[go: up one dir, main page]

login
Search: a013661 -id:a013661
     Sort: relevance | references | number | modified | created      Format: long | short | data
Squarefree numbers: numbers that are not divisible by a square greater than 1.
(Formerly M0617)
+10
1751
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
OFFSET
1,2
COMMENTS
1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A086436). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A067295. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
REFERENCES
Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
Dummit, David S., and Richard M. Foote. Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: Prentice Hall, 1991.
Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..60794 (first 10000 terms from T. D. Noe)
Zenon B. Batang, Squarefree integers and the abc conjecture, arXiv:2109.10226 [math.GM], 2021.
Andrew R. Booker, Ghaith A. Hiary and Jon P. Keating, Detecting squarefree numbers, Duke Mathematical Journal, Vol. 164, No. 2 (2015), pp. 235-275; arXiv preprint, arXiv:1304.6937 [math.NT], 2013-2015.
Iurie Boreico, Linear independence of radicals, The Harvard College Mathematics Review 2(1), 87-92, Spring 2008.
Ernesto Cesàro, La serie di Lambert in aritmetica assintotica, Rendiconto della Reale Accademia delle Scienze di Napoli, Serie 2, Vol. 7 (1893), pp. 197-204.
Henri Cohen, Francois Dress, and Mohamed El Marraki, Explicit estimates for summatory functions linked to the Möbius μ-function, Functiones et Approximatio Commentarii Mathematici 37 (2007), part 1, pp. 51-63.
H. Gent, Letter to N. J. A. Sloane, Nov 27 1975.
Andrew Granville, ABC means we can count squarefrees, International Mathematical Research Notices 19 (1998), 991-1009.
Pentti Haukkanen, Mika Mattila, Jorma K. Merikoski and Timo Tossavainen, Can the Arithmetic Derivative be Defined on a Non-Unique Factorization Domain?, Journal of Integer Sequences, Vol. 16 (2013), Article 13.1.2.
Aaron Krowne, squarefree number, PlanetMath.org.
Louis Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829 [math.NT], 2012.
Srinivasa Ramanujan, Irregular numbers, J. Indian Math. Soc., Vol. 5 (1913), pp. 105-106.
Kenneth Rogers, The Schnirelmann density of the squarefree integers, Proceedings of the American Mathematical Society, Vol. 15, No. 4 (1964), pp. 515-516.
J. A. Scott, Square-freedom revisited, The Mathematical Gazette, Vol. 90, No. 517 (2006), pp. 112-113.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015.
O. Trifonov, On the Squarefree Problem II, Math. Balkanica, Vol. 3 (1989), Fasc. 3-4.
Eric Weisstein's World of Mathematics, Squarefree.
Eric Weisstein's World of Mathematics, Prime Zeta Function.
Wikipedia, Squarefree integer.
FORMULA
Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)
MAPLE
with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
t:= n-> product(ithprime(k), k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
PROG
(Magma) [ n : n in [1..1000] | IsSquarefree(n) ];
(PARI) bnd = 1000; L = vector(bnd); j = 1; for (i=1, bnd, if(issquarefree(i), L[j]=i; j=j+1)); L
(PARI) {a(n)= local(m, c); if(n<=1, n==1, c=1; m=1; while( c<n, m++; if(issquarefree(m), c++)); m)} /* Michael Somos, Apr 29 2005 */
(PARI) list(n)=my(v=vectorsmall(n, i, 1), u, j); forprime(p=2, sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1, n, v[i])); for(i=1, n, if(v[i], u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
(PARI) for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
(PARI)
S(n) = my(s); forsquarefree(k=1, sqrtint(n), s+=n\k[1]^2*moebius(k)); s;
a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
(PARI) first(n)=my(v=vector(n), i); forsquarefree(k=1, if(n<268293, (33*n+30)\20, (n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
(Haskell)
a005117 n = a005117_list !! (n-1)
a005117_list = filter ((== 1) . a008966) [1..]
-- Reinhard Zumkeller, Aug 15 2011, May 10 2011
(Python)
from sympy.ntheory.factor_ import core
def ok(n): return core(n, 2) == n
print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
(Python)
from itertools import count, islice
from sympy import factorint
def A005117_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:all(x == 1 for x in factorint(n).values()), count(max(startvalue, 1)))
A005117_list = list(islice(A005117_gen(), 20)) # Chai Wah Wu, May 09 2022
(Python)
from math import isqrt
from sympy import mobius
def A005117(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Jul 22 2024
CROSSREFS
Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).
KEYWORD
nonn,easy,nice,core
STATUS
approved
Decimal expansion of Pi (or digits of Pi).
(Formerly M2218 N0880)
+10
1052
3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7, 9, 8, 2, 1, 4
OFFSET
1,1
COMMENTS
Sometimes called Archimedes's constant.
Ratio of a circle's circumference to its diameter.
Also area of a circle with radius 1.
Also surface area of a sphere with diameter 1.
A useful mnemonic for remembering the first few terms: How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics ...
Also ratio of surface area of sphere to one of the faces of the circumscribed cube. Also ratio of volume of a sphere to one of the six inscribed pyramids in the circumscribed cube. - Omar E. Pol, Aug 09 2012
Also surface area of a quarter of a sphere of radius 1. - Omar E. Pol, Oct 03 2013
Also the area under the peak-shaped even function f(x)=1/cosh(x). Proof: for the upper half of the integral, write f(x) = (2*exp(-x))/(1+exp(-2x)) = 2*Sum_{k>=0} (-1)^k*exp(-(2k+1)*x) and integrate term by term from zero to infinity. The result is twice the Gregory series for Pi/4. - Stanislav Sykora, Oct 31 2013
A curiosity: a 144 X 144 magic square of 7th powers was recently constructed by Toshihiro Shirakawa. The magic sum = 3141592653589793238462643383279502884197169399375105, which is the concatenation of the first 52 digits of Pi. See the MultiMagic Squares link for details. - Christian Boyer, Dec 13 2013 [Comment revised by N. J. A. Sloane, Aug 27 2014]
x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 25 2013
Also diameter of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Jan 13 2014
From Daniel Forgues, Mar 20 2015: (Start)
An interesting anecdote about the base-10 representation of Pi, with 3 (integer part) as first (index 1) digit:
358 0
359 3
360 6
361 0
362 0
And the circle is customarily subdivided into 360 degrees (although Pi radians yields half the circle)...
(End)
Sometimes referred to as Archimedes's constant, because the Greek mathematician computed lower and upper bounds of Pi by drawing regular polygons inside and outside a circle. In Germany it was called the Ludolphian number until the early 20th century after the Dutch mathematician Ludolph van Ceulen (1540-1610), who calculated up to 35 digits of Pi in the late 16th century. - Martin Renner, Sep 07 2016
As of the beginning of 2019 more than 22 trillion decimal digits of Pi are known. See the Wikipedia article "Chronology of computation of Pi". - Harvey P. Dale, Jan 23 2019
On March 14, 2019, Emma Haruka Iwao announced the calculation of 31.4 trillion digits of Pi using Google Cloud's infrastructure. - David Radcliffe, Apr 10 2019
Also volume of three quarters of a sphere of radius 1. - Omar E. Pol, Aug 16 2019
On August 5, 2021, researchers from the University of Applied Sciences of the Grisons in Switzerland announced they had calculated 62.8 trillion digits. Guinness World Records has not verified this yet. - Alonso del Arte, Aug 23 2021
The Hermite-Lindemann (1882) theorem states, that if z is a nonzero algebraic number, then e^z is a transcendent number. The transcendence of Pi then results from Euler's relation: e^(i*Pi) = -1. - Peter Luschny, Jul 21 2023
REFERENCES
Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
J. Arndt & C. Haenel, Pi Unleashed, Springer NY 2001.
P. Beckmann, A History of Pi, Golem Press, Boulder, CO, 1977.
J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997.
P. Eyard and J.-P. Lafon, The Number Pi, Amer. Math. Soc., 2004.
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.4.
Le Petit Archimede, Special Issue On Pi, Supplement to No. 64-5, May 1980 ADCS Amiens.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 31.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 48-55.
LINKS
Sanjar M. Abrarov, Rehan Siddiqui, Rajinder K. Jagpal, and Brendan M. Quine, Unconditional applicability of the Lehmer's measure to the two-term Machin-like formula for pi, arXiv:2004.11711 [math.GM], 2020.
Emilio Ambrisi and Bruno Rizzi, Appunti da un corso di aggiornamento, Mathesis (Sezione Casertana), Quaderno n. 1, Liceo G. Galilei, Mondragone (CE), Italy, June 22-28 1979. (In Italian). See p. 15.
Dave Andersen, Pi-Search Page
D. H. Bailey and J. M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the AMS, Volume 52, Number 5, May 2005, pp. 502-514.
Harry Baker, "Pi calculated to a record-breaking 62.8 trillion digits", Live Science, August 17, 2021.
Steve Baker and Thomas Moore, 100 trillion digits of pi
Frits Beukers, A rational approach to Pi, Nieuw Archief voor de Wiskunde, December 2000, pp. 372-379.
J. M. Borwein, Talking about Pi
J. M. Borwein and M. Macklem, The (Digital) Life of Pi, The Australian Mathematical Society Gazette, Volume 33, Number 5, Sept. 2006, pp. 243-248.
Peter Borwein, The amazing number Pi, Nieuw Archief voor de Wiskunde, September 2000, pp. 254-258.
Christian Boyer, MultiMagic Squares
J. Britton, Mnemonics For The Number Pi [archived page]
D. Castellanos, The ubiquitous pi, Math. Mag., 61 (1988), 67-98 and 148-163.
Jonas Castillo Toloza, Fascinating Method for Finding Pi
L. Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
X. Gourdon, Pi to 16000 decimals [archived page]
X. Gourdon and P. Sebah, Archimedes' constant Pi
B. Gourevitch, L'univers de Pi
Antonio Gracia Llorente, Novel Infinite Products πe and π/e, OSF Preprint, 2024.
J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008) 247-270. Preprint: arXiv:math/0506319 [math.NT] (2005-2006).
H. Havermann, Simple Continued Fraction for Pi [archived page]
M. D. Huberty et al., 100000 Digits of Pi
ICON Project, Pi to 50000 places [archived page]
P. Johns, 120000 Digits of Pi [archived page]
Yasumasa Kanada and Daisuke Takahashi, 206 billion digits of Pi [archived page]
Literate Programs, Pi with Machin's formula (Haskell) [archived page]
Johannes W. Meijer, Pi everywhere poster, Mar 14 2013
NERSC, Search Pi [broken link]
Remco Niemeijer, The Digits of Pi, programmingpraxis.
Steve Pagliarulo, Stu's pi page [archived page]
Michael Penn, A nice inverse tangent integral., YouTube video, 2020.
Michael Penn, Pi is irrational (π∉ℚ), YouTube video, 2020.
I. Peterson, A Passion for Pi
Simon Plouffe, 10000 digits of Pi
Simon Plouffe, A formula for the nth decimal digit or binary of Pi and powers of Pi, arXiv:2201.12601 [math.NT], 2022.
M. Z. Rafat and D. Dobie, Throwing Pi at a wall, arXiv:1901.06260 [physics.class-ph], 2020.
S. Ramanujan, Modular equations and approximations to \pi, Quart. J. Math. 45 (1914), 350-372.
Grant Sanderson, Why do colliding blocks compute pi?, 3Blue1Brown video (2019).
Daniel B. Sedory, The Pi Pages
D. Shanks and J. W. Wrench, Jr., Calculation of pi to 100,000 decimals, Math. Comp. 16 1962 76-99.
Sizes, pi
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
A. Sofo, Pi and some other constants, Journal of Inequalities in Pure and Applied Mathematics, Vol. 6, Issue 5, Article 138, 2005.
Jonathan Sondow, A faster product for Pi and a new integral for ln Pi/2, arXiv:math/0401406 [math.NT], 2004; Amer. Math. Monthly 112 (2005) 729-734.
D. Surendran, Can I have a small container of coffee? [archived page]
Wislawa Szymborska, Pi (The admirable number Pi), Miracle Fair, 2002.
G. Vacca, A new analytical expression for the number pi, and some historical considerations, Bull. Amer. Math. Soc. 16 (1910), 368-369.
Stan Wagon, Is Pi Normal?
Eric Weisstein's World of Mathematics, Pi and Pi Digits
Alexander J. Yee & Shigeru Kondo, 5 Trillion Digits of Pi - New World Record
Alexander J. Yee & Shigeru Kondo, Round 2... 10 Trillion Digits of Pi
FORMULA
Pi = 4*Sum_{k>=0} (-1)^k/(2k+1) [Madhava-Gregory-Leibniz, 1450-1671]. - N. J. A. Sloane, Feb 27 2013
From Johannes W. Meijer, Mar 10 2013: (Start)
2/Pi = (sqrt(2)/2) * (sqrt(2 + sqrt(2))/2) * (sqrt(2 + sqrt(2 + sqrt(2)))/2) * ... [Viete, 1593]
2/Pi = Product_{k>=1} (4*k^2-1)/(4*k^2). [Wallis, 1655]
Pi = 3*sqrt(3)/4 + 24*(1/12 - Sum_{n>=2} (2*n-2)!/((n-1)!^2*(2*n-3)*(2*n+1)*2^(4*n-2))). [Newton, 1666]
Pi/4 = 4*arctan(1/5) - arctan(1/239). [Machin, 1706]
Pi^2/6 = 3*Sum_{n>=1} 1/(n^2*binomial(2*n,n)). [Euler, 1748]
1/Pi = (2*sqrt(2)/9801) * Sum_{n>=0} (4*n)!*(1103+26390*n)/((n!)^4*396^(4*n)). [Ramanujan, 1914]
1/Pi = 12*Sum_{n>=0} (-1)^n*(6*n)!*(13591409 + 545140134*n)/((3*n)!*(n!)^3*(640320^3)^(n+1/2)). [David and Gregory Chudnovsky, 1989]
Pi = Sum_{n>=0} (1/16^n) * (4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)). [Bailey-Borwein-Plouffe, 1989] (End)
Pi = 4 * Sum_{k>=0} 1/(4*k+1) - 1/(4*k+3). - Alexander R. Povolotsky, Dec 25 2008
Pi = 4*sqrt(-1*(Sum_{n>=0} (i^(2*n+1))/(2*n+1))^2). - Alexander R. Povolotsky, Jan 25 2009
Pi = Integral_{x=-infinity..infinity} dx/(1+x^2). - Mats Granvik and Gary W. Adamson, Sep 23 2012
Pi - 2 = 1/1 + 1/3 - 1/6 - 1/10 + 1/15 + 1/21 - 1/28 - 1/36 + 1/45 + ... [Jonas Castillo Toloza, 2007], that is, Pi - 2 = Sum_{n>=1} (1/((-1)^floor((n-1)/2)*(n^2+n)/2)). - José de Jesús Camacho Medina, Jan 20 2014
Pi = 3 * Product_{t=img(r),r=(1/2+i*t) root of zeta function} (9+4*t^2)/(1+4*t^2) <=> RH is true. - Dimitris Valianatos, May 05 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Pi = Sum_{k>=1} (3^k - 1)*zeta(k+1)/4^k.
Pi = 2*Product_{k>=2} sec(Pi/2^k).
Pi = 2*Integral_{x>=0} sin(x)/x dx. (End)
Pi = 2^{k + 1}*arctan(sqrt(2 - a_{k - 1})/a_k) at k >= 2, where a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2). - Sanjar Abrarov, Feb 07 2017
Pi = Integral_{x = 0..2} sqrt(x/(2 - x)) dx. - Arkadiusz Wesolowski, Nov 20 2017
Pi = lim_{n->infinity} 2/n * Sum_{m=1,n} ( sqrt( (n+1)^2 - m^2 ) - sqrt( n^2 - m^2 ) ). - Dimitri Papadopoulos, May 31 2019
From Peter Bala, Oct 29 2019: (Start)
Pi = Sum_{n >= 0} 2^(n+1)/( binomial(2*n,n)*(2*n + 1) ) - Euler.
More generally, Pi = (4^x)*x!/(2*x)! * Sum_{n >= 0} 2^(n+1)*(n+x)!*(n+2*x)!/(2*n+2*x+1)! = 2*4^x*x!^2/(2*x+1)! * hypergeom([2*x+1,1], [x+3/2], 1/2), valid for complex x not in {-1,-3/2,-2,-5/2,...}. Here, x! is shorthand notation for the function Gamma(x+1). This identity may be proved using Gauss's second summation theorem.
Setting x = 3/4 and x = -1/4 (resp. x = 1/4 and x = -3/4) in the above identity leads to series representations for the constant A085565 (resp. A076390). (End)
Pi = Im(log(-i^i)) = log(i^i)*(-2). - Peter Luschny, Oct 29 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals 2 + Integral_{x=0..1} arccos(x)^2 dx.
Equals Integral_{x=0..oo} log(1 + 1/x^2) dx.
Equals Integral_{x=0..oo} log(1 + x^2)/x^2 dx.
Equals Integral_{x=-oo..oo} exp(x/2)/(exp(x) + 1) dx. (End)
Equals 4*(1/2)!^2 = 4*Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
From Peter Bala, Dec 08 2021: (Start)
Pi = 32*Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9))= 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)).
More generally, it appears that for k = 1,2,3,..., Pi = 16*(2*k)!*Sum_{n >= 1} (-1)^(n+k+1)*n^2/((4*n^2 - 1)* ... *(4*n^2 - (2*k+1)^2)).
Pi = 32*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^2 = 768*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2*(4*n^2 - 9)^2).
More generally, it appears that for k = 0,1,2,..., Pi = 16*Catalan(k)*(2*k)!*(2*k+2)!*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2* ... *(4*n^2 - (2*k+1)^2)^2).
Pi = (2^8)*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^4 = (2^17)*(3^5)*Sum_{n >= 2} (-1)^n*n^2*(n^2 - 1)/((4*n^2 - 1)^4*(4*n^2 - 9)^4) = (2^27)*(3^5)*(5^5)* Sum_{n >= 3} (-1)^(n+1)*n^2*(n^2 - 1)*(n^2 - 4)/((4*n^2 - 1)^4*(4*n^2 - 9)^4*(4*n^2 - 25)^4). (End)
For odd n, Pi = (2^(n-1)/A001818((n-1)/2))*gamma(n/2)^2. - Alan Michael Gómez Calderón, Mar 11 2022
Pi = 4/phi + Sum_{n >= 0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
Pi = sqrt(3)*(27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..1} 1/sqrt(x-x^2) dx. - Michal Paulovic, Sep 24 2023
From Peter Bala, Oct 28 2023: (Start)
Pi = 48*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*(6*n + 5)).
More generally, it appears that for k >= 0 we have Pi = A(k) + B(k)*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 5)), where A(k) is a rational approximation to Pi and B(k) = (3 * 2^(3*k+3) * (3*k + 2)!) / (2^(3*k+1) - (-1)^k). The first few values of A(k) for k >= 0 are [0, 256/85, 65536/20955, 821559296/261636375, 6308233216/2008080987, 908209489444864/289093830828075, ...].
Pi = 16/5 - (288/5)*Sum_{n >= 0} (-1)^n * (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 9)).
More generally, it appears that for k >= 0 we have Pi = C(k) + D(k)*Sum_{n >= 0} (-1)^n* (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 3)), where C(k) and D(k) are rational numbers. The case k = 0 is the Madhava-Gregory-Leibniz series for Pi.
Pi = 168/53 + (288/53)*Sum_{n >= 0} (-1)^n * (42*n^2 + 25*n)/((6*n + 1)*(6*n + 3)*(6*n + 5)*(6*n + 7)).
More generally, it appears that for k >= 1 we have Pi = E(k) + F(k)*Sum_{n >= 0} (-1)^n * (6*(6*k + 1)*n^2 + (24*k + 1)*n)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 1)), where E(k) and F(k) are rational numbers. (End)
From Peter Bala, Nov 10 2023: (Start)
The series representation Pi = 4 * Sum_{k >= 0} 1/(4*k + 1) - 1/(4*k + 3) given above by Alexander R. Povolotsky, Dec 25 2008, is the case n = 0 of the more general result (obtained by the WZ method): for n >= 0, there holds
Pi = Sum_{j = 0.. n-1} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) + 8*(n+1)!*Sum_{k >= 0} 1/((4*k + 1)*(4*k + 3)*...*(4*k + 2*n + 3)).
Letting n -> oo gives the rapidly converging series Pi = Sum_{j >= 0} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) due to Euler.
More generally, it appears that for n >= 1, Pi = 1/(2*n-1)!!^2 * Sum_{j >= 0} (Product_{i = 0..2*n-1} j - i) * 2^(j+1)/((2*j + 1)*binomial(2*j,j)).
For any integer n, Pi = (-1)^n * 4 * Sum_{k >= 0} 1/(4*k + 1 + 2*n) - 1/(4*k + 3 - 2*n). (End)
Pi = Product_{k>=1} ((k^3*(k + 2)*(2*k + 1)^2)/((k + 1)^4*(2*k - 1)^2))^k. - Antonio Graciá Llorente, Jun 13 2024
Equals Integral_{x=0..2} sqrt(8 - x^2) dx - 2 (see Ambrisi and Rizzi). - Stefano Spezia, Jul 21 2024
Equals 3 + 4*Sum_{k>0} (-1)^(k+1)/(4*k*(1+k)*(1+2*k)) (see Wells at p. 53). - Stefano Spezia, Aug 31 2024
EXAMPLE
3.1415926535897932384626433832795028841971693993751058209749445923078164062\
862089986280348253421170679821480865132823066470938446095505822317253594081\
284811174502841027019385211055596446229489549303819...
MAPLE
Digits := 110: Pi*10^104:
ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 29 2019
MATHEMATICA
RealDigits[ N[ Pi, 105]] [[1]]
Table[ResourceFunction["NthDigit"][Pi, n], {n, 1, 102}] (* Joan Ludevid, Jun 22 2022; easy to compute a(10000000)=7 with this function; requires Mathematica 12.0+ *)
PROG
(Macsyma) py(x) := if equal(6, 6+x^2) then 2*x else (py(x:x/3), 3*%%-4*(%%-x)^3); py(3.); py(dfloat(%)); block([bfprecision:35], py(bfloat(%))) /* Bill Gosper, Sep 09 2002 */
(PARI) { default(realprecision, 20080); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b000796.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
(PARI) A796=[]; A000796(n)={if(n>#A796, localprec(n*6\5+29); A796=digits(Pi\.1^(precision(Pi)-3))); A796[n]} \\ NOTE: as the other programs, this returns the n-th term of the sequence, with n = 1, 2, 3, ... and not n = 1, 0, -1, -2, .... - M. F. Hasler, Jun 21 2022
(PARI) first(n)= default(realprecision, n+10); digits(floor(Pi*10^(n-1))) \\ David A. Corneth, Jun 21 2022
(Haskell) -- see link: Literate Programs
import Data.Char (digitToInt)
a000796 n = a000796_list (n + 1) !! (n + 1)
a000796_list len = map digitToInt $ show $ machin' `div` (10 ^ 10) where
machin' = 4 * (4 * arccot 5 unity - arccot 239 unity)
unity = 10 ^ (len + 10)
arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
arccot' x unity summa xpow n sign
| term == 0 = summa
| otherwise = arccot'
x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
where term = xpow `div` n
-- Reinhard Zumkeller, Nov 24 2012
(Haskell) -- See Niemeijer link and also Gibbons link.
a000796 n = a000796_list !! (n-1) :: Int
a000796_list = map fromInteger $ piStream (1, 0, 1)
[(n, a*d, d) | (n, d, a) <- map (\k -> (k, 2 * k + 1, 2)) [1..]] where
piStream z xs'@(x:xs)
| lb /= approx z 4 = piStream (mult z x) xs
| otherwise = lb : piStream (mult (10, -10 * lb, 1) z) xs'
where lb = approx z 3
approx (a, b, c) n = div (a * n + b) c
mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
-- Reinhard Zumkeller, Jul 14 2013, Jun 12 2013
(Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi))); // Bruno Berselli, Mar 12 2013
(Python) from sympy import pi, N; print(N(pi, 1000)) # David Radcliffe, Apr 10 2019
(Python)
from mpmath import mp
def A000796(n):
if n >= len(A000796.str): mp.dps = n*6//5+50; A000796.str = str(mp.pi-5/mp.mpf(10)**mp.dps)
return int(A000796.str[n if n>1 else 0])
A000796.str = '' # M. F. Hasler, Jun 21 2022
(SageMath)
m=125
x=numerical_approx(pi, digits=m+5)
a=[ZZ(i) for i in x.str(skip_zeroes=True) if i.isdigit()]
a[:m] # G. C. Greubel, Jul 18 2023
CROSSREFS
Cf. A001203 (continued fraction).
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), this sequence (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A224750 (b=26), A224751 (b=27), A060707 (b=60). - Jason Kimberley, Dec 06 2012
Decimal expansions of expressions involving Pi: A002388 (Pi^2), A003881 (Pi/4), A013661 (Pi^2/6), A019692 (2*Pi=tau), A019727 (sqrt(2*Pi)), A059956 (6/Pi^2), A060294 (2/Pi), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8), A163973 (Pi/log(2)).
Cf. A001901 (Pi/2; Wallis), A002736 (Pi^2/18; Euler), A007514 (Pi), A048581 (Pi; BBP), A054387 (Pi; Newton), A092798 (Pi/2), A096954 (Pi/4; Machin), A097486 (Pi), A122214 (Pi/2), A133766 (Pi/4 - 1/2), A133767 (5/6 - Pi/4), A166107 (Pi; MGL).
Cf. A248682.
KEYWORD
cons,nonn,nice,core,easy
EXTENSIONS
Additional comments from William Rex Marshall, Apr 20 2001
STATUS
approved
Quarter-squares: a(n) = floor(n/2)*ceiling(n/2). Equivalently, a(n) = floor(n^2/4).
(Formerly M0998 N0374)
+10
492
0, 0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380, 400, 420, 441, 462, 484, 506, 529, 552, 576, 600, 625, 650, 676, 702, 729, 756, 784, 812
OFFSET
0,4
COMMENTS
b(n) = a(n+2) is the number of multigraphs with loops on 2 nodes with n edges [so g.f. for b(n) is 1/((1-x)^2*(1-x^2))]. Also number of 2-covers of an n-set; also number of 2 X n binary matrices with no zero columns up to row and column permutation. - Vladeta Jovovic, Jun 08 2000
a(n) is also the maximal number of edges that a triangle-free graph of n vertices can have. For n = 2m, the maximum is achieved by the bipartite graph K(m, m); for n = 2m + 1, the maximum is achieved by the bipartite graph K(m, m + 1). - Avi Peretz (njk(AT)netvision.net.il), Mar 18 2001
a(n) is the number of arithmetic progressions of 3 terms and any mean which can be extracted from the set of the first n natural numbers (starting from 1). - Santi Spadaro, Jul 13 2001
This is also the order dimension of the (strong) Bruhat order on the Coxeter group A_{n-1} (the symmetric group S_n). - Nathan Reading (reading(AT)math.umn.edu), Mar 07 2002
Let M_n denote the n X n matrix m(i,j) = 2 if i = j; m(i, j) = 1 if (i+j) is even; m(i, j) = 0 if i + j is odd, then a(n+2) = det M_n. - Benoit Cloitre, Jun 19 2002
Sums of pairs of neighboring terms are triangular numbers in increasing order. - Amarnath Murthy, Aug 19 2002
Also, from the starting position in standard chess, minimum number of captures by pawns of the same color to place n of them on the same file (column). Beyond a(6), the board and number of pieces available for capture are assumed to be extended enough to accomplish this task. - Rick L. Shepherd, Sep 17 2002
For example, a(2) = 1 and one capture can produce "doubled pawns", a(3) = 2 and two captures is sufficient to produce tripled pawns, etc. (Of course other, uncounted, non-capturing pawn moves are also necessary from the starting position in order to put three or more pawns on a given file.) - Rick L. Shepherd, Sep 17 2002
Terms are the geometric mean and arithmetic mean of their neighbors alternately. - Amarnath Murthy, Oct 17 2002
Maximum product of two integers whose sum is n. - Matthew Vandermast, Mar 04 2003
a(n+1) gives number of non-symmetric partitions of n into at most 3 parts, with zeros used as padding. E.g., a(6) = 12 because we can write 5 = 5 + 0 + 0 = 0 + 5 + 0 = 4 + 1 + 0 = 1 + 4 + 0 = 1 + 0 + 4 = 3 + 2 + 0 = 2 + 3 + 0 = 2 + 0 + 3 = 2 + 2 + 1 = 2 + 1 + 2 = 3 + 1 + 1 = 1 + 3 + 1. - Jon Perry, Jul 08 2003
a(n-1) gives number of distinct elements greater than 1 of non-symmetric partitions of n into at most 3 parts, with zeros used as padding, appear in the middle. E.g., 5 = 5 + 0 + 0 = 0 + 5 + 0 = 4 + 1 + 0 = 1 + 4 + 0 = 1 + 0 + 4 = 3 + 2 + 0 = 2 + 3 + 0 = 2 + 0 + 3 = 2 + 2 + 1 = 2 + 1 + 2 = 3 + 1 + 1 = 1 + 3 + 1. Of these, 050, 140, 320, 230, 221, 131 qualify and a(4) = 6. - Jon Perry, Jul 08 2003
Union of square numbers (A000290) and oblong numbers (A002378). - Lekraj Beedassy, Oct 02 2003
Conjectured size of the smallest critical set in a Latin square of order n (true for n <= 8). - Richard Bean, Jun 12 2003 and Nov 18 2003
a(n) gives number of maximal strokes on complete graph K_n, when edges on K_n can be assigned directions in any way. A "stroke" is a locally maximal directed path on a directed graph. Examples: n = 3, two strokes can exist, "x -> y -> z" and " x -> z", so a(3) = 2. n = 4, four maximal strokes exist, "u -> x -> z" and "u -> y" and "u -> z" and "x -> y -> z", so a(4) = 4. - Yasutoshi Kohmoto, Dec 20 2003
Number of symmetric Dyck paths of semilength n+1 and having three peaks. E.g., a(4) = 4 because we have U*DUUU*DDDU*D, UU*DUU*DDU*DD, UU*DDU*DUU*DD and UUU*DU*DU*DDD, where U = (1, 1), D = (1, -1) and * indicates a peak. - Emeric Deutsch, Jan 12 2004
Number of valid inequalities of the form j + k < n + 1, where j and k are positive integers, j <= k, n >= 0. - Rick L. Shepherd, Feb 27 2004
See A092186 for another application.
Also, the number of nonisomorphic transversal combinatorial geometries of rank 2. - Alexandr S. Radionov (rasmailru(AT)mail.ru), Jun 02 2004
a(n+1) is the transform of n under the Riordan array (1/(1-x^2), x). - Paul Barry, Apr 16 2005
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ... specifies the largest number of copies of any of the gifts you receive on the n-th day in the "Twelve Days of Christmas" song. For example, on the fifth day of Christmas, you have 9 French hens. - Alonso del Arte, Jun 17 2005
a(n+1) is the number of noncongruent integer-sided triangles with largest side n. - David W. Wilson [Comment corrected Sep 26 2006]
A quarter-square table can be used to multiply integers since n*m = a(n+m) - a(n-m) for all integer n, m. - Michael Somos, Oct 29 2006
The sequence is the size of the smallest strong critical set in a Latin square of order n. - G.H.J. van Rees (vanrees(AT)cs.umanitoba.ca), Feb 16 2007
Maximal number of squares (maximal area) in a polyomino with perimeter 2n. - Tanya Khovanova, Jul 04 2007
For n >= 3 a(n-1) is the number of bracelets with n+3 beads, 2 of which are red, 1 of which is blue. - Washington Bomfim, Jul 26 2008
Equals row sums of triangle A122196. - Gary W. Adamson, Nov 29 2008
Also a(n) is the number of different patterns of a 2-colored 3-partition of n. - Ctibor O. Zizka, Nov 19 2014
Also a(n-1) = C(((n+(n mod 2))/2), 2) + C(((n-(n mod 2))/2), 2), so this is the second diagonal of A061857 and A061866, and each even-indexed term is the average of its two neighbors. - Antti Karttunen
Equals triangle A171608 * ( 1, 2, 3, ...). - Gary W. Adamson, Dec 12 2009
a(n) gives the number of nonisomorphic faithful representations of the Symmetric group S_3 of dimension n. Any faithful representation of S_3 must contain at least one copy of the 2-dimensional irrep, along with any combination of the two 1-dimensional irreps. - Andrew Rupinski, Jan 20 2011
a(n+2) gives the number of ways to make change for "c" cents, letting n = floor(c/5) to account for the 5-repetitive nature of the task, using only pennies, nickels and dimes (see A187243). - Adam Sasson, Mar 07 2011
a(n) belongs to the sequence if and only if a(n) = floor(sqrt(a(n))) * ceiling(sqrt(a(n))), that is, a(n) = k^2 or a(n) = k*(k+1), k >= 0. - Daniel Forgues, Apr 17 2011
a(n) is the sum of the positive integers < n that have the opposite parity as n.
Deleting the first 0 from the sequence results in a sequence b = 0, 1, 2, 4, ... such that b(n) is sum of the positive integers <= n that have the same parity as n. The sequence b(n) is the additive counterpart of the double factorial. - Peter Luschny, Jul 06 2011
Third outer diagonal of Losanitsch's Triangle, A034851. - Fred Daniel Kline, Sep 10 2011
Written as a(1) = 1, a(n) = a(n-1) + ceiling (a(n-1)) this is to ceiling as A002984 is to floor, and as A033638 is to round. - Jonathan Vos Post, Oct 08 2011
a(n-2) gives the number of distinct graphs with n vertices and n regions. - Erik Hasse, Oct 18 2011
Construct the n-th row of Pascal's triangle (A007318) from the preceding row, starting with row 0 = 1. a(n) counts the total number of additions required to compute the triangle in this way up to row n, with the restrictions that copying a term does not count as an addition, and that all additions not required by the symmetry of Pascal's triangle are replaced by copying terms. - Douglas Latimer, Mar 05 2012
a(n) is the sum of the positive differences of the parts in the partitions of n+1 into exactly 2 parts. - Wesley Ivan Hurt, Jan 27 2013
a(n) is the maximum number of covering relations possible in an n-element graded poset. For n = 2m, this bound is achieved for the poset with two sets of m elements, with each point in the "upper" set covering each point in the "lower" set. For n = 2m+1, this bound is achieved by the poset with m nodes in an upper set covering each of m+1 nodes in a lower set. - Ben Branman, Mar 26 2013
a(n+2) is the number of (integer) partitions of n into 2 sorts of 1's and 1 sort of 2's. - Joerg Arndt, May 17 2013
Alternative statement of Oppermann's conjecture: For n>2, there is at least one prime between a(n) and a(n+1). - Ivan N. Ianakiev, May 23 2013. [This conjecture was mentioned in A220492, A222030. - Omar E. Pol, Oct 25 2013]
For any given prime number, p, there are an infinite number of a(n) divisible by p, with those a(n) occurring in evenly spaced clusters of three as a(n), a(n+1), a(n+2) for a given p. The divisibility of all a(n) by p and the result are given by the following equations, where m >= 1 is the cluster number for that p: a(2m*p)/p = p*m^2 - m; a(2m*p + 1)/p = p*m^2; a(2m*p + 2)/p = p*m^2 + m. The number of a(n) instances between clusters is 2*p - 3. - Richard R. Forberg, Jun 09 2013
Apart from the initial term this is the elliptic troublemaker sequence R_n(1,2) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 08 2013
a(n) is also the total number of twin hearts patterns (6c4c) packing into (n+1) X (n+1) coins, the coins left is A042948 and the voids left is A000982. See illustration in links. - Kival Ngaokrajang, Oct 24 2013
Partitions of 2n into parts of size 1, 2 or 4 where the largest part is 4, i.e., A073463(n,2). - Henry Bottomley, Oct 28 2013
a(n+1) is the minimum length of a sequence (of not necessarily distinct terms) that guarantees the existence of a (not necessarily consecutive) subsequence of length n in which like terms appear consecutively. This is also the minimum cardinality of an ordered set S that ensures that, given any partition of S, there will be a subset T of S so that the induced subpartition on T avoids the pattern ac/b, where a < b < c. - Eric Gottlieb, Mar 05 2014
Also the number of elements of the list 1..n+1 such that for any two elements {x,y} the integer (x+y)/2 lies in the range ]x,y[. - Robert G. Wilson v, May 22 2014
Number of lattice points (x,y) inside the region of the coordinate plane bounded by x <= n, 0 < y <= x/2. For a(11)=30 there are exactly 30 lattice points in the region below:
6| .
.| . |
5| .__+__+
.| . | | |
4| .__+__+__+__+
.| . | | | | |
3| .__+__+__+__+__+__+
.| . | | | | | | |
2| .__+__+__+__+__+__+__+__+
.| . | | | | | | | | |
1| .__+__+__+__+__+__+__+__+__+__+
.|. | | | | | | | | | | |
0|.__+__+__+__+__+__+__+__+__+__+__+_________
0 1 2 3 4 5 6 7 8 9 10 11 .. n
0 0 1 2 4 6 9 12 16 20 25 30 .. a(n) - Wesley Ivan Hurt, Oct 26 2014
a(n+1) is the greatest integer k for which there exists an n x n matrix M of nonnegative integers with every row and column summing to k, such that there do not exist n entries of M, all greater than 1, and no two of these entries in the same row or column. - Richard Stanley, Nov 19 2014
In a tiling of the triangular shape T_N with row length k for row k = 1, 2, ..., N >= 1 (or, alternatively row length N = 1-k for row k) with rectangular tiles, there can appear rectangles (i, j), N >= i >= j >= 1, of a(N+1) types (and their transposed shapes obtained by interchanging i and j). See the Feb 27 2004 comment above from Rick L. Shepherd. The motivation to look into this came from a proposal of Kival Ngaokrajang in A247139. - Wolfdieter Lang, Dec 09 2014
Every positive integer is a sum of at most four distinct quarter-squares; see A257018. - Clark Kimberling, Apr 15 2015
a(n+1) gives the maximal number of distinct elements of an n X n matrix which is symmetric (w.r.t. the main diagonal) and symmetric w.r.t. the main antidiagonal. Such matrices are called bisymmetric. See the Wikipedia link. - Wolfdieter Lang, Jul 07 2015
For 2^a(n+1), n >= 1, the number of binary bisymmetric n X n matrices, see A060656(n+1) and the comment and link by Dennis P. Walsh. - Wolfdieter Lang, Aug 16 2015
a(n) is the number of partitions of 2n+1 of length three with exactly two even entries (see below example). - John M. Campbell, Jan 29 2016
a(n) is the sum of the asymmetry degrees of all 01-avoiding binary words of length n. The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. a(6) = 9 because the 01-avoiding binary words of length 6 are 000000, 100000, 110000, 111000, 111100, 111110, and 111111, and the sum of their asymmetry degrees is 0 + 1 + 2 + 3 + 2 + 1 + 0 = 9. Equivalently, a(n) = Sum_{k>=0} k*A275437(n,k). - Emeric Deutsch, Aug 15 2016
a(n) is the number of ways to represent all the integers in the interval [3,n+1] as the sum of two distinct natural numbers. E.g., a(7)=12 as there are 12 different ways to represent all the numbers in the interval [3,8] as the sum of two distinct parts: 1+2=3, 1+3=4, 1+4=5, 1+5=6, 1+6=7, 1+7=8, 2+3=5, 2+4=6, 2+5=7, 2+6=8, 3+4=7, 3+5=8. - Anton Zakharov, Aug 24 2016
a(n+2) is the number of conjugacy classes of involutions (considering the identity as an involution) in the hyperoctahedral group C_2 wreath S_n. - Mark Wildon, Apr 22 2017
a(n+2) is the maximum number of pieces of a pizza that can be made with n cuts that are parallel or perpendicular to each other. - Anton Zakharov, May 11 2017
Also the matching number of the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017
The answer to a question posed by W. Mantel: a(n) is the maximum number of edges in an n-vertex triangle-free graph. Also solved by H. Gouwentak, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff. - Charles R Greathouse IV, Feb 01 2018
Number of nonisomorphic outer planar graphs of order n >= 3, size n+2, and maximum degree 4. - Christian Barrientos and Sarah Minion, Feb 27 2018
Maximum area of a rectangle with perimeter 2n and sides of integer length. - André Engels, Jul 29 2018
Also the crossing number of the complete bipartite graph K_{3,n+1}. - Eric W. Weisstein, Sep 11 2018
a(n+2) is the number of distinct genotype frequency vectors possible for a sample of n diploid individuals at a biallelic genetic locus with a specified major allele. Such vectors are the lists of nonnegative genotype frequencies (n_AA, n_AB, n_BB) with n_AA + n_AB + n_BB = n and n_AA >= n_BB. - Noah A Rosenberg, Feb 05 2019
a(n+2) is the number of distinct real spectra (eigenvalues repeated according to their multiplicity) for an orthogonal n X n matrix. The case of an empty spectrum list is logically counted as one of those possibilities, when it exists. Thus a(n+2) is the number of distinct reduced forms (on the real field, in orthonormal basis) for elements in O(n). - Christian Devanz, Feb 13 2019
a(n) is the number of non-isomorphic asymmetric graphs that can be created by adding a single edge to a path on n+4 vertices. - Emma Farnsworth, Natalie Gomez, Herlandt Lino, and Darren Narayan, Jul 03 2019
a(n+1) is the number of integer triangles with maximum side-length n. - James East, Oct 30 2019
a(n) is the number of nonempty subsets of {1,2,...,n} that contain exactly one odd and one even number. For example, for n=7, a(7)=12 and the 12 subsets are {1,2}, {1,4}, {1,6}, {2,3}, {2,5}, {2,7}, {3,4}, {3,6}, {4,5}, {4,7}, {5,6}, {6,7}. - Enrique Navarrete, Dec 16 2019
a(n+1) is also the n-th term of the Saind sequence (w_n)_{n>=1}, i.e., the infinite sequence caused by the entries of the queue of the degree sequences associated with the Saind arrays, as n increases. - Giulia Palma, Jun 24 2020
Aside from the first two terms, a(n) enumerates the number of distinct normal ordered terms in the expansion of the differential operator (x + d/dx)^m associated to the Hermite polynomials and the Heisenberg-Weyl algebra. It also enumerates the number of distinct monomials in the bivariate polynomials corresponding to the partial sums of the series for cos(x+y) and sin(x+y). Cf. A344678. - Tom Copeland, May 27 2021
a(n) is the maximal number of negative products a_i * a_j (1 <= i <= j <= n), where all a_i are real numbers. - Logan Pipes, Jul 08 2021
From Allan Bickle, Dec 20 2021: (Start)
a(n) is the maximum product of the chromatic numbers of a graph of order n-1 and its complement. The extremal graphs are characterized in the papers of Finck (1968) and Bickle (2023).
a(n) is the maximum product of the degeneracies of a graph of order n+1 and its complement. The extremal graphs are characterized in the paper of Bickle (2012). (End)
a(n) is the maximum number m such that m white rooks and m black rooks can coexist on an n-1 X n-1 chessboard without attacking each other. - Aaron Khan, Jul 13 2022
Partial sums of A004526. - Bernard Schott, Jan 06 2023
a(n) is the number of 231-avoiding odd Grassmannian permutations of size n. - Juan B. Gil, Mar 10 2023
a(n) is the number of integer tuples (x,y) satisfying n + x + y >= 0, 25*n + x - 11*y >=0, 25*n - 11*x + y >=0, n + x + y == 0 (mod 12) , 25*n + x - 11*y == 0 (mod 5), 25*n - 11*x + y == 0 (mod 5) . For n=2, the sole solution is (x,y) = (0,0) and so a(2) = 1. For n = 3, the a(3) = 2 solutions are (-3, 2) and (2, -3). - Jeffery Opoku, Feb 16 2024
Let us consider triangles whose vertices are the centers of three squares constructed on the sides of a right triangle. a(n) is the integer part of the area of these triangles, taken without repetitions and in ascending order. See the illustration in the links. - Nicolay Avilov, Aug 05 2024
REFERENCES
Sergei Abramovich, Combinatorics of the Triangle Inequality: From Straws to Experimental Mathematics for Teachers, Spreadsheets in Education (eJSiE), Vol. 9, Issue 1, Article 1, 2016. See Fig. 3.
G. L. Alexanderson et al., The William Powell Putnam Mathematical Competition - Problems and Solutions: 1965-1984, M.A.A., 1985; see Problem A-1 of 27th Competition.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 25.
Michael Doob, The Canadian Mathematical Olympiad -- L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society -- Société Mathématique du Canada, Problème 9, 1970, pp 22-23, 1993.
H. J. Finck, On the chromatic numbers of a graph and its complement. Theory of Graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York (1968), 99-113.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 99.
D. E. Knuth, The art of programming, Vol. 1, 3rd Edition, Addison-Wesley, 1997, Ex. 36 of section 1.2.4.
J. Nelder, Critical sets in Latin squares, CSIRO Division of Math. and Stats. Newsletter, Vol. 38 (1977), p. 4.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 0..10000
Suayb S. Arslan, Asymptotically MDS Array BP-XOR Codes, arXiv:1709.07949 [cs.IT], 2017.
J. A. Bate and G. H. J. van Rees, The Size of the Smallest Strong Critical Set in a Latin Square, Ars Combinatoria, Vol. 53 (1999) 73-83.
M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS, Vol. 13 (2010), Article 10.3.5, Lemma 6 first line.
Allan Bickle, Nordhaus-Gaddum Theorems for k-Decompositions, Congr. Num., Vol. 211 (2012), pp. 171-183.
Allan Bickle, Extremal Decompositions for Nordhaus-Gaddum Theorems, Discrete Math, 346 7 (2023), 113392.
G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, Vol. 10 (1962), pp. 55-69, 103. [Annotated scanned copy] See Table 4, row 3.
J. Brandts and C. Cihangir, Counting triangles that share their vertices with the unit n-cube, in Conference Applications of Mathematics 2013 in honor of the 70th birthday of Karel Segeth. Jan Brandts, Sergey Korotov, et al., eds., Institute of Mathematics AS CR, Prague 2013.
Jan Brandts and A Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
P. J. Cameron, BCC Problem List, Problem BCC15.15 (DM285), Discrete Math., Vol. 167/168 (1997), pp. 605-615.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seq., Vol. 3 (2000), Article 00.1.5.
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
Bakir Farhi, On the Representation of the Natural Numbers as the Sum of Three Terms of the Sequence floor(n^2/a), Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.4.
E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., Vol. 26 (1955), pp. 301-312.
E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., Vol. 26 (1955), pp. 301-312. [Annotated scanned copy]
A. Ganesan, Automorphism groups of graphs, arXiv preprint arXiv:1206.6279 [cs.DM], 2012. - From N. J. A. Sloane, Dec 17 2012
Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
J. W. L. Glaisher and G. Carey Foster, The Method of Quarter Squares, Journal of the Institute of Actuaries, Vol. 28, No. 3, January, 1890, pp. 227-235.
E. Gottlieb and M. Sheard, An Erdős-Szekeres result for set partitions, Slides from a talk, Nov 14 2014. [A006260 is a typo for A002620]
Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute (Massachusetts, 2019).
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, Journal of Number Theory, 258, 281-333, (2024). See Corollary 2.5 page 11.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 36.
O. A. Ivanov, On the number of regions into which n straight lines divide the plane, Amer. Math. Monthly, 117 (2010), 881-888. See Th. 4.
T. Jenkyns and E. Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly, Vol. 107 (Aug. 2000), pp. 634-639.
Paloma Jiménez-Sepúlveda and Luis Manuel Rivera, Independence numbers of some double vertex graphs and pair graphs, arXiv:1810.06354 [math.CO], 2018.
V. Jovovic, Vladeta Jovovic, Number of binary matrices.
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seq., Vol. 7 (2004), Article 04.1.6.
Jukka Kohonen, Counting graded lattices of rank three that have few coatoms, arXiv:1804.03679 [math.CO], 2018.
S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta and K.M. Tamizhmani, Blending two discrete integrability criteria: ..., arXiv:nlin/0104020 [nlin.SI], 2001.
W. Lanssens, B. Demoen and P.-L. Nguyen, The Diagonal Latin Tableau and the Redundancy of its Disequalities, Report CW 666, July 2014, Department of Computer Science, KU Leuven.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
W. Mantel and W. A. Wythoff, Vraagstuk XXVIII, Wiskundige Opgaven, Vol. 10 (1907), pp. 60-61.
Rene Marczinzik, Finitistic Auslander algebras, arXiv:1701.00972 [math.RT], 2017 [Page 9, Conjecture].
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Emanuele Munarini, Topological indices for the antiregular graphs, Le Mathematiche, Vol. 76, No. 1 (2021), pp. 277-310, see page 282.
E. A. Nordhaus and J. Gaddum, On complementary graphs, Amer. Math. Monthly, Vol. 63 (1956), pp. 175-177.
Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv:0810.0231v1 [quant-ph], 2008. [Eq 8a, lambda=2]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009;
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
N. Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets, Order, Vol. 19, No. 1 (2002), pp. 73-100.
Denis Roegel, A reconstruction of Blater’s table of quarter-squares (1887), Locomat Project, 6 November 2013.
N. J. A. Sloane, Classic Sequences.
Sam E. Speed, The Integer Sequence A002620 and Upper Antagonistic Functions, Journal of Integer Sequences, Vol. 6 (2003), Article 03.1.4.
Eric Weisstein's World of Mathematics, Black Bishop Graph.
Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
Eric Weisstein's World of Mathematics, Graph Crossing Number.
Eric Weisstein's World of Mathematics, Matching Number.
Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008), pp. 45-52.
Wikipedia, Bisymmetric Matrix.
FORMULA
a(n) = (2*n^2-1+(-1)^n)/8. - Paul Barry, May 27 2003
G.f.: x^2/((1-x)^2*(1-x^2)) = x^2 / ( (1+x)*(1-x)^3 ). - Simon Plouffe in his 1992 dissertation, leading zeros dropped
E.g.f.: exp(x)*(2*x^2+2*x-1)/8 + exp(-x)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Jaume Oliver Lafont, Dec 05 2008
a(-n) = a(n) for all n in Z.
a(n) = a(n-1) + floor(n/2), n > 0. Partial sums of A004526. - Adam Kertesz, Sep 20 2000
a(n) = a(n-1) + a(n-2) - a(n-3) + 1 [with a(-1) = a(0) = a(1) = 0], a(2k) = k^2, a(2k-1) = k(k-1). - Henry Bottomley, Mar 08 2000
0*0, 0*1, 1*1, 1*2, 2*2, 2*3, 3*3, 3*4, ... with an obvious pattern.
a(n) = Sum_{k=1..n} floor(k/2). - Yong Kong (ykong(AT)curagen.com), Mar 10 2001
a(n) = n*floor((n-1)/2) - floor((n-1)/2)*(floor((n-1)/2)+ 1); a(n) = a(n-2) + n-2 with a(1) = 0, a(2) = 0. - Santi Spadaro, Jul 13 2001
Also: a(n) = binomial(n, 2) - a(n-1) = A000217(n-1) - a(n-1) with a(0) = 0. - Labos Elemer, Apr 26 2003
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k, 2). - Paul Barry, Jul 01 2003
a(n) = (-1)^n * partial sum of alternating triangular numbers. - Jon Perry, Dec 30 2003
a(n) = A024206(n+1) - n. - Philippe Deléham, Feb 27 2004
a(n) = a(n-2) + n - 1, n > 1. - Paul Barry, Jul 14 2004
a(n+1) = Sum_{i=0..n} min(i, n-i). - Marc LeBrun, Feb 15 2005
a(n+1) = Sum_{k = 0..floor((n-1)/2)} n-2k; a(n+1) = Sum_{k=0..n} k*(1-(-1)^(n+k-1))/2. - Paul Barry, Apr 16 2005
a(n) = A108561(n+1,n-2) for n > 2. - Reinhard Zumkeller, Jun 10 2005
1 + 1/(1 + 2/(1 + 4/(1 + 6/(1 + 9/(1 + 12/(1 + 16/(1 + ...))))))) = 6/(Pi^2 - 6) = 1.550546096730... - Philippe Deléham, Jun 20 2005
a(n) = Sum_{k=0..n} Min_{k, n-k}, sums of rows of the triangle in A004197. - Reinhard Zumkeller, Jul 27 2005
For n > 2 a(n) = a(n-1) + ceiling(sqrt(a(n-1))). - Jonathan Vos Post, Jan 19 2006
Sequence starting (2, 2, 4, 6, 9, ...) = A128174 (as an infinite lower triangular matrix) * vector [1, 2, 3, ...]; where A128174 = (1; 0,1; 1,0,1; 0,1,0,1; ...). - Gary W. Adamson, Jul 27 2007
a(n) = Sum_{i=k..n} P(i, k) where P(i, k) is the number of partitions of i into k parts. - Thomas Wieder, Sep 01 2007
a(n) = sum of row (n-2) of triangle A115514. - Gary W. Adamson, Oct 25 2007
For n > 1: gcd(a(n+1), a(n)) = a(n+1) - a(n). - Reinhard Zumkeller, Apr 06 2008
a(n+3) = a(n) + A000027(n) + A008619(n+1) = a(n) + A001651(n+1) with a(1) = 0, a(2) = 0, a(3) = 1. - Yosu Yurramendi, Aug 10 2008
a(2n) = A000290(n). a(2n+1) = A002378(n). - Gary W. Adamson, Nov 29 2008
a(n+1) = a(n) + A110654(n). - Reinhard Zumkeller, Aug 06 2009
a(n) = Sum_{k=0..n} (k mod 2)*(n-k); Cf. A000035, A001477. - Reinhard Zumkeller, Nov 05 2009
a(n-1) = (n*n - 2*n + n mod 2)/4. - Ctibor O. Zizka, Nov 23 2009
a(n) = round((2*n^2-1)/8) = round(n^2/4) = ceiling((n^2-1)/4). - Mircea Merca, Nov 29 2010
n*a(n+2) = 2*a(n+1) + (n+2)*a(n). Holonomic Ansatz with smallest order of recurrence. - Thotsaporn Thanatipanonda, Dec 12 2010
a(n+1) = (n*(2+n) + n mod 2)/4. - Fred Daniel Kline, Sep 11 2011
a(n) = A199332(n, floor((n+1)/2)). - Reinhard Zumkeller, Nov 23 2011
a(n) = floor(b(n)) with b(n) = b(n-1) + n/(1+e^(1/n)) and b(0)= 0. - Richard R. Forberg, Jun 08 2013
a(n) = Sum_{i=1..floor((n+1)/2)} (n+1)-2i. - Wesley Ivan Hurt, Jun 09 2013
a(n) = floor((n+2)/2 - 1)*(floor((n+2)/2)-1 + (n+2) mod 2). - Wesley Ivan Hurt, Jun 09 2013
Sum_{n>=2} 1/a(n) = 1 + zeta(2) = 1+A013661. - Enrique Pérez Herrero, Jun 30 2013
Empirical: a(n-1) = floor(n/(e^(4/n)-1)). - Richard R. Forberg, Jul 24 2013
a(n) = A007590(n)/2. - Wesley Ivan Hurt, Mar 08 2014
A237347(a(n)) = 3; A235711(n) = A003415(a(n)). - Reinhard Zumkeller, Mar 18 2014
A240025(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
0 = a(n)*a(n+2) + a(n+1)*(-2*a(n+2) + a(n+3)) for all integers n. - Michael Somos, Nov 22 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n-1)/2). - Wesley Ivan Hurt, Mar 12 2015
a(4n+1) = A002943(n) for all n>=0. - M. F. Hasler, Oct 11 2015
a(n+2)-a(n-2) = A004275(n+1). - Anton Zakharov, May 11 2017
a(n) = floor(n/2)*floor((n+1)/2). - Bruno Berselli, Jun 08 2017
a(n) = a(n-3) + floor(3*n/2) - 2. - Yuchun Ji, Aug 14 2020
a(n)+a(n+1) = A000217(n). - R. J. Mathar, Mar 13 2021
a(n) = A004247(n,floor(n/2)). - Logan Pipes, Jul 08 2021
a(n) = floor(n^2/2)/2. - Clark Kimberling, Dec 05 2021
Sum_{n>=2} (-1)^n/a(n) = Pi^2/6 - 1. - Amiram Eldar, Mar 10 2022
EXAMPLE
a(3) = 2, floor(3/2)*ceiling(3/2) = 2.
[ n] a(n)
---------
[ 2] 1
[ 3] 2
[ 4] 1 + 3
[ 5] 2 + 4
[ 6] 1 + 3 + 5
[ 7] 2 + 4 + 6
[ 8] 1 + 3 + 5 + 7
[ 9] 2 + 4 + 6 + 8
From Wolfdieter Lang, Dec 09 2014: (Start)
Tiling of a triangular shape T_N, N >= 1 with rectangles:
N=5, n=6: a(6) = 9 because all the rectangles (i, j) (modulo transposition, i.e., interchange of i and j) which are of use are:
(5, 1) ; (1, 1)
(4, 2), (4, 1) ; (2, 2), (2, 1)
; (3, 3), (3, 2), (3, 1)
That is (1+1) + (2+2) + 3 = 9 = a(6). Partial sums of 1, 1, 2, 2, 3, ... (A004526). (End)
Bisymmetric matrices B: 2 X 2, a(3) = 2 from B[1,1] and B[1,2]. 3 X 3, a(4) = 4 from B[1,1], B[1,2], B[1,3], and B[2,2]. - Wolfdieter Lang, Jul 07 2015
From John M. Campbell, Jan 29 2016: (Start)
Letting n=5, there are a(n)=a(5)=6 partitions of 2n+1=11 of length three with exactly two even entries:
(8,2,1) |- 2n+1
(7,2,2) |- 2n+1
(6,4,1) |- 2n+1
(6,3,2) |- 2n+1
(5,4,2) |- 2n+1
(4,4,3) |- 2n+1
(End)
From Aaron Khan, Jul 13 2022: (Start)
Examples of the sequence when used for rooks on a chessboard:
.
A solution illustrating a(5)=4:
+---------+
| B B . . |
| B B . . |
| . . W W |
| . . W W |
+---------+
.
A solution illustrating a(6)=6:
+-----------+
| B B . . . |
| B B . . . |
| B B . . . |
| . . W W W |
| . . W W W |
+-----------+
(End)
MAPLE
A002620 := n->floor(n^2/4); G002620 := series(x^2/((1-x)^2*(1-x^2)), x, 60);
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card<r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m), m=0..57) ; # Zerinvary Lajos, Mar 09 2007
MATHEMATICA
Table[Ceiling[n/2] Floor[n/2], {n, 0, 56}] (* Robert G. Wilson v, Jun 18 2005 *)
LinearRecurrence[{2, 0, -2, 1}, {0, 0, 1, 2}, 60] (* Harvey P. Dale, Oct 05 2012 *)
Table[Floor[n^2/4], {n, 0, 20}] (* Eric W. Weisstein, Sep 11 2018 *)
Floor[Range[0, 20]^2/4] (* Eric W. Weisstein, Sep 11 2018 *)
CoefficientList[Series[-(x^2/((-1 + x)^3 (1 + x))), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 11 2018 *)
Table[Floor[n^2/2]/2, {n, 0, 56}] (* Clark Kimberling, Dec 05 2021 *)
PROG
(Magma) [ Floor(n/2)*Ceiling(n/2) : n in [0..40]];
(PARI) a(n)=n^2\4
(PARI) (t(n)=n*(n+1)/2); for(i=1, 50, print1(", ", (-1)^i*sum(k=1, i, (-1)^k*t(k))))
(PARI) a(n)=n^2>>2 \\ Charles R Greathouse IV, Nov 11 2009
(PARI) x='x+O('x^100); concat([0, 0], Vec(x^2/((1-x)^2*(1-x^2)))) \\ Altug Alkan, Oct 15 2015
(Haskell)
a002620 = (`div` 4) . (^ 2) -- Reinhard Zumkeller, Feb 24 2012
(Maxima) makelist(floor(n^2/4), n, 0, 50); /* Martin Ettl, Oct 17 2012 */
(Sage)
def A002620():
x, y = 0, 1
yield x
while true:
yield x
x, y = x + y, x//y + 1
a = A002620(); print([next(a) for i in range(58)]) # Peter Luschny, Dec 17 2015
(GAP) # using the formula by Paul Barry
A002620 := List([1..10^4], n-> (2*n^2 - 1 + (-1)^n)/8); # Muniru A Asiru, Feb 01 2018
(Python)
def A002620(n): return (n**2)>>2 # Chai Wah Wu, Jul 07 2022
CROSSREFS
A087811 is another version of this sequence.
Differences of A002623. Complement of A049068.
a(n) = A014616(n-2) + 2 = A033638(n) - 1 = A078126(n) + 1. Cf. A055802, A055803.
Antidiagonal sums of array A003983.
Cf. A033436 - A033444. - Reinhard Zumkeller, Nov 30 2009
Elliptic troublemaker sequences: A000212 (= R_n(1,3) = R_n(2,3)), A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A077043, A060656 (2^a(n)), A344678.
Cf. A250000 (queens on a chessboard), A176222 (kings on a chessboard), A355509 (knights on a chessboard).
Maximal product of k positive integers with sum n, for k = 2..10: this sequence (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
KEYWORD
nonn,easy,nice,core
STATUS
approved
Apéry's number or Apéry's constant zeta(3). Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.
(Formerly M0020)
+10
437
1, 2, 0, 2, 0, 5, 6, 9, 0, 3, 1, 5, 9, 5, 9, 4, 2, 8, 5, 3, 9, 9, 7, 3, 8, 1, 6, 1, 5, 1, 1, 4, 4, 9, 9, 9, 0, 7, 6, 4, 9, 8, 6, 2, 9, 2, 3, 4, 0, 4, 9, 8, 8, 8, 1, 7, 9, 2, 2, 7, 1, 5, 5, 5, 3, 4, 1, 8, 3, 8, 2, 0, 5, 7, 8, 6, 3, 1, 3, 0, 9, 0, 1, 8, 6, 4, 5, 5, 8, 7, 3, 6, 0, 9, 3, 3, 5, 2, 5, 8, 1, 4, 6, 1, 9, 9, 1, 5
OFFSET
1,2
COMMENTS
Sometimes called Apéry's constant.
"A natural question is whether Zeta(3) is a rational multiple of Pi^3. This is not known, though in 1978 R. Apéry succeeded in proving that Zeta(3) is irrational. In Chapter 8 we pointed out that the probability that two random integers are relatively prime is 6/Pi^2, which is 1/Zeta(2). This generalizes to: The probability that k random integers are relatively prime is 1/Zeta(k) ... ." [Stan Wagon]
In 2001 Tanguy Rivoal showed that there are infinitely many odd (positive) integers at which zeta is irrational, including at least one value j in the range 5 <= j <= 21 (refined the same year by Zudilin to 5 <= j <= 11), at which zeta(j) is irrational. See the Rivoal link for further information and references.
The reciprocal of this constant is the probability that three integers chosen randomly using uniform distribution are relatively prime. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2005
Also the value of zeta(1,2), the double zeta-function of arguments 1 and 2. - R. J. Mathar, Oct 10 2011
Also the length of minimal spanning tree for large complete graph with uniform random edge lengths between 0 and 1, cf. link to John Baez's comment. - M. F. Hasler, Sep 26 2017
Sum of the inverses of the cubes (A000578). - Michael B. Porter, Nov 27 2017
This number is the average value of sigma_2(n)/n^2 where sigma_2(n) is the sum of the squares of the divisors of n. - Dimitri Papadopoulos, Jan 07 2022
REFERENCES
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 40-53.
A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
R. William Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, Computers in Mathematics (Stanford CA, 1986); Lecture Notes in Pure and Appl. Math., Dekker, New York, 125 (1990), 261-284; MR 91h:11154.
Xavier Gourdon, Analyse, Les Maths en tête, Ellipses, 1994, Exemple 3, page 224.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 6 edition (2008), pp. 47, 268-269.
Paul Levrie, The Ubiquitous Apéry Number, Math. Intelligencer, Vol. 45, No. 2, 2023, pp. 118-119.
A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
Paul J. Nahin, In Pursuit of Zeta-3, Princeton University Press, 2021.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Stan Wagon, Mathematica In Action, W. H. Freeman and Company, NY, 1991, page 354.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.
A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover (1987), Ex. 92-93.
LINKS
T. Amdeberhan, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998.
Kunihiro Aoki and Ryo Furue, A model for the size distribution of marine microplastics: a statistical mechanics approach, arXiv:2103.10221 [physics.ao-ph], 2021.
Peter Bala, Some series for zeta(3), Nov 2023.
John Baez, Comments about zeta(3), Azimuth Project blog, August 2017.
R. Barbieri, J. A. Mignaco, and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, table II (7), (9), (19).
J. Borwein and D. Bradley, Empirically determined Apéry-like formulas for zeta(4n+3), arXiv:math/0505124 [math.CA], 2005.
Mainendra Kumar Dewangan and Subhra Datta, Effective permeability tensor of confined flows with wall grooves of arbitrary shape, J. of Fluid Mechanics (2020) Vol. 891.
L. Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
X. Gourdon and P. Sebah, The Apery's constant: zeta(3).
Brady Haran and Tony Padilla, Apéry's constant (calculated with Twitter), Numberphile video (2017).
W. Janous, Around Apéry's constant, J. Inequ. Pure Appl. Math. 7(1) (2006), #35.
Yasuyuki Kachi and Pavlos Tzermias, Infinite products involving zeta(3) and Catalan's constant, Journal of Integer Sequences, 15 (2012), #12.9.4.
Masato Kobayashi, Integral representations for zeta(3) with the inverse sine function, arXiv:2108.01247 [math.NT], 2021.
M. Kondratiewa and S. Sadov, Markov's transformation of series and the WZ method, arXiv:math/0405592 [math.CA], 2004.
Tobias Kyrion, A closed-form expression for zeta(3), arXiv:2008.05573 [math.GM], 2020.
C. Lupu and D. Orr, Series representations for the Apéry constant zeta(3) involving the values zeta(2n), Ramanujan J. 48(3) (2019), 477-494.
R. J. Mathar, Yet another table of integrals, arXiv:1207.5845 [math.CA], 2012-2014.
G. P. Michon, Roger Apéry, Numericana.
Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file).
A. van der Poorten, A Proof that Euler Missed.
Ernst E. Scheufens, From Fourier series to rapidly convergent series for zeta(3), Mathematics Magazine, Vol. 84, No. 1 (2011), pp. 26-32.
G. Villemin's Almanach of Numbers, Constante d'Apéry (in French).
S. Wedeniwski, The value of zeta(3) to 1000000 places [Gutenberg Project Etext].
S. Wedeniwski, Plouffe's Inverter, Apery's constant to 128000026 decimal digits.
Eric Weisstein's World of Mathematics, Apéry's Constant.
Eric Weisstein's World of Mathematics, Relatively Prime.
H. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics and Theoretical Computer Science 3(4) (1999), 189-192.
Wenzhe Yang, Apéry's irrationality proof, mirror symmetry and Beukers' modular forms, arXiv:1911.02608 [math.NT], 2019.
Wadim Zudilin, An elementary proof of Apéry's theorem, arXiv:math/0202159 [math.NT], 2002.
FORMULA
Lima gives an approximation to zeta(3) as (236*log(2)^3)/197 - 283/394*Pi*log(2)^2 + 11/394*Pi^2*log(2) + 209/394*log(sqrt(2) + 1)^3 - 5/197 + (93*Catalan*Pi)/197. - Jonathan Vos Post, Oct 14 2009 [Corrected by Wouter Meeussen, Apr 04 2010]
zeta(3) = 5/2*Integral_(x=0..2*log((1+sqrt(5))/2), x^2/(exp(x)-1)) + 10/3*(log((1+sqrt(5))/2))^3. - Seiichi Kirikami, Aug 12 2011
zeta(3) = -4/3*Integral_{x=0..1} log(x)/x*log(1+x) = Integral_{x=0..1} log(x)/x*log(1-x) = -4/7*Integral_{x=0..1} log(x)/x*log((1+x)/(1-x)) = 4*Integral_{x=0..1} 1/x*log(1+x)^2 = 1/2*Integral_{x=0..1} 1/x*log(1-x)^2 = -16/7*Integral_{x=0..Pi/2} x*log(2*cos(x)) = -4/Pi*Integral_{x=0..Pi/2} x^2*log(2*cos(x)). - Jean-François Alcover, Apr 02 2013, after R. J. Mathar
From Peter Bala, Dec 04 2013: (Start)
zeta(3) = (16/7)*Sum_{k even} (k^3 + k^5)/(k^2 - 1)^4.
zeta(3) - 1 = Sum_{k >= 1} 1/(k^3 + 4*k^7) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n - 1)^6/((2*n - 1)*(n^2 - n + 5) - ...))))) (continued fraction).
More generally, there is a sequence of polynomials P(n,x) (of degree 2*n) such that
zeta(3) - Sum_{k = 1..n} 1/k^3 = Sum_{k >= 1} 1/( k^3*P(n,k-1)*P(n,k) ) = 1/((2*n^2 + 2*n + 1) - 1^6/(3*(2*n^2 + 2*n + 3) - 2^6/(5*(2*n^2 + 2*n + 7) - 3^6/(7*(2*n^2 + 2*n + 13) - ...)))) (continued fraction). See A143003 and A143007 for details.
Series acceleration formulas:
zeta(3) = (5/2)*Sum_{n >= 1} (-1)^(n+1)/( n^3*binomial(2*n,n) )
= (5/2)*Sum_{n >= 1} P(n)/( (2*n(2*n - 1))^3*binomial(4*n,2*n) )
= (5/2)*Sum_{n >= 1} (-1)^(n+1)*Q(n)/( (3*n(3*n - 1)*(3*n - 2))^3*binomial(6*n,3*n) ), where P(n) = 24*n^3 + 4*n^2 - 6*n + 1 and Q(n) = 9477*n^6 - 11421*n^5 + 5265*n^4 - 1701*n^3 + 558*n^2 - 108*n + 8 (Bala, section 7). (End)
zeta(3) = Sum_{n >= 1} (A010052(n)/n^(3/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(3/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(3) = Product_{k>=1} 1/(1 - 1/prime(k)^3). - Vaclav Kotesovec, Apr 30 2020
zeta(3) = 4*(2*log(2) - 1 - 2*Sum_{k>=2} zeta(2*k+1)/2^(2*k+1)). - Jorge Coveiro, Jun 21 2020
zeta(3) = (4*zeta'''(1/2)*(zeta(1/2))^2-12*zeta(1/2)*zeta'(1/2)*zeta''(1/2)+8*(zeta'(1/2))^3-Pi^3*(zeta(1/2))^3)/(28*(zeta(1/2))^3). - Artur Jasinski, Jun 27 2020
zeta(3) = Sum_{k>=1} H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 31 2020
From Artur Jasinski, Sep 30 2020: (Start)
zeta(3) = (5/4)*Li_3(1/f^2) + Pi^2*log(f)/6 - 5*log(f)^3/6,
zeta(3) = (8/7)*Li_3(1/2) + (2/21)*Pi^2 log(2) - (4/21) log(2)^3, where f is golden ratio (A001622) and Li_3 is the polylogarithm function, formulas published by John Landen in 1780, p. 118. (End)
zeta(3) = (1/2)*Integral_{x=0..oo} x^2/(e^x-1) dx (Gourdon). - Bernard Schott, Apr 28 2021
From Peter Bala, Jan 18 2022: (Start)
zeta(3) = 1 + Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)) = 25/24 + (2!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)) = 28333/27000 + (3!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)*(4*n^4 + 3^4)). In general, for k >= 1, we have zeta(3) = r(k) + (k!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*...*(4*n^4 + k^4)), where r(k) is rational.
zeta(3) = (6/7) + (64/7)*Sum_{n >= 1} n/(4*n^2 - 1)^3.
More generally, for k >= 0, it appears that zeta(3) = a(k) + b(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^3, where a(k) and b(k) are rational.
zeta(3) = (10/7) - (128/7)*Sum_{n >= 1} n/(4*n^2 - 1)^4.
More generally, for k >= 0, it appears that zeta(3) = c(k) + d(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^4, where c(k) and d(k) are rational. [added Nov 27 2023: for the values of a(k), b(k), c(k) and d(k) see the Bala 2023 link, Sections 8 and 9.]
zeta(3) = 2/3 + (2^13)/(3*7)*Sum_{n >= 1} n^3/(4*n^2 - 1)^6. (End)
zeta(3) = -Psi(2)(1/2)/14 (the second derivative of digamma function evaluated at 1/2). - Artur Jasinski, Mar 18 2022
zeta(3) = -(8*Pi^2/9) * Sum_{k>=0} zeta(2*k)/((2*k+1)*(2*k+3)*4^k) = (2*Pi^2/9) * (log(2) + 2 * Sum_{k>=0} zeta(2*k)/((2*k+3)*4^k)) (Scheufens, 2011, Glasser Math. Comp. 22 1968). - Amiram Eldar, May 28 2022
zeta(3) = Sum_{k>=1} (30*k-11) / (4*(2k-1)*k^3*(binomial(2k,k))^2) (Gosper, 1986 and Richard K. Guy reference). - Bernard Schott, Jul 20 2022
zeta(3) = (4/3)*Integral_{x >= 1} x*log(x)*(1 + log(x))*log(1 + 1/x^x) dx = (2/3)*Integral_{x >= 1} x^2*log(x)^2*(1 + log(x))/(1 + x^x) dx. - Peter Bala, Nov 27 2023
zeta_3(n) = 1/180*(-360*n^3*f(-3, n/4) + Pi^3*(n^4 + 20*n^2 + 16))/(n*(n^2 + 4)), where f(-3, n) = Sum_{k>=1} 1/(k^3*(exp(Pi*k/n) - 1)). Will give at least 1 digit of precision/term, example: zeta_3(5) = 1.202056944732.... - Simon Plouffe, Dec 21 2023
zeat(3) = 1 + (1/2)*Sum_{n >= 1} (2*n + 1)/(n^3*(n + 1)^3) = 5/4 - (1/4)*Sum_{n >= 1} (2*n + 1)/(n^4*(n + 1)^4) = 147/120 + (2/15)*Sum_{n >= 1} (2*n + 1)/(n^5*(n + 1)^5) - (64/15)*Sum_{n >= 1} (n + 1)/(n^5*(n + 2)^5) = 19/16 + (128/21)*Sum_{n >= 1} (n + 1)/(n^6*(n + 2)^6) - (1/21)*Sum_{n >= 1} (2*n + 1)/(n^6*(n + 1)^6). - Peter Bala, Apr 15 2024
EXAMPLE
1.2020569031595942853997...
MAPLE
# Calculates an approximation with n exact decimal places (small deviation
# in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
zeta3 := proc(n) local s, w, v, k; s := 0; w := -1; v := 4;
for k from 2 by 2 to 7*n/2 do
w := -w*v/k;
v := v + 8;
s := s + 1/(w*k^3);
od; 20*s; evalf(%, n) end:
zeta3(10000); # Peter Luschny, Jun 10 2020
MATHEMATICA
RealDigits[ N[ Zeta[3], 100] ] [ [1] ]
(* Second program (historical interest): *)
d[n_] := 34*n^3 + 51*n^2 + 27*n + 5; 6/Fold[Function[d[#2-1] - #2^6/#1], 5, Reverse[Range[100]]] // N[#, 108]& // RealDigits // First
(* Jean-François Alcover, Sep 19 2014, after Apéry's continued fraction *)
PROG
(PARI) default(realprecision, 20080); x=zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002117.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
(Maxima) fpprec : 100$ ev(bfloat(zeta(3)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
(Python)
from mpmath import mp, apery
mp.dps=109
print([int(z) for z in list(str(apery).replace('.', ''))[:-1]]) # Indranil Ghosh, Jul 08 2017
(Magma) L:=RiemannZeta(: Precision:=100); Evaluate(L, 3); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A197070: 3*zeta(3)/4; A233090: 5*zeta(3)/8; A233091: 7*zeta(3)/8.
Cf. A000578 (cubes).
Cf. sums of inverses: A152623 (tetrahedral numbers), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).
KEYWORD
cons,nonn,nice
EXTENSIONS
More terms from David W. Wilson
Additional comments from Robert G. Wilson v, Dec 08 2000
Quotation from Stan Wagon corrected by N. J. A. Sloane on Dec 24 2005. Thanks to Jose Brox for noticing this error.
Edited by M. F. Hasler, Sep 26 2017
STATUS
approved
a(n) = 2*n^2.
+10
227
0, 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242, 288, 338, 392, 450, 512, 578, 648, 722, 800, 882, 968, 1058, 1152, 1250, 1352, 1458, 1568, 1682, 1800, 1922, 2048, 2178, 2312, 2450, 2592, 2738, 2888, 3042, 3200, 3362, 3528, 3698, 3872, 4050, 4232, 4418
OFFSET
0,2
COMMENTS
Number of edges of the complete bipartite graph of order 3n, K_{n,2n}. - Roberto E. Martinez II, Jan 07 2002
"If each period in the periodic system ends in a rare gas ..., the number of elements in a period can be found from the ordinal number n of the period by the formula: L = ((2n+3+(-1)^n)^2)/8..." - Nature, Jun 09 1951; Nature 411 (Jun 07 2001), p. 648. This produces the present sequence doubled up.
Let z(1) = i = sqrt(-1), z(k+1) = 1/(z(k)+2i); then a(n) = (-1)*Imag(z(n+1))/Real(z(n+1)). - Benoit Cloitre, Aug 06 2002
Maximum number of electrons in an atomic shell with total quantum number n. Partial sums of A016825. - Jeremy Gardiner, Dec 19 2004
Arithmetic mean of triangular numbers in pairs: (1+3)/2, (6+10)/2, (15+21)/2, ... . - Amarnath Murthy, Aug 05 2005
These numbers form a pattern on the Ulam spiral similar to that of the triangular numbers. - G. Roda, Oct 20 2010
Integral areas of isosceles right triangles with rational legs (legs are 2n and triangles are nondegenerate for n > 0). - Rick L. Shepherd, Sep 29 2009
Even squares divided by 2. - Omar E. Pol, Aug 18 2011
Number of stars when distributed as in the U.S.A. flag: n rows with n+1 stars and, between each pair of these, one row with n stars (i.e., n-1 of these), i.e., n*(n+1)+(n-1)*n = 2*n^2 = A001105(n). - César Eliud Lozada, Sep 17 2012
Apparently the number of Dyck paths with semilength n+3 and an odd number of peaks and the central peak having height n-3. - David Scambler, Apr 29 2013
Sum of the partition parts of 2n into exactly two parts. - Wesley Ivan Hurt, Jun 01 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective odd leg a (A180620); sequence gives values c-a, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
Number of roots in the root systems of type B_n and C_n (for n > 1). - Tom Edgar, Nov 05 2013
Area of a square with diagonal 2n. - Wesley Ivan Hurt, Jun 18 2014
This sequence appears also as the first and second member of the quartet [a(n), a(n), p(n), p(n)] of the square of [n, n, n+1, n+1] in the Clifford algebra Cl_2 for n >= 0. p(n) = A046092(n). See an Oct 15 2014 comment on A147973 where also a reference is given. - Wolfdieter Lang, Oct 16 2014
a(n) are the only integers m where (A000005(m) + A000203(m)) = (number of divisors of m + sum of divisors of m) is an odd number. - Richard R. Forberg, Jan 09 2015
a(n) represents the first term in a sum of consecutive integers running to a(n+1)-1 that equals (2n+1)^3. - Patrick J. McNab, Dec 24 2016
Also the number of 3-cycles in the (n+4)-triangular honeycomb obtuse knight graph. - Eric W. Weisstein, Jul 29 2017
Also the Wiener index of the n-cocktail party graph for n > 1. - Eric W. Weisstein, Sep 07 2017
Numbers represented as the palindrome 242 in number base B including B=2 (binary), 3 (ternary) and 4: 242(2)=18, 242(3)=32, 242(4)=50, ... 242(9)=200, 242(10)=242, ... - Ron Knott, Nov 14 2017
a(n) is the square of the hypotenuse of an isosceles right triangle whose sides are equal to n. - Thomas M. Green, Aug 20 2019
The sequence contains all odd powers of 2 (A004171) but no even power of 2 (A000302). - Torlach Rush, Oct 10 2019
From Bernard Schott, Aug 31 2021 and Sep 16 2021: (Start)
Apart from 0, integers such that the number of even divisors (A183063) is odd.
Proof: every n = 2^q * (2k+1), q, k >= 0, then 2*n^2 = 2^(2q+1) * (2k+1)^2; now, gcd(2, 2k+1) = 1, tau(2^(2q+1)) = 2q+2 and tau((2k+1)^2) = 2u+1 because (2k+1)^2 is square, so, tau(2*n^2) = (2q+2) * (2u+1).
The 2q+2 divisors of 2^(2q+1) are {1, 2, 2^2, 2^3, ..., 2^(2q+1)}, so 2^(2q+1) has 2q+1 even divisors {2^1, 2^2, 2^3, ..., 2^(2q+1)}.
Conclusion: these 2q+1 even divisors create with the 2u+1 odd divisors of (2k+1)^2 exactly (2q+1)*(2u+1) even divisors of 2*n^2, and (2q+1)*(2u+1) is odd. (End)
a(n) with n>0 are the numbers with period length 2 for Bulgarian and Mancala solitaire. - Paul Weisenhorn, Jan 29 2022
Number of points at L1 distance = 2 from any given point in Z^n. - Shel Kaphan, Feb 25 2023
REFERENCES
Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
Martin Gardner, The Colossal Book of Mathematics, Classic Puzzles, Paradoxes and Problems, Chapter 2 entitled "The Calculus of Finite Differences," W. W. Norton and Company, New York, 2001, pages 12-13.
L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 44.
Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000, p. 213.
LINKS
Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013. - N. J. A. Sloane, Feb 13 2013
Vladimir Ladma, Magic Numbers.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv:1406.3081 [math.CO], 2014.
Eric Weisstein's World of Mathematics, Cocktail Party Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Wiener Index.
FORMULA
a(n) = (-1)^(n+1) * A053120(2*n, 2).
G.f.: 2*x*(1+x)/(1-x)^3.
a(n) = A100345(n, n).
Sum_{n>=1} 1/a(n) = Pi^2/12 =A013661/2. [Jolley eq. 319]. - Gary W. Adamson, Dec 21 2006
a(n) = A049452(n) - A033991(n). - Zerinvary Lajos, Jun 12 2007
a(n) = A016742(n)/2. - Zerinvary Lajos, Jun 20 2008
a(n) = 2 * A000290(n). - Omar E. Pol, May 14 2008
a(n) = 4*n + a(n-1) - 2, n > 0. - Vincenzo Librandi
a(n) = A002378(n-1) + A002378(n). - Joerg M. Schuetze (joerg(AT)cyberheim.de), Mar 08 2010 [Corrected by Klaus Purath, Jun 18 2020]
a(n) = A176271(n,k) + A176271(n,n-k+1), 1 <= k <= n. - Reinhard Zumkeller, Apr 13 2010
a(n) = A007607(A000290(n)). - Reinhard Zumkeller, Feb 12 2011
For n > 0, a(n) = 1/coefficient of x^2 in the Maclaurin expansion of 1/(cos(x)+n-1). - Francesco Daddi, Aug 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Artur Jasinski, Nov 24 2011
a(n) = A070216(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A014132(2*n-1,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n) = A000217(n) + A000326(n). - Omar E. Pol, Jan 11 2013
(a(n) - A000217(k))^2 = A000217(2*n-1-k)*A000217(2*n+k) + n^2, for all k. - Charlie Marion, May 04 2013
a(n) = floor(1/(1-cos(1/n))), n > 0. - Clark Kimberling, Oct 08 2014
a(n) = A251599(3*n-1) for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n+4)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = A002061(n+1) + A165900(n). - Torlach Rush, Feb 21 2019
E.g.f.: 2*exp(x)*x*(1 + x). - Stefano Spezia, Oct 12 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Jul 03 2020
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(2)*sinh(Pi/sqrt(2))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(2)*sin(Pi/sqrt(2))/Pi. (End)
EXAMPLE
a(3) = 18; since 2(3) = 6 has 3 partitions with exactly two parts: (5,1), (4,2), (3,3). Adding all the parts, we get: 1 + 2 + 3 + 3 + 4 + 5 = 18. - Wesley Ivan Hurt, Jun 01 2013
MAPLE
A001105:=n->2*n^2; seq(A001105(k), k=0..100); # Wesley Ivan Hurt, Oct 29 2013
MATHEMATICA
2 Range[0, 50]^2 (* Harvey P. Dale, Jan 23 2011 *)
LinearRecurrence[{3, -3, 1}, {2, 8, 18}, {0, 20}] (* Eric W. Weisstein, Jul 28 2017 *)
2 PolygonalNumber[4, Range[0, 20]] (* Eric W. Weisstein, Jul 28 2017 *)
PROG
(Magma) [2*n^2: n in [0..50] ]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n) = 2*n^2; \\ Charles R Greathouse IV, Jun 16 2011
(Haskell)
a001105 = a005843 . a000290 -- Reinhard Zumkeller, Dec 12 2012
(Sage) [2*n^2 for n in (0..20)] # G. C. Greubel, Feb 22 2019
(GAP) List([0..50], n->2*n^2); # Muniru A Asiru, Feb 24 2019
CROSSREFS
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Cf. A058331 and A247375. - Bruno Berselli, Sep 16 2014
Cf. A194715 (4-cycles in the triangular honeycomb obtuse knight graph), A290391 (5-cycles), A290392 (6-cycles). - Eric W. Weisstein, Jul 29 2017
Integers such that: this sequence (the number of even divisors is odd), A028982 (the number of odd divisors is odd), A028983 (the number of odd divisors is even), A183300 (the number of even divisors is even).
KEYWORD
nonn,easy
AUTHOR
Bernd.Walter(AT)frankfurt.netsurf.de
STATUS
approved
Numerator of sum of reciprocals of divisors of n.
+10
185
1, 3, 4, 7, 6, 2, 8, 15, 13, 9, 12, 7, 14, 12, 8, 31, 18, 13, 20, 21, 32, 18, 24, 5, 31, 21, 40, 2, 30, 12, 32, 63, 16, 27, 48, 91, 38, 30, 56, 9, 42, 16, 44, 21, 26, 36, 48, 31, 57, 93, 24, 49, 54, 20, 72, 15, 80, 45, 60, 14, 62, 48, 104, 127, 84, 24, 68, 63, 32, 72, 72, 65, 74, 57
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Numerators of coefficients in expansion of Sum_{n >= 1} x^n / (n*(1-x^n)) = Sum_{n >= 1} log(1/(1-x^n)).
The primes in this sequence, in order of appearance (without multiplicity), begin: 3, 7, 2, 13, 31, 5, 127. The first occurrence of prime(k) = a(n) for k = 1, 2, 3, ... is at n = 6, 2, 24, 4, 35640, 9, 297600, 588, ... - Jonathan Vos Post, Apr 02 2011
With amicable numbers, we have a(A002025(n)) = a(A002046(n)). - Michel Marcus, Dec 29 2013
Numerator of sigma(n)/n = A000203(n)/n. See A239578(n) - the smallest number k such that a(k) = n. - Jaroslav Krizek, Sep 23 2014
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 4th formula.
LINKS
Paul A. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (4) (2000) 307-310.
Eric Weisstein's World of Mathematics, Abundancy.
FORMULA
a(n) = sigma(n)/gcd(n, sigma(n)). - Jon Perry, Jun 29 2003
Dirichlet g.f.: zeta(s)*zeta(s+1) [for fraction A017665/A017666]. - Franklin T. Adams-Watters, Sep 11 2005
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017666(k) = Pi^2/6 (A013661). - Amiram Eldar, Nov 21 2022
EXAMPLE
1, 3/2, 4/3, 7/4, 6/5, 2, 8/7, 15/8, 13/9, 9/5, 12/11, 7/3, 14/13, 12/7, 8/5, 31/16, ...
MAPLE
with(numtheory): seq(numer(sigma(n)/n), n=1..74) ; # Zerinvary Lajos, Jun 04 2008
MATHEMATICA
Numerator[DivisorSigma[-1, Range[80]]] (* Harvey P. Dale, May 31 2013 *)
Table[Numerator[DivisorSigma[1, n]/n], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
PROG
(PARI) a(n)=sigma(n)/gcd(n, sigma(n)) \\ Charles R Greathouse IV, Feb 11 2011
(PARI) a(n)=numerator(sigma(n, -1)) \\ Charles R Greathouse IV, Apr 04 2011
(Haskell)
import Data.Ratio ((%), numerator)
a017665 = numerator . sum . map (1 %) . a027750_row
-- Reinhard Zumkeller, Apr 06 2012
(Magma) [Numerator(DivisorSigma(1, n)/n): n in [1..50]]; // G. C. Greubel, Nov 08 2018
(Python)
from math import gcd
from sympy import divisor_sigma
def A017665(n): return (m:=divisor_sigma(n))//gcd(m, n) # Chai Wah Wu, Mar 20 2023
CROSSREFS
KEYWORD
nonn,frac,nice
STATUS
approved
Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.
+10
157
1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
OFFSET
1,4
COMMENTS
Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.
EXAMPLE
Irregular triangle begins:
1;
1, 1;
3;
2, 2;
2, 2;
2, 1, 1, 2;
7;
3, 1, 1, 3;
3, 3;
3, 2, 2, 3;
12;
4, 1, 1, 1, 1, 4;
4, 4;
4, 2, 1, 1, 2, 4;
15;
5, 2, 1, 1, 2, 5;
5, 3, 5;
5, 2, 2, 2, 2, 5;
9, 9;
6, 2, 1, 1, 1, 1, 2, 6;
6, 6;
6, 3, 1, 1, 1, 1, 3, 6;
28;
7, 2, 2, 1, 1, 2, 2, 7;
7, 7;
7, 3, 2, 1, 1, 2, 3, 7;
12, 12;
8, 3, 1, 2, 2, 1, 3, 8;
8, 8, 8;
8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
31;
9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
n A000203 A237270 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 1 = 1 |_| | | | | | | | | | | | | | | |
2 3 = 3 |_ _|_| | | | | | | | | | | | | |
3 4 = 2 + 2 |_ _| _|_| | | | | | | | | | | |
4 7 = 7 |_ _ _| _|_| | | | | | | | | |
5 6 = 3 + 3 |_ _ _| _| _ _|_| | | | | | | |
6 12 = 12 |_ _ _ _| _| | _ _|_| | | | | |
7 8 = 4 + 4 |_ _ _ _| |_ _|_| _ _|_| | | |
8 15 = 15 |_ _ _ _ _| _| | _ _ _|_| |
9 13 = 5 + 3 + 5 |_ _ _ _ _| | _|_| | _ _ _|
10 18 = 9 + 9 |_ _ _ _ _ _| _ _| _| |
11 12 = 6 + 6 |_ _ _ _ _ _| | _| _| _|
12 28 = 28 |_ _ _ _ _ _ _| |_ _| _|
13 14 = 7 + 7 |_ _ _ _ _ _ _| | _ _|
14 24 = 12 + 12 |_ _ _ _ _ _ _ _| |
15 24 = 8 + 8 + 8 |_ _ _ _ _ _ _ _| |
16 31 = 31 |_ _ _ _ _ _ _ _ _|
...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
Level _ _
1 _|1|1|_
2 _|2 _|_ 2|_
3 _|2 |1|1| 2|_
4 _|3 _|1|1|_ 3|_
5 _|3 |2 _|_ 2| 3|_
6 _|4 _|1|1|1|1|_ 4|_
7 _|4 |2 |1|1| 2| 4|_
8 _|5 _|2 _|1|1|_ 2|_ 5|_
9 _|5 |2 |2 _|_ 2| 2| 5|_
10 _|6 _|2 |1|1|1|1| 2|_ 6|_
11 _|6 |3 _|1|1|1|1|_ 3| 6|_
12 _|7 _|2 |2 |1|1| 2| 2|_ 7|_
13 _|7 |3 |2 _|1|1|_ 2| 3| 7|_
14 _|8 _|3 _|1|2 _|_ 2|1|_ 3|_ 8|_
15 _|8 |3 |2 |1|1|1|1| 2| 3| 8|_
16 |9 |3 |2 |1|1|1|1| 2| 3| 9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - Omar E. Pol, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022
CROSSREFS
Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.
KEYWORD
nonn,tabf,look
AUTHOR
Omar E. Pol, Sep 26 2015
STATUS
approved
Decimal expansion of zeta(4).
+10
134
1, 0, 8, 2, 3, 2, 3, 2, 3, 3, 7, 1, 1, 1, 3, 8, 1, 9, 1, 5, 1, 6, 0, 0, 3, 6, 9, 6, 5, 4, 1, 1, 6, 7, 9, 0, 2, 7, 7, 4, 7, 5, 0, 9, 5, 1, 9, 1, 8, 7, 2, 6, 9, 0, 7, 6, 8, 2, 9, 7, 6, 2, 1, 5, 4, 4, 4, 1, 2, 0, 6, 1, 6, 1, 8, 6, 9, 6, 8, 8, 4, 6, 5, 5, 6, 9, 0, 9, 6, 3, 5, 9, 4, 1, 6, 9, 9, 9, 1
OFFSET
1,3
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
L. D. Landau and E. M. Lifschitz, Band V, Statistische Physik, Akademie Verlag, 1966, pp. 172 and 180-181.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
D. H. Bailey, J. M. Borwein, and D. M. Bradley, Experimental determination of Apéry-like identities for zeta(4n+2), arXiv:math/0505270 [math.NT], 2005-2006.
D. Borwein and J. M. Borwein, On an intriguing integral and some series related to zeta(4) Proc. Amer. Math. Soc., Vol. 123, No.4, April 1995.
J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer, Central binomial sums, multiple Clausen values and zeta values arXiv:hep-th/0004153, 2000.
Leonhard Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
Leonhard Euler, De summis serierum reciprocarum, E41.
Raffaele Marcovecchio and Wadim Zudilin, Hypergeometric rational approximations to zeta(4), arXiv:1905.12579 [math.NT], 2019.
Jean-Christophe Pain, An integral representation for zeta(4), arXiv:2309.00539 [math.NT], 2023.
Michael Penn, Finding a closed form for zeta(4), YouTube video, 2022.
Simon Plouffe, Pi^4/90 to 100000 digits.
Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file).
Carsten Schneider and Wadim Zudilin, A case study for zeta(4), arXiv:2004.08158 [math.NT], 2020.
FORMULA
zeta(4) = Pi^4/90. - Harry J. Smith, Apr 29 2009
From Peter Bala, Dec 03 2013: (Start)
Definition: zeta(4) := Sum_{n >= 1} 1/n^4.
zeta(4) = (4/17)*Sum_{n >= 1} ( (1 + 1/2 + ... + 1/n)/n )^2 and
zeta(4) = (16/45)*Sum_{n >= 1} ( (1 + 1/3 + ... + 1/(2*n-1))/n )^2 (see Borwein and Borwein).
zeta(4) = (256/90)*Sum_{n >= 1} n^2*(4*n^2 + 3)*(12*n^2 + 1)/(4*n^2 - 1)^5.
Series acceleration formulas:
zeta(4) = (36/17)*Sum_{n >= 1} 1/( n^4*binomial(2*n,n) ) (Comtet)
= (36/17)*Sum_{n >= 1} P(n)/( (2*n*(2*n - 1))^4*binomial(4*n,2*n) )
= (36/17)*Sum_{n >= 1} Q(n)/( (3*n*(3*n - 1)*(3*n - 2))^4*binomial(6*n,3*n) ),
where P(n) = 80*n^4 - 48*n^3 + 24*n^2 - 8*n + 1 and Q(n) = 137781*n^8 - 275562*n^7 + 240570*n^6 - 122472*n^5 + 41877*n^4 - 10908*n^3 + 2232*n^2 - 288*n + 16 (see section 8 in the Bala link). (End)
zeta(4) = 2/3*2^4/(2^4 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^5 ), where p(n) = 3*n^4 + 10*n^2 + 3 is a row polynomial of A091043. See A013664, A013666, A013668 and A013670. - Peter Bala, Dec 05 2013
zeta(4) = Sum_{n >= 1} ((floor(sqrt(n))-floor(sqrt(n-1)))/n^2). - Mikael Aaltonen, Jan 18 2015
zeta(4) = Product_{k>=1} 1/(1 - 1/prime(k)^4). - Vaclav Kotesovec, May 02 2020
From Wolfdieter Lang, Sep 16 2020: (Start)
zeta(4) = (1/3!)*Integral_{x=0..oo} x^3/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=2, p. 807, and Landau-Lifschitz, Band V, p. 172, eq. (4), for x=4. See also A231535.
zeta(4) = (4/21)*Integral_{x=0..oo} x^3/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=2, p. 807, and Landau-Lifschitz, Band V, p. 172, eq. (1), for x=4. See also A337711. (End)
zeta(4) = (72/17) * Integral_{x=0..Pi/3} x*(log(2*sin(x/2)))^2. See Richard K. Guy reference. - Bernard Schott, Jul 20 2022
From Peter Bala, Nov 12 2023: (Start)
zeta(4) = 1 + (4/3)*Sum_{k >= 1} (1 - 2*(-1)^k)/(k*(k + 1)^4*(k + 2)) = 35053/32400 + 48*Sum_{k >= 1} (1 - 2*(-1)^k)/(k*(k + 1)*(k + 2)*(k + 3)^4*(k + 4)*(k + 5)*(k + 6)).
More generally, it appears that for n >= 0, zeta(4) = c(n) + (4/3)*(2*n + 1)!^2 * Sum_{k >= 1} (1 - 2*(-1)^k)/( (k + 2*n + 1)^3*Product_{i = 0..4*n+2} (k + i) ), where {c(n) : n >= 0} is a sequence of rational approximations to zeta(4) beginning [1, 35053/32400, 2061943067/ 1905120000, 18594731931460103/ 17180389306080000, 257946156103293544441/ 238326360453941760000, ...]. (End)
EXAMPLE
1.082323233711138191516003696541167...
MAPLE
evalf(Pi^4/90, 120); # Muniru A Asiru, Sep 19 2018
MATHEMATICA
RealDigits[Zeta[4], 10, 120][[1]] (* Harvey P. Dale, Dec 18 2012 *)
PROG
(PARI) default(realprecision, 20080); x=Pi^4/90; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b013662.txt", n, " ", d)); \\ Harry J. Smith, Apr 29 2009
(Maxima) ev(zeta(4), numer) ; /* R. J. Mathar, Feb 27 2012 */
(Magma) SetDefaultRealField(RealField(110)); L:=RiemannZeta(); Evaluate(L, 4); // G. C. Greubel, May 30 2019
(Sage) numerical_approx(zeta(4), digits=100) # G. C. Greubel, May 30 2019
CROSSREFS
See also the extensive crossref table in A308637.
KEYWORD
nonn,cons
STATUS
approved
Decimal expansion of 6/Pi^2.
+10
133
6, 0, 7, 9, 2, 7, 1, 0, 1, 8, 5, 4, 0, 2, 6, 6, 2, 8, 6, 6, 3, 2, 7, 6, 7, 7, 9, 2, 5, 8, 3, 6, 5, 8, 3, 3, 4, 2, 6, 1, 5, 2, 6, 4, 8, 0, 3, 3, 4, 7, 9, 2, 9, 3, 0, 7, 3, 6, 5, 4, 1, 9, 1, 3, 6, 5, 0, 3, 8, 7, 2, 5, 7, 7, 3, 4, 1, 2, 6, 4, 7, 1, 4, 7, 2, 5, 5, 6, 4, 3, 5, 5, 3, 7, 3, 1, 0, 2, 5, 6, 8, 1, 7, 3, 3
OFFSET
0,1
COMMENTS
"6/Pi^2 is the probability that two randomly selected numbers will be coprime and also the probability that a randomly selected integer is 'squarefree.'" [Hardy and Wright] - C. Pickover.
In fact, the probability that any k randomly selected numbers will be coprimes is 1/Sum_{n>=1} n^(-k) = 1/zeta(k). - Robert G. Wilson v [corrected by Ilya Gutkovskiy, Aug 18 2018]
6/Pi^2 is also the diameter of a circle whose circumference equals the ratio of volume of a cuboid to the inscribed ellipsoid. 6/Pi^2 is also the diameter of a circle whose circumference equals the ratio of surface area of a cube to the inscribed sphere. - Omar E. Pol, Oct 08 2011
6/(Pi^2 * n^2) is the probability that two randomly selected positive integers will have a greatest common divisor equal to n, n >= 1. - Geoffrey Critzer, May 28 2013
Equals lim_{n->oo} (Sum_{k=1..n} phi(k)/k)/n, i.e., the limit mean value of phi(k)/k, where phi(k) is Euler's totient function. Proof is trivial using the formula for Sum_{k=1..n} phi(k)/k listed at the Wikipedia link. For the limit mean value of k/phi(k), see A082695. - Stanislav Sykora, Nov 14 2014
This is the probability that a random point on a square lattice is visible from the origin, i.e., there is no other lattice point that lies on the line segment between this point and the origin. - Amiram Eldar, Jul 08 2020
REFERENCES
Hardy and Wright, 'An Introduction to the Theory of Numbers'. See Theorems 332 and 333.
C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 359.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 28.
LINKS
Persi Diaconis and Paul Erdős, On the distribution of the greatest common divisor, in A Festschrift for Herman Rubin, pp. 56-61, IMS Lecture Notes Monogr. Ser., 45, Inst. Math. Statist., Beachwood, OH, 2004.
C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
H. J. Smith, XPCalc. [Broken link]
Eric Weisstein's World of Mathematics, Hafner-Sarnak-McCurley Constant.
Eric Weisstein's World of Mathematics, Relatively Prime.
Eric Weisstein's World of Mathematics, Squarefree.
FORMULA
Equals 1/A013661.
6/Pi^2 = Product_{k>=1} (1 - 1/prime(k)^2) = Sum_{k>=1} mu(k)/k^2. - Vladeta Jovovic, May 18 2001
EXAMPLE
.6079271018540266286632767792583658334261526480...
MAPLE
evalf(1/Zeta(2)) ; # R. J. Mathar, Mar 27 2013
MATHEMATICA
RealDigits[ 6/Pi^2, 10, 105][[1]]
RealDigits[1/Zeta[2], 10, 111][[1]] (* Robert G. Wilson v, Jan 20 2017 *)
PROG
(Harry J. Smith's VPcalc program): 150 M P x=6/Pi^2.
(PARI) default(realprecision, 20080); x=60/Pi^2; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b059956.txt", n, " ", d)); \\ Harry J. Smith, Jun 30 2009
(Magma) R:= RealField(100); 6/(Pi(R))^2; // G. C. Greubel, Mar 09 2018
CROSSREFS
See A002117 for further references and links.
Cf. A005117 (squarefree numbers), A013661, A082695.
KEYWORD
easy,nonn,cons
AUTHOR
Jason Earls, Mar 01 2001
STATUS
approved
a(n) is the number of squares dividing n.
+10
131
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2
OFFSET
1,4
COMMENTS
Rediscovered by the HR automatic theory formation program.
a(n) depends only on prime signature of n (cf. A025487, A046523). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
First differences of A013936. Average value tends towards Pi^2/6 = 1.644934... (A013661, A013679). - Henry Bottomley, Aug 16 2001
We have a(n) = A159631(n) for all n < 125, but a(125) = 2 < 3 = A159631(125). - Steven Finch, Apr 22 2009
Number of 2-generated Abelian groups of order n, if n > 1. - Álvar Ibeas, Dec 22 2014 [In other words, number of order-n abelian groups with rank <= 2. Proof: let b(n) be such number. A finite abelian group is the inner direct product of all Sylow-p subgroups, so {b(n)} is multiplicative. Obviously b(p^e) = floor(e/2)+1 (corresponding to the groups C_(p^r) X C_(p^(e-r)) for 0 <= r <= floor(e/2)), hence b(n) = a(n) for all n. - Jianing Song, Nov 05 2022]
Number of ways of writing n = r*s such that r|s. - Eric M. Schmidt, Jan 08 2015
The number of divisors of the square root of the largest square dividing n. - Amiram Eldar, Jul 07 2020
LINKS
Antonio Amariti, Claudius Klare, Domenico Orlando and Susanne Reffert, The M-theory origin of global properties of gauge theories, Nuclear Physics B, Vol. 901 (2015), pp. 318-337, arXiv preprint, arXiv:1507.04743 [hep-th], 2015 (see (A.13)).
Simon Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2, 1999, #2.
Ian G. Connell, A number theory problem concerning finite groups and rings, Canad. Math. Bull, 7 (1964), 23-34. See delta(n).
Andrew V. Lelechenko, Average number of squares dividing mn, arXiv preprint arXiv:1407.1222 [math.NT], 2014.
Werner Georg Nowak and László Tóth, On the average number of subgroups of the group Z_m X Z_n, International Journal of Number Theory, Vol. 10, No. 2 (2014), pp. 363-374, arXiv preprint, arXiv:1307.1414 [math.NT], 2013.
N. J. A. Sloane, Transforms.
FORMULA
a(p^k) = A008619(k) = [k/2] + 1. a(A002110(n)) = 1 for all n. (This is true for any squarefree number, A005117). - Original notes clarified by Antti Karttunen, Nov 14 2016
a(n) = |{(i, j) : i*j = n AND i|j}| = |{(i, j) : i*j^2 = n}|. Also tau(A000188(n)), where tau = A000005.
Multiplicative with p^e --> floor(e/2) + 1, p prime. - Reinhard Zumkeller, May 20 2007
a(A130279(n)) = n and a(m) <> n for m < A130279(n); A008966(n)=0^(a(n) - 1). - Reinhard Zumkeller, May 20 2007
Inverse Moebius transform of characteristic function of squares (A010052). Dirichlet g.f.: zeta(s)*zeta(2s).
G.f.: Sum_{k > 0} x^(k^2)/(1 - x^(k^2)). - Vladeta Jovovic, Dec 13 2002
a(n) = Sum_{k=1..A000005(n)} A010052(A027750(n,k)). - Reinhard Zumkeller, Dec 16 2013
a(n) = Sum_{k = 1..n} ( floor(n/k^2) - floor((n-1)/k^2) ). - Peter Bala, Feb 17 2014
From Antti Karttunen, Nov 14 2016: (Start)
a(1) = 1; for n > 1, a(n) = A008619(A007814(n)) * a(A064989(n)).
a(n) = A278161(A156552(n)).
(End)
G.f.: Sum_{k>0}(theta(q^k)-1)/2, where theta(q)=1+2q+2q^4+2q^9+2q^16+... - Mamuka Jibladze, Dec 04 2016
From Antti Karttunen, Nov 12 2017: (Start)
a(n) = A000005(n) - A056595(n).
a(n) = 1 + A071325(n).
a(n) = 1 + A001222(A293515(n)).
(End)
L.g.f.: -log(Product_{k>=1} (1 - x^(k^2))^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = Sum_{d|n} A000005(d) * A008836(n/d). - Torlach Rush, Jan 21 2020
a(n) = A000005(sqrt(A008833(n))). - Amiram Eldar, Jul 07 2020
a(n) = Sum_{d divides n} mu(core(d)^2), where core(n) = A007913(n). - Peter Bala, Jan 24 2024
EXAMPLE
a(16) = 3 because the squares 1, 4, and 16 divide 16.
G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + x^10 + ...
MAPLE
A046951 := proc(n)
local a, s;
a := 1 ;
for p in ifactors(n)[2] do
a := a*(1+floor(op(2, p)/2)) ;
end do:
a ;
end proc: # R. J. Mathar, Sep 17 2012
MATHEMATICA
a[n_] := Length[ Select[ Divisors[n], IntegerQ[Sqrt[#]]& ] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jun 26 2012 *)
Table[Length[Intersection[Divisors[n], Range[10]^2]], {n, 100}] (* Alonso del Arte, Dec 10 2012 *)
a[ n_] := If[ n < 1, 0, Sum[ Mod[ DivisorSigma[ 0, d], 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 13 2014 *)
a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (Quotient[ #[[2]], 2] + 1 & /@ FactorInteger @ n)]; (* Michael Somos, Jun 13 2014 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / (1 - x^k^2), {k, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 13 2014 *)
f[p_, e_] := 1 + Floor[e/2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
PROG
(PARI) a(n)=my(f=factor(n)); for(i=1, #f[, 1], f[i, 2]\=2); numdiv(factorback(f)) \\ Charles R Greathouse IV, Dec 11 2012
(PARI) a(n) = direuler(p=2, n, 1/((1-X^2)*(1-X)))[n]; \\ Michel Marcus, Mar 08 2015
(PARI) a(n)=factorback(apply(e->e\2+1, factor(n)[, 2])) \\ Charles R Greathouse IV, Sep 17 2015
(Haskell)
a046951 = sum . map a010052 . a027750_row
-- Reinhard Zumkeller, Dec 16 2013
(Scheme)
(definec (A046951 n) (if (= 1 n) 1 (* (A008619 (A007814 n)) (A046951 (A064989 n)))))
(define (A008619 n) (+ 1 (/ (- n (modulo n 2)) 2)))
;; Antti Karttunen, Nov 14 2016
(Magma) [#[d: d in Divisors(n)|IsSquare(d)]:n in [1..120]]; // Marius A. Burtea, Jan 21 2020
(Python)
from math import prod
from sympy import factorint
def A046951(n): return prod((e>>1)+1 for e in factorint(n).values()) # Chai Wah Wu, Aug 04 2024
CROSSREFS
One more than A071325.
Differs from A096309 for the first time at n=32, where a(32) = 3, while A096309(32) = 2 (and also A185102(32) = 2).
Sum of the k-th powers of the square divisors of n for k=0..10: this sequence (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: this sequence (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A082293 (a(n)==2), A082294 (a(n)==3).
KEYWORD
nice,nonn,mult
AUTHOR
Simon Colton (simonco(AT)cs.york.ac.uk)
EXTENSIONS
Data section filled up to 125 terms and wrong claim deleted from Crossrefs section by Antti Karttunen, Nov 14 2016
STATUS
approved

Search completed in 0.224 seconds