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1 Introduction

One way to derive Mercator's series for the natural logarithm function starts from the integral

expression
1oXx
1.1 log(1+x)=| —dt.
(1.1) g+ =] —
Expanding the integrand as a Taylor series in ¢ and integrating term by term yields Mercator's
expansion
2 3
x° X
logl+x)=x——+—— ---.
g(l+x) >3

We can get more rapidly converging series for log(l+ x) by a simple modification of the
above approach; the idea is to rewrite the integrand in (1.1) before carrying out the expansion
and term by term integration.

Example

2
X

. : 1 .
t(1—1¢) in ¢ vanishes when ¢ = ——, and hence is
+x X

divisble by the linear polynomial 1+ x7 in ¢. It follows that the quotient

The quadratic polynomial 1+ "

2
X

t(1-1)

+ X = (14 x —xt),
1+ xt 1+x

a linear polynomial in #. We can thus write the integrand of (1.1) in the form

1+
1

2

X X 1+ x—xt
= . .
1+xt 1+x 14 X (1—1)
1+ x

Integrating both sides between 0 and 1 gives

1ox
log(l + X) = J.O Tx[dt

x? gl 1+ x—xt
B I+x-0 x’ t
R T )

+Xx

x* i[_—xz] Ll(l+x—xt)tk(l—t)kdt.

I+ x5\ 1+ x




The integrals in the series can be evaluated making use of the beta function result

(1.2) Bp+Lg+D) = [ r(-ryd = —LL_
’ 0 (p+g+D!

where p and ¢ are nonnegative integers. After a short calculation we obtain the expansion

1+x

n=1

log(1+x):x:22( 1)"“( j !

2

which converges provided <4,

1+x

More generally, if m and n are nonnegative integers we can write the integrand of (1.1)

in the form

(1.3) AR { Fual®) }
I+xt  [1+R,,(x)"(1-1)"

where P, (¢) is a polynomial in ¢ (with coefficients rational functions in x) and

m,n

m+n

m+1 X
Rmn(‘x) ( 1) (1+x)n :

Integrating both sides of (1.3 ) between 0 and 1 gives

log(1+x) = —dt

+ xt

_ J~l Pm,n(t) ;
O1+R, ()" (1-12)"

o0

=>(-R,, (1) J.Pm”(t)t’"k(l 1)*dt

k=0

The integrals can be evaluated using (1.2) to produce a series expansion for log(1+ x). Some examples

of these expansions for small values of m and » are listed in the next section.



Once we have these new expansions for the logarithmic function log(1+ x) we can obtain new

P

. . : : _ . sin” (x . 2
series expansions for the inverse tangent function tan™'(x) and the functions —(2 and (sm 1()c))
l-x

by means of the relations

(1.4) tan”'(x) = é(log(l—ix)—log(1+ix)),
15 sin”'(x) _ 1 _1[ X ],
(1-2) \/l—x2 \/l—x2 fan 1—x?
and

(1.6) (sin" () = | sin () 4

0 1_t2

Some examples are listed in Section 4.
2
It turns out that the expansions we obtain by this method for the functions (sin‘l(x)) and

sin”'(x)
V1-x?

for these functions in a disguised form. Nevertheless, these equivalent expansions are useful for

are in fact power series in x, and hence must be just the usual Maclaurin expansions

finding new series for the constants 7, £'(2), {(3), {(4) and Catalan's constant G. Some examples

of these new representations for these constants may be found in Sections 5 through 9.



2 Series expansions for log(1+x)

2n—1

@.1) log(1+x) = Z( e 20 X (m=n=1)

A2 0"
n

3n-2
n 9+15x+4x 3+6x+2x X
2.2) log(1+x) = Z (—1)"*! ( )~ ¢ ) (m=1,n=2)
(1+x)
2n(2n— 1)
n
© p943x-2x) - G-x) x
(2.3) log(1+x) = Z ( )~ B-x) (m=2,n=1)
n=1 3n (1+X)n
2n(2n-1)
n
2 (' —6x—4) = 2n(x —2x —12x—8) x
2.4) log(1+x) = Z (m=n=2)
2n
n=1 4n (1+)€)
2n(2n-1)
2n
4n-3
= P(n,x X
(2.5) log(1+x) = Z (—1)"*! (2, ) - (m=1,n=3)
n=1 4n | (1+x) "
3n(3n—-1)(3n-2)
n
where P(n,x) = n> (64 +176x +148x” +27x”) — n(48 +140x + 128x” + 27x’)
+2(4+12x +12x% +3x7)
4n-3
= P(n,x X
(2.6) log(1+x) = Z (~1)"*! (n.2) (m=3,n=1)
n=1

(411) (1+x)n
3n(3n-1)(3n-2)
n

where P(n,x) = n* (64 +16x —12x% + 9x°) — n(48 + 4x — 8x* +9x°) + 2(4 + x°)



3 Series for log(2)
We can obtain an endless supply of rapidly converging series for log(2) by specialising these

generalised expansions for log(1+x). Here are some typical results:

3 o0
3.1 log(2) = =+
4 ;2 (2n +1)(2”)
32) og(2) = > 14n +11 _ in
”—0(4n+1)(4n+3)( ]
9 < 171n* +231n + 74 1
(3.3) log2) = 2> (1"

=y (61 +1)(6n +3)(61 + 5)[6 J &

3 N 14560n° +27504n% +16466n+3105 1

(G.4) log(2) = —— n
125058 (84 1)(8n+ 3)(8n + 5)(8n + 7)[inj 16
n
(3.5) log(2) = % Sn+4 - 21n
=0 (30 + 1)(3n +2)( j
(3.6) log(2) = éZ(—l)“ 281 +17 _ in
= Gl 2)( j

4 (411} 2
n=0 (4n+1)(4n+2)(4n+3)
n

415n° +487n+134 1
(3.8) log(2) = — Y (-1 —

4 (4nj 8
n=0 (4n+1)(4n+2)(4n+3)
n




(3.9) log(2) = %Z(—l)" T
n=0 (4n+1)(4n+3) (2 ]
n

34n+25 1

1 ~ 2800n2 + 36801 +1123 1
=0 (61 +1)(6n +3)(6n +5) 22
(4n)!(3n)!n!
© 3 2
G.1D) log(2) = 1 215612811 +291728n% +171658n+31441 1
432 &= 8n 304"
n=0  (8n+1)(8n+3)(8n+5)(8n+7) A
n
1 < 361944n° + 67203602 +391770n + 70743 1
n=0 @Bn+1)Bn+3)8n+5)8n+7)———

(6n)!(4n)'n!

The first 10 terms of this last series gives a value for log(2) which is correct in the first 46

decimal places.



4 Series for inverse trigonometric functions

L x = 1 4x* )
(4.1) fan” x = (sz);( (21’1] (szj (Euler)

0 (2n+1)
n

X 4n(142x7) + 3 + 5x° ( 4x? T”
4 1+ x?
=0 (4n+1)(4n+3)(2nj x
n

o0 3n
B P(n,x) 4x*
(4.3) tan” x = xz 32 ( 2}
(2128 (6n+1)(6n + 3)(6n +5)(§"j b

n

where P(n,x) =36n"(1+3x” +3x*) + 6n(8+23x” + 21x*) + 15+ 40x” + 33x*

o0 2 \4n
R e

42 8 84 1)(8n 4 380+ 5)(8n +7) G” 1+
n

where P(n,x) = 512n° (1+ 4x” + 6x* + 4x°) + 64n>(15+ 59x” + 86x* + 54x°)
+8n(71+272x" +381x* +224x°) +105+385x* + 51 1x* +279x°

= 2 2 4 n
(4.5) tan”' x = X n n(4+2x7) +3+2x ( 4x ]

(_1) 2
Z (4n +1)(4n + 3)@”] I+x

2
(1+x )n:0
n

* 4 \2n
(4.6) tan'x = X Z P(n,x) J[ 4x j

(1+x7)" 4= (8n +1)(81 +3)(8n + 5)(8n +7) (j” I+
n

where P(n,x) = 64n* (8 +12x" +2x* —x*) +161n° (60 + 92x” +19x* — 7x°)
+4n(142 +225x +58x* —14x°) + (105 +175x> + 56x* —8x°)



Inverse sine

o 2n
4.7) (sin”'x)* = % % (Euler)
n=1,2
7]
- -1 © 2n—1
(4.8) sin_ x 2(2)6)

o0
. 8n°(1+x*)—2n(1+4x") +2x° -
4.9) (sin”'wy = Y SUEX) AL (5 pyn-2

= @n@n-1) (4;1}
2n

s 1 © 2y 2
(4.10) sin”_ x ZSn(H—x) 2(1+2x )(2x)4"_3

I=x" 0= 2m —1)(2”j
n

P(n,x)
2(6nj
(Bn(3n—-1)(3n-2))
3n

(4.11) (sin”' x)? = 2x)%" 4,

[Ms

Il
—_

n

where P(n,x) = 648n*(1+x* + x*)—324n° (2 + 3x” + 4x*)
+18n° (114 24x> +52x*) —6n(3 +8x” + 48x*) +32x"

in- . P(n,x)
(4.12) Sm X Z X 2x)%" 3,

I=x" 0= B3nGn-1)3n-2)) (3”}
n

where P(n,x) =144n"(1+ x> + x*) = 24n(4 + 5x> + 6x*) + 4(3 + 4x” + 8x*)



5 A collection of results relating to n

22
T —

7

00

(5.1) 2 .- 2402 !
7 An+D)(A4n+2)(4n+3)4n+5)@An+6)(4n+7)

n=1

This is a series companion formula to the integral result of Dalzell,

1 4, 4
(5.2) 2 J' de.
7 0 1+x

Dalzell, D. P. "On 22/7." J. London Math. Soc. 19, 133-134, 1944.

If we expand the integrand in (5.2) into a series and integrate term by term we obtain the

alternating series

2 LN (1"
-3) 7 " " 24};2 QCn+1D)2n+2)2n+3)2n+4)(2n+5)

It is also interesting to note that

22

1
5.4 i o=
(5.4) S

- 240n;2 (4n +1)(4n +2)(4n+3)(4n+5)(4n+6)(4n+7)

10



A list of series for m derived from the new inverse tangent and inverse
sine function expansions

5.5) o < 10 +6

1
n=0 (3n +1)(3n + 2)(;’1J 2
n

(5.6) T o= 2§:

S5n
n=0 (5n+1)(5n+2)(5n +3)(5n +4) [Zn]

1870 +342n° +201n+38  (-1)"
2}’!

820n° +1533n> +902n+165  (-1)"

(5.7) 7= 2) B} 4
=0 (8n+1)(8n +3)(8n +5)(8n +7) (4 }
n

(5.8) =2 bn+3

(-2
n
n=0 (4n +1)(4n + 3)(2nj

(5.9) =y snt2 4
= (4n+1)(4n+3)(2 j
n

8~ Tn+6 n
(5.10) 7 = _E (- 4)
3 (6n+1)(6n +5) oM
(3n)!(2n)!(2n)!

5.11) T 15: 14n+11 (-1)"
. - U
V3 n=0 (4n+1)(4n+3)( ”j
2n
(5.12) T li 352n% + 4881 +163 !
. 6 ! | ol
V3 6 (6 1)(6n + 3)(6n +5) DM 9
(4n)!(3n)!n!
(5.13) 1 i10528n3+19984n2+12038n+2285L
' N

8n ) 9"
n=0 (8n+1)(8n +3)(8n +5)(8n +7) [4}1)
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6 Results for {(2)

Recall
B T R
Here are a variety of formulas for {(2).
As a limit
(6.1 §(2) = lim kzj B
(6.2) @) = lim np(n)
Z kp(n— k)

where p(n) counts the number of partitions of n - sequence A000041 in Sloane's Online
Encyclopedia of Integer Sequences.

As an integral
(6.3) Q2) = J; (xA=X)A(XA=X)A(XA=X)... dx

c’ g
where the notation a Ab A c A... denotes the tower of powers a .

An interesting series

(6.4) £Q) = 1+2Z __enr

n*(l+n*+n*)

Maple can evaluate this sum but can't evaluate the companion result for Napier's constant

1
(6.5) Z 5

n=1 nl(l+n

+n)

Leonhard Euler (1707 -1783)

In celebration of Euler's tercentenary we offer the amusing

(6.6) ) = %J.OZ tan'(tan'""’ (tan ' (tan'"® (x)))) dx

12


http://www.research.att.com/~njas/sequences/A000041

Further series for {(2)

o0

2n
Putting x = 1 in the expansion (sin”' x)* = lz (2)2 results in the well-known series
2 n=1 52 "
n

7’ = 1
@) = = = 321 [2’1} .
n=ln

n

\S]

Using the new representations for (sin”' x)° given in this website produces an infinite sequence

of faster and faster converging series for {'(2), which continues with

2 2
6.7 Z -3 20m = 8n + 1 see Mohammed ", Example 4
6 4n\ ’
n
n=1 (2n(2n—1))2[ J
2n
2 © 4 3 2
Vs 1701n" — 1944n° + 729n" — 96n + 4
(6.8) == 32 ,

,[6n
n=1 (Bn(3n-1)(3n-2)) [3’1}

2 © 6 5 4 3 2
69) % - 122 87040n° — 173568n° + 131968n* — 47456n +88084n 552n + 9 ,
n
n=1 (4n(4n —1)(4n - 2)(4n - 3))* [4 ]
n

(1) Mohamud Mohammed [Infinite families of accelerated series for some classical
constants by the Markov—WZ Method Discrete Mathematics and Theoretical
Computer Science 7, 2005, 11-24
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http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/issue/view/53
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/issue/view/53

7 Series for {(3)

Making use of the Taylor series expansion for (sin”' (x))* given in (4.7), the integral

representation

(7.1) g(3)=1oj/Mdz

[L.Lewin Polylogarithms and associated functions, North-Holland, New York, 1981, Sec. 6.3]

is easily seen to be equivalent to the series

5 © (_l)rH—l )
7.2 3) = = Hjort 1954).
(7.2) (O) = 3~y (Hiortnaes 1954)
n=1 n
n
Using the new series expansions for (sin™ (x))* provides further results of this type. Examples
include
5 24n° + 4n° —6n +1
(7.3) (e =3 i
n=1 (2n(2n —1))3( J
2n
w1 94770° —11421n° +5265n" —1701n° +558n° —108n + 8
(74) O = Z G ,
n=1 (3n(3n-1)(3n-2))’ ( J
3n
and
o0
P(n
(1.5) (@ =2 G —,
n=1(4n(4n—1)(4n—-2)(4n - 3))3( ]
4n
where

P(n)=1671168n° —4161536n® + 4278272n" —2340864n° + 712064n°
—98496n* —6360n° +4476n* —594n + 27.
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8 Series for {(4)

Comtet's result

(8.1) ) = Y —

follows from the identity

dx

(8.2) c@ = 47

-1 2
144J‘1 sin  (x/2)log (x)
J >
1-(x/2)

sin”'(x/2)

JI=(x/2)

use the equivalent expansions for

by replacing with its Maclaurin series and integrating term by term. If we

in”'(x)
Vi-x*’

some of which are listed in section (4), we can

extend Comtet's result to

36 N~ 80n* —48n° +24n> —8n+1
(8.3) £(@) = —721 4 [4,1} ,
= (2n(2n-1))
2n
36 % P(n)
(8.4) {4y = —72

(3n(3n-1)(3n-2))* ( J
3n

where P(n) =137781n" —275562n" +240570n° —122472n°
+41877n* —10908n° +2232n> —288n + 16,

and so on.
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9 Series for Catalan’s constant

The Dirichlet # function is defined as

1 1 1 1
9.1 S)=———F— ——F - where Res > 1.
( ) ﬂ( ) lS 3S 5S 7S

It is an example of an L-series. The values £(1), B(3), B(5), ... of the Dirichlet
S function at the positive odd integers are rational multiples of powers of 7.
Explicitly

(9.2) B2n+1)= 252 5 (%j

where E: is an Euler number (secant number). The first few values are

n=012 3 4 5
E =115 61 1385 50521  (Sloane's A000364).

Little is known about the values of #(2n) at the positive even integers. £(2) is known

as Catalan's constant and denoted by G (sometimes K).

(9.3) G=l—i2+i2—i2+~-=0.91596 55941 77219 01505 ....
35 7

Unlike £(3), it is not known if G is irrational.

D. M Bradley in “Representations of Catalan’s Constant” catalogues and proves a large
number of infinite series and integral representations for G. In particular we have the
integral formula (entry (34) in Bradley)

X

2
(9.4) G = ;ﬂlog(2+\/§)+ij6 dx .

0 sin(x)

Make the change of variable x = sin”'( ) in the integral to give

l . _l
9.5) G = 1ﬂ10g(2+ﬁ)+3jz—S1n () dy .
8 4J0 y 1_y2
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http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.1879

Now replace sin™'(y)/+/1— y* by its Taylor series expansion
sin!y @)

1 - y2 n=1 n 2n
n

and integrate term by term to obtain

1

(9.6) G = %ﬂ log(2 +3) +> > - (entry (62) in Bradley),

8”:0(2n+1)2[ "j
n

Because of the fast convergence of the series, this representation for G has been used to

calculate Catalan's contant to a large number of decimal places.

If in (9.5) we use the new series expansions for sin™'(y)/+/1 - y* given in this website we

find new representations for Catalan's constant:

2 2
9.7) G = %,,log(2+\/§)+ljz 40n +54n+194
n
":O(4n+1)2(4n+3)2( ]
2n
00 4 3 5
(9.8) G = ;ﬂlog(2+\/§)+33zz6804n +17172n” +15903n +64(;5n+956
n
n=0 (6n+1)*(6n +3)*(6n+5) [3 ]
n
(9.9 G = %ﬂlog(2+\/§)+iz p(n) ,

2 2 2 2 2 8”
7=0 (81 +1)*(8n + 3)*(8n + 5)*(8n + 7) (4’1}

where p(n) =13926401° +5056512n° + 7466752n* + 5731040n° + 2409488
+526414n + 46889,

and so on.
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Bradley (entry (4) in the above reference) also gives the integral representation

_1f_s
©-10) ¢ = 2.[0 sin(x)

B J‘ sin~ (x)
0 xv/1—x?

which produces the poorly converging series

9.11) Z : entry (61) in Bradley.
=0(2n +1)? [ ]
n

Using the expansion (4.10)

. © 2 2
sin”' x _ 8n(1+x*)—2(1+2x )(Zx)4”_3

— 4
I=x" = 2n(2n—1)[ "j
2n

in (9.10) leads to the representation

@© 2 n

9.12) G - Z (32n" +36n+11) 26 .
n

n=0(4n +1)*(4n +3)’ [2 ]
n

Again the convergence is slow.
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