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Abstract
The ζ function is defined by ζ(s) =

∑
n 1/ns. This talk is a study of the irrationality of the

zeta function on odd integer values > 2.

1. Introduction

The sum
∑

n 1/n2 was first studied by Bernoulli, who proved around 1680 that it converged to a
finite limit less than 2. Euler proved in 1735 that it is equal to π2/6, and studied the more general
function ζ(s) =

∑
n 1/ns. He also showed that on even integers the ζ function has a closed form,

namely ζ(2n) = Cnπ
2n where the coefficients Cn are rational numbers that he wrote in terms of

Bernoulli numbers. A century later Riemann studied this function on the whole complex plane,
and he stated a conjecture on the location of the zeroes of the zeta function, that is known as the
Riemann hypothesis, and is still unproved.

The first result on the irrationality of the ζ function on odd integers is due to Apéry, who
proved in 1978 that ζ(3) is irrational [1]. Recently Tanguy Rivoal showed that the ζ function takes
infinitely many irrational values on the odd integers [4, 5], and that there exists an odd integer j
with 5 ≤ j ≤ 21 such that ζ(j) is irrational [5]. Zudilin [6] refined this result and proved it for
5 ≤ j ≤ 11.

2. Irrationality of ζ(3)

Theorem 1 (Apéry(1978)). The number ζ(3) is irrational.

The following proof is due to Nesterenko [3], after ideas by Beukers. The theorem is proved using
the following generating function

Sn(z) =
∞∑

k=1

∂

∂k

(
(k − 1)2(k − 2)2 . . . (k − n)2

k2(k + 1)2 . . . (k + n)2

)
z−k

The decomposition of the coefficient of z−k in partial fractions gives the equality

(1) Sn(z) = P0,n(z) + P1,n(z) Li2(1/z) + P2,n(z) Li3(1/z)

where Lis(z) =
∑

n≥1
zn

ns is a polylogarithm function, and Pk,n are polynomials of degree n such
that P1,n(1) = 0. When Equation (1) is specialized at z = 1, it becomes

Sn(1) = P0,n(1) + P2,n(1)ζ(3),

with the additionnal properties that P2,n(1) ∈ Z and d3
nP0,n(1) ∈ Z where dn = ppcm(1, 2, . . . , n).
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The value Sn(1) is bounded by using an integral representation.

(2) Sn(1) =
1

2iπ

∫
L

(
Γ(n+ 1− s)Γ(s)2

Γ(n+ 1 + s)

)2

ds,

where L is the vertical line <(z) = c, 0 < c < n + 1, oriented from top to bottom. From this
integral, the bounds 0 < Sn(1) ≤ c(√2− 1)4n are obtained.

The inequalities 0 < d3
nP0,n(1) + d3

nP2,n(1)ζ(3) < crn, where c is a constant, and r < 1 prove
that ζ(3) is irrational; because if ζ(3) is rational and equal to p/q, then qd3

nP0,n(1)+qd3
nP2,n(1)ζ(3)

is an integer greater than 0 and bounded by qcrn that converges to 0.

3. The ζ Function Has Infinitely Many Irrational Values on Odd Integers

Tanguy Rivoal in fact proved a stronger result, that is:

Theorem 2. Let a be an odd integer greater than 3 and δ(a) be the dimension of the Q-vector
space spanned by 1, ζ(3), . . . , ζ(a), then

δ(a) ≥ 1
3

log a.

This implies directly that infinitely many ζ(2n+ 1) are irrational.
To prove Theorem 2, we introduce the series

Sn,a,r(z) = n!a−2r
∞∑

k=1

(k − rn)rn(k + n+ 1)rn

(k)a
n+1

z−k,

where (k)n = k(k + 1) . . . (k + n − 1) is the Pochhammer symbol, and n, r, and a are integers
satisfying n ≥ 0, 1 ≤ r < a/2, so that Sn,a,r(z) exists when |z| ≥ 1. As for the proof of the
irrationality of ζ(3), an equality between the series studied and values of ζ is found, namely

Sn,a,r(1) = P0,n(1) +
a∑

l=2

Pl,n(1)ζ(l),

moreover, if (n+ 1)a+ l is odd then Pl,n(1) = 0. For n odd and a odd greater than 3, Pl,n(1) = 0
if l is even, so that Sn,a,r(1) is a linear combination of values of ζ on odd integers.

The dimension of the vector space spanned by 1, ζ(3), . . . , ζ(a) is based on the following theorem:

Theorem 3 (Nesterenko’s criterion). Let θ1, θ2, . . . , θN be N real numbers, and suppose that there
exist N sequences (pl,n)n≥0 such that

1. ∀ i = 1, . . . , N , pl,n ∈ Z;
2. αn+o(n)

1 ≤ ∣∣∑N
l=1 pl,nθl

∣∣ ≤ αn+o(n)
2 , with 0 < α1 ≤ α2 < 1;

3. ∀l = 1, . . . , N , |pl,n| ≤ βn+o(n) with β > 1.
Then

dimQ(Q θ1 + Q θ2 + · · ·+ Q θN ) ≥ log(β)− log(α1)
log(β)− log(α1) + log(α2)

.

This criterion, applied to the real numbers θi = ζ(2i+ 1), i ≤ (a− 1)/2, with the sequences pl,n

defined by p0,n = da
2nP0,2n(1) and pl,n = da

2nP2l+1,2n(1) if 1 ≤ l ≤ (a− 1)/2 yields the inequality

(3) δ(a) ≥ log(r) + a−r
a+1 log(2)

1 + log(2) + 2r+1
a+1 log(r + 1)

,

for all 1 ≤ r < a/2.
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For each odd integer a > 1, there exists an r (that can be made explicit) such that the inequal-
ity (3) reduces to δ(a) ≥ log(a)/3.

The proof of this property can be adapted to show that δ(169) > 2, which means that there
exists an integer j, 5 ≤ j ≤ 169, such that 1, ζ(3), and ζ(j) are linearly independent over Q.

4. At Least One Number Amongst ζ(5), ζ(7), . . . , ζ(21) Is Irrational

The linear independence of 1, ζ(3), ζ(j) for some j ≤ 169 implies the irrationality of ζ(j), but is
stronger. The bound 169 is improved in this section by only seeking the irrationality.
Theorem 4. There exists an integer j, 5 ≤ j ≤ 21, such that ζ(j) is irrational.

The proof of this theorem follows the same directions as the two previous ones. First an adequate
generating function Sn(z) is considered, that gives a linear equation implying the zeta function on
odd integers when specialized. The coefficients of this equation are studied, and their denominator
bounded; a saddle-point method gives asymptotic results on Sn(1). These lemmas, combined with
the Nesterenko criterion finally give the result.

The generating function Sn(z) is

Sn(z) = n!a−6
∞∑

k=1

1
2
d2

dk2

((
k +

n

2

) (k − n)3n(k + n+ 1)3n
(k)a

n+1

)
z−k,

where a is an integer ≥ 6. This sum is convergent when |z| ≥ 1. This sum is expanded in simple
elements, and then specialized at z = 1 to give a relation between values of ζ on odd integers, ζ(3)
excluded, namely

(4) Sn(1) = P0,n(1) +
a/2∑
j=2

j(2j − 1)P2j−1,n(1)ζ(2j + 1).

The coefficients Pl,n satisfy 2da+2
n P0,n(1) ∈ Z and 2da−l

n Pl,n(1) ∈ Z for 1 ≤ l ≤ a.
The next step of the proof is to get an asymptotic result on Sn(1), using a saddle-point method.

We do not know of any integral representation similar to (2) for Sn(1), but we can express Sn(1)
as the real part of a complex integral. First we introduce Rn(k),

Rn(k) = n!a−6
(
k +

n

2

) (k − n)3n(k + n+ 1)3n
(k)a

n+1

.

So that Sn(z) =
∑∞

k=1
1
2

d2

dk2Rn(k)z−k. We also define

Jn(u) =
n

2iπ

∫
L
Rn(nz)

(
π

sin(nπz)

)3

enuz dz,

where L is a vertical line from i∞ to −i∞ with a real part between 0 and 1. With those notations,
the property Sn(1) = <(Jn(iπ)

)
holds.

The quantity Jn(iπ) is rewritten in terms of the Γ function, using the complement formula
Γ(t)Γ(1− t) = π/ sin(πt), and is then approximated using the Stirling formula. This gives

Jn(iπ) =
(
i(−1)n+1(2π)a/2−1n2−a/2

∫
L
g(z)enw(z) dz

)(
1 +O(1/n)

)
,

where g(z) = (z + 1/2)
√

1−z
3√

2+z
3

√
z

a+3√
z+1

a+3 and w(z) = (a + 3)z log(z) − (a + 3)(z + 1) log(z + 1) +

3(1− z) log(1 − z) + 3(z + 2) log(z + 2) + iπz. The variable a is now specialized to 20 in order
to have a relation between ζ(5), . . . , ζ(21). The saddle-point method, see [2, pp. 279–285], now
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applies to the point z0, the only root of w′(z) = 0 such that 0 < <(z) < 1. The numerical value
of z0 is 0.992− 0.012i. The estimation of Jn(iπ) obtained is

Jn(iπ) = unr(−1)n+1n−8enw(z0)+iβ,

with r and β real constants and un a sequence of complex numbers converging to 1. We define
v0 = =(w(z0)

)
. The real part of this expression is

r(−1)n+1n−8e<
(
nw(z0)

)(<(un) cos(nv0 + β)−=(un) sin(nv0 + β)
)
.

Since v0 ∼ 3.104 is not a multiple of π, there exists an increasing sequence φ(n) such that
cos
(
φ(n)v0 + β

)
tends to a limit l 6= 0. As a direct consequence

lim
n→∞<Jφ(n)(iπ) = K(−1)φ(n)+1φ(n)−8e<

(
φ(n)w(z0)

)
,

where K is a constant. So limn→∞
∣∣Sφ(n)(1)

∣∣1/φ(n) = e<
(
w(z0)

)
.

This result, combined with Equation (4) proves Theorem 4 as follows. Equation (4) tells that
ln = 2d22

n Sn(1) is a linear combination of ζ(5), . . . , ζ(21) with integer coefficients. The paragraph
above shows that ln satisfies limn→∞

∣∣lφ(n)

∣∣1/φ(n) ∈ (0, 1). So one of the values ζ(5), . . . , ζ(21) is
irrational.

This result has been refined by Zudilin [6], who proved that at least one of the four numbers
ζ(5), ζ(7), ζ(9), and ζ(11) is irrational, by using a general hypergeometric construction of linear
forms in odd zeta values.
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