OFFSET
1,1
COMMENTS
2007. For example, 37 = 18 + 19; 48 = 15 + 16 + 17; 56 = 5 + 6 + 7 + 8 + 9 + 10 + 11. (Edited by M. F. Hasler, Aug 29 2020: "positive" was missing here. If nonnegative integers are allowed, none of the triangular numbers 3, 6, 10, ... would be in the corresponding sequence. If negative integers are also allowed, it would only have powers of 2 (A000079) which are the only positive integers not the sum of more than one consecutive positive integers, since any x > 0 is the sum of 1-x through x.)
Numbers that are the difference of two triangular numbers in exactly two ways.
Numbers with largest odd divisor a prime number. - Juri-Stepan Gerasimov, Aug 16 2016
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2, 1999, #99.1.6.
FORMULA
A001227(a(n)) = 2. - Reinhard Zumkeller, May 01 2012
a(n) ~ 0.5 n log n. - Charles R Greathouse IV, Apr 30 2013
A000265(a(n)) is a prime. - Juri-Stepan Gerasimov, Aug 16 2016
Sum_{n>=1} 1/a(n)^s = (2^s*P(s) - 1)/(2^s - 1), for s > 1, where P is the prime zeta function. - Amiram Eldar, Dec 19 2020
MATHEMATICA
Select[Range[127], DivisorSigma[0, Max[Select[Divisors[#], OddQ]]]-1==1&] (* Jayanta Basu, Apr 30 2013 *)
fQ[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; (Length[p] == 2 && p[[1]] == 2 && e[[2]] == 1) || (Length[p] == 1 && p[[1]] > 2 && e[[1]] == 1)]; Select[Range[2, 127], fQ] (* T. D. Noe, Apr 30 2013 *)
upto=150; Module[{pmax=PrimePi[upto], tmax=Ceiling[Log[2, upto]]}, Select[ Sort[ Flatten[ Outer[ Times, Prime[ Range[ 2, pmax]], 2^Range[0, tmax]]]], #<=upto&]] (* Harvey P. Dale, Oct 18 2013 *)
Flatten@Position[PrimeQ[BitShiftRight[#, IntegerExponent[#, 2]]&/@Range[#]], True]&@127 (* Federico Provvedi, Dec 14 2021 *)
PROG
(Haskell)
a038550 n = a038550_list !! (n-1)
a038550_list = filter ((== 2) . a001227) [1..]
-- Reinhard Zumkeller, May 01 2012
(PARI) is(n)=isprime(n>>valuation(n, 2)) \\ Charles R Greathouse IV, Apr 30 2013
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Zak Seidov, Sep 15 2007
STATUS
approved