OFFSET
0,4
COMMENTS
The number of partitions of 2n into exactly 2 odd parts. - Wesley Ivan Hurt, Jun 01 2013
Number of nonisomorphic outer planar graphs of order n >= 3 and size n+1. - Christian Barrientos and Sarah Minion, Feb 27 2018
Also the clique covering number of the n-dipyramidal graph for n >= 3. - Eric W. Weisstein, Jun 27 2018
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Clique Covering Number
Eric Weisstein's World of Mathematics, Dipyramidal Graph
Wikipedia, Floor and ceiling functions
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = floor(n/2) + n mod 2.
For n > 0: a(n) = A008619(n-1).
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2, a(2) = a(1) = 1, a(0) = 0. - Reinhard Zumkeller, May 22 2006
First differences of quarter-squares: a(n) = A002620(n+1) - A002620(n). - Reinhard Zumkeller, Aug 06 2009
From Michael Somos, Sep 19 2006: (Start)
Euler transform of length 2 sequence [1, 1].
G.f.: x/((1-x)*(1-x^2)).
a(-1-n) = -a(n). (End)
a(n) = floor((n+1)/2) = |Sum_{m=1..n} Sum_{k=1..m} (-1)^k|, where |x| is the absolute value of x. - William A. Tedeschi, Mar 21 2008
a(n) = A065033(n) for n > 0. - R. J. Mathar, Aug 18 2008
a(n) = ceiling(n/2) = smallest integer >= n/2. - M. F. Hasler, Nov 17 2008
If n is zero then a(n) is zero, else a(n) = a(n-1) + (n mod 2). - R. J. Cano, Jun 15 2014
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + x) * u * v - (u^2 - v) / 2. - Michael Somos, Jun 15 2014
Given g.f. A(x) then 2 * x^3 * (1 + x) * A(x) * A(x^2) is the g.f. of A014557. - Michael Somos, Jun 15 2014
a(n) = (n + (n mod 2)) / 2. - Fred Daniel Kline, Jun 08 2016
E.g.f.: (sinh(x) + x*exp(x))/2. - Ilya Gutkovskiy, Jun 08 2016
Satisfies the nested recurrence a(n) = a(a(n-2)) + a(n-a(n-1)) with a(1) = a(2) = 1. Cf. A004001. - Peter Bala, Aug 30 2022
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 5*x^9 + ...
MATHEMATICA
a[ n_] := Ceiling[ n / 2]; (* Michael Somos, Jun 15 2014 *)
a[ n_] := Quotient[ n, 2, -1]; (* Michael Somos, Jun 15 2014 *)
a[0] = 0; a[n_] := a[n] = n - a[n - 1]; Table[a[n], {n, 0, 100}] (* Carlos Eduardo Olivieri, Dec 22 2014 *)
CoefficientList[Series[x^/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)
LinearRecurrence[{1, 1, -1}, {0, 1, 1}, 75] (* Robert G. Wilson v, Feb 05 2015 *)
PROG
(PARI) a(n)=n\2+n%2;
(PARI) a(n)=(n+1)\2; \\ M. F. Hasler, Nov 17 2008
(Sage) [floor(n/2) + 1 for n in range(-1, 75)] # Zerinvary Lajos, Dec 01 2009
(Haskell)
a110654 = (`div` 2) . (+ 1)
a110654_list = tail a004526_list -- Reinhard Zumkeller, Jul 27 2012
(Magma) [Ceiling(n/2): n in [0..80]]; // Vincenzo Librandi, Nov 04 2014
CROSSREFS
Cf. A298648 (number of smallest coverings of dipyramidal graphs by maximal cliques).
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 05 2005
EXTENSIONS
Deleted wrong formula and added formula. - M. F. Hasler, Nov 17 2008
STATUS
approved