[go: up one dir, main page]

login
A265072
Coordination sequence for (3,3,5) tiling of hyperbolic plane.
27
1, 3, 6, 10, 16, 25, 38, 57, 86, 130, 196, 295, 444, 669, 1008, 1518, 2286, 3443, 5186, 7811, 11764, 17718, 26686, 40193, 60536, 91175, 137322, 206826, 311508, 469173, 706638, 1064293, 1602970, 2414290, 3636248, 5476683, 8248628, 12423553, 18711556, 28182142, 42446130, 63929631, 96286698, 145020831, 218421048
OFFSET
0,2
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
FORMULA
G.f.: (x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-x^3-x+1).
MATHEMATICA
CoefficientList[Series[(x^2 + x + 1) (x^4 + x^3 + x^2 + x + 1)/(x^6 - x^5 - x^3 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
LinearRecurrence[{1, 0, 1, 0, 1, -1}, {1, 3, 6, 10, 16, 25, 38}, 50] (* Harvey P. Dale, Oct 07 2022 *)
PROG
(PARI) x='x+O('x^50); Vec((x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-x^3-x+1)) \\ G. C. Greubel, Aug 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 29 2015
STATUS
approved