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Abstract

The ¢ function is defined by ((s) = >, 1/n°. This talk is a study of the irrationality of the
zeta function on odd integer values > 2.

1. Introduction

The sum ), 1/ n? was first studied by Bernoulli, who proved around 1680 that it converged to a
finite limit less than 2. Euler proved in 1735 that it is equal to 72/6, and studied the more general
function ((s) = ), 1/n®. He also showed that on even integers the ¢ function has a closed form,
namely ((2n) = C,m>" where the coefficients C,, are rational numbers that he wrote in terms of
Bernoulli numbers. A century later Riemann studied this function on the whole complex plane,
and he stated a conjecture on the location of the zeroes of the zeta function, that is known as the
Riemann hypothesis, and is still unproved.

The first result on the irrationality of the ( function on odd integers is due to Apéry, who
proved in 1978 that ((3) is irrational [1]. Recently Tanguy Rivoal showed that the ¢ function takes
infinitely many irrational values on the odd integers [4, 5], and that there exists an odd integer j
with 5 < j < 21 such that ((j) is irrational [5]. Zudilin [6] refined this result and proved it for
5<j <11

2. Irrationality of ((3)

Theorem 1 (Apéry(1978)). The number ((3) is irrational.

The following proof is due to Nesterenko [3], after ideas by Beukers. The theorem is proved using
the following generating function

O (1P =2% (k= n)?
Sn(z)_;akz< k2(k+1)%...(k+n)? )Zk

The decomposition of the coefficient of z~* in partial fractions gives the equality
(1) Sn(2) = Pon(2) + Pi1p(2) Lia(1/2) + Pap(2) Liz(1/2)

where Lis(z) = Zn21 fTZ is a polylogarithm function, and Py, are polynomials of degree n such
that P; (1) = 0. When Equation (1) is specialized at z = 1, it becomes

Sn(1) = PO,n(1> + P2,n<1)C(3)7
with the additionnal properties that Py, (1) € Z and d3 Py (1) € Z where d,, = ppem(1,2, ..., n).
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The value S, (1) is bounded by using an integral representation.

- | (MY

where L is the vertical line R(z) = ¢, 0 < ¢ < n + 1, oriented from top to bottom. From this
integral, the bounds 0 < S,,(1) < ¢(v/2 — 1)*" are obtained.

The inequalities 0 < d3 Py (1) + d2 P2 (1)¢(3) < cr™, where c is a constant, and r < 1 prove
that ((3) is irrational; because if ((3) is rational and equal to p/q, then qd3 Py ,,(1) +qd3 P2, (1)¢(3)
is an integer greater than 0 and bounded by gcr™ that converges to 0.

3. The ¢ Function Has Infinitely Many Irrational Values on Odd Integers
Tanguy Rivoal in fact proved a stronger result, that is:

Theorem 2. Let a be an odd integer greater than 3 and 6(a) be the dimension of the Q-vector
space spanned by 1, (3), ..., ((a), then

1
d(a) > 3 log a.

This implies directly that infinitely many ((2n 4 1) are irrational.
To prove Theorem 2, we introduce the series
[ee]
Snan(z) = 0o " k= remlht it Uen -+,
k=1 (k)n+1

where (k), = k(k+1)...(k+n — 1) is the Pochhammer symbol, and n, r, and a are integers
satisfying n > 0, 1 < r < a/2, so that Sy, q,(2) exists when |z| > 1. As for the proof of the
irrationality of ((3), an equality between the series studied and values of ¢ is found, namely

Sn,a,r( POn +Z-Pln

moreover, if (n + 1)a + [ is odd then P, (1) = 0. For n odd and a odd greater than 3, P,,(1) =0
if [ is even, so that S, 4 (1) is a linear combination of values of { on odd integers.
The dimension of the vector space spanned by 1, {(3), ..., ((a) is based on the following theorem:

Theorem 3 (Nesterenko’s criterion). Let 01, 0o, ..., On be N real numbers, and suppose that there
exist N sequences (pin)n>0 such that

L.Vi=1,...,N, pin€Z
2. ot <IN 6] < ab ™ with 0 < ay < ag < 1;
3.Vi=1,...,N, |pn| < 8" with > 1.

Then
log(83) — log(a1)

~ log(3) — log(an) + log(ax2)
This criterion, applied to the real numbers §; = ((2i+1), i < (a —1)/2, with the sequences p;
defined by pon = d%,, Po2n(1) and py, = d$, Poj11,20(1) if 1 <1< (a —1)/2 yields the inequality
log(r) + G71 10g(2)
1+log(2) + 2{;‘:11 log(r +1)’

dimg(Q6; + Qb2 +--- +Qbn) >

(3) o(a) >

forall 1 <r <a/2.




T. Rivoal, summary by M. Durand 99

For each odd integer a > 1, there exists an r (that can be made explicit) such that the inequal-
ity (3) reduces to d(a) > log(a)/3.

The proof of this property can be adapted to show that §(169) > 2, which means that there
exists an integer j, 5 < j < 169, such that 1, ((3), and ((j) are linearly independent over Q.

4. At Least One Number Amongst ((5), ((7), ..., ((21) Is Irrational

The linear independence of 1,((3),{(j) for some j < 169 implies the irrationality of {(j), but is
stronger. The bound 169 is improved in this section by only seeking the irrationality.
Theorem 4. There exists an integer j, 5 < j < 21, such that {(j) is irrational.

The proof of this theorem follows the same directions as the two previous ones. First an adequate
generating function S, (z) is considered, that gives a linear equation implying the zeta function on
odd integers when specialized. The coefficients of this equation are studied, and their denominator
bounded; a saddle-point method gives asymptotic results on S, (1). These lemmas, combined with
the Nesterenko criterion finally give the result.

The generating function S, (z) is

=1 d? n\ (k—n)3(k+n+1)32\ _
— pla—6 - i n n k
Sp(z) = n! 5 22 ((k:—i— 2) ", )z ,

k=1
where a is an integer > 6. This sum is convergent when |z| > 1. This sum is expanded in simple
elements, and then specialized at z = 1 to give a relation between values of ¢ on odd integers, ((3)
excluded, namely

a/2
(4) Sn(1) = Pon(1) + D 5(2) = DPojm1n(1)¢(2 +1).
j=2
The coefficients P, satisfy 2d%"2 P ,,(1) € Z and 2d%'P,,,(1) € Z for 1 <1 < a.

The next step of the proof is to get an asymptotic result on S, (1), using a saddle-point method.
We do not know of any integral representation similar to (2) for S, (1), but we can express Sy(1)
as the real part of a complex integral. First we introduce R, (k),

(k—n)3(k+n+1)3
(F)ns1

Ry(k) = 01 (i + g)

So that Sp(z) => 2, %%Rn(lﬁ)z—k. We also define

3
n Tr nuz
Inlu) =5 /LR“”” (nm)> e dz,

where L is a vertical line from ioo to —ioo with a real part between 0 and 1. With those notations,
the property Sy, (1) = R(J,(im)) holds.

The quantity J,(i7) is rewritten in terms of the T' function, using the complement formula
I'(t)I'(1 —t) = n/sin(nt), and is then approximated using the Stirling formula. This gives

T (i) = <i(—1)”+1(27r)“/2_1n2_a/2 /L g(z)em?) dz) (1+0(1/n)),

3 3
where ¢(z) = (2 + 1/2)\[7% Vf{fﬁ and w(z) = (a + 3)zlog(z) — (a + 3)(z + 1)log(z + 1) +
3(1 —2)log(l — z) + 3(z + 2)log(z + 2) + imz. The variable a is now specialized to 20 in order

to have a relation between ((5), ..., ((21). The saddle-point method, see [2, pp. 279-285], now
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applies to the point zg, the only root of w'(z) = 0 such that 0 < R(z) < 1. The numerical value
of zp is 0.992 — 0.0124. The estimation of J,, (i) obtained is
Jn (i) = upr(=1)"Fip=8enw(z0) 438,

with 7 and ( real constants and w, a sequence of complex numbers converging to 1. We define
vg = $(w(20)). The real part of this expression is

r(—l)"“nfse%("w(zo)) (%(un) cos(nug + ) — S(uy) sin(nvg + ﬂ))
Since vy ~ 3.104 is not a multiple of m, there exists an increasing sequence ¢(n) such that

cos (¢(n)v0 + ﬁ) tends to a limit [ # 0. As a direct consequence

lim Ry (im) = K (=1)2+ () -8R (omuiz0)).

n—:oo

where K is a constant. So limnﬂoo|5’¢(n)(1)‘l/¢(”) = e%(“’(m)).
This result, combined with Equation (4) proves Theorem 4 as follows. Equation (4) tells that

I, = 2d*2S,,(1) is a linear combination of ((5), ..., ¢(21) with integer coefficients. The paragraph
above shows that [,, satisfies limnﬁoo|l¢(n)|1/¢(n) € (0,1). So one of the values ¢(5), ..., ((21) is
irrational.

This result has been refined by Zudilin [6], who proved that at least one of the four numbers
¢(5), ¢(7), €(9), and ¢(11) is irrational, by using a general hypergeometric construction of linear
forms in odd zeta values.
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