OFFSET
0,2
COMMENTS
Partial sums of Pell numbers A000129.
W(n){1,3;2,-1,1} = Sum_{i=1..n} W(i){1,2;2,-1,0}, where W(n){a,b; p,q,r} implies x(n) = p*x(n-1) - q*x(n-2) + r; x(0)=a, x(1)=b.
Number of 2 X (n+1) binary arrays with path of adjacent 1's from upper left to lower right corner. - R. H. Hardin, Mar 16 2002
Binomial transform of A029744. - Paul Barry, Apr 23 2004
Number of (s(0), s(1), ..., s(n+2)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+2, s(0) = 1, s(n+2) = 3. - Herbert Kociemba, Jun 16 2004
Equals row sums of triangle A153346. - Gary W. Adamson, Dec 24 2008
Equals the sum of the terms of the antidiagonals of A142978. - J. M. Bergot, Nov 13 2012
a(p-2) == 0 mod p where p is an odd prime, see A270342. - Altug Alkan, Mar 15 2016
Also, the lexicographically earliest sequence of positive integers such that for n > 3, {sqrt(2)*a(n)} is located strictly between {sqrt(2)*a(n-1)} and {sqrt(2)*a(n-2)} where {} denotes the fractional part. - Ivan Neretin, May 02 2017
a(n+1) is the number of weak orderings on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1 < ... < n. - J. Devillet, Oct 06 2017
REFERENCES
Allombert, Bill, Nicolas Brisebarre, and Alain Lasjaunias. "On a two-valued sequence and related continued fractions in power series fields." The Ramanujan Journal 45.3 (2018): 859-871. See Theorem 3, d_{4n+3}.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..200
M. Bicknell, A Primer on the Pell Sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.
M. Bicknell-Johnson and G. E. Bergum, The Generalized Fibonacci Numbers {C(n)}, C(n)=C(n-1)+C(n-2)+K, Applications of Fibonacci Numbers, 1986, pp. 193-205.
B. Bradie, Extensions and Refinements of some properties of sums involving Pell Numbers, Miss. J. Math. Sci 22 (1) (2010) 37-43
M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
Jimmy Devillet, On the single-peakedness property, International summer school "Preferences, decisions and games" (Sorbonne Université, Paris, 2019).
I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1065
Yun-Tak Oh, Hosho Katsura, Hyun-Yong Lee, Jung Hoon Han, Proposal of a spin-one chain model with competing dimer and trimer interactions, arXiv:1709.01344 [cond-mat.str-el], 2017.
Ahmet Öteleş, On the sum of Pell and Jacobsthal numbers by the determinants of Hessenberg matrices, AIP Conference Proceedings 1863, 310003 (2017).
Wipawee Tangjai, A Non-standard Ternary Representation of Integers, Thai J. Math (2020) Special Issue: Annual Meeting in Mathematics 2019, 269-283.
Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
FORMULA
a(n) = 2*a(n-1) + a(n-2) + 1 with n > 1, a(0)=1, a(1)=3.
a(n) = ((2 + (3*sqrt(2))/2)*(1 + sqrt(2))^n - (2 - (3*sqrt(2))/2)*(1 - sqrt(2))^n )/(2*sqrt(2)) - 1/2.
a(0)=1, a(n+1) = ceiling(x*a(n)) for n > 0, where x = 1+sqrt(2). - Paul D. Hanna, Apr 22 2003
a(n) = 3*a(n-1) - a(n-2) - a(n-3). With two leading zeros, e.g.f. is exp(x)(cosh(sqrt(2)x)-1)/2. a(n) = Sum_{k=0..floor((n+2)/2)} binomial(n+2, 2k+2)2^k. - Paul Barry, Aug 16 2003
-a(-3-n) = A077921(n). - N. J. A. Sloane, Sep 13 2003
E.g.f.: exp(x)(cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2. - N. J. A. Sloane, Sep 13 2003
a(n) = floor((1+sqrt(2))^(n+2)/4). - Bruno Berselli, Feb 06 2013
a(n) = (((1-sqrt(2))^(n+2) + (1+sqrt(2))^(n+2) - 2) / 4). - Altug Alkan, Mar 16 2016
2*a(n) = A001333(n+2)-1. - R. J. Mathar, Oct 11 2017
a(n) = Sum_{k=0..n} binomial(n+1,k+1)*2^floor(k/2). - Tony Foster III, Oct 12 2017
MAPLE
a:=n->sum(fibonacci(i, 2), i=0..n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
Join[{a=1, b=3}, Table[c=2*b+a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
CoefficientList[Series[1/(1-3x+x^2+x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, -1, -1}, {1, 3, 8}, 30] (* Harvey P. Dale, Jun 13 2011 *)
PROG
(PARI) a(n)=local(w=quadgen(8)); -1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n
(PARI) vector(100, n, n--; floor((1+sqrt(2))^(n+2)/4)) \\ Altug Alkan, Oct 07 2015
(PARI) Vec(1/((1-x)*(1-2*x-x^2)) + O(x^40)) \\ Michel Marcus, May 06 2017
CROSSREFS
First row of table A083087.
KEYWORD
easy,nice,nonn
AUTHOR
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 11 2002
STATUS
approved