[go: up one dir, main page]

login
A120992
Number of integers in n-th run of squarefree positive integers.
67
3, 3, 2, 3, 1, 1, 3, 1, 3, 3, 3, 3, 2, 1, 1, 1, 3, 2, 3, 3, 2, 3, 2, 3, 1, 1, 3, 1, 3, 3, 3, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 3, 3, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 2, 3, 1, 1, 2, 2, 3, 3, 2, 1, 1, 2, 3, 1
OFFSET
1,1
COMMENTS
The values 1, 2 and 3 occur 309008, 251134 and 439858 times, respectively, in the first 1000000 terms. - Rick L. Shepherd, Jul 25 2006
From Reinhard Zumkeller, Jan 20 2008: (Start)
1 <= a(n) <= 3.
A136742(n) = Product{k=0..a(n)} (A072284(n)+k).
A136743(n) = Sum_{k=0..a(n)} A001221(A072284(n)+k).
(End)
Also the lengths of runs in A243348, differences of the n-th squarefree number and n. - Antti Karttunen, Jun 06 2014
LINKS
A. Karttunen & R. Zumkeller (the first 1000 terms), Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Squarefree
EXAMPLE
The runs of squarefree integers are as follows: (1,2,3), (5,6,7), (10,11), (13,14,15), (17), (19), (21,22,23),...
MAPLE
with(numtheory): a:=proc(n) if mobius(n)=0 then n else fi end: A:=[0, seq(a(n), n=1..500)]: b:=proc(n) if A[n]-A[n-1]>1 then A[n]-A[n-1]-1 else fi end: seq(b(n), n=2..nops(A)); # Emeric Deutsch, Jul 24 2006
MATHEMATICA
t = {}; cnt = 0; Do[If[SquareFreeQ[n], cnt++, If[cnt > 0, AppendTo[t, cnt]; cnt = 0]], {n, 500}]; t (* T. D. Noe, Mar 19 2013 *)
PROG
(PARI) n=1; while(n<1000, c=0; while(issquarefree(n), n++; c++); print1(c, ", "); while(!issquarefree(n), n++)) \\ Rick L. Shepherd, Jul 25 2006
(Scheme, with Antti Karttunen's IntSeq-library)
(define (A120992 n) (if (= n 1) (Aincr_points_of_A243348 n) (- (Aincr_points_of_A243348 n) (Aincr_points_of_A243348 (- n 1)))))
;; Using these two auxiliary functions, not submitted separately:
(define Aincr_points_of_A243348 (COMPOSE -1+ (NONZERO-POS 1 1 Afirst_diffs_of_A243348)))
(define (Afirst_diffs_of_A243348 n) (if (< n 2) (- n 1) (- (A243348 n) (A243348 (- n 1)))))
KEYWORD
nonn
AUTHOR
Leroy Quet, Jul 21 2006
EXTENSIONS
More terms from Emeric Deutsch and Rick L. Shepherd, Jul 25 2006
STATUS
approved