Displaying 1-10 of 211 results found.
page
1
2
3
4
5
6
7
8
9
10
... 22
a(n) = n*2^(n-1).
(Formerly M3444 N1398)
+10
411
0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
COMMENTS
Number of edges in an n-dimensional hypercube.
Number of 132-avoiding permutations of [n+2] containing exactly one 123 pattern. - Emeric Deutsch, Jul 13 2001
Number of ways to place n-1 nonattacking kings on a 2 X 2(n-1) chessboard for n >= 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001
(-1) times the determinant of matrix A_{i,j} = -|i-j|, 0 <= i,j <= n.
a(n) is the number of ones in binary numbers 1 to 111...1 (n bits). a(n) = A000337(n) - A000337(n-1) for n = 2,3,... . - Emeric Deutsch, May 24 2003
The number of 2 X n 0-1 matrices containing n+1 1's and having no zero row or column. The number of spanning trees of the complete bipartite graph K(2,n). This is the case m = 2 of K(m,n). See A072590. - W. Edwin Clark, May 27 2003
Binomial transform of 0,1,2,3,4,5,... ( A001477). Without the initial 0, binomial transform of odd numbers.
With an additional leading zero, [0,0,1,4,...] this is the binomial transform of the integers repeated A004526. Its formula is then (2^n*(n-1) + 0^n)/4. - Paul Barry, May 20 2003
Number of zeros in all different (n+1)-bit integers. - Ralf Stephan, Aug 02 2003
Final element of a summation table (as opposed to a difference table) whose first row consists of integers 0 through n (or first n+1 nonnegative integers A001477); illustrating the case n=5:
0 1 2 3 4 5
1 3 5 7 9
4 8 12 16
12 20 28
32 48
80
and the final element is a(5)=80. (End)
This sequence and A001871 arise in counting ordered trees of height at most k where only the rightmost branch at the root actually achieves this height and the count is by the number of edges, with k = 3 for this sequence and k = 4 for A001871.
Let R be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all elements x,y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. Then a(n) = |R|. - Ross La Haye, Sep 21 2004
Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1) and (10;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Number of subsequences 00 in all binary words of length n+1. Example: a(2)=4 because in 000,001,010,011,100,101,110,111 the sequence 00 occurs 4 times. - Emeric Deutsch, Apr 04 2005
If you expand the n-factor expression (a+1)*(b+1)*(c+1)*...*(z+1), there are a(n) variables in the result. For example, the 3-factor expression (a+1)*(b+1)*(c+1) expands to abc+ab+ac+bc+a+b+c+1 with a(3) = 12 variables. - David W. Wilson, May 08 2005
An inverse Chebyshev transform of n^2, where g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), c(x) the g.f. of A000108. - Paul Barry, May 13 2005
The number of never-decreasing positive integer sequences of length n with a maximum value of 2*n. - Ben Paul Thurston, Nov 13 2006
Total size of all the subsets of an n-element set. For example, a 2-element set has 1 subset of size 0, 2 subsets of size 1 and 1 of size 2. - Ross La Haye, Dec 30 2006
If M is the matrix (given by rows) [2,1;0,2] then the sequence gives the (1,2) entry in M^n. - Antonio M. Oller-Marcén, May 21 2007
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
Number of n-permutations of 3 objects u,v,w, with repetition allowed, containing exactly one u. Example: a(2)=4 because we have uv, vu, uw and wu. - Zerinvary Lajos, Dec 27 2007
A member of the family of sequences defined by a(n) = n*[c(1)*...*c(r)]^(n-1); c(i) integer. This sequence has c(1)=2, A027471 has c(1)=3. - Ctibor O. Zizka, Feb 23 2008
a(n) is the number of ways to split {1,2,...,n-1} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n-1} and then select a subset from each interval. - Geoffrey Critzer, Jan 31 2009
Starting with offset 1 = A059570: (1, 2, 6, 14, 34, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
The number of tatami tilings of an n X n square with n monomers is n*2^(n-1). - Frank Ruskey, Sep 25 2010
Number of Dyck (n+2)-paths with exactly one valley at height 1 and no higher valley. - David Scambler, Nov 07 2011
Let T(n,k) be the triangle with (first column) T(n,1) = 2*n-1 for n >= 1, otherwise T(n,k) = T(n,k-1) + T(n-1,k-1), then a(n) = T(n,n). - J. M. Bergot, Jan 17 2013
Sum of all parts of all compositions (ordered partitions) of n. The equivalent sequence for partitions is A066186. - Omar E. Pol, Aug 28 2013
Starting with a(1)=1: powers of 2 ( A000079) self-convolved. - Bob Selcoe, Aug 05 2015
Coefficients of the series expansion of the normalized Schwarzian derivative -S{p(x)}/6 of the polynomial p(x) = -(x-x1)*(x-x2) with x1 + x2 = 1 (cf. A263646). - Tom Copeland, Nov 02 2015
a(n) is the number of North-East lattice paths from (0,0) to (n+1,n+1) that have exactly one east step below y = x-1 and no east steps above y = x+1. Details can be found in Pan and Remmel's link. - Ran Pan, Feb 03 2016
Also the number of maximal and maximum cliques in the n-hypercube graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Let [n]={1,2,...,n}; then a(n-1) is the total number of elements missing in proper subsets of [n] that contain n to form [n]. For example, for n = 3, a(2) = 4 since the proper subsets of [3] that contain 3 are {3}, {1,3}, {2,3} and the total number of elements missing in these subsets to form [3] is 4: 2 in the first subset, 1 in the second, and 1 in the third. - Enrique Navarrete, Aug 08 2020
Number of 3-permutations of n elements avoiding the patterns 132, 231. See Bonichon and Sun. - Michel Marcus, Aug 19 2022
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 131.
Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Alejandro Erickson, Frank Ruskey, Mark Schurch and Jennifer Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946). 187-203.
Toufik Mansour and Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773.
Lara Pudwell, Nathan Chenette and Manda Riehl, Statistics on Hypercube Orientations, AMS Special Session on Experimental and Computer Assisted Mathematics, Joint Mathematics Meetings (Denver 2020).
Eric Weisstein's World of Mathematics, Hypercube.
FORMULA
G.f.: x/(1-2*x)^2.
G.f.: x / (1 - 4*x / (1 + x / (1 - x))). - Michael Somos, Apr 07 2012
a(n) = 2*a(n-1)+2^(n-1).
a(2*n) = n*4^n, a(2*n+1) = (2*n+1)4^n.
G.f.: x/det(I-x*M) where M=[1,i;i,1], i=sqrt(-1). - Paul Barry, Apr 27 2005
Starting 1, 1, 4, 12, ... this is 0^n + n2^(n-1), the binomial transform of the 'pair-reversed' natural numbers A004442. - Paul Barry, Jul 24 2003
Convolution of [1, 2, 4, 8, ...] with itself. - Jon Perry, Aug 07 2003
The signed version of this sequence, n(-2)^(n-1), is the inverse binomial transform of n(-1)^(n-1) (alternating sign natural numbers). - Paul Barry, Aug 20 2003
a(n-1) = (Sum_{k=0..n} 2^(n-k-1)*C(n-k, k)*C(1,(k+1)/2)*(1-(-1)^k)/2) - 0^n/4. - Paul Barry, Oct 15 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)(n-2k)^2. - Paul Barry, May 13 2005
a(n) = n! * Sum_{k=0..n} 1/((k - 1)!(n - k)!). - Paul Barry, Mar 26 2003
a(n-1) = Sum_{t_1+2*t_2+...+n*t_n=n} (t_1+t_2+...+t_n-1)*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n). - Mircea Merca, Dec 06 2013
a(n+1) = Sum_{r=0..n} (2*r+1)*C(n,r). - J. M. Bergot, Apr 07 2014
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (i+1) * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{i=1..n} Sum_{j=1..n} phi(i)*binomial(n, i*j). - Ridouane Oudra, Feb 17 2024
EXAMPLE
a(2)=4 since 2314, 2341,3124 and 4123 are the only 132-avoiding permutations of 1234 containing exactly one increasing subsequence of length 3.
x + 4*x^2 + 12*x^3 + 32*x^4 + 80*x^5 + 192*x^6 + 448*x^7 + ...
a(5) = 1*0 + 5*1 + 10*2 + 10*3 + 5*4 + 1*5 = 80, with 1,5,10,10,5,1 the 5th row of Pascal's triangle. - J. M. Bergot, Apr 29 2014
MAPLE
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..29); # Zerinvary Lajos, Oct 09 2006
MATHEMATICA
Table[Sum[Binomial[n, i] i, {i, 0, n}], {n, 0, 30}] (* Geoffrey Critzer, Mar 18 2009 *)
Join[{0}, LinearRecurrence[{4, -4}, {1, 4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, n * 2^(n-1))}
(Haskell)
a001787 n = n * 2 ^ (n - 1)
a001787_list = zipWith (*) [0..] $ 0 : a000079_list
(PARI) concat(0, Vec(x/(1-2*x)^2 + O(x^50))) \\ Altug Alkan, Nov 03 2015
(Python)
CROSSREFS
Cf. A053109, A001788, A001789, A000337, A130300, A134083, A002064, A027471, A003945, A059670, A167591, A059260, A016777, A212697, A000079, A263646.
Pell-Lucas numbers: numerators of continued fraction convergents to sqrt(2).
(Formerly M2665 N1064)
+10
356
1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199
COMMENTS
Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1) [Stanley].
Number of n steps one-sided prudent walks with east, west and north steps. - Shanzhen Gao, Apr 26 2011
Number of ternary strings of length n-1 with subwords (0,2) and (2,0) not allowed. - Olivier Gérard, Aug 28 2012
Number of symmetric 2n X 2 or (2n-1) X 2 crossword puzzle grids: all white squares are edge connected; at least 1 white square on every edge of grid; 180-degree rotational symmetry. - Erich Friedman
a(n+1) is the number of ways to put molecules on a 2 X n ladder lattice so that the molecules do not touch each other.
In other words, a(n+1) is the number of independent vertex sets and vertex covers in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, Apr 04 2017
Number of (n-1) X 2 binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 16 2002
a(2*n+1) with b(2*n+1) := A000129(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1.
a(2*n) with b(2*n) := A000129(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,3) = A001541(n), n >= 0 and a(2*n+1) = S(2*n,2*sqrt(2)) = A002315(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. - Herbert Kociemba, Jun 02 2004
For n > 1, a(n) corresponds to the longer side of a near right-angled isosceles triangle, one of the equal sides being A000129(n). - Lekraj Beedassy, Aug 06 2004
Exponents of terms in the series F(x,1), where F is determined by the equation F(x,y) = xy + F(x^2*y,x). - Jonathan Sondow, Dec 18 2004
Number of n-words from the alphabet A={0,1,2} which two neighbors differ by at most 1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003 [Amended by Paul E. Black (paul.black(AT)nist.gov), Dec 18 2006]
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators= A052542 and denominators here. - Clark Kimberling, Aug 26 2008
Equals right border of triangle A143966. Starting (1, 3, 7, ...) equals INVERT transform of (1, 2, 2, 2, ...) and row sums of triangle A143966. - Gary W. Adamson, Sep 06 2008
Inverse binomial transform of A006012; Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then b(1,n)=a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel ( A048211). - Sameen Ahmed Khan, Jun 28 2010
Let M = a triangle with the Fibonacci series in each column, but the leftmost column is shifted upwards one row. A001333 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(8,2) = (0 0 1 0)
(0 1 0 1)
(1 0 2 0)
(0 2 0 1).
(End)
For n >= 1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....2
.2..|..1.....2.....4
.3..|..1.....4.....4.....8
.4..|..1.....4....12.....8....16
.5..|..1.....6....12....32....16....32
.6..|..1.....6....24....32....80....32....64
.7..|..1.....8....24....80....80...192....64...128
which is the triangle for numbers 2^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n board, summed over all k >= 0 (a wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
The sequences a(n) and b(n) := A000129(n) are entries of powers of the special case of the Brahmagupta Matrix - for details see Suryanarayan's paper. Further, as Suryanarayan remark, if we set A = 2*(a(n) + b(n))*b(n), B = a(n)*(a(n) + 2*b(n)), C = a(n)^2 + 2*a(n)*b(n) + 2*b(n)^2 we obtain integral solutions of the Pythagorean relation A^2 + B^2 = C^2, where A and B are consecutive integers. - Roman Witula, Jul 28 2012
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, .... - R. J. Mathar, Aug 10 2012
This sequence and A000129 give the diagonal numbers described by Theon of Smyrna. - Sture Sjöstedt, Oct 20 2012
a(n) is the top left entry of the n-th power of any of the following six 3 X 3 binary matrices: [1, 1, 1; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 1, 1, 0] or [1, 1, 1; 1, 1, 0; 1, 0, 1] or [1, 1, 1; 1, 0, 1; 1, 0, 1] or [1, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
For n > 0, a(n+1) is the length of tau^n(1) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
For n > 0, a(n) is the number of nonisomorphic quasitrivial semigroups with n elements, see Devillet, Marichal, Teheux. A292932 is the number of labeled quasitrivial semigroups. - Peter Jipsen, Mar 28 2021
For n >= 2, 4*a(n) is the number of ways to tile this T-shaped figure of length n-1 with two colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 4*a(6) = 396 different tilings.
._
|_|_ _ _ _
|_|_|_|_|_|
|_|
(End)
12*a(n) = number of walks of length n in the cyclic Kautz digraph CK(3,4). - Miquel A. Fiol, Feb 15 2024
REFERENCES
M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
J. Devillet, J.‐L. Marichal, and B. Teheux, Classifications of quasitrivial semigroups, Semigroup Forum, 100 (2020), 743-764.
Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111.
Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
Kin Y. Li, Math Problem Book I, 2001, p. 24, Problem 159.
I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 102, Problem 10.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 203, Example 4.1.2.
A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
R. C. Tilley et al., The cell growth problem for filaments, Proc. Louisiana Conf. Combinatorics, ed. R. C. Mullin et al., Baton Rouge, 1970, 310-339.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.
LINKS
F. Harary and R. W. Robinson, Tapeworms, Unpublished manuscript, circa 1973. (Annotated scanned copy)
Claude Soudieux, De l'infini arithmétique, Zurich, 1960. [Annotated scans of selected pages. Contains many sequences including A1333]
FORMULA
a(n) = 2a(n-1) + a(n-2);
a(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2.
G.f.: (1 - x) / (1 - 2*x - x^2) = 1 / (1 - x / (1 - 2*x / (1 + x))). - Simon Plouffe in his 1992 dissertation.
a(n) = (-i)^n * T(n, i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
a(n) = a(n-1) + A052542(n-1), n>1. a(n)/ A052542(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
E.g.f.: exp(x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)2^k. - Paul Barry, May 13 2003
For n > 0, a(n)^2 - (1 + (-1)^(n))/2 = Sum_{k=0..n-1} ((2k+1)* A001653(n-1-k)); e.g., 17^2 - 1 = 288 = 1*169 + 3*29 + 5*5 + 7*1; 7^2 = 49 = 1*29 + 3*5 + 5*1. - Charlie Marion, Jul 18 2003
For another recurrence see A000129.
a(n) = upper left and lower right terms of [1,1; 2,1]^n. - Gary W. Adamson, Mar 12 2008
If p[1]=1, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
For n>=2, a(n)=F_n(2)+F_(n+1)(2), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
Dirichlet g.f.: (PolyLog(s,1-sqrt(2)) + PolyLog(s,1+sqrt(2)))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n) = round((1/2)*sqrt(Product_{k=1..n} 4*(1 + sin(k*Pi/n)^2))), for n>=1. - Greg Dresden, Dec 28 2021
Sum_{n>=1} 1/a(n) = 1.5766479516393275911191017828913332473... - R. J. Mathar, Feb 05 2024
EXAMPLE
Convergents are 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/ A000129.
The 15 3 X 2 crossword grids, with white squares represented by an o:
ooo ooo ooo ooo ooo ooo ooo oo. o.o .oo o.. .o. ..o oo. .oo
ooo oo. o.o .oo o.. .o. ..o ooo ooo ooo ooo ooo ooo .oo oo.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + 99*x^6 + 239*x^7 + 577*x^8 + ...
MAPLE
A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
with(numtheory): cf := cfrac (sqrt(2), 1000): [seq(nthnumer(cf, i), i=0..50)];
a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
A001333List := proc(m) local A, P, n; A := [1, 1]; P := [1, 1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
MATHEMATICA
Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
PROG
(PARI) {a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
(PARI) {a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
(PARI) a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
(PARI) { default(realprecision, 2000); for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
(Sage) from sage.combinat.sloane_functions import recur_gen2
it = recur_gen2(1, 1, 2, 1)
(Sage) [lucas_number2(n, 2, -1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
(Haskell)
a001333 n = a001333_list !! n
a001333_list = 1 : 1 : zipWith (+)
a001333_list (map (* 2) $ tail a001333_list)
(Magma) [n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
(Python)
from functools import cache
@cache
def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
CROSSREFS
See A040000 for the continued fraction expansion of sqrt(2).
See also A078057 which is the same sequence without the initial 1.
Row sums of unsigned Chebyshev T-triangle A053120. a(n)= A054458(n, 0) (first column of convolution triangle).
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Second row of the array in A135597.
Cf. Triangle A106513 (alternating row sums).
KEYWORD
nonn,cofr,easy,core,nice,frac
a(n) = (3^n - 1)/2.
(Formerly M3463)
+10
292
0, 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484, 7174453, 21523360, 64570081, 193710244, 581130733, 1743392200, 5230176601, 15690529804, 47071589413, 141214768240, 423644304721, 1270932914164
COMMENTS
Partial sums of A000244. Values of base 3 strings of 1's.
a(n) = (3^n-1)/2 is also the number of different nonparallel lines determined by pair of vertices in the n dimensional hypercube. Example: when n = 2 the square has 4 vertices and then the relevant lines are: x = 0, y = 0, x = 1, y = 1, y = x, y = 1-x and when we identify parallel lines only 4 remain: x = 0, y = 0, y = x, y = 1 - x so a(2) = 4. - Noam Katz (noamkj(AT)hotmail.com), Feb 11 2001
3^a(n) is the highest power of 3 dividing (3^n)!. - Benoit Cloitre, Feb 04 2002
Apart from the a(0) and a(1) terms, maximum number of coins among which a lighter or heavier counterfeit coin can be identified (but not necessarily labeled as heavier or lighter) by n weighings. - Tom Verhoeff, Jun 22 2002, updated Mar 23 2017
Consider the mapping f(a/b) = (a + 2b)/(2a + b). Taking a = 1, b = 2 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the sequence 1/2, 4/5, 13/14, 40/41, ... converging to 1. Sequence contains the numerators = (3^n-1)/2. The same mapping for N, i.e., f(a/b) = (a + Nb)/(a+b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Number of walks of length 2*n + 2 in the path graph P_5 from one end to the other one. Example: a(2) = 4 because in the path ABCDE we have ABABCDE, ABCBCDE, ABCDCDE and ABCDEDE. - Emeric Deutsch, Apr 02 2004
The number of triangles of all sizes (not counting holes) in Sierpiński's triangle after n inscriptions. - Lee Reeves (leereeves(AT)fastmail.fm), May 10 2004
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n + 1, s(0) = 1, s(2n+1) = 4. - Herbert Kociemba, Jun 10 2004
Number of non-degenerate right-angled incongruent integer-edged Heron triangles whose circumdiameter is the product of n distinct primes of shape 4k + 1. - Alex Fink and R. K. Guy, Aug 18 2005
Also numerator of the sum of the reciprocals of the first n powers of 3, with A000244 being the sequence of denominators. With the exception of n < 2, the base 10 digital root of a(n) is always 4. In base 3 the digital root of a(n) is the same as the digital root of n. - Alonso del Arte, Jan 24 2006
The sequence 3*a(n), n >= 1, gives the number of edges of the Hanoi graph H_3^{n} with 3 pegs and n >= 1 discs. - Daniele Parisse, Jul 28 2006
Numbers n such that a(n) is prime are listed in A028491 = {3, 7, 13, 71, 103, 541, 1091, ...}. 2^(m+1) divides a(2^m*k) for m > 0. 5 divides a(4k). 5^2 divides a(20k). 7 divides a(6k). 7^2 divides a(42k). 11^2 divides a(5k). 13 divides a(3k). 17 divides a(16k). 19 divides a(18k). 1093 divides a(7k). 41 divides a(8k). p divides a((p-1)/5) for prime p = {41, 431, 491, 661, 761, 1021, 1051, 1091, 1171, ...}. p divides a((p-1)/4) for prime p = {13, 109, 181, 193, 229, 277, 313, 421, 433, 541, ...}. p divides a((p-1)/3) for prime p = {61, 67, 73, 103, 151, 193, 271, 307, 367, ...} = A014753, 3 and -3 are both cubes (one implies other) mod these primes p = 1 mod 6. p divides a((p-1)/2) for prime p = {11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, ...} = A097933(n). p divides a(p-1) for prime p > 7. p^2 divides a(p*(p-1)k) for all prime p except p = 3. p^3 divides a(p*(p-1)*(p-2)k) for prime p = 11. - Alexander Adamchuk, Jan 22 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of [unordered] pairs of elements {x,y} of P(A) for which x and y are disjoint [and both nonempty]. Wieder calls these "disjoint usual 2-combinations". - Ross La Haye, Jan 10 2008 [This is because each of the elements of {1, 2, ..., n} can be in the first subset, in the second or in neither. Because there are three options for each, the total number of options is 3^n. However, since the sets being empty is not an option we subtract 1 and since the subsets are unordered we then divide by 2! (The number of ways two objects can be arranged.) Thus we obtain (3^n-1)/2 = a(n). - Chayim Lowen, Mar 03 2015]
Also, still with P(A) being the power set of a n-element set A, a(n) is the number of 2-element subsets {x,y} of P(A) such that the union of x and y is equal to A. Cf. A341590. - Fabio Visonà, Feb 20 2021
Starting with offset 1 = binomial transform of A003945: (1, 3, 6, 12, 24, ...) and double bt of (1, 2, 1, 2, 1, 2, ...); equals polcoeff inverse of (1, -4, 3, 0, 0, 0, ...). - Gary W. Adamson, May 28 2009
Also the constant of the polynomials C(x) = 3x + 1 that form a sequence by performing this operation repeatedly and taking the result at each step as the input at the next. - Nishant Shukla (n.shukla722(AT)gmail.com), Jul 11 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i, i] := 3, (i > 1), A[i, i-1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 2, 3; 2) = A(0, 1; 4, -3; 0) of the family of sequences [a, b:c, d:k] considered by Gary Detlefs, and treated as A(a, b; c, d; k) in the Wolfdieter Lang link given below. - Wolfdieter Lang, Oct 18 2010
It appears that if s(n) is a first order rational sequence of the form s(0) = 0, s(n) = (2*s(n-1)+1)/(s(n-1)+2), n > 0, then s(n)= a(n)/(a(n)+1). - Gary Detlefs, Nov 16 2010
This sequence also describes the total number of moves to solve the [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Towers of Hanoi puzzle (cf. A183111 - A183125).
a(n) is number of compositions of odd numbers into n parts less than 3. For example, a(3) = 13 and there are 13 compositions odd numbers into 3 parts < 3:
1: (0, 0, 1), (0, 1, 0), (1, 0, 0);
3: (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0), (1, 1, 1);
5: (1, 2, 2), (2, 1, 2), (2, 2, 1).
(End)
Pisano period lengths: 1, 2, 1, 2, 4, 2, 6, 4, 1, 4, 5, 2, 3, 6, 4, 8, 16, 2, 18, 4, ... . - R. J. Mathar, Aug 10 2012
a(n) is the total number of holes (triangles removed) after the n-th step of a Sierpiński triangle production. - Ivan N. Ianakiev, Oct 29 2013
a(n) solves Sum_{j = a(n) + 1 .. a(n+1)} j = k^2 for some integer k, given a(0) = 0 and requiring smallest a(n+1) > a(n). Corresponding k = 3^n. - Richard R. Forberg, Mar 11 2015
a(n+1) equals the number of words of length n over {0, 1, 2, 3} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015
For n >= 1, a(n) is also the total number of words of length n, over an alphabet of three letters, such that one of the letters appears an odd number of times (See A006516 for 4 letter words, and the Balakrishnan reference there). - Wolfdieter Lang, Jul 16 2017
Also, the number of maximal cliques, maximum cliques, and cliques of size 4 in the n-Apollonian network. - Andrew Howroyd, Sep 02 2017
For n > 1, the number of triangles (cliques of size 3) in the (n-1)-Apollonian network. - Andrew Howroyd, Sep 02 2017
a(n) is the largest number that can be represented with n trits in balanced ternary. Correspondingly, -a(n) is the smallest number that can be represented with n trits in balanced ternary. - Thomas König, Apr 26 2020
These form Sierpinski nesting-stars, which alternate pattern on 3^n+1/2 star numbers A003154, based on the square configurations of 9^n. The partial sums of 3^n are delineated according to the geometry of a hexagram, see illustrations in links. (3*a(n-1) + 1) create Sierpinski-anti-triangles, representing the number of holes in a (n+1) Sierpinski triangle (see illustrations). - John Elias, Oct 18 2021
For n > 1, a(n) is the number of iterations necessary to calculate the hyperbolic functions with CORDIC. - Mathias Zechmeister, Jul 26 2022
For all n >= 0, Sum_{k=a(n)+1..a(n+1)} 1/k < Sum_{j=a(n+1)+1..a(n+2)} 1/j. These are the minimal points which partition the infinite harmonic series into a monotonically increasing sequence. Each partition approximates log(3) from below as n tends to infinity. - Joseph Wheat, Apr 15 2023
a(n) is also the number of 3-cycles in the n-Dorogovtsev-Goltsev-Mendes graph (using the convention the 0-Dorogovtsev-Goltsev-Mendes graph is P_2). - Eric W. Weisstein, Dec 06 2023
REFERENCES
J. G. Mauldon, Strong solutions for the counterfeit coin problem, IBM Research Report RC 7476 (#31437) 9/15/78, IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598.
Paulo Ribenboim, The Book of Prime Number Records, Springer-Verlag, NY, 2nd ed., 1989, p. 60.
Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case three-in-a row, sequence a(n).
Robert Sedgewick, Algorithms, 1992, pp. 109.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Max A. Alekseyev and Toby Berger, Solving the Tower of Hanoi with Random Moves. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Princeton University Press, 2016, pp. 65-79. ISBN 978-0-691-16403-8
G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Repunit.
Eric Weisstein's World of Mathematics, Weighing.
FORMULA
G.f.: x/((1-x)*(1-3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), n > 1. a(0) = 0, a(1) = 1.
a(n) = 3*a(n-1) + 1, a(0) = 0.
E.g.f.: (exp(3*x) - exp(x))/2. - Paul Barry, Apr 11 2003
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*2^k. - Paul Barry, Aug 20 2004
a(n) = Sum_{i = 0..n-1} 3^i, for n > 0; a(0) = 0.
a(n) = StirlingS2(n+1, 3) + StirlingS2(n+1, 2). - Ross La Haye, Jan 10 2008
a(n) = 2*a(n-1) + 3*a(n-2) + 2, n > 1. - Gary Detlefs, Jun 21 2010
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3), a(0) = 0, a(1) = 1, a(2) = 4. Observation by G. Detlefs. See the W. Lang comment and link. - Wolfdieter Lang, Oct 18 2010
G.f.: Q(0)/2 where Q(k) = 1 - 1/(9^k - 3*x*81^k/(3*x*9^k - 1/(1 - 1/(3*9^k - 27*x*81^k/(9*x*9^k - 1/Q(k+1)))))); (continued fraction ). - Sergei N. Gladkovskii, Apr 12 2013
EXAMPLE
There are 4 3-block bicoverings of a 3-set: {{1, 2, 3}, {1, 2}, {3}}, {{1, 2, 3}, {1, 3}, {2}}, {{1, 2, 3}, {1}, {2, 3}} and {{1, 2}, {1, 3}, {2, 3}}.
Ternary........Decimal
0.................0
1.................1
11................4
111..............13
There are altogether a(3) = 13 three letter words over {A,B,C} with say, A, appearing an odd number of times: AAA; ABC, ACB, ABB, ACC; BAC, CAB, BAB, CAC; BCA, CBA, BBA, CCA. - Wolfdieter Lang, Jul 16 2017
MATHEMATICA
LinearRecurrence[{4, -3}, {0, 1}, 30] (* Harvey P. Dale, Jul 13 2011 *)
CoefficientList[Series[x/(1 - 4x + 3x^2), {x, 0, 30}], x] (* Eric W. Weisstein, Sep 28 2017 *)
Table[FromDigits[PadRight[{}, n, 1], 3], {n, 0, 30}] (* Harvey P. Dale, Jun 01 2022 *)
PROG
(PARI) a(n)=(3^n-1)/2
(Haskell)
a003462 = (`div` 2) . (subtract 1) . (3 ^)
(PARI) concat(0, Vec(x/((1-x)*(1-3*x)) + O(x^30))) \\ Altug Alkan, Nov 01 2015
(GAP)
CROSSREFS
Cf. A064099 (minimal number of weightings to detect lighter or heavier coin among n coins).
Cf. A006516 (binomial transform, and special 4 letter words).
EXTENSIONS
Corrected my comment of Jan 10 2008. - Ross La Haye, Oct 29 2008
Removed comment that duplicated a formula. - Joerg Arndt, Mar 11 2010
a(n) = 3*2^n.
(Formerly M2561)
+10
242
3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
COMMENTS
Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers ( A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024
REFERENCES
Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n* A084247(n). (End)
PROG
(PARI) a(n)=3*2^n
(Haskell)
a007283 = (* 3) . (2 ^)
a007283_list = iterate (* 2) 3
(Scala) (List.fill(40)(2: BigInt)).scanLeft(1: BigInt)(_ * _).map(3 * _) // Alonso del Arte, Nov 28 2019
(Python)
CROSSREFS
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
a(0)=1; a(n)=2 for n >= 1.
+10
193
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
COMMENTS
Continued fraction expansion of sqrt(2) is 1 + 1/(2 + 1/(2 + 1/(2 + ...))).
Inverse binomial transform of Mersenne numbers A000225(n+1) = 2^(n+1) - 1. - Paul Barry, Feb 28 2003
A Chebyshev transform of 2^n: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). - Paul Barry, Oct 31 2004
An inverse Catalan transform of A068875 under the mapping g(x)->g(x(1-x)). A068875 can be retrieved using the mapping g(x)->g(xc(x)), where c(x) is the g.f. of A000108. A040000 and A068875 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
Let m=2. We observe that a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k). Then there is a link with A113311 and A115291: it is the same formula with respectively m=3 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
With offset 1: number of permutations where |p(i) - p(i+1)| <= 1 for n=1,2,...,n-1. This is the identical permutation and (for n>1) its reversal.
Equals INVERT transform of bar(1, 1, -1, -1, ...).
With offset 1: minimum cardinality of the range of a periodic sequence with (least) period n. Of course the range's maximum cardinality for a purely periodic sequence with (least) period n is n. - Rick L. Shepherd, Dec 08 2014
With offset 1: n*a(1) + (n-1)*a(2) + ... + 2*a(n-1) + a(n) = n^2. - Warren Breslow, Dec 12 2014
With offset 1: decimal expansion of gamma(4) = 11/9 where gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Sep 11 2016
a(n) equals the number of binary sequences of length n where no two consecutive terms differ. Also equals the number of binary sequences of length n where no two consecutive terms are the same. - David Nacin, May 31 2017
a(n) is the period of the continued fractions for sqrt((n+2)/(n+1)) and sqrt((n+1)/(n+2)). - A.H.M. Smeets, Dec 05 2017
Also, number of self-avoiding walks and coordination sequence for the one-dimensional lattice Z. - Sean A. Irvine, Jul 27 2020
REFERENCES
A. Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
FORMULA
a(n) = 2 - 0^n; a(n) = Sum_{k=0..n} binomial(1, k). - Paul Barry, Oct 16 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*2^(n-2*k)/(n-k). - Paul Barry, Oct 31 2004
Euler transform of length 2 sequence [2, -1]. - Michael Somos, Apr 16 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)*(u+v) - 2*v*(u-w). - Michael Somos, Apr 16 2007
a(n) = a(-n) for all n in Z (one possible extension to n<0). - Michael Somos, Apr 16 2007
EXAMPLE
sqrt(2) = 1.41421356237309504... = 1 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + ...)))). - Harry J. Smith, Apr 21 2009
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
MAPLE
Digits := 100: convert(evalf(sqrt(2)), confrac, 90, 'cvgts'):
PROG
(PARI) allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2)); for (n=0, 20000, write("b040000.txt", n, " ", x[n+1])); \\ Harry J. Smith, Apr 21 2009
(Haskell)
a040000 0 = 1; a040000 n = 2
CROSSREFS
See A003945 etc. for (1+x)/(1-k*x).
Prod_{0<=k<=n} a(k) = A000079(n). (End)
Cf. A000674 (boustrophedon transform).
Cf. Other continued fractions for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040002 (contfrac(sqrt(5)) = (2,4,4,...)), A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).
Period 2: repeat [1, 2]; a(n) = 1 + (n mod 2).
(Formerly M0089)
+10
136
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
COMMENTS
The sequence 1,-2,-1,2,1,-2,-1,2,... with g.f. (1-2x)/(1+x^2) has a(n) = cos(Pi*n/2)-2*sin(Pi*n/2). - Paul Barry, Oct 18 2004
Hankel transform is [1,-3,0,0,0,0,0,0,0,...]. - Philippe Deléham, Mar 29 2007
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1) = charpoly(A,2). - Milan Janjic, Jan 24 2010
Denominator of the harmonic mean of the first n triangular numbers. - Colin Barker, Nov 13 2014
This is the lexicographically earliest sequence of positive integers such that no polynomial of degree d can be fitted to d+2 consecutive terms (equivalently, such that no iterated difference is zero). - Pontus von Brömssen, Dec 26 2021 [See A300002 for the case where not only consecutive terms are considered. - Pontus von Brömssen, Jan 03 2023]
Number of maximum antichains in the power set of {1,2,...,n} partially ordered by set inclusion. For even n, there is a unique maximum antichain formed by all subsets of size n/2; for odd n, there are two maximum antichains, one formed by all subsets of size (n-1)/2 and the other formed by all subsets of size (n+1)/2. See the David Guichard link below for a proof. - Jianing Song, Jun 19 2022
REFERENCES
Jozsef Beck, Combinatorial Games, Cambridge University Press, 2008.
J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 545 pages 73 and 260, Ellipses, Paris 2004.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida and Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.
FORMULA
G.f.: (1+2*x)/(1-x^2).
a(n) = 2^((1-(-1)^n)/2) = 2^(ceiling(n/2) - floor(n/2)). - Paul Barry, Jun 03 2003
a(n) = (3-(-1)^n)/2; a(n) = 1 + (n mod 2) = 3-a(n-1) = a(n-2) = a(-n).
a(n) = if(n=0,1,if(mod(a(n-1),2)=0,a(n-1)/2,(3*a(n-1)+1)/2)). See Collatz conjecture. - Paul Barry, Mar 31 2008
Dirichlet g.f.: zeta(s)*(1 + 1/2^s). - Mats Granvik, Jul 18 2016
Limit_{n->oo} (1/n)*Sum_{k=1..n} a(k) = 3/2 (De Koninck reference). - Bernard Schott, Nov 09 2021
MATHEMATICA
Nest[ Flatten[# /. { 0 -> {1}, 1 -> {2}, 2 -> {1, 2, 1} }] &, {1}, 8] (* Robert G. Wilson v, May 20 2014 *)
PROG
(PARI) a(n)=1+n%2
(Haskell)
a000034 = (+ 1) . (`mod` 2)
a000034_list = cycle [1, 2]
(Python)
CROSSREFS
Cf. A000035, A003945 (binomial transf), A007089, A010693, A010704, A010888, A032766, A040001, A123344, A134451, A300002.
Cf. sequences listed in Comments section of A283393.
Zero followed by powers of 2 (cf. A000079).
+10
116
0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
COMMENTS
A000079 is the main entry for this sequence.
Number of compositions of natural number n into parts >0.
The signed sequence 0, 1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, ... is the Lucas U(-2,0) sequence. - R. J. Mathar, Jan 08 2013
In computer programming, these are the only unsigned numbers such that k&(k-1)=0, where & is the bitwise AND operator and numbers are expressed in binary. - Stanislav Sykora, Nov 29 2013
Also the 0-additive sequence: a(n) is the smallest number larger than a(n-1) which is not the sum of any subset of earlier terms, with initial values {0, 1, 2}. - Robert G. Wilson v, Jul 12 2014
Also the smallest nonnegative superincreasing sequence: each term is larger than the sum of all preceding terms. Indeed, an equivalent definition is a(0)=0, a(n+1)=1+sum_{k=0..n} a(k). - M. F. Hasler, Jan 13 2015
REFERENCES
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
FORMULA
G.f.: x/(1-2*x); a(n) = (2^n-0^n)/2. - Paul Barry, Jan 05 2009
E.g.f.: x/T(0) where T(k) = 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Mar 17 2013
MAPLE
if n =0 then
0;
else
2^(n-1) ;
end if;
PROG
(Haskell)
a131577 = (`div` 2) . a000079
(Python)
Numbers that are congruent to 0 or 1 (mod 3).
+10
113
0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 102, 103
COMMENTS
Omitting the initial 0, a(n) is the number of 1's in the n-th row of the triangle in A118111. - Hans Havermann, May 26 2002
Smallest number of different people in a set of n-1 photographs that satisfies the following conditions: In each photograph there are 3 women, the woman in the middle is the mother of the person on her left and is a sister of the person on her right and the women in the middle of the photographs are all different. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
a(n) is the set of values for m in which 6k + m can be a perfect square (quadratic residues of 6 including trivial case of 0). - Gary Detlefs, Mar 19 2010
Sequence is also the maximum number of floors with 3 elevators and n stops in a "Convenient Building". See A196592 and Erich Friedman link below. - Robert Price, May 30 2013
a(n) is also the total number of coins left after packing 4-curves patterns (4c2) into a fountain of coins base n. The total number of 4c2 is A002620 and voids left is A000982. See illustration in links. - Kival Ngaokrajang, Oct 26 2013
Number of partitions of 3n into exactly 2 parts. - Colin Barker, Mar 23 2015
Nonnegative m such that floor(2*m/3) = 2*floor(m/3). - Bruno Berselli, Dec 09 2015
For n >= 3, also the independence number of the n-web graph. - Eric W. Weisstein, Dec 31 2015
Equivalently, nonnegative numbers m for which m*(m+2)/3 and m*(m+5)/6 are integers. - Bruno Berselli, Jul 18 2016
Also the clique covering number of the n-Andrásfai graph for n > 0. - Eric W. Weisstein, Mar 26 2018
Maximum sum of degeneracies over all decompositions of the complete graph of order n+1 into three factors. The extremal decompositions are characterized in the Bickle link below. - Allan Bickle, Dec 21 2021
Also the Hadwiger number of the n-cocktail party graph. - Eric W. Weisstein, Apr 30 2022
LINKS
Eric Weisstein's World of Mathematics, Web Graph
FORMULA
G.f.: x*(1+2*x)/((1-x)*(1-x^2)).
a(n) = (6n - 1 + (-1)^n)/4.
a(n) = floor((3n + 2)/2) - 1 = A001651(n) - 1.
a(n) = sqrt(2) * sqrt( (6n-1) (-1)^n + 18n^2 - 6n + 1 )/4.
a(n) = Sum_{k=0..n} 3/2 - 2*0^k + (-1)^k/2. (End)
a(n) = 1 + ceiling(3*(n-1)/2). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
a(n) = (cos(Pi*n) - 1)/4 + 3*n/2. - Bart Snapp (snapp(AT)coastal.edu), Sep 18 2008
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) + log(3)/2. - Amiram Eldar, Dec 04 2021
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=0..69); # Zerinvary Lajos, Mar 16 2008
select(n->member(n mod 3, {0, 1}), [$0..103]); # Peter Luschny, Apr 06 2014
MATHEMATICA
a[n_] := a[n] = 2a[n - 1] - 2a[n - 3] + a[n - 4]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 4; Array[a, 60, 0] (* Robert G. Wilson v, Mar 28 2011 *)
Flatten[{#, #+1}&/@(3Range[0, 40])] (* or *) LinearRecurrence[{1, 1, -1}, {0, 1, 3}, 100] (* or *) With[{nn=110}, Complement[Range[0, nn], Range[2, nn, 3]]] (* Harvey P. Dale, Mar 10 2013 *)
CoefficientList[Series[x (1 + 2 x) / ((1 - x) (1 - x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 16 2014 *)
PROG
(PARI) {a(n) = n + n\2}
(Haskell)
(PARI) concat(0, Vec(x*(1+2*x)/((1-x)*(1-x^2)) + O(x^100))) \\ Altug Alkan, Dec 09 2015
(SageMath) [int(3*n//2) for n in range(101)] # G. C. Greubel, Jun 23 2024
CROSSREFS
Column 1 (the second leftmost) of triangular table A026374.
Column 1 (the leftmost) of square array A191450.
Cf. A253888 and A254049 (permutations of this sequence without the initial zero).
Cf. A254103 and A254104 (pair of permutations based on this sequence and its complement).
The (1,2)-Pascal triangle (or Lucas triangle) read by rows.
+10
64
2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 14, 16, 9, 2, 1, 7, 20, 30, 25, 11, 2, 1, 8, 27, 50, 55, 36, 13, 2, 1, 9, 35, 77, 105, 91, 49, 15, 2, 1, 10, 44, 112, 182, 196, 140, 64, 17, 2, 1, 11, 54, 156, 294, 378, 336, 204, 81, 19, 2, 1, 12, 65, 210, 450, 672, 714, 540, 285, 100
COMMENTS
Dropping the first term and changing the boundary conditions to T(n,1)=n, T(n,n-1)=2 (n>=2), T(n,n)=1 yields the number of nonterminal symbols (which generate strings of length k) in a certain context-free grammar in Chomsky normal form that generates all permutations of n symbols. Summation over k (1<=k<=n) results in A003945. For the number of productions of this grammar: see A090327. Example: 1; 2, 1; 3, 2, 1; 4, 5, 2, 1; 5, 9, 7, 2, 1; 6, 14, 16, 9, 2, 1; In addition to the example of A090327 we have T(3,3)=#{S}=1, T(3,2)=#{D,E}=2 and T(3,1)=#{A,B,C}=3. - Peter R. J. Asveld, Jan 29 2004
Much as the original Pascal triangle gives the Fibonacci numbers as sums of its diagonals, this triangle gives the Lucas numbers ( A000032) as sums of its diagonals; see Posamentier & Lehmann (2007). - Alonso del Arte, Apr 09 2012
It appears that for the infinite set of (1,N) Pascal's triangles, the binomial transform of the n-th row (n>0), followed by zeros, is equal to the n-th partial sum of (1, N, N, N, ...). Example: for the (1,2) Pascal's triangle, the binomial transform of the second row followed by zeros, i.e., of (1, 3, 2, 0, 0, 0, ...), is equal to the second partial sum of (1, 2, 2, 2, ...) = (1, 4, 9, 16, ...). - Gary W. Adamson, Aug 11 2015
Given any (1,N) Pascal triangle, let the binomial transform of the n-th row (n>1) followed by zeros be Q(x). It appears that the binomial transform of the (n-1)-th row prefaced by a zero is Q(n-1). Example: In the (1,2) Pascal triangle the binomial transform of row 3: (1, 4, 5, 2, 0, 0, 0, ...) is A000330 starting with 1: (1, 5, 14, 30, 55, 91, ...). The binomial transform of row 2 prefaced by a zero and followed by zeros, i.e., of (0, 1, 3, 2, 0, 0, 0, ...) is (0, 1, 5, 14, 30, 55, ...). - Gary W. Adamson, Sep 28 2015
It appears that in the array accompanying each (1,N) Pascal triangle (diagonals of the triangle), the binomial transform of (..., 1, N, 0, 0, 0, ...) preceded by (n-1) zeros generates the n-th row of the array (n>0). Then delete the zeros in the result. Example: in the (1,2) Pascal triangle, row 3 (1, 5, 14, 30, ...) is the binomial transform of (0, 0, 1, 2, 0, 0, 0, ...) with the resulting zeros deleted. - Gary W. Adamson, Oct 11 2015
Read as a square array (similar to the Example section Sq(m,j), but with Sq(0,0)=0 and Sq(m,j)=P(m+1,j) otherwise), P(n,k) are the multiplicities of the eigenvalues, lambda_n = n(n+k-1), of the Laplacians on the unit k-hypersphere, given by Teo (and Choi) as P(n,k) = (2n-k+1)(n+k-2)!/(n!(k-1)!). P(n,k) is also the numerator of a Dirichlet series for the Minakashisundarum-Pleijel zeta function for the sphere. Also P(n,k) is the dimension of the space of homogeneous, harmonic polynomials of degree k in n variables (Shubin, p. 169). For relations to Chebyshev polynomials and simple Lie algebras, see A034807. - Tom Copeland, Jan 10 2016
For a relation to a formulation for a universal Lie Weyl algebra for su(1,1), see page 16 of Durov et al. - Tom Copeland, Jan 15 2016
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 25.
Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007): 97 - 105.
M. Shubin and S. Andersson, Pseudodifferential Operators and Spectral Theory, Springer Series in Soviet Mathematics, 1987.
FORMULA
T(n,k) = T(n-1, k-1) + T(n-1, k) = C(n, k) + C(n-1, k-1) = C(n, k)*(n+k)/n = A007318(n, k) + A007318(n-1, k-1) = A061896(n+k, k) but with T(0, 0)=1 and T(1, 1)=2. Row sum is floor[3^2(n-1)] i.e., A003945. - Henry Bottomley, Apr 26 2002
G.f.: 1 + (1 + x*y) / (1 - x - x*y). - Michael Somos, Jul 15 2003
G.f. for n-th row: (x+2*y)*(x+y)^(n-1).
O.g.f. for row n: (1+x)/(1-x)^(n+1). The entries in row n are the nonzero entries in column n of A053120 divided by 2^(n-1). - Peter Bala, Aug 14 2008
With T(0,0)=1 : Triangle T(n,k), read by rows, given by [1,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 10 2011
With T(0,0) = 1, as in the Example section below, this is known as Vieta's array. The LU factorization of the square array is given by Yang and Leida, equation 20. - Peter Bala, Feb 11 2012
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + 4*x + 5*x^2/2! + 2*x^3/3!) = 1 + 5*x + 14*x^2/2! + 30*x^3/3! + 55*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
For n>=1: T(n,0) + T(n,1) + T(n,2) = A000217(n+1). T(n,n-2) = (n-1)^2. - Bob Selcoe, Mar 29 2016:
EXAMPLE
Triangle begins:
[0] [2]
[1] [1, 2]
[2] [1, 3, 2]
[3] [1, 4, 5, 2]
[4] [1, 5, 9, 7, 2]
[5] [1, 6, 14, 16, 9, 2]
[6] [1, 7, 20, 30, 25, 11, 2]
[7] [1, 8, 27, 50, 55, 36, 13, 2]
[8] [1, 9, 35, 77, 105, 91, 49, 15, 2]
.
Read as a square, the array begins:
n\k| 0 1 2 3 4 5
--------------------------------------
MATHEMATICA
t[0, 0] = 2; t[n_, k_] := If[k < 0 || k > n, 0, Binomial[n, k] + Binomial[n-1, k-1]]; Flatten[Table[t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, May 03 2011 *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Table[Binomial[n, k]+Binomial[n-1, k-1], {n, 0, 20}, {k, 0, n}]//Flatten (* Harvey P. Dale, Feb 08 2024 *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n, 0, (n==0) + binomial(n, k) + binomial(n-1, k-1))}; /* Michael Somos, Jul 15 2003 */
(Haskell)
a029635 n k = a029635_tabl !! n !! k
a029635_row n = a029635_tabl !! n
a029635_tabl = [2] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1, 2]
(Sage) # uses[riordan_array from A256893]
riordan_array((2-x)/(1-x), x/(1-x), 8) # Peter Luschny, Nov 09 2019
CROSSREFS
Sums along ascending diagonals give Lucas numbers, n>0.
a(0) = 1; for n > 0, a(n) = 3*2^(n-1) - 1.
+10
63
1, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943
COMMENTS
Apart from leading term (which should really be 3/2), same as A055010.
a(n) = number of partitions Pi of [n+1] (in standard increasing form) such that the permutation Flatten[Pi] avoids the patterns 2-1-3 and 3-1-2. Example: a(3)=11 counts all 15 partitions of [4] except 13/24, 13/2/4 which contain a 2-1-3 and 14/23, 14/2/3 which contain a 3-1-2. Here "standard increasing form" means the entries are increasing in each block and the blocks are arranged in increasing order of their first entries. - David Callan, Jul 22 2008
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 42, 138, 162, 168, lead to this sequence. For the central square these vectors lead to the companion sequence A003945. - Johannes W. Meijer, Aug 15 2010
The binary representation of a(n) has n+1 digits, where all digits are 1's except digit n-1. For example: a(4) = 23 = 10111 (2). - Omar E. Pol, Dec 02 2012
If a Stern's sequence based enumeration system of positive irreducible fractions is considered (for example, A007305/ A047679, A162909/ A162910, A071766/ A229742, A245325/ A245326, ...), and if it is organized by blocks or levels (n) with 2^n terms (n >= 0), and the fractions, term by term, are summed at each level n, then the resulting sequence of integers is a(n) + 1/2, apart from leading term (which should be 1/2). - Yosu Yurramendi, May 23 2015
For n >= 2, A083329(n) in binary representation is a string [101..1], also 10 followed with (n-1) 1's. For n >= 3, A036563(n) in binary representation is a string [1..101], also (n-2) 1's followed with 01. Thus A083329(n) is a reflection of the binary representation of A036563(n+1). Example: A083329(5) = 101111 in binary, A036563(6) = 111101 in binary. - Ctibor O. Zizka, Nov 06 2018
FORMULA
a(n) = (3*2^n - 2 + 0^n)/2.
G.f.: (1-x+x^2)/((1-x)*(1-2*x)).
E.g.f.: (3*exp(2*x) - 2*exp(x) + exp(0))/2.
a(0) = 1, a(n) = sum of all previous terms + n. - Amarnath Murthy, Jun 20 2004
a(n) = 3*a(n-1) - 2*a(n-2) for n > 2, a(0)=1, a(1)=2, a(2)=5. - Philippe Deléham, Nov 29 2013
a(n) = (...((((((1)+1)*2+1)*2+1)*2+1)*2+1)...), with n+1 1's, n >= 0.
a(n) = 2*a(n-1) + 1, n >= 2.
a(n) = 2^n + 2^(n-1) - 1, n >= 2. (End)
EXAMPLE
a(0) = (3*2^0 - 2 + 0^0)/2 = 2/2 = 1 (use 0^0=1).
MATHEMATICA
a[1] = 2; a[n_] := 2a[n - 1] + 1; Table[ a[n], {n, 31}] (* Robert G. Wilson v, May 04 2004 *)
Join[{1}, LinearRecurrence[{3, -2}, {2, 5}, 40]] (* Vincenzo Librandi, Jan 01 2016 *)
PROG
(Haskell)
a083329 n = a083329_list !! n
a083329_list = 1 : iterate ((+ 1) . (* 2)) 2
CROSSREFS
Cf. A266550 (independence number of the n-Mycielski graph).
Search completed in 0.120 seconds
|