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OVERFLOW AT A TRAFFIC LIGHT
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1. LIGHTS IN GENERAL

Suppose veliicles of uniform length arrive at an intersection controlled by a traffic light, with
arrival times which constitute a homogeneous Poisson process, with parameter A. The effect
of acceleration will be ignored; once a vehicle is near the traffic light it travels with a uniform
speed S unless stopped. When a queue of vehicles is stopped by the light, headway (distance
separation between corresponding parts of adjacent vehicles) is constant, and when the
cars move off the headway will be a larger constant, denoted by K.

The letter # will be used to indicate the length of the red phase, so that the expected
number of arrivals during a red phase will be Ag for a fixed cycle light and AE(f) for a
variable cycle light. During the green phase, when there is a queue of cars waiting, they are
discharged with time separation K/S = 7. Once the queue present at the beginning of the
green phase has been emptied, the Poisson arrivals continue through the intersection with-
out delay for the remainder of the green phase. Instead of characterizing the green phase
by its length, we will use instead an integer N, which is the largest multiple of 7' contained

in its length: length green = a = N7 +6T (0 <0 < 1).

Thus, with a sufficiently long queue, at most N vehicles can be discharged during a green
phase. N is, however, by no means the maximum number of vehicles which may pass through
the intersection during a green phase, for once the queue is dissipated, the Poisson stream
may send cars through with time separation < 7'. In some circumstances N will be a
constant, and in others a stochastic variable governed by vehicle actuation on the side street.

In speaking of input and output, we do not refer to input and output to the intersection,
but only to the congestion at the intersection. Thus, when there is no queue, a car may come
into the intersection and pass out of it, leaving both input and output zero. It is essential
to specify under what circumstances input is possible. It might be assumed that S is as
great as the speed of arriving vehicles, and so input would be zero as soon as the last queued
vehicle began to move, provided that vehicle cleared the intersection in a single green
phase. Such an assumption seems to conflict with our experience and certainly leads to an

unwieldy formulation. Consequently we will assume continued input in every circumstance
except zero queue length.

2. FIXED CYOLE LIGHTS

Suppose B, T" and N are constants. We will have occasion to use the Poisson probability,
which will be abbreviated o

P(u; A) = e 2 A%fu! (u=0,1,2,...),

and the Borel-Tanner probability [cf. Borel (1942), Tanner (1953), Haight & Breuer (1960)],
which will be abbreviated '

R(u; r,p) = A(u,r) e rpT (y=r,r+1,...),
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where Au,r) =

This represents the probability that exactly » members of a queue will be served before
the queue first becomes empty, beginning with » members and with traffic intensity p,
assuming Poisson input and regular discharge. In our application, during the green phase,
p always equals AT’ [approximately aA/N], and will be omitted, writing R(u; r).

The purpose of this paper is to compute the probability of Z cars being in the queue at
the beginning of a red phase, when there were X cars in the queue at the beginning of the
preceding green phase. Z will be called the overflow into the red phase. If X > X, the over-
flow must be non-zero, and will depend only on the input during the green phase. Letting

flz;2) =Pr[Z = 2| X =a],
we have ’ J(#2) = Plz—2+N; an) (x > N). (1)

Whenx < N, z = 0, the formuls, is also fairly simple, and can be written in terms of cumula-
tive Borel-Tanner probabilities as follows:

N
f0;2) = 3 R(ji2) (@< ). ©)

In the remaining cases (z > 0, x < N ), consider, for fixed x, the event that the overflow
would be z, and that no vehicles would arrive after the light turned red in the period that it
would take this overflow to clear. The probability of this is f(z; 2)e—r2, and it may be
regarded as the probability that the queue would first vanish after N + z vehicles and that the
overflow was 2. The unconditional probability of the queue first clearing after NV + z vehicles
is of course R(N +z; x), and therefore the difference R(N +z; x) — f(z; ) e~%is the sum from
J=1t0j=2—1 of the probability that the queue would first vanish after N +z vehicles
and that the overflow is j, that is

e—1
Eif(j; ) R(z; j),
from which we obtain
f(z; 2) = eP*[R(N +z; x)—:Z_IR(z;j)f(j; z)] (2> 0,x < N). (3)
-1

Equations (1), (2) and (3) taken together give a formula for f(z; z) in terms of the preceding
values f(j; ), j = 1,2,...,2— 1, for various values of z and . In conjunction with these
expressions, it is necessary to use the following conventions:

A. Pu;A)=0 for u< 0,
B. R(u;r)=0 for w<r,
C. Ru;0)=0 for >0

=1 for u=0.

Then it will be noted that f(z; ) = 0 whenever 2+ N < z, and this is in fact an impossible
transition. The first two values of (3) are '

f(1;2) = e R(N +1; ),
f(2;2) = e [R(N +2; ) —e—r R(N +1; 2)].

e,
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It is also possible to write each f(z; ) explicitly in terms of the Borel-Tanner coefficients
A(z,z). If we define B(z,«) by means of the (z— z)th order determinant

Overflow at a traffic light

A(z,2—1) 1 0 0

A(z,2—2) A(z—1,2—2) 1 0
B(z,x) = (- 1)***| A(z,2—3) A(z—1,2—3) A(z—2,2-3) 0 (4)

: : : 1

_ A(z,x)- ~ A(z—1,2) A(z—2,z) A+ 1,z)
for z > x and B(z,2) = 1, then we can write f(z; ) in the form
J(& @) = Se9 p-3B(z; §) RN +j; 2
i=1

= e—PNpN+”—mzz]B(z,j)A(N+j, x) (2> 0,2 < N). (5)

i=1
With a table of A(z, z), the coefficients B(z, z) can be most conveniently calculated from the
formula

B(z,2) = — Z A(z:j)B(j,w)- (6)

The first few values of 4 (2, «) and B(z, x) are given below; to avoid awkward fractions, each
value is multlplled by (z—1)!

x
1 2 3 4 5 6 7
z
A2, A9
2 T - - B
3 3| 4 [T e | — — —
4 16 24 s [ e = s —
5 125 200 180 96 [T~ 24 — —
6 1296 2160 2160 1440 600 | 120 —=
7 16807 28812 30870 23620 12600 | 320 _ | ~720
- e \
\
(z— 1) B(z,x) )
AR8F
x
1 2 3 4 5 6 7
2
1 1 — . — — —
2 -1 1 - — - — —_
3 1 -4 2 — — —
4 -1 12 —18 6 — — =S
5 1 - 32 108 - 96 24 — _
8 -1 — 540 960 — 600 120 -
7 1 = 192 2430 — 7680 9000 — 4320 720
A
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To show that, for fixed , 2f(z; x) = 1, consider

e @) = 2 BN +j; 2) —jZif(J'; ) (1 —e=#9),
J= 1= ==
which is equivalent to gf(j; ) = §, R(N +j; x).

i=1 i=1

Combining this with (2) gives the value unity provided z < N; in the opposite case the
result is clear from (1).

During the red phase, the transition probabilities are simple Poisson expressions. In
terms of these and f(z; %), we can write equations involving other probabilities. For example,
if p,,, is the probability of a transition from « cars at the beginning of green to y cars at the
beginning of the following green, we have

Poy=Ply—2+N; (@+)A) (x> N)
N Y (7)
= PwiAD LRG0+ S Ply—2 A8 flzi ) (@ < ).
Also, letting - M, = Pr(n cars waiting at beginning of green |t = c0),
Oy = Pr(n cars waiting at beginning of red [t = o0),
we have (if these limiting probabilities exist)

n+N .
Ty =]_§0f(n;9)ﬂ, (8)
and 7, = 3 Pln—j; AB) o, _ 9)
f=0

3. SEMI-ACTUATED LIGHTS

In this section we consider the traffic along a main street into a signalized intersection
governed by a light (possibly) actuated by side street traffic. When the light turns green
for the main street, it must remain green for a minimum fixed period (the main street mini-
mum). After the expiration of this time the light will change whenever a car arrives on the
side street. Then the light will be red on the main street for a fixed period (side street
initial), and a further fixed period (side street extension). If any side street vehicles arrive
during the first side street extension the main street light remains red for a further side
street extension, measured from the time of arrival of the car. This process continues as long
as cars arrive on the side street, or until a maximum value (side street maximum) is reached,
when it turns green again. We will assume Poisson arrivals on both streets, and use the
following notation:

A = main street input parameter,

# = side street input parameter,

@ = length of side street initial,

b = length of side street extension,
N = number of cars able to clear during main street minimum,
@ = length of main street initial,

A = length of side street maximum.
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These quantities are fixed constants of the system. In addition, we need to define certain
stochastic variables which will be used to characterize the system.

# = length of main street red. Defined over a+b < f < A, with density function g(u),

n = number of cars able to pass through a main street green period. Defined over
N,N+1,N +2,..., with probability distribution ¢,. For simplicity we will call »
the number of ‘slots’ provided by the green phase.

Once explicit forms are found for g(u) and g¢,, the problem of determining the various

distributions of §2 is solved. For example, an equation like (3) would only need to be
modified to take into account the stochastic nature of the number of slots:

o0 z—1
f(z;2) = gNeP” [B(n+z; x)—ElR(z;j)f(j; )] gy

In case the side street maximum is infinite, both of these distributions are easy to obtain.
The red phase length distribution is given in a slightly different context by Raff (1951),
and was apparently discovered by Garwood (1940). In the notation defined above, it is

u—b(1+i)] [p=b(1 i
G-I il ’

glu)=p G“M’hil( — e—nb)i [/’(’(
i=0

hb<u<(h+1)b (h=1,2..).

The slot distribution can be calculated directly from the Poisson probabilities and turns

out to be ¢, =l—e* (n=N)

= (1—e#T)e+T=D (p > N),
where o = NT.
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