[go: up one dir, main page]

login
A042950
Row sums of the Lucas triangle A029635.
31
2, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944
OFFSET
0,1
COMMENTS
Map a binary sequence b=[ b_1,...] to a binary sequence c=[ c_1,...] so that C = 1/Product((1-x^i)^c_i == 1+Sum b_i*x^i mod 2.
This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C = 1 + Sum e_i*x^i.
This sequence is d when b=[ 0,1,1,1,1,...].
Number of rises after n+1 iterations of morphism A007413.
a(n) written in base 2: a(0) = 10, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
Row sums of the Lucas triangle A029635. - Sergio Falcon, Mar 17 2014
FORMULA
G.f.: (2-x)/(1-2*x).
a(n) = 2*a(n-1), n > 1; a(0)=2, a(1)=3.
a(n) = A003945(n), for n > 0.
From Paul Barry, Dec 06 2004: (Start)
Binomial transform of 2, 1, 2, 1, 2, 1, ... = (3+(-1)^n)/2.
a(n) = (3*2^n + 0^n)/2. (End)
a(0) = 2, a(n) = 3*2^(n-1) = 2^n + 2^(n-1) for n >= 1. - Jaroslav Krizek, Aug 17 2009
a(n) = 2^(n+1) - 2^(n-1), for n > 0. - Ilya Gutkovskiy, Aug 08 2015
MATHEMATICA
Table[ Ceiling[3*2^(n - 1)], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)
a[0] = 2; a[1] = 3; a[n_] := 2a[n - 1]; Table[a[n], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)
f[s_] := Append[s, 1 + Plus @@ s]; Nest[f, {2}, 32] (* Robert G. Wilson v, Jul 08 2006 *)
CoefficientList[Series[(2 - x)/(1 - 2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 08 2006 *)
PROG
(PARI) a(n)=ceil(3*2^(n-1))
(Magma) [2] cat [2^(n+1) - 2^(n-1): n in [1..40]]; // Vincenzo Librandi, Aug 08 2015
CROSSREFS
Cf. A007283.
Sequence in context: A251752 A251766 A110164 * A098011 A367222 A035055
KEYWORD
nonn,easy
STATUS
approved