[go: up one dir, main page]

login
A265064
Coordination sequence for (2,5,5) tiling of hyperbolic plane.
27
1, 3, 5, 8, 13, 19, 26, 37, 53, 74, 103, 145, 204, 285, 399, 560, 785, 1099, 1540, 2159, 3025, 4238, 5939, 8323, 11662, 16341, 22899, 32088, 44963, 63005, 88288, 123715, 173357, 242920, 340397, 476987, 668386, 936589, 1312413, 1839042, 2576991, 3611057, 5060060, 7090501, 9935695, 13922576, 19509265, 27337715
OFFSET
0,2
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
FORMULA
G.f.: (x^4+x^3+x^2+x+1)*(x+1)^2/(x^6-x^4-x^3-x^2+1).
MATHEMATICA
CoefficientList[Series[(x^4 + x^3 + x^2 + x + 1) (x + 1)^2 / (x^6 - x^4 - x^3 - x^2 + 1), {x, 0, 45}], x] (* Vincenzo Librandi, Jan 20 2016 *)
PROG
(PARI) Vec((x^4+x^3+x^2+x+1)*(x+1)^2/(x^6-x^4-x^3-x^2+1) + O(x^50)) \\ Michel Marcus, Jan 20 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 29 2015
STATUS
approved