[go: up one dir, main page]

login
A040006
Continued fraction for sqrt(10).
18
3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
OFFSET
0,1
COMMENTS
Eventual period is (6). - Zak Seidov, Mar 05 2011
The convergents are given in A005667(n+1)/A005668(n+1), n >= 0. - Wolfdieter Lang, Nov 23 2017
Decimal expansion of 11/30. - Elmo R. Oliveira, Feb 16 2024
FORMULA
a(n) = 3 + 3*sign(n). a(n) = 6, n > 0. - Wesley Ivan Hurt, Nov 01 2013
From Elmo R. Oliveira, Feb 16 2024: (Start)
G.f.: 3*(1+x)/(1-x).
E.g.f.: 6*exp(x) - 3.
a(n) = 3*A040000(n). (End)
EXAMPLE
3.162277660168379331998893544... = 3 + 1/(6 + 1/(6 + 1/(6 + 1/(6 + ...)))).
MAPLE
Digits := 100: convert(evalf(sqrt(N)), confrac, 90, 'cvgts'):
MATHEMATICA
ContinuedFraction[Sqrt[10], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
PadRight[{3}, 120, {6}] (* Harvey P. Dale, Aug 25 2024 *)
PROG
(PARI) contfrac(sqrt(10)) \\ For illustration.
(PARI) A040006(n)=if(n, 6, 3) \\ M. F. Hasler, Nov 02 2019
(Magma) [6-3*(Binomial(2*n, n) mod 2): n in [0..100]]; // Vincenzo Librandi, Jan 03 2016
CROSSREFS
Cf. A010467 (decimal expansion), A005667(n+1)/A005668(n+1) (convergents), A248239 (Egyptian fraction).
Cf. A040000.
Sequence in context: A292165 A327576 A331058 * A358548 A155067 A094011
KEYWORD
nonn,cofr,easy
STATUS
approved