、 ポリアミド、ポリスチレン、ポリカーボネート、ポリイミド、ポリエステル等を用いることが できる。また感光性を有するものを用いることができる。場合によっては表面凹凸形状 が必要な部分だけを残し、不要な部分を除けるように、アルカリ等で現像可能な感光 性榭脂を用いることもできる。耐熱性、耐溶剤性、形状安定性を向上させるために、 表面凹凸形状形成後に熱または光によって硬化可能な榭脂組成物を用いることもで きる。さらに、カップリング剤、接着性付与剤を添加することでフィルムとの密着を向上 させることもできる。接着を向上させる目的でフィルムまたは薄膜層の接着面に接着 性付与剤を塗布することもできる。
[0649] アルカリで現像可能な榭脂としては、酸価が 20— 300、重量平均分子量が 1, 500 一 200, 000の範囲に入っているものが好ましぐ例えばスチレン系単量体とマレイン 酸との共重合体又はその誘導体 (以下、 SM系重合体という)、アクリル酸又はメタタリ ル酸等のカルボキシル基を有する不飽和単量体とスチレン系単量体、メチルメタタリ レート、 t ブチルメタタリレート、ヒドロキシェチルメタタリレート等のアルキルメタクリレ ート、同様のアルキル基を有するアルキルアタリレート等の単量体との共重合体が好 ましい。
[0650] SM系共重合体は、スチレン、 α—メチルスチレン、 m又は p—メトキシスチレン、 p—メ チノレスチレン、 p—ヒドロキシスチレン、 3—ヒドロキシメチルー 4ーヒドロキシースチレン等 のスチレン又はその誘導体 (スチレン系単量体)と無水マレイン酸、マレイン酸、マレ イン酸モノメチル、マレイン酸モノエチル、マレイン酸モノー n プロピル、マレイン酸モ ノー iso プロピル、マレイン酸 n—ブチル、マレイン酸モノー iso—ブチル、マレイン酸 モノー tert ブチル等のマレイン酸誘導体を共重合させたもの(以下、共重合体 (I)と いう)がある。共重合体 (I)には、メチルメタタリレート、 t ブチルメタタリレート等のアル キルメタタリレート等、前記した共重合体 (I)を反応性二重結合を有する化合物で、変 性したものがある(共重合体 (Π) )。
[0651] 上記共重合体 (Π)は、共重合体 (I)中の酸無水物基又はカルボキシル基に不飽和 アルコール、例えばァリルアルコール、 2—ブラン 1, 2—オールフルフリルアルコール 、ォレイルアルコール、シンナミルアルコール、 2—ヒドロキシェチルアタリレート、ヒドロ キシェチルメタタリレート、 N—メチロールアクリルアミド等の不飽和アルコール、グリシ ジルアタリレート、グリシジルメタタリレート、ァリルグリシジルエーテル、 α—ェチルグリ シジルアタリレート、ィタコン酸モノアルキルモノグリシジルエステル等のォキシラン環 及び反応性二重結合をそれぞれ 1個有するエポキシ化合物と反応させることにより製 造することができる。この場合、アルカリ現像を行うために必要なカルボキシル基が共 重合体中に残って ヽることが必要である。 SM系重合体以外のカルボキシル基を有 する重合体も、上記と同様に反応性二重結合の付与は、感光度の点から好ましい。
[0652] 薄膜層や下塗り層の膜厚は、表面凹凸形状を有する転写原型の凹凸の高低差より 厚く形成すると表面凹凸形状を再現しやす 、。膜厚が等 、ある 、は薄 、と表面凹 凸形状が変形する。また、表面凹凸形状を形成する場合転写する表面凹凸形状の 凸部で薄膜層を突き破ってしまい、平面部が発生し効率のよい反射特性が得られに くくなる。
[0653] 薄膜層や下塗り層の形成方法としては、ロールコータ塗布、スピンコータ塗布、スプ レー塗布、ホエラー塗布、ディップコータ塗布、カーテンフローコータ塗布、ワイヤバ 一コータ塗布、グラビアコータ塗布、エアナイフコータ塗布、キャップコータ塗布等が 挙げられる。
[0654] この薄膜層にネガ型感光性榭脂を用いて表面凹凸形状を転写させた場合には、そ の形状の安定性を確保するために露光機により露光を行 ヽ、感光部分を硬化させる 。適用し得る露光機としては、カーボンアーク灯、超高圧水銀灯、高圧水銀灯、キセ ノンランプ、メタルハライドランプ、蛍光ランプ、タングステンランプ、エキシマレーザ等 が挙げられる。この露光装置は画素及び BM等のパターン形成用の露光機でも良い 力 予め形成された凹凸を硬化させることが出来れば良ぐこのためには感光性榭脂 が硬化する露光量以上の光量を与えておけばよい。従って、一般に基板洗浄装置と して利用されて 、るラインに組み込める散乱光を用いる UV照射装置を用いることが 出来る。これらの装置を用いることによって、フォトマスクを用いる手法に比べて安価 に作製でき、フォトマスクを用いる場合に比べ、露光量に対する裕度が大きい。また 感光タイプを、ネガ型材を利用することで示したが、ポジ型であっても支障はない。
[0655] 露光は転写原型を剥がす前、または剥がした後に行う。またさらに必要に応じ加熱 により凹凸を硬化してもよぐその温度は、 50— 250°Cが好ましい。加熱は転写原型 を剥がした後に行う。
[0656] 図 26は、第 10の実施例で説明した凹凸形状反射電極を持った液晶構造である。
[0657] 図 26は、反射電極を、ベースフィルム上に凹凸を形成したものである。図において は、ベースフィルム 414上に凹凸形状のフィルム 414aを転写し、該凹凸形状の表面 に反射電極 413を形成し、平坦化のための平坦化膜 414bの上に透明電極を形成し たものである。
[0658] 有機 EL素子は、図 7 (c)の構造をして 、る。尚、図示して 、な 、が、従来技術と同 じ構造の液晶構造をとることも可能であり、本発明の趣旨の中で種々の構造が取れる ことは言うまでもない。

Claims

請求の範囲
[I] 曲率半径が 40mm以下の可撓性を有し、熱膨張係数が 50ppmZ°C以下の長尺状 の光拡散機能を有するフィルム上に、有機樹脂からなる集光体がアレイ状に形成さ れ、前記集光体の前記フィルムと接する面と対向する面は平坦で、且つ、前記フィル ムと接する面の面積よりも狭いことを特徴とする集光フィルム。
[2] 前記光拡散機能を有するフィルムは、ヤング率が、 1. 5GPa以上である請求項 1の 集光フィルム。
[3] 前記光拡散機能を有するフィルムは、第 1のロール力 第 2のロールに搬送され、前 記搬送時に表面に薄膜が形成可能な請求項 1に記載の集光フィルム。
[4] 前記光拡散機能を有するフィルムは、 200°Cの熱履歴に対し、機械的及び、光学的 な特性の変化が ± 5%以下である請求項 3の集光フィルム。
[5] 前記光拡散機能を有するフィルムは、 250°Cの熱履歴に対し、機械的及び、光学的 変化が士 5%以下である請求項 3の集光フィルム。
[6] 前記光拡散機能を有するフィルムは、透明な粒子で、前記フィルムと屈折率が異なる 光拡散粒子を含有する請求項 1の集光フィルム。
[7] 前記透明な粒子が酸ィ匕亜鉛、 ITOまたは、シリカであり、前記粒径が 0. 5 μ m以上 で、前記フィルムの膜厚の 1Z2以下である請求項 6の集光フィルム。
[8] 前記光拡散機能を有するフィルムと前記集光体の樹脂が同一である請求項 1の集光 フイノレム。
[9] 前記樹脂が、アクリル榭脂または、環状ォレフィン榭脂からなることを特徴とする請求 項 8の集光フィルム。
[10] 請求項 1に記載の集光フィルムと前記集光体の光拡散膜と対向する面で熱膨張係数 が 50ppmZ°C以下である長尺状の導光機能を有するフィルムとが積層した集光フィ ルム積層体。
[II] 前記導光機能を有するフィルムは、ヤング率が、 1. 5GPa以上である請求項 10の集 光フィルム積層体。
[12] 前記導光機能を有するフィルムは、第 1のロール力 第 2のロールに搬送され、前記 搬送時に請求項 1に記載の集光フィルムを前記集光体の光拡散膜と対向する面で 積層した請求項 10に記載の集光フィルム積層体。
[13] 前記導光機能を有するフィルムは、 200°Cの熱履歴に対し、機械的及び、光学的な 特性の変化が ± 5%以下である請求項 10に記載の集光フィルム積層体。
[14] 前記導光機能を有するフィルムは、 250°Cの熱履歴に対し、機械的及び、光学的変 化が士 5%以下である請求項 10に記載の集光フィルム積層体。
[15] 前記導光機能を有するフィルムは、無機フィラーが配合されている請求項 10に記載 の集光フィルム積層体。
[16] 前記無機フィラーの粒径が lnm— 380nmである請求項 15に記載の集光フィルム積 層体。
[17] 前記無機フィラーが酸ィ匕チタン、酸化亜鉛、アルミナまたは、酸ィ匕ケィ素カゝらなる請 求項 16に記載の集光フィルム積層体。
[18] 前記導光機能を有するフィルムは、光透過率が、 80%以上である請求項 10の集光 フィルム積層体。
[19] 前記導光機能を有するフィルムは、アクリル榭脂または、環状ォレフィン榭脂からなる ことを特徴とする請求項 10の集光フィルム積層体。
[20] 前記光拡散機能を有するフィルム、前記集光体および、前記導光機能を有するフィ ルムの榭脂が同一である請求項 10の集光フィルム積層体。
[21] 前記樹脂が、アクリル榭脂または、環状ォレフィン榭脂からなることを特徴とする請求 項 10の集光フィルム積層体。
[22] 請求項 10の集光フィルム積層体の、前記光拡散機能を有するフィルム上に、光学機 能を有する薄膜と、液晶素子の透明な対向電極と前記対向電極上に配向膜とを有 する集光フィルム積層体。
[23] 請求項 10の集光フィルム積層体と、液晶の画素電極等力 なる液晶機能薄膜と光 機能薄膜と配向膜とを有する機能フィルムの各々の配向膜を対向して配置し、前記 配向膜の間隙に液晶を狭持した液晶パネル。
[24] 請求項 10に記載の集光フィルム積層体を所望の形状に分割し、前記導光体の前記 集光体が載置された面と略直交する少なくとも 1つの面に隣接して光源が配されたバ ックライ卜。
[25] 集光体の凹凸形状を有する支持体の前記凹凸部に有機榭脂を充填する工程と、該 充填された榭脂を、光拡散機能を有する長尺状の薄膜に転写する工程とを有する集 光フィルムの製造方法。
[26] 光拡散機能を有する長尺状のフィルムに有機樹脂からなる薄膜を形成する工程と、 前記薄膜に集光体の凹凸形状を転写する工程とを有する集光フィルムの製造方法。
[27] 前記転写する工程は、前記集光体の形状能の凹凸を有する型を押圧する請求項 26 に記載の集光フィルムの製造方法。
[28] 前記集光体を転写する工程は、押圧状態で有機榭脂を硬化する工程を含む請求項
26の集光フィルムの製造方法。
[29] 前記有機樹脂の硬化手段が紫外線照射である請求項 28に記載の集光フィルムの製 造方法。
[30] 請求項 28の集光フィルムの製造方法により得られる集光フィルムの集光体上に、導 光機能を有する薄膜を積層する工程を有する集光フィルム積層体の製造方法。
PCT/JP2004/018250 2004-07-16 2004-12-08 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法 WO2006008845A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04822207A EP1770415A4 (en) 2004-07-16 2004-12-08 CAPACITOR FILM, LIQUID CRYSTAL PANEL, REAR LIGHT AND METHOD FOR PRODUCING A CONDENSATE FILM
KR1020067006179A KR100756576B1 (ko) 2004-07-16 2004-12-08 집광막, 액정패널, 백라이트 및 집광막의 제조방법
US10/571,543 US7852435B2 (en) 2004-07-16 2004-12-08 Light-condensing film, liquid-crystal panel and backlight as well as manufacturing process for light-condensing film
US12/939,407 US8477267B2 (en) 2004-07-16 2010-11-04 Light-condensing film, liquid-crystal panel and backlight as well as manufacturing process for light-condensing film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-209783 2004-07-16
JP2004209783A JP3826145B2 (ja) 2004-07-16 2004-07-16 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10571543 A-371-Of-International 2004-12-08
US12/939,407 Division US8477267B2 (en) 2004-07-16 2010-11-04 Light-condensing film, liquid-crystal panel and backlight as well as manufacturing process for light-condensing film

Publications (1)

Publication Number Publication Date
WO2006008845A1 true WO2006008845A1 (ja) 2006-01-26

Family

ID=35784978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018250 WO2006008845A1 (ja) 2004-07-16 2004-12-08 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法

Country Status (5)

Country Link
US (2) US7852435B2 (ja)
EP (1) EP1770415A4 (ja)
JP (1) JP3826145B2 (ja)
KR (1) KR100756576B1 (ja)
WO (1) WO2006008845A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100902A1 (ja) * 2009-03-03 2010-09-10 三菱レイヨン株式会社 フィルムの製造方法
WO2014199934A1 (ja) * 2013-06-10 2014-12-18 富士フイルム株式会社 偏光板および偏光板の製造方法ならびに偏光板の製造のための転写材料および転写材料
CN108847454A (zh) * 2018-04-09 2018-11-20 复旦大学 一种自愈合的可拉伸发光器件及其制备方法
TWI755364B (zh) * 2015-09-24 2022-02-21 日商日東電工股份有限公司 光學異向性膜之製造方法

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599631B2 (en) 2001-01-26 2003-07-29 Nanogram Corporation Polymer-inorganic particle composites
US20090075083A1 (en) 1997-07-21 2009-03-19 Nanogram Corporation Nanoparticle production and corresponding structures
US8568684B2 (en) 2000-10-17 2013-10-29 Nanogram Corporation Methods for synthesizing submicron doped silicon particles
US7226966B2 (en) 2001-08-03 2007-06-05 Nanogram Corporation Structures incorporating polymer-inorganic particle blends
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
US8131518B2 (en) * 2006-02-17 2012-03-06 National University Corporation Toyohashi University Of Technology Method for forming functional spectral filter
JP2007279323A (ja) * 2006-04-05 2007-10-25 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP2007302863A (ja) * 2006-04-11 2007-11-22 Toppan Printing Co Ltd インクジェットカラーフィルタ用インク組成物
JP2007311325A (ja) * 2006-04-17 2007-11-29 Citizen Electronics Co Ltd 導光板及びその製造方法とその導光板を用いたバックライトユニット
JP2007316617A (ja) * 2006-04-26 2007-12-06 Konica Minolta Holdings Inc 偏光フィルム
JP2007322485A (ja) * 2006-05-30 2007-12-13 Nippon Sheet Glass Co Ltd 遮光隔壁形成用のアルカリ現像型黒色感光性樹脂組成物
US8243027B2 (en) 2006-06-09 2012-08-14 Apple Inc. Touch screen liquid crystal display
KR102319325B1 (ko) 2006-06-09 2021-11-01 애플 인크. 터치 스크린 액정 디스플레이
CN104965621B (zh) 2006-06-09 2018-06-12 苹果公司 触摸屏液晶显示器及其操作方法
KR101320894B1 (ko) * 2006-07-05 2013-10-24 삼성디스플레이 주식회사 포토레지스트 조성물 및 이를 이용한 컬러 필터 기판의제조방법
JP2008015403A (ja) * 2006-07-10 2008-01-24 Nec Lcd Technologies Ltd フレキシブル配線シートおよびそれを備えた平面表示装置およびその製造方法
JP4894415B2 (ja) * 2006-08-25 2012-03-14 凸版印刷株式会社 液晶表示装置の製造方法
KR100824782B1 (ko) * 2006-12-18 2008-04-24 (주)파버나인 입체영상 표시장치 및 그 제조방법
US7892872B2 (en) 2007-01-03 2011-02-22 Nanogram Corporation Silicon/germanium oxide particle inks, inkjet printing and processes for doping semiconductor substrates
US9710095B2 (en) 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups
KR100854752B1 (ko) * 2007-02-01 2008-08-27 온누리전자(주) 확산 수단이 일체화된 백라이트 유닛용 프리즘 시트 및 그제조방법
KR101538281B1 (ko) * 2007-04-13 2015-07-22 가부시키가이샤 니콘 표시 소자의 제조 방법과 제조 장치
US7432187B1 (en) * 2007-05-14 2008-10-07 Eastman Kodak Company Method for improving current distribution of a transparent electrode
US20080299489A1 (en) 2007-06-04 2008-12-04 Byers Gary W Ultraviolet curable coating fluid for printing systems
DE102007034532A1 (de) * 2007-07-24 2009-02-05 Vacuumschmelze Gmbh & Co. Kg Magnetkern, Verfahren zu seiner Herstellung sowie Fehlerstromschutzschalter
JP2009043565A (ja) * 2007-08-08 2009-02-26 Citizen Electronics Co Ltd 導光板及び面状ライトユニット並びに表示装置
US8309627B2 (en) 2007-09-07 2012-11-13 Nexolve Corporation Polymeric coating for the protection of objects
US8048938B2 (en) * 2007-09-07 2011-11-01 Nexolve Corporation Reflective film for thermal control
GB2453766A (en) * 2007-10-18 2009-04-22 Novalia Ltd Method of fabricating an electronic device
JP4903735B2 (ja) * 2008-03-03 2012-03-28 三菱電機株式会社 バックライト装置
US8182633B2 (en) * 2008-04-29 2012-05-22 Samsung Electronics Co., Ltd. Method of fabricating a flexible display device
JP4992975B2 (ja) * 2008-06-16 2012-08-08 東レ株式会社 パターニング方法およびこれを用いたデバイスの製造方法ならびにデバイス
JP5022312B2 (ja) * 2008-06-18 2012-09-12 株式会社ジャパンディスプレイイースト 液晶表示装置の製造方法
WO2009154794A1 (en) * 2008-06-20 2009-12-23 University Of Central Florida Research Foundation, Inc. Solar energy converter with improved photovoltaic efficiency, frequency conversion and thermal management permiting super highly concentrated cellection
JP5227692B2 (ja) * 2008-08-05 2013-07-03 旭化成イーマテリアルズ株式会社 ワイヤグリッド偏光板の製造方法
KR100947350B1 (ko) * 2008-08-26 2010-03-15 (주)상아프론테크 엘씨디 기판 적재 카세트용 바아
JP5317908B2 (ja) * 2008-09-30 2013-10-16 サカタインクス株式会社 カラーフィルター用顔料分散物およびそれを含有するカラーフィルター用顔料分散レジスト組成物
JP5504601B2 (ja) * 2008-10-15 2014-05-28 Dic株式会社 配向膜用組成物、配向膜の製造方法、及び光学異方体
KR101367083B1 (ko) 2008-11-06 2014-03-12 코오롱인더스트리 주식회사 광원 커버 부재
KR101238823B1 (ko) 2008-11-21 2013-03-04 한국전자통신연구원 박막 트랜지스터 및 그의 제조 방법
TW201025675A (en) * 2008-12-31 2010-07-01 Jess Link Products Co Ltd Light emitting diode light strip and method of making the same
US8956718B2 (en) 2009-06-19 2015-02-17 Apple Inc. Transparent conductor thin film formation
CN102472828B (zh) * 2009-07-14 2016-05-18 阿克伦大学 电磁工艺线
JP5610606B2 (ja) * 2009-08-04 2014-10-22 株式会社クラレ 面光源部材及び面光源部材の製造方法
KR101030029B1 (ko) * 2010-01-06 2011-04-20 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 이의 제조 방법
US20110242849A1 (en) * 2010-04-05 2011-10-06 Skc Haas Display Films Co., Ltd. Thin double-sided light guide plate
CN102254797A (zh) * 2010-05-18 2011-11-23 京东方科技集团股份有限公司 低温多晶硅薄膜及其制造方法、晶体管和显示装置
US8895962B2 (en) 2010-06-29 2014-11-25 Nanogram Corporation Silicon/germanium nanoparticle inks, laser pyrolysis reactors for the synthesis of nanoparticles and associated methods
TWI517965B (zh) * 2010-07-12 2016-01-21 Dexerials Corp Manufacturing method of mother board, manufacturing method of alignment film, manufacturing method of phase difference plate, and manufacturing method of display device
US9041993B2 (en) * 2010-07-26 2015-05-26 Lg Chem, Ltd. Mask
JP2012126127A (ja) * 2010-11-22 2012-07-05 Nitto Denko Corp 光学フィルム積層体の製造方法及び製造システム、並びに、光学フィルム積層体
JP5679290B2 (ja) * 2010-11-25 2015-03-04 大日本印刷株式会社 フレキシブル基板積層体
JP5725842B2 (ja) * 2010-12-21 2015-05-27 株式会社きもと 光学機器用遮光部材
US8804056B2 (en) * 2010-12-22 2014-08-12 Apple Inc. Integrated touch screens
KR101552172B1 (ko) 2011-03-28 2015-09-10 제이엑스 닛코닛세키 에네루기 가부시키가이샤 요철 구조를 가지는 기판 제조 방법 및 이것을 사용한 유기 el 소자의 제조 방법
KR101851384B1 (ko) * 2011-07-18 2018-04-24 삼성디스플레이 주식회사 유기 발광 디스플레이 패널용 제조 장치와, 이를 이용한 유기 발광 디스플레이 패널의 제조 방법
DE102011080620B4 (de) * 2011-08-08 2014-06-05 Siemens Aktiengesellschaft Verfahren für die Beschichtung eines Isolationsbauteils und Isolationsbauteil sowie elektrisch leitfähiges Heizkabel
KR101237631B1 (ko) * 2011-09-06 2013-02-27 임남일 디스플레이 장치의 표면 보호용 강화유리패널 및 그 제조방법
KR101260221B1 (ko) * 2011-12-01 2013-05-06 주식회사 엘지화학 마스크
US9140979B2 (en) 2011-12-01 2015-09-22 Lg Chem, Ltd. Mask
KR20130072628A (ko) * 2011-12-22 2013-07-02 한국전자통신연구원 컬러 전자종이 디스플레이 및 그 제조 방법
KR20130101331A (ko) * 2012-03-05 2013-09-13 삼성디스플레이 주식회사 액티브 리타더 및 이를 갖는 표시 장치의 제조 방법
US8858056B2 (en) * 2012-04-18 2014-10-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Light guide plate and corresponding backlight module
US8727593B2 (en) * 2012-06-14 2014-05-20 Apple Inc. Displays with rounded-tip turning films
TWI472460B (zh) * 2012-06-15 2015-02-11 Usun Technology Co Ltd Plate processing apparatus and processing method
US9140925B2 (en) 2012-08-21 2015-09-22 Apple Inc. Display with reduced border
KR101932562B1 (ko) * 2012-09-18 2018-12-28 삼성디스플레이 주식회사 필름 부착장치 및 그것을 이용한 필름 부착방법
CA2886007C (en) * 2012-09-28 2016-10-11 Yusuke Sato Device for inspecting substrate having irregular rough surface and inspection method using same
KR101957978B1 (ko) * 2012-12-26 2019-03-14 엘지디스플레이 주식회사 표시장치의 기판 부착장치 및 이를 이용한 표시장치의 제조방법
TWI468625B (zh) * 2013-01-10 2015-01-11 Au Optronics Corp 照明裝置
JP6236405B2 (ja) * 2013-01-31 2017-11-22 三洋化成工業株式会社 光学部品用活性エネルギー線硬化性組成物、硬化物及びその硬化物を用いた光学レンズ、光学レンズ用シートまたはフィルム
DE102013003441A1 (de) * 2013-02-25 2014-09-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektromagnetische Strahlung streuendes Element
US9090461B2 (en) * 2013-04-30 2015-07-28 Hewlett-Packard Development Company, L.P. Temporary optical wave diffusion-promoting film adhered to lidded MEMS wafer for testing using interferometer
JP6271716B2 (ja) 2013-05-24 2018-01-31 帝人株式会社 シリコン/ゲルマニウム系ナノ粒子及び高粘度アルコール溶媒を含有する印刷用インク
CN104512075B (zh) 2013-10-04 2017-06-23 财团法人工业技术研究院 离型层、基板结构、与柔性电子元件工艺
KR102155737B1 (ko) * 2014-02-27 2020-09-15 삼성디스플레이 주식회사 기판 절단장치 및 이를 이용한 디스플레이 장치 제조방법
KR102363884B1 (ko) * 2014-05-30 2022-02-15 니폰 제온 가부시키가이샤 복층 필름 및 권회체
JP6269372B2 (ja) * 2014-07-29 2018-01-31 ブラザー工業株式会社 ポリゴンミラーの製造方法、ポリゴンミラーおよび画像形成装置
JP6428101B2 (ja) * 2014-09-26 2018-11-28 住友電気工業株式会社 光ファイバ心線及び光ファイバテープ心線
US10261233B2 (en) 2014-11-25 2019-04-16 Microsoft Technology Licensing, Llc Backlight unit with controlled light extraction
JP6677722B2 (ja) * 2015-05-28 2020-04-08 富士フイルム株式会社 水平配向型液晶表示装置
WO2017119427A1 (ja) 2016-01-08 2017-07-13 大日本印刷株式会社 画像表示装置
TWI596379B (zh) * 2016-01-21 2017-08-21 友達光電股份有限公司 顯示模組與應用其之頭戴式顯示裝置
US10618265B2 (en) * 2016-03-21 2020-04-14 Ubright Optronics Corporation Optical assembly and the method to make the same
JP7042020B2 (ja) * 2016-08-15 2022-03-25 日東電工株式会社 フレキシブル画像表示装置用積層体、及び、フレキシブル画像表示装置
JP7353399B2 (ja) * 2016-08-15 2023-09-29 日東電工株式会社 フレキシブル画像表示装置用積層体、及び、フレキシブル画像表示装置
US9997399B2 (en) * 2016-08-16 2018-06-12 Mikro Mesa Technology Co., Ltd. Method for transferring semiconductor structure
US9722134B1 (en) * 2016-08-16 2017-08-01 Mikro Mesa Technology Co., Ltd. Method for transferring semiconductor structure
JP7203027B2 (ja) * 2016-12-22 2023-01-12 三星電子株式会社 フォルダブル円偏光板および表示装置
US10583632B2 (en) * 2018-01-11 2020-03-10 Skeyeon, Inc. Atomic oxygen-resistant, low drag coatings and materials
CN108284661B (zh) * 2018-01-31 2019-12-31 武汉华星光电半导体显示技术有限公司 偏光片的剥离设备及其剥离方法
CN108745816B (zh) * 2018-06-12 2021-12-03 业成科技(成都)有限公司 涂胶方法
JP7111290B2 (ja) * 2018-07-02 2022-08-02 エルジー・ケム・リミテッド 光変調素子
KR102484631B1 (ko) * 2019-09-11 2023-01-06 주식회사 엘지화학 광학 적층체
CN111619193A (zh) * 2020-05-13 2020-09-04 安徽帝显电子有限公司 一种导光膜与玻璃面板无气泡压合的装置及方法
CN116250383A (zh) * 2020-09-30 2023-06-09 夏普株式会社 可折叠显示器和可折叠显示器的制造方法
KR102552063B1 (ko) * 2020-12-23 2023-07-07 동우 화인켐 주식회사 전극 구조체, 이를 포함하는 터치 센서, 윈도우 적층체 및 화상 표시 장치
KR20240132478A (ko) * 2022-01-14 2024-09-03 테슬라, 인크. 반사 방지 멀티 레이어 시스템들

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318707A (ja) * 1994-05-20 1995-12-08 Dainippon Printing Co Ltd 光制御シート、面光源及び透過型表示体
US6124906A (en) * 1997-09-12 2000-09-26 Ibm Corporation Wedge shaped light guide providing enhanced polarized light to a backlight liquid crystal display
JP2001312913A (ja) * 2000-04-27 2001-11-09 Kuraray Co Ltd 面光源素子およびそれを用いた表示装置
JP2002062524A (ja) * 2000-08-18 2002-02-28 Kyodo Printing Co Ltd 液晶表示装置、液晶表示装置の電極基材、液晶表示装置の電極基材の製造方法及び液晶表示装置の製造方法
JP2002069210A (ja) * 2000-08-30 2002-03-08 Toray Ind Inc 光学用等方性シートおよびその製造方法
JP2002090919A (ja) * 2000-09-13 2002-03-27 Kyowa Lamicoat:Kk 印刷物のレチキュラー加工方法、及びレチキュラー加工物
JP2003066230A (ja) * 2001-08-23 2003-03-05 Fuji Photo Film Co Ltd 光学補償シート、偏光板、楕円偏光板および液晶表示装置
JP2003232921A (ja) * 2002-02-08 2003-08-22 Fuji Photo Film Co Ltd ロール状円偏光板、ロール状液晶セル基板および液晶表示装置
JP2004110002A (ja) * 2002-08-29 2004-04-08 Dainippon Printing Co Ltd 透過型スクリーン用の拡散シート及び透過型スクリーン
JP2004151592A (ja) * 2002-10-31 2004-05-27 Dainippon Printing Co Ltd コントラスト向上シートおよび背面投射型スクリーン

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126559A (en) 1978-03-24 1979-10-01 Seiko Epson Corp Production of liquid crystal display panel
JPH0648331B2 (ja) 1985-12-24 1994-06-22 キヤノン株式会社 フレキシブル電気光学素子の製造方法
JPS63283934A (ja) 1987-05-15 1988-11-21 Nitto Electric Ind Co Ltd 光拡散導電性フイルム
US5428468A (en) * 1993-11-05 1995-06-27 Alliedsignal Inc. Illumination system employing an array of microprisms
US5963284A (en) * 1998-04-01 1999-10-05 Ois Optical Imaging Systems, Inc. LCD with diffuser having diffusing particles therein located between polarizers
JP2000029034A (ja) 1998-07-07 2000-01-28 Mitsubishi Electric Corp 液晶表示装置
JP2000162584A (ja) * 1998-11-26 2000-06-16 Nitto Denko Corp 光学部材、セル基板及び液晶表示装置
JP3702328B2 (ja) * 1999-06-11 2005-10-05 大日本印刷株式会社 光拡散シート
TW586023B (en) * 1999-09-24 2004-05-01 Keiwa Inc Optical sheet
KR20020001594A (ko) * 2000-06-26 2002-01-09 가마이 고로 도광판, 면광원 장치 및 반사형 액정 표시 장치
JP2002098957A (ja) 2000-09-21 2002-04-05 Toshiba Corp 液晶表示装置
JP4009771B2 (ja) 2000-11-13 2007-11-21 カシオ計算機株式会社 フィルム液晶表示パネルの製造方法
JP2002189106A (ja) * 2000-12-20 2002-07-05 Dainippon Printing Co Ltd 防眩性フィルムおよびその製造方法、ならびに防眩性フィルムを用いた表示装置
US6502947B2 (en) * 2001-03-30 2003-01-07 Mitsubishi Rayon Co., Ltd. Planar light source device and liquid crystal display apparatus
US6822792B2 (en) * 2001-05-14 2004-11-23 Dai Nippon Printing Co., Ltd. Sheet for use for projection screen, light diffusion sheet and projection screen
JP2002350617A (ja) * 2001-05-28 2002-12-04 Mitsubishi Polyester Film Copp 光拡散フィルム用ポリエステルフィルム
JP2002358024A (ja) 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 表示装置の製造方法及び液晶表示装置
US20030128313A1 (en) * 2001-12-14 2003-07-10 Eastman Kodak Company Light diffusion material with color temperature correction
JP3998502B2 (ja) * 2002-04-05 2007-10-31 スリーエム イノベイティブ プロパティズ カンパニー 視線誘導照明装置
US6995907B2 (en) * 2002-08-29 2006-02-07 Dai Nippon Printing Co., Ltd. Diffusion sheet for use in transmission-type screen and transmission-type screen
WO2004107297A1 (ja) * 2003-05-29 2004-12-09 Konica Minolta Holdings, Inc. ディスプレイ基板用透明フィルム、該フィルムを用いたディスプレイ基板およびその製造方法、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、およびタッチパネル
JP2005259672A (ja) 2004-03-15 2005-09-22 Tamotsu Azuma 面状光源ユニットの構成方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318707A (ja) * 1994-05-20 1995-12-08 Dainippon Printing Co Ltd 光制御シート、面光源及び透過型表示体
US6124906A (en) * 1997-09-12 2000-09-26 Ibm Corporation Wedge shaped light guide providing enhanced polarized light to a backlight liquid crystal display
JP2001312913A (ja) * 2000-04-27 2001-11-09 Kuraray Co Ltd 面光源素子およびそれを用いた表示装置
JP2002062524A (ja) * 2000-08-18 2002-02-28 Kyodo Printing Co Ltd 液晶表示装置、液晶表示装置の電極基材、液晶表示装置の電極基材の製造方法及び液晶表示装置の製造方法
JP2002069210A (ja) * 2000-08-30 2002-03-08 Toray Ind Inc 光学用等方性シートおよびその製造方法
JP2002090919A (ja) * 2000-09-13 2002-03-27 Kyowa Lamicoat:Kk 印刷物のレチキュラー加工方法、及びレチキュラー加工物
JP2003066230A (ja) * 2001-08-23 2003-03-05 Fuji Photo Film Co Ltd 光学補償シート、偏光板、楕円偏光板および液晶表示装置
JP2003232921A (ja) * 2002-02-08 2003-08-22 Fuji Photo Film Co Ltd ロール状円偏光板、ロール状液晶セル基板および液晶表示装置
JP2004110002A (ja) * 2002-08-29 2004-04-08 Dainippon Printing Co Ltd 透過型スクリーン用の拡散シート及び透過型スクリーン
JP2004151592A (ja) * 2002-10-31 2004-05-27 Dainippon Printing Co Ltd コントラスト向上シートおよび背面投射型スクリーン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1770415A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100902A1 (ja) * 2009-03-03 2010-09-10 三菱レイヨン株式会社 フィルムの製造方法
WO2014199934A1 (ja) * 2013-06-10 2014-12-18 富士フイルム株式会社 偏光板および偏光板の製造方法ならびに偏光板の製造のための転写材料および転写材料
TWI755364B (zh) * 2015-09-24 2022-02-21 日商日東電工股份有限公司 光學異向性膜之製造方法
CN108847454A (zh) * 2018-04-09 2018-11-20 复旦大学 一种自愈合的可拉伸发光器件及其制备方法
CN108847454B (zh) * 2018-04-09 2019-08-09 复旦大学 一种自愈合的可拉伸发光器件及其制备方法

Also Published As

Publication number Publication date
KR100756576B1 (ko) 2007-09-07
EP1770415A4 (en) 2012-12-19
JP2006030621A (ja) 2006-02-02
EP1770415A1 (en) 2007-04-04
KR20060080218A (ko) 2006-07-07
US7852435B2 (en) 2010-12-14
JP3826145B2 (ja) 2006-09-27
US20110126975A1 (en) 2011-06-02
US8477267B2 (en) 2013-07-02
US20060279679A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
WO2006008845A1 (ja) 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法
JP4213616B2 (ja) 液晶パネル用ベースフィルム、液晶パネル用機能フィルム、機能フィルムの製造方法、および機能フィルムの製造装置
JP5303928B2 (ja) 反射型偏光板及びその製造方法、それを用いた液晶表示装置
CN101305643B (zh) 有机el发光显示器
JP6575093B2 (ja) 有機エレクトロルミネッセンス素子、および有機エレクトロルミネッセンス装置
CN108318955A (zh) 圆偏振光板及显示装置
KR20110124314A (ko) 광학 부재, 및 그 광학 부재가 제공된 유기 전계발광 표시 디바이스
TW200839323A (en) Polarizing plate and liquid crystal display apparatus having the same
KR20090028454A (ko) 조명장치 및 액정표시장치
US20110146889A1 (en) Method for manufacturing display device with optical/electronic structures
WO2005101107A1 (ja) 液晶パネルおよびその製造方法及び液晶パネルを搭載した電子機器
KR102482178B1 (ko) 흑색 구조체, 및 그것을 구비한 자발광 화상 표시 장치
JP4676168B2 (ja) フィルタ基板、及びこれを用いたカラーディスプレイ
JP2011082070A (ja) 光学装置
JP2017128083A (ja) 積層体の製造方法、表示装置の製造方法および積層体
JP2003311911A (ja) 複層フィルムの製造方法、反射防止フィルム、光学素子および画像表示装置
WO2006067368A1 (en) Organic electroluminescent device
JP2013109869A (ja) 有機エレクトロルミネッセンス表示装置
JP2004061601A (ja) 被膜シートの製造方法、反射防止シートの製造方法、反射防止シート、光学素子および画像表示装置
CN112909201B (zh) 显示面板及其制备方法、显示装置
JP2004024967A (ja) 被膜シートの製造方法、反射防止シートの製造方法、反射防止シート、光学素子および画像表示装置
WO2019225536A1 (ja) 表示装置及び偏光部材
JP2006216466A (ja) 有機elディスプレイパネルおよびその製造方法
GB2421626A (en) Organic electroluminescent device
JP2005115281A (ja) 位相差板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006279679

Country of ref document: US

Ref document number: 10571543

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004822207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067006179

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020067006179

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10571543

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2004822207

Country of ref document: EP