[go: up one dir, main page]

login
A362804
Numbers k such that the set of divisors {d | k, BitOr(k, d) = k} has an integer harmonic mean.
3
1, 2, 4, 6, 8, 12, 16, 24, 28, 30, 32, 45, 48, 56, 60, 64, 90, 96, 112, 120, 128, 180, 192, 224, 240, 256, 360, 384, 448, 480, 496, 512, 720, 768, 896, 960, 992, 1024, 1440, 1536, 1792, 1920, 1984, 2048, 2880, 3072, 3584, 3840, 3968, 4096, 5760, 6144, 7168, 7680
OFFSET
1,2
COMMENTS
Equivalently, the set of divisors can be defined by {d | k, BitAnd(k, d) = d}.
Analogous to harmonic (or Ore) numbers (A001599) where the divisors d of k are restricted by BitOr(k, d) = k or BitAnd(k, d) = d.
If k is a term then so is 2*k. The primitive terms are in A362805. Thus, this sequence includes all the powers of 2 (A000079), all the numbers of the form 3*2^m and 15*2^m for m >= 1, and all the numbers of the form 7*2^m for m >= 2.
All the even perfect numbers (A000396) are terms: if k = 2^(p-1)*(2^p-1) is a perfect number (where p is a Mersenne exponent, A000043), then the only divisors of k such that BitOr(k, d) = k are 2^(p-1) and k itself, and the harmonic mean of 2^(p-1) and 2^(p-1)*(2^p-1) is 2^p - 1.
Are 1 and 45 the only odd terms in this sequence?
LINKS
MATHEMATICA
q[n_] := IntegerQ[HarmonicMean[Select[Divisors[n], BitAnd[n, #] == # &]]]; Select[Range[10^4], q]
PROG
(PARI) div(n) = select(x->(bitor(x, n) == n), divisors(n));
is(n) = {my(d = div(n)); denominator(#d/sum(i = 1, #d, 1/d[i])) == 1; }
CROSSREFS
Subsequences: A000079, A007283 \ {3}, A005009 \ {7, 14}, A110286 \ {15}, A362805.
Similar sequences: A001599, A006086, A063947, A286325, A319745.
Sequence in context: A058629 A323508 A324850 * A095810 A025487 A333964
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, May 04 2023
STATUS
approved