OFFSET
0,1
COMMENTS
Map a binary sequence b=[ b_1,...] to a binary sequence c=[ c_1,...] so that C = 1/Product((1-x^i)^c_i == 1+Sum b_i*x^i mod 2.
This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C = 1 + Sum e_i*x^i.
This sequence is d when b=[ 0,1,1,1,1,...].
Number of rises after n+1 iterations of morphism A007413.
a(n) written in base 2: a(0) = 10, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
Row sums of the Lucas triangle A029635. - Sergio Falcon, Mar 17 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002.
Index entries for linear recurrences with constant coefficients, signature (2).
FORMULA
G.f.: (2-x)/(1-2*x).
a(n) = 2*a(n-1), n > 1; a(0)=2, a(1)=3.
a(n) = A003945(n), for n > 0.
From Paul Barry, Dec 06 2004: (Start)
Binomial transform of 2, 1, 2, 1, 2, 1, ... = (3+(-1)^n)/2.
a(n) = (3*2^n + 0^n)/2. (End)
a(0) = 2, a(n) = 3*2^(n-1) = 2^n + 2^(n-1) for n >= 1. - Jaroslav Krizek, Aug 17 2009
a(n) = 2^(n+1) - 2^(n-1), for n > 0. - Ilya Gutkovskiy, Aug 08 2015
MATHEMATICA
Table[ Ceiling[3*2^(n - 1)], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)
a[0] = 2; a[1] = 3; a[n_] := 2a[n - 1]; Table[a[n], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)
f[s_] := Append[s, 1 + Plus @@ s]; Nest[f, {2}, 32] (* Robert G. Wilson v, Jul 08 2006 *)
CoefficientList[Series[(2 - x)/(1 - 2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 08 2006 *)
PROG
(PARI) a(n)=ceil(3*2^(n-1))
(Magma) [2] cat [2^(n+1) - 2^(n-1): n in [1..40]]; // Vincenzo Librandi, Aug 08 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved