[go: up one dir, main page]

RU2589445C2 - Оптоволоконная лента и оптоволоконный кабель, в котором установлена оптоволоконная лента - Google Patents

Оптоволоконная лента и оптоволоконный кабель, в котором установлена оптоволоконная лента Download PDF

Info

Publication number
RU2589445C2
RU2589445C2 RU2014119931/28A RU2014119931A RU2589445C2 RU 2589445 C2 RU2589445 C2 RU 2589445C2 RU 2014119931/28 A RU2014119931/28 A RU 2014119931/28A RU 2014119931 A RU2014119931 A RU 2014119931A RU 2589445 C2 RU2589445 C2 RU 2589445C2
Authority
RU
Russia
Prior art keywords
optical fibers
tape
fiber optic
polymer resin
fibre
Prior art date
Application number
RU2014119931/28A
Other languages
English (en)
Other versions
RU2014119931A (ru
Inventor
Акира НАМАДЗУЭ
Кэн ОСАТО
Наоки ОКАДА
Юсукэ ЯМАДА
Дайсукэ КАКУТА
Хисааки НАКАНЭ
Синя ХАМАГУТИ
Original Assignee
Фудзикура Лтд.
Ниппон Телеграф Энд Телефон Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фудзикура Лтд., Ниппон Телеграф Энд Телефон Корпорейшн filed Critical Фудзикура Лтд.
Publication of RU2014119931A publication Critical patent/RU2014119931A/ru
Application granted granted Critical
Publication of RU2589445C2 publication Critical patent/RU2589445C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • G02B6/4404Multi-podded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2555Alignment or adjustment devices for aligning prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4405Optical cables with longitudinally spaced waveguide clamping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

Изобретение относится к механическим конструкциям для обеспечения прочности и внешней защиты волокон, а именно к оптоволоконной ленте. Оптоволоконная лента 1 включает в себя три или более параллельно расположенных оптических волокна 2 и соединительные участки 3, каждый из которых соединяет между собой два соседних оптических волокна 2. Соединительные участки 3 расположены с чередованием как в продольном, так и в поперечном направлениях ленты. Внешний диаметр оптических волокон 2 в оптоволоконной ленте 1 не превышает 220 мкм, а расстояние между центрами соседних двух оптических волокон составляет 250±30 мкм. Технический результат изобретения заключается в обеспечении возможности достичь более высокой плотности и уменьшения диаметра, обеспечивая точное размещение без ошибок оптических волокон в V-образных канавках сварочного устройства. 3 н. и 3 з.п. ф-лы, 1 табл., 7 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к оптоволоконной ленте, имеющей чередующуюся структуру фиксации, в которой соседние оптические волокна соединены попеременно через соединительные участки, а также к оптоволоконному кабелю, в котором установлена такая оптоволоконная лента.
Уровень техники
В последнее время в области оптоволоконных кабелей растет потребность в увеличении плотности и уменьшении диаметра кабеля. Для достижения более высокой плотности и уменьшении диаметра кабеля предложен способ уменьшения внешнего диаметра используемых в настоящее время оптических волокон с 250 мкм до 200 мкм или меньше (например, как описано в документе JP 3058203). Оптоволоконная лента в соответствии с этим способом имеет структуру, в которой каждое из множества оптических волокон имеет внешний диаметр 200 мкм, волокна расположены параллельно, а вся внешняя поверхность оптических волокон покрыта отверждаемой ультрафиолетом полимерной смолой.
Однако в оптоволоконной ленте, описанной в JP 3058203, трудно выполнять операцию промежуточного ответвления при укладке оптических волокон в помещениях проживания абонентов. Для прокладки оптических волокон в помещениях абонентов необходимо удалить сплошной слой покрытия в виде отверждаемой ультрафиолетом полимерной смолы в середине кабеля таким образом, чтобы из множества оптических волокон можно было извлечь только одно конкретное оптическое волокно. Поскольку вся внешняя поверхность множества оптических волокон покрыта отверждаемой ультрафиолетом полимерной смолой, удалить эту полимерную смолу достаточно трудно, а конкретные оптические волокна непросто извлечь из множества оптических волокон. Кроме того, в оптоволоконной ленте, описанной в JP 3058203, слой сплошного покрытия увеличивает толщину оптоволоконной ленты на толщину этого покрытия, что уменьшает плотность упаковки.
В документе JP 4143651 описана оптоволоконная лента, позволяющая решить эти проблемы. Такая оптоволоконная лента не имеет сплошного покрытия полимерной смолой, а имеет структуру чередующейся фиксации, в которой соседние два оптических волокна из трех или более расположенных параллельно оптических волокон соединены между собой с помощью полимерной смолы. Такая структура чередующейся фиксации оптоволоконной ленты, описанная в JP 4143651, способствует простому выполнению операции промежуточного ответвления и имеет более высокую плотность, поскольку количество точек соединения меньше, чем в структуре по JP 3058203.
Раскрытие изобретения
Однако когда оптоволоконную ленту, описанную в документе JP 3058203, оплавляют и соединяют с другой оптоволоконной лентой, неизолированные оптические волокна (стеклянные оптические волокна), с которых было удалено покрытие из полимерной смолы, трудно устанавливать в сварочное устройство так, чтобы они были изолированно размещены в V-образных канавках этого устройства, сформированных с заданным шагом. Ошибки в размещении оптических волокон в V-образных канавках сварочного устройства требует дополнительной работы для принудительного размещения оптических волокон в V-образных канавках.
Задачей изобретения является создание оптоволоконной ленты, которая позволит достичь большей плотности, уменьшить диаметр и повысить точность размещения оптических волокон в V-образных канавках сварочного устройства без ошибок. Кроме того, задачей изобретения является разработка оптоволоконного кабеля, в котором установлена такая оптоволоконная лента.
Указанная задача решается в оптоволоконной ленте, содержащей три или более параллельно расположенных оптических волокна и соединительные участки, соединяющие между собой два соседних оптических волокна, причем эти соединительные участки расположены с чередованием как продольном, так и в поперечном направлениях ленты, при этом внешний диаметра оптических волокон меньше или равен 220 мкм, а расстояние между центрами соседних двух оптических волокон составляет 250±30 мкм.
Предпочтительно каждый из соединительных участков сформирован таким образом, что полимерная смола заполняет зазор между соседними двумя оптическими волокнами, а обе поверхности каждого соединительного участка образуют выемку, вогнутую по направлению к центру зазора, отделяя эту поверхность от линий, соединяющих точки контакта оптических волокон с горизонтальной поверхностью, когда оптические волокна расположены на этой горизонтальной поверхности.
Каждый из соединительных участков может быть сформирован таким образом, что полимерная смола заполняет зазор между двумя соседними оптическими волокнами и покрывает внешний контур соответствующих оптических волокон полимерной смолой, при этом толщина полимерной смолы, покрывающей внешний контур, составляет не более 15 мкм.
Внешний слой оптических волокон в оптоволоконной ленте может быть окрашен.
Другим объектом изобретения является оптоволоконный кабель, в котором размещена описанная выше оптоволоконная лента.
Изобретение позволяет уменьшить диаметр оптических волокон, и оптоволоконную ленту можно легко изгибать из-за ее чередующейся фиксирующей структуры, в которой соединительные участки для соединения соседних двух оптических волокон расположены с чередованием как в направлении длины, так и в направлении ширины ленты, а также из-за уменьшенного внешнего диаметра оптических волокон, который не превышает 220 мкм. В результате в кабеле может быть установлено большее количество оптоволоконных лент, что повышает плотность упаковки.
В соответствии с изобретением расстояние между центрами соседних двух оптических волокон составляет 250±30 мкм, что равно расстоянию между центрами соседних двух оптических волокон широко распространенной оптоволоконной ленты. Такое расстояние выбрано для точного размещения оптических волокон в соответствующих V-образных канавках сварочного устройства без их выпадения из этих канавок.
Изобретение поясняется чертежами.
Краткое описание чертежей
На фиг. 1 показан пример выполнения оптоволоконной ленты с чередующейся структурой фиксации в соответствии с настоящим изобретением, вид сверху в перспективе;
на фиг. 2 показано в увеличенном масштабе поперечное сечение оптоволоконной ленты по фиг. 1 в зоне соединительного участка, причем на фиг. 2(A) показан один пример выполнения соединительного участка, а на фиг. 2(B) - другой пример выполнения соединительного участка;
на фиг. 3 показано в увеличенном масштабе поперечное сечение оптоволоконной ленты, отличной от изображенной на фиг. 1, в зоне соединительного участка, причем на фиг. 3(A) показан один пример выполнения соединительного участка, а на фиг. 3(B) - другой пример выполнения соединительного участка;
на фиг. 4 показаны стеклянные оптические волокна оптоволоконной ленты, с которых удалено покрытие и которые помещены в V-образные канавки сварочного устройства;
на фиг. 5 показан оптоволоконный кабель с трубчатым сердечником, в котором установлена оптоволоконная лента согласно изобретению, вид в поперечном сечении;
на фиг. 6 показан оптоволоконный кабель с SZ-пазами, в котором установлена оптоволоконная лента согласно изобретению, вид в поперечном сечении;
на фиг. 7 показан оптоволоконный кабель с C-пазами, в котором установлена оптоволоконная лента согласно изобретению, вид в поперечном сечении.
Осуществление изобретения
Как показано на фиг. 1, оптоволоконная лента 1 согласно изобретению имеет структуру, в которой три или более оптических волокна 2 расположены параллельно, причем два соседних оптических волокна 2 соединены между собой соединительными участками 3, которые расположены с чередованием как в направлении длины ленты (в направлении стрелки X), так и в направлении ширины ленты (в направлении стрелки Y).
Оптоволоконная лента 1 состоит из n оптических волокон 2, причем из них каждые два соседних оптических волокна 2 соединены между собой чередующимися соединительными участками 3 в продольном и поперечном направлениях ленты. Соединительные участки 3, соединяющие два соседних оптических волокна 2, в продольном направлении ленты расположены с фиксированным шагом P1, причем длина этих соединительных участков меньше длины расположенных между ними несоединенных частей волокон, т.е. в продольном направлении ленты каждый соединительный участок 3 короче несоединенной части волокна.
В направлении ширины ленты сформирован только один соединительный участок 3 для соединения двух соседних оптических волокон 2. В направлении ширины ленты соединительные участки 3 не располагаются на той же линии, что и другой соединительный участок 3, соединяющий другие два соседних оптических волокна 2, а расположены со смещением от другого соединительного участка 3 в направлении длины ленты. Таким образом, соединительные участки 3, сформированные на оптоволоконной ленте 1, в целом расположены зигзагообразно. Следует отметить, что компоновка соединительных участков не ограничена той, что представлена на фиг. 1, и может иметь другие конфигурации. На фиг. 1 показан один из примеров компоновки. Так, в направлении ширины ленты могут быть сформированы два или больше соединительных участков 3 таким образом, что по меньшей мере один несоединенный участок будет расположен между соединительными участками 3.
Как показано на фиг. 2(A), соединительный участок 3 соединяет соседние два оптических волокна 2 вместе таким образом, что зазор S между ними заполняется полимерной смолой с последующим ее отверждением (например, отверждаемой ультрафиолетом полимерной смолой). Обе поверхности 3a и 3b соединительного участка 3 расположены так, что через них проходят линии 4 и 5, соединяющие точки контакта соответствующих оптических волокон 2 с горизонтальной поверхностью, когда они помещены на нее. Таким образом, внутренние полуокружности обращенных к зазору S оптических волокон 2 покрыты полимерной смолой, образующей соединительный участок 3, а другие внешние полуокружности с противоположной стороны от зазора S не покрыты полимерной смолой.
Две поверхности 3a и 3b соединительного участка 3, показанного на фиг. 2(B), имеют форму, образующую выемку, вогнутую по направлению к центру зазора S, так что эти поверхности отделены от линий 4 и 5, соединяющих точки контакта соответствующих оптических волокон 2 с горизонтальной поверхностью, когда они помещены на нее. Количество полимерной смолы, составляющей соединительный участок 3, показанный на фиг. 2(B), меньше, чем количество полимерной смолы, составляющей соединительный участок 3, показанный на фиг. на фиг. 2(A), т.е. полимерная смола локально сконцентрирована в зоне центральной части зазора S между двумя оптическими волокнами 2. Оптоволоконная лента с соединительными участками 3 такой конфигурации легче поддается изгибу, поскольку количество используемой полимерной смолы меньше по сравнению с соединительным участком 3, показанном на фиг. 2(A). В результате количество оптоволоконных лент, которые могут быть установлены в кабеле, дополнительно увеличивается.
Каждое из оптических волокон 2 включает в себя расположенное в центре неизолированное стеклянное оптическое волокно 6, первый слой 7 покрытия, охватывающий внешний контур стеклянного оптического волокна 6, и второй слой 8 покрытия, охватывающий внешний контур первого слоя 7 покрытия. Стеклянное оптическое волокно 6 имеет диаметр 125 мкм. Первый слой 7 покрытия выполнен из относительно мягкой полимерной смолы, которая поглощает действующее на стекло боковое давление. Второй слой 8 покрытия выполнен из относительно твердой полимерной смолы, защищающей от внешнего повреждения. Второй слой 8 покрытия может быть дополнительно покрыт окрашенным слоем, чтобы соответствующие оптические волокна 2 можно было различать между собой. Окрашенный слой является самый внешним слоем, что позволяет легко различать визуально соответствующие оптические волокна 2.
В соответствии с данным вариантом осуществления изобретения внешний диаметр H оптических волокон 2 (включая внешний слой) не превышает 220 мкм, а расстояние L между центрами соседних двух оптических волокон 2 равно 250±30 мкм. Таким образом, оптическое волокно 2 согласно изобретению имеет меньший размер по сравнению с обычно используемым оптическим волокном 2, внешний диаметр H которого составляет 250 мкм. Кроме того, расстояние L между центрами соседних двух оптических волокон в обычно используемой оптоволоконной ленте составляет 250 мкм. Расстояние L согласно изобретению составляет 250±30 мкм.
Толщина соединительного участка 3, показанного на фиг. 2(A), равна внешнему диаметру H оптических волокон 2, толщина соединительного участка 3, показанного на фиг. 2(B), меньше внешнего диаметра H оптических волокон 2.
Оптоволоконная лента 1 имеет чередующуюся фиксирующую структуру, в которой соединительные участки 3 расположены с чередованием как продольном, так и в поперечном направлениях ленты, соединяя между собой два соседних оптических волокна 2, причем внешний диаметр H оптических волокон 2 не превышает 220 мкм, что меньше, чем у обычно используемых оптических волокон. Это обеспечивает более легкий изгиб ленты, а, кроме того, в кабеле может быть установлено большее количество оптоволоконных лент 1 по сравнению с оптоволоконными лентами, имеющими обычную структуру, в результате чего увеличивается плотность укладки.
Поскольку внешний диаметр H оптических волокон 2 в оптоволоконной ленте согласно изобретению не превышает 220 мкм, что меньше, чем у обычно используемых оптических волокон, объем оптических волокон может быть уменьшен по меньшей мере на 20% по сравнению с оптическими волокнами обычную конфигурации. В результате общий диаметр оптоволоконной ленты может быть уменьшен, что дополнительно повышает плотность упаковки.
Следует отметить, что конфигурации соединительных участков 3 не ограничены вариантами, показанными на фиг. 2(A) и фиг. 2(B), согласно которым соединительные участки 3 сформированы только в зазоре S между соседними двумя оптическими волокнами 2, но могут иметь конфигурации, показанные на фиг. 3(A) и фиг. 3(B). Соединительные участки 3, показанные на фиг. 3, сформированы таким образом, чтобы заполнить полимерной смолой зазор S между соседними двумя оптическими волокнами 2 и покрыть внешний контур оптических волокон 2 полимерной смолой. Толщина T полимерной смолы на уровне половины внешнего контура каждого оптического волокна 2, покрытого соединительным участком 3, составляет не более 15 мкм.
Согласно показанному на фиг. 3 примеру половина внешнего контура каждого оптического волокна 2 с внешним диаметром 220 мкм, покрытого полимерной смолой, не оказывает влияния на изгибные характеристики оптоволоконной ленты 2, поскольку толщина T полимерной смолы, покрывающей половину внешнего контура, составляет не более 15 мкм. В результате такая конфигурация не препятствует улучшению плотности упаковки в кабеле.
Пример
Были взяты несколько типов оптических волокон с разными внешними диаметрами, при этом для изготовления оптоволоконной ленты (ленты с 4 жилами) изменялось расстояние между центрами соседних оптических волокон. Для изготовления соединительных участков и несоединенных частей использовался способ, раскрытый в опубликованной заявке JP 2010-033010 (заявка на патент JP 009-082778). Для регулировки шага между оптическими волокнами использовался способ, раскрытый в публикации заявки JP 08-146239 (заявка на патент JP 06-163292). Следует отметить, что все оптические волокна в одной оптоволоконной ленте имеют одинаковый внешний диаметр.
Далее оценили параметры сращивания при групповом оплавлении, когда одну оптоволоконную ленту полностью сращивают с другой оптоволоконной лентой. Выполняли следующий рабочий процесс. Вначале оптоволоконную ленту установили в держатель, с соответствующих оптических волокон термостриппером удалили первые и вторые слои 7 и 8, а торцевые поверхности оголенных стеклянных оптических волокон 6 обрезали скалывателем. Затем соответствующие стеклянные оптические волокна 6 в оптоволоконной ленте, удерживаемой держателем, поместили в сварочное устройство 10, имеющее V-образные канавки 9, сформированные с постоянным шагом P2 (фиг. 4). В этом состоянии определяли, были ли соответствующие стеклянные оптические волокна 6 помещены в соответствующие V-образные канавки 9. Случай, когда стеклянные оптические волокна 6 располагались в V-образных канавках 9, определялся как успешный (OK), а случай, когда стеклянные оптические волокна 6 отклонялись от V-образных канавок 9, определялся как негативный (NG).
Для удаления покрытия использовался термостриппер HJS-02 компании Fujikura Ltd., для обрезания торцов - скалыватель Fujikura CT-30, а в качестве сварочного устройства - сварочный аппарат FSM-60R компании Fujikura Ltd. Шаг P2 между V-образными канавками 9 в сварочном устройстве 10 составлял 250 мкм. Операции в описанных выше условиях повторяли 10 раз и затем подсчитывали количество случаев NG. В таблице 1 показан результат этой оценки.
Таблица 1
Внешний диаметр оптического волокна (мкм) Расстояние между центрами соседних оптических волокон (мкм) Количество NG при определении характеристики группового соединения пайкой
220 300 8
220 280 0
220 250 0
220 230 0
200 280 0
200 250 0
200 220 0
180 300 6
180 280 0
180 250 о
180 220 о
180 200 4
Результаты, представленные в таблице 1, показали, что когда расстояние L между центрами соседних оптических волокон 2 оптоволоконной ленты 1, имеющей чередующуюся фиксирующую структуру, равно 250±30 мкм (220-280 мкм), стеклянные оптические волокна 6 не отклоняются от V-образных канавок 9, так что при этом не происходило сплавления волокон с соответствующими стеклянными оптическими волокнами другой оптоволоконной ленты. Количество NG увеличивалось, когда оптоволоконная лента не удовлетворяла описанному выше условию и стеклянные оптические волокна 6 не могли быть точно помещены в V-образные канавки 9.
Оптоволоконный кабель
На фиг. 5 показан пример выполнения оптоволоконного кабеля с трубчатым сердечником, в котором размещена оптоволоконная лента согласно изобретению. Оптоволоконный кабель 11 с трубчатым сердечником содержит сердечник 12, образованный оптоволоконной лентой 1 согласно изобретению, в которой оптические волокна 2 свернуты по ширине ленты и собраны в жгут, как обозначено ломаной линией на фиг. 5; термопластичную смолу, экструдированную поверх внешней кромки сердечника 12, формируя на нем трубку 13, которая дополнительно покрыта полиэтиленом, формируя оболочку 14.
На фиг. 6 показан пример выполнения оптоволоконного кабеля с SZ-пазами, в котором установлена оптоволоконная лента согласно изобретению. Оптоволоконный кабель 15 с SZ-пазами содержит сердечник 17 с множеством пазов 18 на его внешней поверхности, имеющих U-образную форму в поперечном сечении; расположенный в центре сердечника и проходящий в продольном направлении ленты элемент 16, работающий на растяжение; установленную в каждом из пазов 18 оптоволоконную ленту 1, в которой оптические волокна 2 свернуты по ширине ленты и собраны в жгут; прижимную обмоточную ленту 19, закрывающую внешнюю поверхность сердечника 17 с пазами; и оболочку 20, дополнительно сформированную на обмоточной ленте путем экструзии.
На фиг. 7 показан пример выполнения оптоволоконного кабеля с C-образным пазом, в котором установлена оптоволоконная лента согласно изобретению. Оптоволоконный кабель 21 с C-образным пазом содержит сердечник 23 с пазом 24 на его внешней поверхности, имеющим C-образную форму в поперечном сечении; элементы 22, работающие на растяжение; установленную в пазу 24 оптоволоконную ленту 1, свернутую по ширине в жгут; прижимную обмоточную ленту 25 и оболочку 26, сформированную на обмоточной ленте.
Хотя оптоволоконная лента 1, показанная на фиг. 5-7, свернута в направлении ширины ленты в пучок и установлена в кабеле, оптоволоконная лента 1 может быть сложена послойно в вертикальном направлении и установлена в кабеле. В качестве альтернативы несколько оптоволоконных лент 1 может быть уложено друг на друга с получением пакетной структуры, затем размещенной в кабеле.
В каждом из оптоволоконных кабелей 11, 15 и 21 в соответствии с изобретением используются оптические волокна 2 уменьшенного внешнего диаметра, не превышающего 220 мкм. В результате в кабеле может быть установлено большее количество оптических волокон 2 по сравнению с обычно используемыми оптическими волокнами с внешним диаметром 250 мкм, что позволяет увеличить плотность. Кроме того, в оптоволоконных кабелях 11, 15 и 21 согласно изобретению может быть размещена оптоволоконная лента 1 чередующейся структурой фиксации в любом состоянии, так что она может изгибаться и скручиваться в цилиндрическую форму или может быть сложена для установки друг на друга в любом направлении.
Оптоволоконные кабели 11, 15 и 21 в соответствии с настоящим изобретением позволяют легко отделять соответствующие оптические волокна 2 друг от друга, что упрощает отделение одной жилы во время формирования концевого вывода при извлечении оптических волокон 2 из концевых выводов кабеля или при выполнении операции соединения разъема с извлеченными оптическими волокнами 2, поскольку в каждом из оптоволоконных кабелей 11, 15 и 21 используется оптоволоконная лента 1, включающая в себя соединительные участки 3, чередующиеся как в продольном так и в поперечном направлениях ленты для соединения вместе двух соседних оптических волокон 2.
Промышленная применимость
Изобретение применимо для оптоволоконной ленты с чередующейся структурой фиксации для периодического соединения между собой соседних оптических волокон посредством соединительных участков.

Claims (6)

1. Оптоволоконная лента, содержащая три или более расположенных параллельно оптических волокна и соединительные участки, соединяющие между собой два расположенных рядом друг с другом оптических волокна, причем соединительные участки расположены с чередованием как в продольном, так и в поперечном направлениях ленты, при этом между двумя соседними оптическими волокнами образован зазор, а каждый из соединительных участков сформирован таким образом, что полимерная смола заполняет указанный зазор, причем обе поверхности каждого соединительного участка вогнуты по направлению к центру зазора, образуя выемки и отделяя эти поверхности от линий, соединяющих точки контакта оптических волокон с горизонтальной поверхностью, когда оптические волокна расположены на этой горизонтальной поверхности.
2. Оптоволоконная лента, содержащая три или более расположенных параллельно оптических волокна и соединительные участки, соединяющие между собой два расположенных рядом друг с другом оптических волокна, причем соединительные участки расположены с чередованием как в продольном, так и в поперечном направлениях ленты, при этом между двумя соседними оптическими волокнами образован зазор, а каждый из соединительных участков сформирован таким образом, что полимерная смола заполняет указанный зазор и покрывает внешний контур соответствующих оптических волокон полимерной смолой, причем обе поверхности каждого соединительного участка вогнуты по направлению к центру зазора, образуя выемки и отделяя эти поверхности от линий, соединяющих точки контакта оптических волокон с горизонтальной поверхностью, когда оптические волокна расположены на этой горизонтальной поверхности.
3. Оптоволоконная лента по любому из пп. 1 или 2, в которой внешний диаметр оптических волокон не превышает 220 мкм, а расстояние между центрами соседних двух оптических волокон составляет 250±30 мкм.
4. Оптоволоконная лента по п. 2, в которой толщина полимерной смолы, покрывающей внешний контур оптических волокон, не превышает 15 мкм.
5. Оптоволоконная лента по любому из пп. 1, 2 или 4, в которой внешний слой соответствующих оптических волокон окрашен.
6. Оптоволоконный кабель, в котором размещена оптоволоконная лента по любому из пп. 1, 2 или 4.
RU2014119931/28A 2011-10-18 2012-10-15 Оптоволоконная лента и оптоволоконный кабель, в котором установлена оптоволоконная лента RU2589445C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-229066 2011-10-18
JP2011229066A JP5564026B2 (ja) 2011-10-18 2011-10-18 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
PCT/JP2012/076590 WO2013058206A1 (ja) 2011-10-18 2012-10-15 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル

Publications (2)

Publication Number Publication Date
RU2014119931A RU2014119931A (ru) 2015-11-27
RU2589445C2 true RU2589445C2 (ru) 2016-07-10

Family

ID=48140853

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014119931/28A RU2589445C2 (ru) 2011-10-18 2012-10-15 Оптоволоконная лента и оптоволоконный кабель, в котором установлена оптоволоконная лента

Country Status (17)

Country Link
US (5) US20160161692A1 (ru)
EP (2) EP2770357B1 (ru)
JP (1) JP5564026B2 (ru)
KR (1) KR20140079824A (ru)
CN (3) CN106873101A (ru)
AU (1) AU2012327115B2 (ru)
BR (1) BR112014009570B1 (ru)
CA (1) CA2851090C (ru)
DK (2) DK3176620T3 (ru)
ES (2) ES2897006T3 (ru)
HU (2) HUE053884T2 (ru)
MY (1) MY166505A (ru)
PL (2) PL3176620T3 (ru)
PT (2) PT2770357T (ru)
RU (1) RU2589445C2 (ru)
TW (1) TWI540355B (ru)
WO (1) WO2013058206A1 (ru)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852045B2 (ja) * 2013-05-07 2016-02-03 株式会社フジクラ 光ファイバテープ心線及び光ファイバケーブル
US20150129751A1 (en) * 2013-11-12 2015-05-14 Baker Hughes Incorporated Distributed sensing system employing a film adhesive
US9389382B2 (en) 2014-06-03 2016-07-12 Corning Optical Communications LLC Fiber optic ribbon cable and ribbon
JP5802309B2 (ja) * 2014-06-06 2015-10-28 株式会社フジクラ 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2016061871A (ja) 2014-09-17 2016-04-25 古河電気工業株式会社 光ファイバケーブル
JP6412779B2 (ja) * 2014-11-20 2018-10-24 株式会社フジクラ 光ファイバテープ心線、光ファイバケーブル、および、光ファイバテープ心線の製造方法
US9746630B2 (en) * 2015-01-15 2017-08-29 Corning Optical Communications LLC Hybrid optical fiber ribbon and power cable
JP6329912B2 (ja) * 2015-01-19 2018-05-23 古河電気工業株式会社 光ファイバテープ心線、光ファイバケーブル
JP6408389B2 (ja) * 2015-01-26 2018-10-17 株式会社フジクラ 光ファイバテープの製造方法、異常検出方法及び製造システム
WO2017023516A1 (en) 2015-07-31 2017-02-09 Corning Optical Communications LLC Rollable optical fiber ribbon
CA3005836C (en) * 2015-11-18 2023-10-10 Corning Optical Communications LLC Optical fiber cable with internal periodic coupling structure
JP6106253B1 (ja) * 2015-12-04 2017-03-29 株式会社フジクラ 光ファイバテープ、光ファイバテープの製造方法、及び間欠固定型光ファイバテープの連結部の形成に用いられる紫外線硬化樹脂組成物
US10094995B2 (en) * 2016-02-16 2018-10-09 Ofs Fitel, Llc Rollable ribbons in loose-tube cable structures
CN108474921A (zh) * 2016-02-23 2018-08-31 住友电气工业株式会社 间断性连结型光纤带芯线、间断性连结型光纤带芯线的制造方法、光缆及光纤软线
JP6586925B2 (ja) 2016-06-13 2019-10-09 住友電気工業株式会社 光ファイバケーブル
CN109716195A (zh) 2016-09-30 2019-05-03 株式会社藤仓 光纤带、光缆以及光纤带的制造方法
CN109643000A (zh) * 2016-09-30 2019-04-16 株式会社藤仓 光纤着色芯线、光纤电缆以及光纤着色芯线的制造方法
MX2019004832A (es) * 2016-12-01 2019-06-20 Commscope Technologies Llc Listonadora de fibra.
WO2018105424A1 (ja) 2016-12-06 2018-06-14 住友電気工業株式会社 間欠連結型光ファイバテープ心線、その製造方法、光ファイバケーブルおよび光ファイバコード
EP3561564A4 (en) * 2016-12-20 2020-07-22 Furukawa Electric Co., Ltd. FIBER OPTIC INTERMITTENT BAND CORE AND FIBER OPTIC INTERMITTENT BAND CORE MANUFACTURING PROCESS
JP2018106098A (ja) * 2016-12-28 2018-07-05 株式会社フジクラ 間欠固定テープ心線の製造方法
CA3048805C (en) 2017-01-25 2024-06-25 Afl Telecommunications Llc Reduced diameter ruggedized fiber optic distribution cables
WO2019011417A1 (en) 2017-07-11 2019-01-17 Prysmian S.P.A. OPTICAL FIBER TAPE AND METHOD FOR PRODUCING THE SAME
CA3067742C (en) 2017-07-11 2024-04-02 Prysmian S.P.A. An optical fiber ribbon assembly and a method of producing the same
EP3660566B1 (en) 2017-07-24 2025-01-22 Sumitomo Electric Industries, Ltd. Optical fiber ribbon and optical fiber cable
EP3665521B1 (en) * 2017-08-08 2023-11-08 Corning Research & Development Corporation Rollable optical fiber ribbon with low attenuation, large mode field diameter optical fiber and cable
JP7120248B2 (ja) 2017-11-02 2022-08-17 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル
US20190219783A1 (en) * 2018-01-12 2019-07-18 Ofs Fitel, Llc Multi-fiber unit tube optical fiber microcable incorporating rollable optical fibers ribbons
RU2759664C1 (ru) 2018-01-15 2021-11-16 Призмиан С.П.А. Способ изготовления гибкой волоконно-оптической ленты и лента
WO2019137627A1 (en) 2018-01-15 2019-07-18 Prysmian S.P.A. An optical fiber ribbon and a method and system of producing the same
US11256051B2 (en) 2018-01-15 2022-02-22 Prysmian S.P.A. Flexible optical-fiber ribbon
US11181709B2 (en) 2018-01-18 2021-11-23 Ssumitomom Electric Industries, Ltd. Manufacturing method of optical fiber ribbon and manufacturing apparatus thereof
US11585995B2 (en) * 2018-11-05 2023-02-21 Sterlite Technologies Limited Matrix material for rollable optical fiber ribbons
WO2020106595A1 (en) 2018-11-20 2020-05-28 Ofs Fitel, Llc Optical fiber cable having rollable ribbons and central strength member
US11125959B2 (en) * 2018-12-06 2021-09-21 Sterlite Technologies Limited Flat drop optical fiber cable
US11150424B2 (en) * 2018-12-06 2021-10-19 Sterlite Technologies Limited Rollable optical fiber ribbon
EP3923052A4 (en) 2019-02-06 2022-03-16 Sumitomo Electric Industries, Ltd. INTERMEDIATE CONNECTION TYPE FIBER FIBER TAPE CORE WIRE, FIBER OPTIC CABLE AND METHOD OF MANUFACTURING INTERMITTENT CONNECTION TYPE FIBER FIBER TAPE CORE WIRE
JP6855519B2 (ja) 2019-02-08 2021-04-07 株式会社フジクラ 光ファイバユニット及び光ファイバユニットの加工方法
EP3943992A4 (en) 2019-03-20 2022-05-04 Sumitomo Electric Industries, Ltd. Intermittent connection-type optical fiber tape core, optical fiber cable and connector-equipped optical fiber cord
WO2020208816A1 (ja) * 2019-04-12 2020-10-15 住友電気工業株式会社 光ファイバテープ心線、ダイス、および、光ファイバテープ心線の製造方法
JP2020204687A (ja) * 2019-06-17 2020-12-24 住友電気工業株式会社 光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法
EP3978976B1 (en) * 2019-05-28 2024-07-10 Sumitomo Electric Industries, Ltd. Optical fiber tape core wire, optical fiber cable, and method of manufacturing optical fiber tape core wire
CN110148488A (zh) * 2019-05-31 2019-08-20 江苏鸿翔电缆有限公司 一种新型光纤复合控制电缆
WO2021045201A1 (ja) 2019-09-05 2021-03-11 住友電気工業株式会社 光ファイバテープ心線、光ファイバケーブルおよびコネクタ付光ファイバコード
JP7157026B2 (ja) 2019-09-12 2022-10-19 株式会社フジクラ 光ファイバ整列方法、光ファイバ融着方法、コネクタ付き光ファイバテープの製造方法及び間欠連結型の光ファイバテープ
AU2019472715B2 (en) * 2019-10-30 2022-11-03 Fujikura Ltd. Intermittently connected optical fiber ribbon and method for manufacturing intermittently connected optical fiber ribbon
US10884213B1 (en) 2019-11-14 2021-01-05 Prysmian S.P.A. Optical-fiber ribbon with distorted sinusoidal adhesive pattern and method therefor
EP4112664A4 (en) * 2020-03-09 2023-08-02 Sumitomo Electric Industries, Ltd. FIBER OPTIC TAPE AND FIBER OPTIC CABLE
WO2021181880A1 (ja) 2020-03-09 2021-09-16 住友電気工業株式会社 光ファイバリボン及び光ファイバケーブル
US11650373B2 (en) 2020-03-24 2023-05-16 Commscope Technologies Llc Pitch conversion apparatus for use with optical fibers
US20230168434A1 (en) 2020-04-24 2023-06-01 Commscope Technologies Llc Fiber routing systems and methods
EP4191310A4 (en) 2020-07-29 2024-01-17 Sumitomo Electric Industries, Ltd. METHOD FOR MANUFACTURING INTERMITTENT CONNECTION TYPE OPTICAL FIBER STRIP CORE WIRE AND INTERMITTENT CONNECTION TYPE OPTICAL FIBER STRIP CORE WIRE
JPWO2022065485A1 (ru) 2020-09-28 2022-03-31
WO2022108795A1 (en) * 2020-11-19 2022-05-27 Corning Research & Development Corporation Intermittently bonded ribbon with continuous lengthwise coating
US11460652B2 (en) 2020-12-22 2022-10-04 Prysmian S.P.A. Optical-fiber ribbon with adhesive-free gaps
US11442238B2 (en) 2020-12-22 2022-09-13 Prysmian S.P.A. Optical-fiber ribbon with spaced optical-fiber units
US11860429B2 (en) 2020-12-22 2024-01-02 Prysmian S.P.A. Optical-fiber ribbon with spaced optical-fiber units
CN113359230B (zh) * 2021-05-18 2022-04-29 烽火通信科技股份有限公司 一种柔性光纤带及光缆
WO2023081039A1 (en) * 2021-11-03 2023-05-11 Corning Research & Development Corporation Optical fiber ribbon configured to maintain orientation of polarization-maintaining and multicore optical fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547040A (en) * 1983-06-21 1985-10-15 Mitsubishi Rayon Co., Ltd. Optical fiber assembly and process for preparing same
JPH08220397A (ja) * 1995-02-13 1996-08-30 Fujikura Ltd 素線の着色でテープ番号を付した複合光ファイバテープ
JP2007279226A (ja) * 2006-04-04 2007-10-25 Fujikura Ltd 光ファイバテープ心線及び前記光ファイバテープ心線を収納した光ファイバケーブル
WO2010001663A1 (ja) * 2008-06-30 2010-01-07 日本電信電話株式会社 光ファイバケーブル及び光ファイバテープ

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155314A (en) * 1979-05-21 1980-12-03 Nippon Telegr & Teleph Corp <Ntt> Connecting method of optical fiber and its connector
US4662713A (en) * 1984-08-13 1987-05-05 American Telephone And Telegraph Company At&T Bell Laboratories Optical fiber connector and articles connected therewith
US4730198A (en) * 1984-11-26 1988-03-08 American Telephone And Telegraph Company, At&T Bell Laboratories Aligning arrays of optoelectronic devices to arrays of optical fibers
DE3752078T2 (de) * 1986-11-15 1997-09-18 Sumitomo Electric Industries, Ltd., Osaka Optischer Stecker
US4869570A (en) * 1987-02-21 1989-09-26 Nippon Telegraph And Telephone Corporation Fiber coupler and method and apparatus for manufacturing the same
US4789214A (en) * 1987-09-21 1988-12-06 Tacan Corporation Micro-optical building block system and method of making same
JP2573633B2 (ja) * 1987-11-26 1997-01-22 住友電気工業株式会社 テープ状光ファイバ心線の製造装置
JPH0617923B2 (ja) * 1987-12-16 1994-03-09 株式会社フジクラ 光ファイバの加熱測定法
JPH0256510A (ja) * 1988-08-23 1990-02-26 Sumitomo Electric Ind Ltd テープ状光フアイバ心線の製造方法
JP2533014Y2 (ja) * 1989-02-10 1997-04-16 日本電気硝子 株式会社 リボン状多心光ファイバの永久接続器
JPH04145403A (ja) * 1990-10-05 1992-05-19 Seiko Giken:Kk 多芯リボンテープ光ファイバ用分岐合流器およびその製造方法
JPH04268522A (ja) * 1991-02-22 1992-09-24 Fujikura Ltd 光ファイバテープ心線の製造方法
JP3058203B2 (ja) 1991-07-11 2000-07-04 株式会社フジクラ 光ケーブル
JP2695582B2 (ja) * 1992-08-03 1997-12-24 住友電気工業株式会社 光ファイバのv溝上への整列方法及び装置
JP2888711B2 (ja) 1992-11-19 1999-05-10 三菱電機株式会社 大型電気機器のライン化流れ生産方式
US5627930A (en) * 1993-04-19 1997-05-06 Sumitomo Electric Industries, Ltd. Arrayed optical fiber coupler and method of manufacturing the same
EP0640855B1 (en) * 1993-08-26 1998-03-04 Fujikura Ltd. Apparatus for adjusting alignment of optical fibers
JPH08146239A (ja) 1994-06-23 1996-06-07 Fujikura Ltd 光ファイバテープの製造装置およびその製造方法
JP2976819B2 (ja) * 1994-08-25 1999-11-10 日立電線株式会社 光ファイバテープ心線の接続方法
US5637900A (en) * 1995-04-06 1997-06-10 Industrial Technology Research Institute Latchup-free fully-protected CMOS on-chip ESD protection circuit
FR2736441B1 (fr) * 1995-07-04 1997-09-26 Noane Georges Le Dispositif et procede de reperage et de raccordement de fibres multicoeurs
SE510365C2 (sv) * 1996-05-03 1999-05-17 Ericsson Telefon Ab L M Förfarande för framställning av ett opto-mekaniskt don samt sådant don
JP4390160B2 (ja) * 1998-06-26 2009-12-24 住友電気工業株式会社 分割型光ファイバテープ心線の製造用一括被覆ダイス装置及び製造方法
JP2000193844A (ja) * 1998-10-20 2000-07-14 Sumitomo Metal Mining Co Ltd 光ファイバアレイの製造方法
DE60003736T2 (de) * 1999-03-17 2004-06-03 Hamamatsu Photonics K.K., Hamamatsu Laservorrichtung und zugehöriger Verstärker für optische Signale
US6421493B1 (en) * 2000-03-24 2002-07-16 Fitel Usa Corp. Apparatus and method for assembling and aligning a plurality of optical fibers
EP1174744A1 (en) * 2000-07-21 2002-01-23 Corning Incorporated Method and apparatus for splicing optical fibers
US6584257B1 (en) * 2000-12-27 2003-06-24 Corning Cable Systems, Llc Fiber optic assembly and method of making same
JP2002328277A (ja) * 2001-04-26 2002-11-15 Fujikura Ltd 光ケーブル
JP2003232972A (ja) * 2002-02-07 2003-08-22 Sumitomo Electric Ind Ltd 光ファイバテープ心線
KR100960185B1 (ko) * 2002-05-28 2010-05-27 스미토모 덴키 고교 가부시키가이샤 광파이버 테이프 코어
JP2004126563A (ja) * 2002-09-02 2004-04-22 Seiko Instruments Inc レンズ一体型光ファイバとその製造方法
WO2004042446A1 (en) * 2002-11-06 2004-05-21 Sumitomo Electric Industries, Ltd. Optical fiber ribbon and optical fiber cable using the same
JP2005017662A (ja) * 2003-06-26 2005-01-20 Sumitomo Electric Ind Ltd 光ファイバ融着接続装置及び融着接続方法
JP3951133B2 (ja) * 2003-07-23 2007-08-01 住友電気工業株式会社 光ファイバケーブル
WO2005010570A2 (en) * 2003-07-25 2005-02-03 Xponent Photonics Inc. Packaging for a fiber-coupled optical device
JP4055000B2 (ja) * 2003-08-11 2008-03-05 住友電気工業株式会社 光ファイバケーブル、光ファイバケーブルの製造方法及び光ファイバケーブルの製造装置
JP2007507007A (ja) * 2003-09-25 2007-03-22 コーニング インコーポレイテッド 多モードピグテールを備えたファイバレンズ
US6973245B2 (en) * 2003-12-30 2005-12-06 Furukawa Electric North America Optical fiber cables
JP2005227721A (ja) * 2004-02-16 2005-08-25 Sumitomo Electric Ind Ltd 光接続器、光モジュール、および光接続器の製造方法
KR20070010148A (ko) 2004-04-14 2007-01-22 히다치 덴센 가부시끼가이샤 광파이버 테이프 유닛 및 광파이버 케이블
KR100624052B1 (ko) * 2005-06-22 2006-09-15 주식회사 나노포토닉스 적어도 하나의 비구면 굴절면을 갖는 렌즈를 포함하는 광부품
US8447157B2 (en) * 2005-06-24 2013-05-21 3M Innovative Properties Company Optical device with cantilevered fiber array and method
JP2007058206A (ja) 2005-07-28 2007-03-08 Furukawa Electric Co Ltd:The 光ファイバテープ心線及び光ファイバテープユニット
JP2009082778A (ja) 2007-09-28 2009-04-23 Tomoaki Ito 再資源化装置
JP2009163045A (ja) * 2008-01-08 2009-07-23 Fujikura Ltd 光ファイバテープ心線およびその分割方法
JP4966920B2 (ja) * 2008-06-20 2012-07-04 株式会社フジクラ 光ファイバテープ心線の製造方法及びその装置
JP5149230B2 (ja) * 2008-06-23 2013-02-20 株式会社フジクラ 光ファイバテープ心線の製造方法及びその製造装置
JP5442234B2 (ja) * 2008-10-24 2014-03-12 株式会社半導体エネルギー研究所 半導体装置及び表示装置
TWI585955B (zh) * 2008-11-28 2017-06-01 半導體能源研究所股份有限公司 光感測器及顯示裝置
JP2010224478A (ja) * 2009-03-25 2010-10-07 Hitachi Cable Ltd テープ状光ファイバ
JP2010237292A (ja) * 2009-03-30 2010-10-21 Fujikura Ltd 光ファイバテープ心線の製造方法及びその製造装置
TWI405781B (zh) 2009-07-08 2013-08-21 Tsrc Corp 偶合共聚物及其製造方法
JP2011100115A (ja) 2009-10-06 2011-05-19 Fujikura Ltd 光ファイバケーブル
JP2011229066A (ja) 2010-04-22 2011-11-10 Panasonic Electric Works Co Ltd 撮像装置
CN102590933B (zh) * 2012-01-10 2015-07-01 长飞光纤光缆股份有限公司 一种弯曲不敏感单模光纤
US10175421B2 (en) * 2013-03-14 2019-01-08 Vascular Imaging Corporation Optical fiber ribbon imaging guidewire and methods
DE112013007730B4 (de) * 2013-12-27 2023-12-28 Intel Corporation Asymmetrische optische Wellenleitergitterresonatoren und DBR-Laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547040A (en) * 1983-06-21 1985-10-15 Mitsubishi Rayon Co., Ltd. Optical fiber assembly and process for preparing same
JPH08220397A (ja) * 1995-02-13 1996-08-30 Fujikura Ltd 素線の着色でテープ番号を付した複合光ファイバテープ
JP2007279226A (ja) * 2006-04-04 2007-10-25 Fujikura Ltd 光ファイバテープ心線及び前記光ファイバテープ心線を収納した光ファイバケーブル
WO2010001663A1 (ja) * 2008-06-30 2010-01-07 日本電信電話株式会社 光ファイバケーブル及び光ファイバテープ

Also Published As

Publication number Publication date
JP2013088617A (ja) 2013-05-13
EP2770357A1 (en) 2014-08-27
DK3176620T3 (da) 2021-12-20
NZ623457A (en) 2015-03-27
HUE053884T2 (hu) 2021-07-28
US20160161692A1 (en) 2016-06-09
CA2851090C (en) 2016-10-11
EP2770357A4 (en) 2015-06-24
TWI540355B (zh) 2016-07-01
KR20140079824A (ko) 2014-06-27
PT2770357T (pt) 2021-03-04
CA2851090A1 (en) 2013-04-25
US20220317398A1 (en) 2022-10-06
US20170115461A1 (en) 2017-04-27
US11422325B2 (en) 2022-08-23
WO2013058206A1 (ja) 2013-04-25
CN106873101A (zh) 2017-06-20
DK2770357T3 (da) 2021-04-12
US9995896B2 (en) 2018-06-12
JP5564026B2 (ja) 2014-07-30
US11892694B2 (en) 2024-02-06
BR112014009570A2 (pt) 2017-05-09
CN103890628A (zh) 2014-06-25
HUE057452T2 (hu) 2022-05-28
US20170184803A1 (en) 2017-06-29
ES2897006T3 (es) 2022-02-28
US20200218020A1 (en) 2020-07-09
BR112014009570B1 (pt) 2020-12-01
EP2770357B1 (en) 2021-01-20
RU2014119931A (ru) 2015-11-27
PT3176620T (pt) 2021-11-19
PL2770357T3 (pl) 2021-09-06
AU2012327115A1 (en) 2014-04-24
EP3176620B1 (en) 2021-09-29
CN106932870B (zh) 2020-09-04
CN106932870A (zh) 2017-07-07
ES2849749T3 (es) 2021-08-20
MY166505A (en) 2018-06-27
PL3176620T3 (pl) 2022-05-02
AU2012327115B2 (en) 2014-09-18
CN103890628B (zh) 2017-11-24
EP3176620A1 (en) 2017-06-07
TW201331659A (zh) 2013-08-01

Similar Documents

Publication Publication Date Title
RU2589445C2 (ru) Оптоволоконная лента и оптоволоконный кабель, в котором установлена оптоволоконная лента
US8548294B2 (en) Optical fiber cable and optical fiber ribbon
JP4055000B2 (ja) 光ファイバケーブル、光ファイバケーブルの製造方法及び光ファイバケーブルの製造装置
JP5802309B2 (ja) 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP5235125B2 (ja) 光ファイバテープ及び光ファイバケーブル
CN112888978B (zh) 具有用于多路熔接的带化接口的光纤扇出组件及其制造方法
JP4297372B2 (ja) 光ファイバケーブル、光ファイバ取り出し方法及び光ファイバ取り出し工具
JP2020024257A (ja) 光ファイバテープ心線、光ファイバケーブル、および光ファイバテープ心線の融着接続方法
JP4252991B2 (ja) 光ファイバケーブル、光ファイバ取り出し方法及び光ファイバ取り出し工具
US11886026B2 (en) Optical fiber ribbon, optical fiber cable, and connector-equipped optical fiber cord
JP2005037936A (ja) 光ファイバケーブル
JP2005070770A (ja) 光ファイバケーブル
JP2015004906A (ja) 光ファイバケーブル
NZ623457B2 (en) Optical fiber ribbon and optical fiber cable housing optical fiber ribbon
JPH11264910A (ja) 浸水検知用光ファイバ心線及び光ファイバケーブル