[go: up one dir, main page]

login
A189151
Numbers n such that n < floor(sqrt(n)) * ceiling(sqrt(n)).
4
5, 10, 11, 17, 18, 19, 26, 27, 28, 29, 37, 38, 39, 40, 41, 50, 51, 52, 53, 54, 55, 65, 66, 67, 68, 69, 70, 71, 82, 83, 84, 85, 86, 87, 88, 89, 101, 102, 103, 104, 105, 106, 107, 108, 109, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 145, 146, 147, 148
OFFSET
1,1
COMMENTS
n belongs to this sequence iff
n in (k^2,k*(k+1)), k >= 0.
See also:
n belongs to A002620 iff
n = floor(sqrt(n))*ceiling(sqrt(n)), i.e.
n = k^2 or n = k*(k+1), k >= 0.
n belongs to A063657 iff
n > floor(sqrt(n))*ceiling(sqrt(n)), i.e.
n in (k*(k+1),k^2), k >= 0.
LINKS
FORMULA
G.f.: (1-x)^(-2)-(1-x)^(-1)*(1+x+x^2-Sum_{k>=0} k*x^((k^2-5*k+8)/2)). - Robert Israel, Jan 02 2017
MAPLE
seq($k^2+1..k^2+k-1, k=0..20); # Robert Israel, Jan 02 2017
MATHEMATICA
Select[Range[200], # < Floor[Sqrt[#]] Ceiling[Sqrt[#]] &] (* T. D. Noe, Apr 20 2011 *)
PROG
(Python)
from itertools import count, islice
def A189151_gen(): # generator of terms
return (n for k in count(0) for n in range(k**2+1, k*(k+1)))
A189151_list = list(islice(A189151_gen(), 25)) # Chai Wah Wu, Jul 28 2022
CROSSREFS
Sequence in context: A136825 A136824 A136822 * A120513 A004757 A007527
KEYWORD
nonn
AUTHOR
Daniel Forgues, Apr 17 2011
STATUS
approved