CN117238914A - SiC device integrated with SBD and preparation method - Google Patents
SiC device integrated with SBD and preparation method Download PDFInfo
- Publication number
- CN117238914A CN117238914A CN202311506113.4A CN202311506113A CN117238914A CN 117238914 A CN117238914 A CN 117238914A CN 202311506113 A CN202311506113 A CN 202311506113A CN 117238914 A CN117238914 A CN 117238914A
- Authority
- CN
- China
- Prior art keywords
- drift layer
- layer
- sbd
- sic device
- type floating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims description 39
- 238000000151 deposition Methods 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 12
- 239000007943 implant Substances 0.000 claims description 4
- 230000002441 reversible effect Effects 0.000 abstract description 25
- 239000010410 layer Substances 0.000 description 195
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 80
- 229910010271 silicon carbide Inorganic materials 0.000 description 80
- 230000008569 process Effects 0.000 description 25
- 235000012431 wafers Nutrition 0.000 description 21
- 239000004065 semiconductor Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 17
- 150000002500 ions Chemical class 0.000 description 17
- 229910052710 silicon Inorganic materials 0.000 description 16
- 239000010703 silicon Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 229920005591 polysilicon Polymers 0.000 description 10
- 230000008021 deposition Effects 0.000 description 9
- 238000005468 ion implantation Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 230000005684 electric field Effects 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 238000000407 epitaxy Methods 0.000 description 7
- 238000010884 ion-beam technique Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005240 physical vapour deposition Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000011343 solid material Substances 0.000 description 4
- 238000000348 solid-phase epitaxy Methods 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 description 3
- 238000009279 wet oxidation reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- -1 argon ions Chemical class 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000003877 atomic layer epitaxy Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004943 liquid phase epitaxy Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明提供一种集成SBD的SiC器件及制备方法,该SiC器件包括:集成SBD;所述集成SBD由肖特基金属和漂移层组成;所述肖特基金属位于源极与漂移层之间并与所述源极和所述漂移层邻接;所述漂移层位于衬底上方并与衬底邻接。在源极与漂移层之间集成了肖特基二极管,肖特基二极管的开启电压远低于体二极管,当SiC器件处于反向状态时能够更早于体二极管导通,为反向续流提供导通路径,保护SiC器件不被过大的反向电流损坏,还增加了P型浮岛层用于保护栅极氧化层和降低开关损耗,显著提升了SiC器件的电气性能。
The invention provides an SBD-integrated SiC device and a preparation method. The SiC device includes: an integrated SBD; the integrated SBD is composed of a Schottky metal and a drift layer; the Schottky metal is located between the source and the drift layer. and adjacent to the source electrode and the drift layer; the drift layer is located above the substrate and adjacent to the substrate. A Schottky diode is integrated between the source and the drift layer. The turn-on voltage of the Schottky diode is much lower than that of the body diode. When the SiC device is in the reverse state, it can conduct earlier than the body diode, which is reverse freewheeling. It provides a conduction path to protect SiC devices from being damaged by excessive reverse current. It also adds a P-type floating island layer to protect the gate oxide layer and reduce switching losses, which significantly improves the electrical performance of SiC devices.
Description
技术领域Technical field
本发明涉及半导体技术领域,具体涉及一种集成SBD的SiC器件及制备方法。The invention relates to the field of semiconductor technology, and in particular to a SiC device integrating SBD and a preparation method.
背景技术Background technique
第三代半导体材料碳化硅具有带隙宽、击穿场强高、热导率高、饱和电子迁移速率高、物理化学性能稳定等特性,可适用于高温,高频,大功率和极端环境。碳化硅具有更大的禁带宽度和更高的临界击穿场强。相比同等条件下的硅功率器件,碳化硅器件的耐压程度约为硅材料的10倍。另外,碳化硅器件的电子饱和速率较高、正向导通电阻小、功率损耗较低,适合大电流大功率运用,降低对散热设备的要求。SiC具有独特的物理、化学及电学特性,是在高温、高频、大功率及抗辐射等极端应用领域极具发展潜力的半导体材料。由碳化硅制作的功率器件的绝缘击穿场强是Si的10倍,带隙是Si的3倍,并且SiC器件漂层的阻抗比Si器件低,不需要进行电导率调制就能够以MOSFET实现高耐压和低阻抗。The third generation semiconductor material silicon carbide has the characteristics of wide band gap, high breakdown field strength, high thermal conductivity, high saturation electron migration rate, stable physical and chemical properties, etc., and can be applied to high temperature, high frequency, high power and extreme environments. Silicon carbide has a larger bandgap and higher critical breakdown field strength. Compared with silicon power devices under the same conditions, the voltage resistance of silicon carbide devices is about 10 times that of silicon materials. In addition, silicon carbide devices have high electron saturation rate, small forward conduction resistance, and low power loss. They are suitable for high-current and high-power applications and reduce the requirements for heat dissipation equipment. SiC has unique physical, chemical and electrical properties and is a semiconductor material with great development potential in extreme application fields such as high temperature, high frequency, high power and radiation resistance. The insulation breakdown field strength of power devices made of silicon carbide is 10 times that of Si, and the band gap is 3 times that of Si. Moreover, the impedance of the floating layer of SiC devices is lower than that of Si devices. It can be implemented with MOSFET without conductivity modulation. High withstand voltage and low impedance.
使用碳化硅材料制作的MOS场效应晶体管功率器件比Si器件能够承受更高的电压和更快的开关速度。对于常规Si MOS而言,其体二极管开启电压仅为0.7V左右,因此常用作MOSFET反向偏置下的续流通道。但是SiC材料由于禁带更宽,导致SiC MOSFET的体二极管开启电压过高(2.7-3.0V),在反向偏置下难以起到续流保护MOSFET的作用。MOS field effect transistor power devices made of silicon carbide materials can withstand higher voltages and faster switching speeds than Si devices. For conventional Si MOS, its body diode turn-on voltage is only about 0.7V, so it is often used as a freewheeling channel under reverse bias of MOSFET. However, due to the wider band gap of SiC material, the turn-on voltage of the body diode of SiC MOSFET is too high (2.7-3.0V), making it difficult to play the role of freewheeling protection MOSFET under reverse bias.
发明内容Contents of the invention
本发明的目的是提供一种集成SBD的SiC器件及制备方法,该SiC器件在源极与漂移层之间集成了肖特基二极管,肖特基二极管的开启电压远低于体二极管,当SiC器件处于反向状态时能够更早于体二极管导通,为反向续流提供导通路径,保护SiC器件不被过大的反向电流损坏,还增加了P型浮岛层用于保护栅极氧化层和降低开关损耗,显著提升了SiC器件的电气性能。The purpose of the present invention is to provide an SBD-integrated SiC device and a preparation method. The SiC device integrates a Schottky diode between the source and the drift layer. The turn-on voltage of the Schottky diode is much lower than that of the body diode. When the SiC device When the device is in the reverse state, it can conduct earlier than the body diode, providing a conduction path for reverse freewheeling and protecting the SiC device from being damaged by excessive reverse current. A P-type floating island layer is also added to protect the gate. The anodized layer and reduced switching losses significantly improve the electrical performance of SiC devices.
一种集成SBD的SiC器件,包括:集成SBD;A SiC device with integrated SBD, including: integrated SBD;
所述集成SBD由肖特基金属和漂移层组成;The integrated SBD is composed of Schottky metal and drift layer;
所述肖特基金属位于源极与漂移层之间并与所述源极和所述漂移层邻接;The Schottky metal is located between the source electrode and the drift layer and adjacent to the source electrode and the drift layer;
所述漂移层位于衬底上方并与衬底邻接。The drift layer is located above and adjacent to the substrate.
优选地,所述漂移层包括:第一漂移层和第二漂移层;Preferably, the drift layer includes: a first drift layer and a second drift layer;
所述第一漂移层位于衬底和所述第二漂移层之间并与衬底和所述第二漂移层邻接;The first drift layer is located between the substrate and the second drift layer and adjacent to the substrate and the second drift layer;
所述第二漂移层位于第一漂移层上方。The second drift layer is located above the first drift layer.
优选地,所述第一漂移层的掺杂浓度小于第二漂移层的掺杂浓度。Preferably, the doping concentration of the first drift layer is smaller than the doping concentration of the second drift layer.
优选地,还包括:P型浮岛层;Preferably, it also includes: P-type floating island layer;
所述P型浮岛层嵌入漂移层;The P-type floating island layer is embedded in the drift layer;
所述P型浮岛层层叠设置。The P-type floating islands are arranged in layers.
优选地,位于下方的所述P型浮岛层的宽度小于位于上方的所述P型浮岛层的宽度。Preferably, the width of the P-type floating island layer located below is smaller than the width of the P-type floating island layer located above.
优选地,所述第一漂移层的掺杂浓度为1016cm-3。Preferably, the doping concentration of the first drift layer is 10 16 cm -3 .
优选地,所述第二漂移层的掺杂浓度为1017cm-3。Preferably, the doping concentration of the second drift layer is 10 17 cm -3 .
优选地,所述P型浮岛层的掺杂浓度为1018cm-3。Preferably, the doping concentration of the P-type floating island layer is 10 18 cm -3 .
优选地,所述P型浮岛层的宽度为SiC器件宽度的至/>。Preferably, the width of the P-type floating island layer is the width of the SiC device. to/> .
一种集成SBD的SiC器件制备方法,包括:A method for preparing SBD-integrated SiC devices, including:
在衬底上方外延一层低掺杂浓度的漂移层;Epitaxially layer a drift layer with a low doping concentration above the substrate;
在所述低掺杂浓度的漂移层上方外延一层高掺杂浓度的漂移层并离子注入形成P型浮岛层、P-body层、P+区和N+区;A high-doping concentration drift layer is epitaxially grown on the low-doping concentration drift layer and ion-implanted to form a P-type floating island layer, a P-body layer, a P+ region, and an N+ region;
蚀刻所述P+区形成沟槽;Etch the P+ region to form a trench;
沉积栅极并蚀刻所述栅极形成沟槽;depositing a gate electrode and etching the gate electrode to form a trench;
在沟槽中沉积肖特基金属后沉积源极和漏极。The source and drain are deposited after Schottky metal is deposited in the trench.
本发明在源极下方设置肖特基二极管用于反向续流,当SiC器件正常工作时,肖特基二极管为高阻状态不导通,当SiC器件接反向电压时,肖特基二极管开启,提供续流通道,使电流能够从源极流向肖特基金属,然后从肖特基金属流向漂移层,从漂移层流向衬底最后流向漏极,由于碳化硅材料禁带宽,体二极管开启电压非常高,在反向续流时难以保护SiC器件,所以本发明采用肖特基二极管保护SiC器件,肖特基二极管的开启电压远低于体二极管,在SiC器件反向时能够提供足够的电流路径,提高了SiC器件的安全性和稳定性。In the present invention, a Schottky diode is provided below the source for reverse freewheeling. When the SiC device is operating normally, the Schottky diode is in a high-resistance state and does not conduct. When the SiC device is connected to a reverse voltage, the Schottky diode Turn on, providing a freewheeling channel so that current can flow from the source to the Schottky metal, then from the Schottky metal to the drift layer, from the drift layer to the substrate and finally to the drain. Due to the forbidden bandwidth of the silicon carbide material, the body diode is turned on The voltage is very high, and it is difficult to protect the SiC device during reverse freewheeling. Therefore, the present invention uses a Schottky diode to protect the SiC device. The turn-on voltage of the Schottky diode is much lower than that of the body diode, and it can provide sufficient power when the SiC device reverses direction. current path, improving the safety and stability of SiC devices.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,标示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, for those of ordinary skill in the art, It is said that other drawings can be obtained based on these drawings without exerting creative labor.
图1为本发明的SiC器件结构示意图;Figure 1 is a schematic structural diagram of the SiC device of the present invention;
图2为本发明的SiC器件制备流程方法示意图;Figure 2 is a schematic diagram of the SiC device preparation process method of the present invention;
图3为本发明的SiC器件制备流程结构示意图。Figure 3 is a schematic structural diagram of the SiC device preparation process of the present invention.
附图标记说明:Explanation of reference symbols:
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without making creative efforts fall within the scope of protection of the present invention.
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that all directional indications (such as up, down, left, right, front, back...) in the embodiment of the present invention are only used to explain the relationship between components in a specific posture (as shown in the drawings). Relative positional relationship, movement conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一种该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, descriptions involving "first", "second", etc. in the present invention are for descriptive purposes only and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In addition, the technical solutions in various embodiments can be combined with each other, but it must be based on the realization by those of ordinary skill in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that such a combination of technical solutions does not exist. , nor within the protection scope required by the present invention.
使用碳化硅材料制作的MOS场效应晶体管功率器件比Si器件能够承受更高的电压和更快的开关速度。对于常规Si MOS而言,其体二极管开启电压仅为0.7V左右,因此常用作MOSFET反向偏置下的续流通道。但是SiC材料由于禁带更宽,导致SiC MOSFET的体二极管开启电压过高(2.7-3.0V),在反向偏置下难以起到续流保护MOSFET的作用。MOS field effect transistor power devices made of silicon carbide materials can withstand higher voltages and faster switching speeds than Si devices. For conventional Si MOS, its body diode turn-on voltage is only about 0.7V, so it is often used as a freewheeling channel under reverse bias of MOSFET. However, due to the wider band gap of SiC material, the turn-on voltage of the body diode of SiC MOSFET is too high (2.7-3.0V), making it difficult to play the role of freewheeling protection MOSFET under reverse bias.
本发明在源极下方设置肖特基二极管用于反向续流,当SiC器件正常工作时,肖特基二极管为高阻状态不导通,当SiC器件接反向电压时,肖特基二极管开启,提供续流通道,使电流能够从源极流向肖特基金属,然后从肖特基金属流向漂移层,从漂移层流向衬底最后流向漏极,由于碳化硅材料禁带宽,体二极管开启电压非常高,在反向续流时难以保护SiC器件,所以本发明采用肖特基二极管保护SiC器件,肖特基二极管的开启电压远低于体二极管,在SiC器件反向时能够提供足够的电流路径,提高了SiC器件的安全性和稳定性。In the present invention, a Schottky diode is provided below the source for reverse freewheeling. When the SiC device is operating normally, the Schottky diode is in a high-resistance state and does not conduct. When the SiC device is connected to a reverse voltage, the Schottky diode Turn on, providing a freewheeling channel so that current can flow from the source to the Schottky metal, then from the Schottky metal to the drift layer, from the drift layer to the substrate and finally to the drain. Due to the forbidden bandwidth of the silicon carbide material, the body diode is turned on The voltage is very high, and it is difficult to protect the SiC device during reverse freewheeling. Therefore, the present invention uses a Schottky diode to protect the SiC device. The turn-on voltage of the Schottky diode is much lower than that of the body diode, and it can provide sufficient power when the SiC device reverses direction. current path, improving the safety and stability of SiC devices.
实施例1Example 1
一种集成SBD的SiC器件,参考图1,包括:集成SBD;A SiC device with integrated SBD, refer to Figure 1, including: integrated SBD;
集成SBD由肖特基金属4和漂移层组成;The integrated SBD consists of Schottky metal 4 and drift layer;
金属与半导体的接触面分为肖特基接触和欧姆接触两种类型。欧姆接触是当半导体掺杂浓度很高时,掺杂浓度高的半导体与金属接触时,形成低势垒层,电子可借隧道效应穿过势垒,从而形成低阻值的欧姆接触,欧姆接触的特点是接触面的电流-电压特性是线性的,并且接触电阻相对于半导体的体电阻可以忽略不计,当有电流通过时产生的电压降比器件上的电压降要小。肖特基二极管是贵金属(金、银、铝、铂等)为正极,以N型半导体为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的半导体中向浓度低的金属中扩散。显然,金属中没有空穴,也就不存在空穴自金属向半导体的扩散运动。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。The contact surface between metal and semiconductor is divided into two types: Schottky contact and Ohmic contact. Ohmic contact is when the doping concentration of the semiconductor is very high. When the semiconductor with high doping concentration comes into contact with the metal, a low barrier layer is formed. The electrons can pass through the barrier through the tunnel effect, thus forming a low resistance ohmic contact. Ohmic contact The characteristic is that the current-voltage characteristics of the contact surface are linear, and the contact resistance is negligible compared to the bulk resistance of the semiconductor. When a current passes through, the voltage drop generated is smaller than the voltage drop on the device. Schottky diode is a metal-semiconductor device made of noble metal (gold, silver, aluminum, platinum, etc.) as the positive electrode and an N-type semiconductor as the negative electrode. The potential barrier formed on the contact surface of the two has rectifying characteristics. Because there are a large number of electrons in N-type semiconductors and only a very small amount of free electrons in noble metals, electrons diffuse from the semiconductor with high concentration to the metal with low concentration. Obviously, there are no holes in the metal, and there is no diffusion movement of holes from the metal to the semiconductor. By adjusting the structural parameters, a Schottky barrier is formed between the N-type substrate and the anode metal. When a forward bias is applied to both ends of the Schottky barrier (the anode metal is connected to the positive electrode of the power supply, and the N-type substrate is connected to the negative electrode of the power supply), the Schottky barrier layer becomes narrower and its internal resistance becomes smaller; conversely, if When reverse bias is applied to both ends of the Schottky barrier, the Schottky barrier layer becomes wider and its internal resistance becomes larger.
本发明使用肖特基金属4与N-型SiC外延层形成异质结,在SiC器件处于反向状态时导通,在SiC器件正常工作时处于高阻状态,当SiC器件反向导通时,电流从源极10流向肖特基金属4,然后从肖特基金属4流向漂移层,从漂移层流向衬底12,最后从衬底12流向漏极11。肖特基二极管的开启电压远低于SiC器件体二极管的开启电压,能够有效提高SiC器件的反向性能。The present invention uses Schottky metal 4 and the N-type SiC epitaxial layer to form a heterojunction, which conducts when the SiC device is in the reverse state and is in a high resistance state when the SiC device operates normally. When the SiC device conducts in the reverse state, The current flows from the source electrode 10 to the Schottky metal 4 , then flows from the Schottky metal 4 to the drift layer, flows from the drift layer to the substrate 12 , and finally flows from the substrate 12 to the drain electrode 11 . The turn-on voltage of the Schottky diode is much lower than the turn-on voltage of the body diode of the SiC device, which can effectively improve the reverse performance of the SiC device.
肖特基金属4位于源极10与漂移层之间并与源极10和漂移层邻接;Schottky metal 4 is located between the source electrode 10 and the drift layer and adjacent to the source electrode 10 and the drift layer;
肖特基金属4与N-型SiC外延层构成的肖特基二极管用于提供反向续流通道,作为一个优选地实施例,本发明肖特基金属4设置于源极10与漂移层之间并与源极10和漂移层邻接,当源极10接高电位(正电)漏极11接低电位(负电)时,电流能够从源极10流经肖特基二极管然后流向漏极11。The Schottky diode composed of Schottky metal 4 and N-type SiC epitaxial layer is used to provide a reverse freewheeling channel. As a preferred embodiment, the Schottky metal 4 of the present invention is disposed between the source electrode 10 and the drift layer. and adjacent to the source electrode 10 and the drift layer. When the source electrode 10 is connected to a high potential (positive electricity) and the drain electrode 11 is connected to a low potential (negative electricity), current can flow from the source electrode 10 through the Schottky diode and then to the drain electrode 11 .
漂移层位于衬底12上方并与衬底12邻接。The drift layer is located above and adjacent to substrate 12 .
漂移层的电场分布对MOSFET的导通特性和电流控制起着关键的作用。当栅极电压施加在MOSFET上时,漂移区中的电场分布会受到栅极电压的调制,从而控制源极10和漏极11之间的电流流动。在MOSFET工作时,源极10和漏极11之间的电流主要通过漂移层进行传输。漂移层的掺杂类型和浓度决定了电流的导通类型(N型或P型)和大小。漂移层的结构和特性直接影响MOS管的电流控制能力。通过调整漂移层的形状、尺寸和掺杂浓度,可以实现对电流的精确控制,从而满足不同应用的要求。The electric field distribution of the drift layer plays a key role in the conduction characteristics and current control of MOSFET. When a gate voltage is applied to the MOSFET, the electric field distribution in the drift region is modulated by the gate voltage, thereby controlling the flow of current between the source 10 and the drain 11 . When the MOSFET is operating, the current between the source 10 and the drain 11 is mainly transmitted through the drift layer. The doping type and concentration of the drift layer determine the conduction type (N-type or P-type) and magnitude of the current. The structure and characteristics of the drift layer directly affect the current control capability of the MOS tube. By adjusting the shape, size and doping concentration of the drift layer, precise control of the current can be achieved to meet the requirements of different applications.
优选地,漂移层包括:第一漂移层1和第二漂移层3;Preferably, the drift layer includes: a first drift layer 1 and a second drift layer 3;
第一漂移层1位于衬底12和第二漂移层3之间并与衬底12和第二漂移层3邻接;The first drift layer 1 is located between the substrate 12 and the second drift layer 3 and adjacent to the substrate 12 and the second drift layer 3;
第二漂移层3位于第一漂移层1上方。The second drift layer 3 is located above the first drift layer 1 .
优选地,第一漂移层1的掺杂浓度小于第二漂移层3的掺杂浓度。Preferably, the doping concentration of the first drift layer 1 is smaller than the doping concentration of the second drift layer 3 .
本发明设置了两层掺杂浓度不同的漂移层,下层为第一漂移层1,上层为第二漂移层3,为了能够让电流正常从SiC器件流过,所以将第一漂移层1的掺杂浓度设置小于第二漂移层3的掺杂浓度,当SiC器件正常工作时,电流从漏极11流向第一漂移层1,然后从第一漂移层1流向第二漂移层3最后流向源极10,如果第一漂移层1的掺杂浓度大于第二漂移层3的掺杂浓度,那么电流将难以从第一漂移层1流向第二漂移层3,导致SiC器件的电气性能降低,影响SiC器件正常工作。The present invention sets up two drift layers with different doping concentrations. The lower layer is the first drift layer 1 and the upper layer is the second drift layer 3. In order to allow the current to flow normally from the SiC device, the doping layer of the first drift layer 1 is The impurity concentration is set to be smaller than the doping concentration of the second drift layer 3. When the SiC device operates normally, the current flows from the drain 11 to the first drift layer 1, then from the first drift layer 1 to the second drift layer 3 and finally to the source. 10. If the doping concentration of the first drift layer 1 is greater than the doping concentration of the second drift layer 3, then it will be difficult for the current to flow from the first drift layer 1 to the second drift layer 3, resulting in a reduction in the electrical performance of the SiC device and affecting the SiC device. The device is functioning normally.
相较于常规掺杂浓度统一的漂移层,本发明将第二漂移层3的掺杂浓度提高,目的是为了减小导通电阻,增大电流路径,在本发明中,第一漂移层1与第二漂移层3的面积比为1:1至1.5:1,如果第一漂移层1和第二漂移层3的面积比相差过大,那么就会导致SiC器件正向耐压能力不足,如果第二漂移层3的占比较小,则对导通电阻的改善作用就会被削弱,作为一个优选地实施例,本发明将第一漂移层1与第二漂移层3的面积比设置为1:1,显著提升了SiC器件的正向性能。Compared with the conventional drift layer with uniform doping concentration, the present invention increases the doping concentration of the second drift layer 3 in order to reduce the on-resistance and increase the current path. In the present invention, the first drift layer 1 The area ratio to the second drift layer 3 is 1:1 to 1.5:1. If the area ratio of the first drift layer 1 and the second drift layer 3 is too different, it will lead to insufficient forward voltage withstand capability of the SiC device. If the proportion of the second drift layer 3 is small, the improvement effect on the on-resistance will be weakened. As a preferred embodiment, the present invention sets the area ratio of the first drift layer 1 to the second drift layer 3 to 1:1, significantly improving the forward performance of SiC devices.
优选地,还包括:P型浮岛层2;Preferably, it also includes: P-type floating island layer 2;
P型浮岛层2嵌入漂移层;P-type floating island layer 2 is embedded in the drift layer;
浮岛器件(浮空结器件)是指一种特殊的功率器件,它嵌入于漂移层中,不与电极直接相连,且是掺杂类型与漂移层相反的区域,在漂移层掺杂类型为N型的浮岛器件中,浮岛结构就由P型掺杂半导体构成。SiC器件采用一种新耐压结构-浮岛结构,目的是为了改善击穿电压与比导通电阻的制约关系及克服超结制造工艺难度高的缺点。通过在硅基漂移层中引入多个相反掺杂类型的浮岛结构,使功率器件在击穿电压不变的情况下提高电阻率,减小功率损耗。其根本原因是浮岛在漂移层内引入新电场峰,使漂移层内的最大电场峰值减小,因此在相同击穿电压情况下,也可以通过提升漂移层的掺杂浓度来降低器件的比导通电阻。并且具有浮岛结构的功率SiC器件的击穿电压会随着浮岛数的增加而增加。Floating island device (floating junction device) refers to a special power device. It is embedded in the drift layer and is not directly connected to the electrode. It is a region with the opposite doping type to that of the drift layer. The doping type in the drift layer is In N-type floating island devices, the floating island structure is composed of P-type doped semiconductors. SiC devices adopt a new voltage-resistant structure - the floating island structure, with the purpose of improving the relationship between breakdown voltage and specific on-resistance and overcoming the difficulty of the super-junction manufacturing process. By introducing multiple floating island structures of opposite doping types into the silicon-based drift layer, the resistivity of the power device is increased while the breakdown voltage remains unchanged, and the power loss is reduced. The fundamental reason is that the floating island introduces a new electric field peak into the drift layer, which reduces the maximum electric field peak in the drift layer. Therefore, under the same breakdown voltage, the device ratio can also be reduced by increasing the doping concentration of the drift layer. On-resistance. And the breakdown voltage of power SiC devices with floating island structure will increase as the number of floating islands increases.
P型浮岛层2层叠设置。The P-type floating island layers 2 are stacked.
本发明通过设置至少一个P型浮岛来增加SiC器件的耐压性能、栅氧可靠性和降低栅漏电容,作为一个优选地实施例,本发明设置四个P型浮岛,四个P型浮岛嵌入漂移层的两侧,左侧为两个P型浮岛,右侧也为两个P型浮岛,单侧的多个P型层叠设置,P型浮岛的间隔由P型浮岛的个数和厚度决定,P型浮岛的制备方法:当漂移层外延到一定厚度时,在漂移层上层进行离子注入,制备两个P型浮岛,然后外延一层薄的漂移层,然后再次在外延的漂移层中进行离子注入,形成第二层P型浮岛层2,然后在P型浮岛层2上方再次外延完成漂移层的制作,P型浮岛层2的掺杂浓度越高,宽度越大,对栅极氧化层8的保护作用和对耐压性能提高能力就越强,但是在P型浮岛层2制作时需注意要留出足够的电流路径,所以P型浮岛层2的掺杂浓度和宽度要根据SiC器件性能设置上限。The present invention increases the withstand voltage performance, gate oxide reliability and reduces gate leakage capacitance of SiC devices by setting at least one P-type floating island. As a preferred embodiment, the present invention sets four P-type floating islands, four P-type The floating islands are embedded on both sides of the drift layer. There are two P-type floating islands on the left and two P-type floating islands on the right. Multiple P-type floating islands on one side are stacked. The intervals between the P-type floating islands are separated by P-type floating islands. The number and thickness of the islands are determined by the preparation method of P-type floating islands: when the drift layer is epitaxially extended to a certain thickness, ion implantation is performed on the upper layer of the drift layer to prepare two P-type floating islands, and then a thin drift layer is epitaxially formed. Then, ions are implanted again in the epitaxial drift layer to form the second P-type floating island layer 2, and then epitaxy is performed again on top of the P-type floating island layer 2 to complete the production of the drift layer. The doping concentration of the P-type floating island layer 2 The higher the height and the width, the stronger the protective effect on the gate oxide layer 8 and the ability to improve the voltage resistance performance. However, when making the P-type floating island layer 2, care must be taken to leave sufficient current paths, so the P-type The doping concentration and width of the floating island layer 2 should be set to an upper limit based on the performance of the SiC device.
本发明通过在器件漂移层内引入多个与漂移层(N-drift层)相反掺杂类型的P型浮岛层2,在不影响SiC器件本身的电流路径的情况下提高SiC器件的耐压性能,有效地改善了传统SiC器件击穿电压与比导通电阻的制约关系,并且P型浮岛层2还能够保护JFET区的栅极氧化层8,防止栅极氧化层8提前击穿,而且P型浮岛能够减少栅极7和漏极11的重叠面积,减小栅漏电容,降低开关损耗,提升SiC器件的电气性能。The present invention improves the withstand voltage of the SiC device without affecting the current path of the SiC device itself by introducing a plurality of P-type floating island layers 2 with the opposite doping type to the drift layer (N-drift layer) in the device drift layer. performance, effectively improving the relationship between the breakdown voltage and specific on-resistance of traditional SiC devices, and the P-type floating island layer 2 can also protect the gate oxide layer 8 in the JFET area and prevent the gate oxide layer 8 from premature breakdown. Moreover, the P-type floating island can reduce the overlapping area of the gate 7 and the drain 11, reduce the gate-drain capacitance, reduce switching losses, and improve the electrical performance of the SiC device.
优选地,位于下方的P型浮岛层2的宽度小于位于上方的P型浮岛层2的宽度。Preferably, the width of the P-type floating island layer 2 located below is smaller than the width of the P-type floating island layer 2 located above.
P型浮岛层2的宽度是根据SiC器件电场强度分布来设置的,作为一个优选地实施例,本发明将位于下方的P型浮岛层2的宽度设置为小于位于上方的P型浮岛层2的宽度。能够更好地平滑电场线,降低位于JFET区的电场强度,保护栅极氧化层8不被提前击穿。The width of the P-type floating island layer 2 is set according to the electric field intensity distribution of the SiC device. As a preferred embodiment, the present invention sets the width of the lower P-type floating island layer 2 to be smaller than the upper P-type floating island. The width of layer 2. It can better smooth the electric field lines, reduce the electric field intensity in the JFET area, and protect the gate oxide layer 8 from premature breakdown.
优选地,第一漂移层1的掺杂浓度为1016cm-3。Preferably, the doping concentration of the first drift layer 1 is 10 16 cm -3 .
优选地,第二漂移层3的掺杂浓度为1017cm-3。Preferably, the doping concentration of the second drift layer 3 is 10 17 cm -3 .
在SiC器件中,适当的增加漂移层的掺杂浓度能够减小导通电阻,为了在减小导通电阻的同时使SiC器件能够正常工作,所以本发明将第二漂移层3的掺杂浓度适当提高,使得SiC器件的导通电阻显著降低,作为一个优选地实施例,本发明将第一漂移层1的掺杂浓度设置为1016cm-3,第二漂移层3的掺杂浓度设置为1017cm-3。In SiC devices, appropriately increasing the doping concentration of the drift layer can reduce the on-resistance. In order to reduce the on-resistance while enabling the SiC device to operate normally, the present invention increases the doping concentration of the second drift layer 3. Appropriately increase, so that the on-resistance of the SiC device is significantly reduced. As a preferred embodiment, the present invention sets the doping concentration of the first drift layer 1 to 10 16 cm -3 and the doping concentration of the second drift layer 3. is 10 17 cm -3 .
优选地,P型浮岛层2的掺杂浓度为1018cm-3。Preferably, the doping concentration of the P-type floating island layer 2 is 10 18 cm -3 .
因为P型浮岛要与漂移层电荷平衡,所以P型浮岛层2的掺杂浓度被漂移层的掺杂浓度影响,在SiC器件处于反向状态下,P型浮岛层2与漂移层相互耗尽,如果漂移层的掺杂浓度较高,那么P型浮岛层2的掺杂浓度也相应提高,如果漂移层的浓度太低,则无法起到降低SiC器件导通电阻的作用,并且P型浮岛层2的掺杂浓度还受到栅极氧化层8厚度的影响,如果栅极氧化层8厚度较薄,耐压能力较弱,那么P型浮岛层2的掺杂浓度要提高,P型浮岛层2的掺杂浓度越高,对电场线分布的改善能力就越强,对栅极氧化层8的保护能力也越好,但是P型浮岛层2在掺杂浓度提高的同时要留出足够的电流路径,所以作为一个优选地实施例,本发明将P型浮岛层2的掺杂浓度设置为1018cm-3,既能够更好地保护栅极氧化层8,又能够减少开关损耗,大大提升了SiC器件的电气性能。Because the P-type floating island needs to be charge-balanced with the drift layer, the doping concentration of the P-type floating island layer 2 is affected by the doping concentration of the drift layer. When the SiC device is in the reverse state, the P-type floating island layer 2 and the drift layer mutual depletion. If the doping concentration of the drift layer is high, the doping concentration of the P-type floating island layer 2 will also increase accordingly. If the concentration of the drift layer is too low, it will not be able to reduce the on-resistance of the SiC device. Moreover, the doping concentration of the P-type floating island layer 2 is also affected by the thickness of the gate oxide layer 8. If the thickness of the gate oxide layer 8 is thin and the withstand voltage capability is weak, then the doping concentration of the P-type floating island layer 2 needs to be The higher the doping concentration of the P-type floating island layer 2, the stronger the ability to improve the electric field line distribution and the better the protection ability of the gate oxide layer 8. However, the doping concentration of the P-type floating island layer 2 is While increasing, sufficient current paths must be left, so as a preferred embodiment, the present invention sets the doping concentration of the P-type floating island layer 2 to 10 18 cm -3 , which can better protect the gate oxide layer 8. It can also reduce switching losses and greatly improve the electrical performance of SiC devices.
优选地,P型浮岛层2的宽度为SiC器件宽度的至/>。Preferably, the width of the P-type floating island layer 2 is the width of the SiC device. to/> .
P型浮岛层2的宽度也同样会影响对栅极氧化层8的保护能力和对电流路径的影响,P型浮岛层2的宽度越宽,则对栅极氧化层8的保护能力变强的同时会导致电流路径变小,P型浮岛层2的宽度如果过窄则会导致对栅极氧化层8的保护能力不足,所以本发明将P型浮岛层2的宽度最小设置为SiC器件宽度的,P型浮岛层2的宽度如果过宽则会导致SiC器件的电流路径变窄,所以本发明将P型浮岛层2的宽度最大设置为SiC器件宽度的/>。在此区间内,P型浮岛层2在留出足够的电流路径的同时也能够更好地保护栅极氧化层8。The width of the P-type floating island layer 2 will also affect the protection ability of the gate oxide layer 8 and the impact on the current path. The wider the width of the P-type floating island layer 2, the protective ability of the gate oxide layer 8 will become worse. Strong will cause the current path to become smaller. If the width of the P-type floating island layer 2 is too narrow, it will lead to insufficient protection of the gate oxide layer 8. Therefore, the present invention sets the minimum width of the P-type floating island layer 2 to SiC device width , if the width of the P-type floating island layer 2 is too wide, the current path of the SiC device will be narrowed, so the present invention sets the maximum width of the P-type floating island layer 2 to the width of the SiC device/> . Within this interval, the P-type floating island layer 2 can better protect the gate oxide layer 8 while leaving a sufficient current path.
实施例2Example 2
一种集成SBD的SiC器件制备方法,参考图2,3,包括:A method for preparing SBD-integrated SiC devices, refer to Figures 2 and 3, including:
S100,在衬底12上方外延一层低掺杂浓度的漂移层(第一漂移层1);S100, epitaxially extend a low doping concentration drift layer (first drift layer 1) over the substrate 12;
外延工艺是指在衬底12上生长完全排列有序的单晶体层的工艺。一般来讲,外延工艺是在单晶衬底上生长一层与原衬底相同晶格取向的晶体层。外延工艺广泛用于半导体制造,如集成电路工业的外延硅片。MOS晶体管的嵌入式源漏外延生长,LED衬底上的外延生长等。根据生长源物相狀态的不同,外延生长方式分为固相外延、液相外延、气相外延。在集成电路制造中,常用的外延方式是固相外延和气相外延。The epitaxial process refers to the process of growing a completely ordered single crystal layer on the substrate 12 . Generally speaking, the epitaxial process is to grow a crystal layer with the same lattice orientation as the original substrate on a single crystal substrate. Epitaxial processes are widely used in semiconductor manufacturing, such as epitaxial silicon wafers in the integrated circuit industry. Embedded source-drain epitaxial growth of MOS transistors, epitaxial growth on LED substrates, etc. According to the different phase states of the growth source, epitaxial growth methods are divided into solid phase epitaxy, liquid phase epitaxy, and vapor phase epitaxy. In integrated circuit manufacturing, the commonly used epitaxy methods are solid-phase epitaxy and vapor-phase epitaxy.
固相外延,是指固体源在衬底上生长一层单晶层,如离子注入后的热退火实际上就是一种固相外延过程。离子注入加工时,硅片的硅原子受到高能注入离子的轰击,脱离原有晶格位置,发生非晶化,形成一层表面非晶硅层;再经过高温热退火,非晶原子重新回到晶格位置,并与衬底内部原子晶向保持一致。Solid-phase epitaxy refers to the growth of a single crystal layer on a substrate by a solid source. For example, thermal annealing after ion implantation is actually a solid-phase epitaxy process. During ion implantation processing, the silicon atoms of the silicon wafer are bombarded by high-energy implanted ions, leaving the original crystal lattice position and becoming amorphous, forming a surface amorphous silicon layer. After high-temperature thermal annealing, the amorphous atoms return to the original lattice position. The lattice position is consistent with the atomic orientation within the substrate.
气相外延的生长方法包括化学气相外延生长(CVE)、分子束外延( MBD)、原子层外延(ALE)等。在本发明实施例中,采用的是化学气相外延 (CVE)来形成N-漂移层。化学气相外延与化学气相沉积(CVD) 原理基本相同,都是利用气体混合后在晶片表面发生化学反应,沉积薄膜的工艺;不同的是,因为化学气相外延生长的是单晶层,所以对设备内的杂质含量和硅片表面的洁净度要求都更高。在集成电路制造中,CVE 还能够用于外延硅片工艺和 MOS 晶体管嵌入式源漏外延工艺。外延硅片工艺是在硅片表面外延一层单晶硅,与原来的硅衬底相比,外延硅层的纯度更高,晶格缺陷更少,从而提高了半导体制造的成品率。另外,硅片上生长的外延硅层的生长厚度和掺杂浓度可以灵活设计,这给器件的设计带来了灵活性,如可以用于减小衬底电阻,增强衬底隔离等。 嵌入式源漏外延工艺是指在晶体管的源漏区域外延生长掺杂的锗硅或硅的工艺。引入嵌入式源漏外延工艺的主要优点包括:可以生长因晶格适配而包含应力的赝晶层,提升沟道载流子迁移率;可以原位掺杂源漏,降低源漏结寄生电阻,减少高能离子注入的缺陷。The growth methods of vapor phase epitaxy include chemical vapor epitaxy (CVE), molecular beam epitaxy (MBD), atomic layer epitaxy (ALE), etc. In the embodiment of the present invention, chemical vapor epitaxy (CVE) is used to form the N-drift layer. The principles of chemical vapor epitaxy and chemical vapor deposition (CVD) are basically the same. They are both processes that use gas mixture to react chemically on the surface of the wafer to deposit thin films. The difference is that because chemical vapor epitaxy grows a single crystal layer, it requires a lot of equipment. The impurity content in the silicon wafer and the cleanliness requirements on the silicon wafer surface are both higher. In integrated circuit manufacturing, CVE can also be used in epitaxial silicon wafer processes and MOS transistor embedded source-drain epitaxial processes. The epitaxial silicon wafer process is to epitaxially extend a layer of single crystal silicon on the surface of the silicon wafer. Compared with the original silicon substrate, the epitaxial silicon layer has higher purity and fewer lattice defects, thus improving the yield of semiconductor manufacturing. In addition, the growth thickness and doping concentration of the epitaxial silicon layer grown on the silicon wafer can be flexibly designed, which brings flexibility to device design. For example, it can be used to reduce substrate resistance, enhance substrate isolation, etc. The embedded source-drain epitaxy process refers to the process of epitaxially growing doped silicon germanium or silicon in the source and drain regions of the transistor. The main advantages of introducing the embedded source-drain epitaxial process include: it can grow a pseudocrystalline layer that contains stress due to lattice adaptation, improving channel carrier mobility; it can dope the source and drain in situ, reducing the parasitic resistance of the source-drain junction , Reduce the defects of high-energy ion implantation.
S200,在低掺杂浓度的漂移层上方外延一层高掺杂浓度的漂移层并离子注入形成P型浮岛层2、P-body层9、P+区5和N+区6;S200, epitaxially extend a high-doping concentration drift layer on top of the low-doping concentration drift layer and ion-implant to form the P-type floating island layer 2, P-body layer 9, P+ region 5, and N+ region 6;
本发明采用离子注入的方式形成P型浮岛层2、P+区5和N+区6。离子注入就是在真空中发射一束离子束射向固体材料,离子束射到固体材料以后,受到固体材料的抵抗而速度慢慢减低下来,并最终停留在固体材料中。使一种元素的离子被加速进入固体靶标,从而改变靶标的物理,化学或电学性质。离子注入常被用于半导体器件的制造,金属表面处理以及材料科学研究中。如果离子停止并保留在靶中,则离子会改变靶的元素组成(如果离子与靶的组成不同)。离子注入束线设计都包含通用的功能组件组。离子束线的主要部分包括一个称为离子源的设备,用于产生离子种类。该源与偏置电极紧密耦合,以将离子提取到束线中,并且最常见的是与选择特定离子种类以传输到主加速器部分中的某种方式耦合。“质量”选择伴随着所提取的离子束通过磁场区域,其出口路径受阻塞孔或“狭缝”的限制,这些狭缝仅允许离子具有质量和速度/电荷以继续沿着光束线。如果目标表面大于离子束直径,并且在目标表面上均匀分布注入剂量,则可以使用束扫描和晶圆运动的某种组合。最后,将注入的表面与用于收集注入的离子的累积电荷的某种方法相结合,以便可以连续方式测量所输送的剂量,并且将注入过程停止在所需的剂量水平。The present invention uses ion implantation to form the P-type floating island layer 2, P+ region 5 and N+ region 6. Ion implantation is to emit an ion beam in a vacuum towards a solid material. After the ion beam hits the solid material, its speed slowly slows down due to the resistance of the solid material, and finally stays in the solid material. The ions of an element are accelerated into a solid target, thereby changing the physical, chemical or electrical properties of the target. Ion implantation is often used in the manufacturing of semiconductor devices, metal surface treatment, and materials science research. If the ions are stopped and retained in the target, the ions will change the elemental composition of the target (if the ions are of a different composition than the target). Ion implantation beamline designs all contain a common set of functional components. The main part of an ion beamline consists of a device called an ion source, which is used to generate ion species. The source is tightly coupled to a bias electrode to extract ions into the beamline, and most commonly to some means of selecting specific ion species for transport into the main accelerator section. The "mass" selection accompanies the extracted ion beam through the magnetic field region, with its exit path restricted by blocking holes or "slits" that only allow ions with mass and velocity/charge to continue along the beamline. If the target surface is larger than the ion beam diameter, and the implant dose is evenly distributed over the target surface, some combination of beam scanning and wafer motion can be used. Finally, the implanted surface is combined with some method for collecting the accumulated charge of the implanted ions so that the delivered dose can be measured in a continuous manner and the implant process stopped at the desired dose level.
用硼、磷或砷掺杂半导体是离子注入的常见应用。当注入半导体中时,每个掺杂原子可以在退火后在半导体中产生电荷载流子。可以为P型掺杂剂创建一个空穴,为N型掺杂剂创建一个电子。改变了掺杂区域附近的半导体的电导率。Doping semiconductors with boron, phosphorus or arsenic is a common application of ion implantation. When injected into a semiconductor, each dopant atom can generate charge carriers in the semiconductor after annealing. A hole can be created for P-type dopants and an electron for N-type dopants. Changes the conductivity of the semiconductor near the doped region.
S300,蚀刻P+区5形成沟槽;S300, etching the P+ region 5 to form a trench;
本发明将P+区5两侧蚀刻形成多晶硅沟槽。蚀刻是用化学或物理方法有选择地从硅片表面去除不需要的材料的过程,它是通过溶液、反应离子或其它机械方式来剥离、去除材料的一种统称。刻蚀技术主要分为干法刻蚀与湿法刻蚀。干法刻蚀主要利用反应气体与等离子体进行刻蚀;湿法刻蚀主要利用化学试剂与被刻蚀材料发生化学反应进行刻蚀。In the present invention, both sides of the P+ region 5 are etched to form polysilicon trenches. Etching is the process of selectively removing unwanted materials from the surface of silicon wafers using chemical or physical methods. It is a general term for stripping and removing materials through solutions, reactive ions or other mechanical means. Etching technology is mainly divided into dry etching and wet etching. Dry etching mainly uses reactive gases and plasma for etching; wet etching mainly uses chemical reagents to react with the etched material for etching.
离子束蚀刻是一种物理干法蚀刻工艺。由此,氩离子以约1至3keV的离子束辐射到表面上。由于离子的能量,它们会撞击表面的材料。晶圆垂直或倾斜入离子束,蚀刻过程是绝对各向异性的。选择性低,因为其对各个层没有差异。气体和被打磨出的材料被真空泵排出,但是,由于反应产物不是气态的,颗粒会沉积在晶片或室壁上。所有的材料都可以采用这种方法蚀刻,由于垂直辐射,垂直壁上的磨损很低。Ion beam etching is a physical dry etching process. Thereby, argon ions are radiated onto the surface in an ion beam of about 1 to 3 keV. Due to the energy of the ions, they hit the material on the surface. With the wafer vertical or tilted into the ion beam, the etching process is absolutely anisotropic. Selectivity is low as there is no difference between layers. The gases and ground material are removed by a vacuum pump, but since the reaction products are not gaseous, particles can deposit on the wafer or chamber walls. All materials can be etched using this method, with very low wear on vertical walls due to vertical radiation.
等离子刻蚀是一种绝对化学刻蚀工艺,优点是晶圆表面不会被加速离子损坏。由于蚀刻气体的可移动颗粒,蚀刻轮廓是各向同性的,因此该方法用于去除整个膜层(如热氧化后的背面清洁)。一种用于等离子体蚀刻的反应器类型是下游反应器。从而通过碰撞电离在2.45GHz的高频下点燃等离子体,碰撞电离的位置与晶片分离。Plasma etching is an absolute chemical etching process. The advantage is that the wafer surface will not be damaged by accelerated ions. Due to the mobile particles of the etching gas, the etching profile is isotropic, so this method is used to remove the entire film layer (e.g. backside cleaning after thermal oxidation). One type of reactor used for plasma etching is the downstream reactor. Thus, plasma is ignited at a high frequency of 2.45GHz through impact ionization, and the location of impact ionization is separated from the wafer.
蚀刻速率取决于压力、高频发生器的功率、工艺气体、实际气体流量和晶片温度。各向异性随着高频功率的增加、压力的降低和温度的降低而增加。蚀刻工艺的均匀性取决于气体、两个电极的距离以及电极的材料。如果距离太小,等离子体不能不均匀地分散,从而导致不均匀性。如果增加电极的距离,则蚀刻速率降低,因为等离子体分布在扩大的体积中。对于电极,碳已证明是首选材料。由于氟气和氯气也会攻击碳,因此电极会产生均匀的应变等离子体,因此晶圆边缘会受到与晶圆中心相同的影响。选择性和蚀刻速率在很大程度上取决于工艺气体。对于硅和硅化合物,主要使用氟气和氯气。The etch rate depends on the pressure, power of the high frequency generator, process gas, actual gas flow and wafer temperature. Anisotropy increases with increasing high-frequency power, decreasing pressure, and decreasing temperature. The uniformity of the etching process depends on the gas, the distance between the two electrodes, and the material of the electrodes. If the distance is too small, the plasma cannot be dispersed unevenly, resulting in inhomogeneity. If the distance between the electrodes is increased, the etch rate decreases because the plasma is distributed in an enlarged volume. For electrodes, carbon has proven to be the material of choice. Because fluorine and chlorine gases also attack carbon, the electrodes create a uniformly strained plasma so the edges of the wafer are affected in the same way as the center of the wafer. Selectivity and etch rate are highly dependent on the process gas. For silicon and silicon compounds, fluorine gas and chlorine gas are mainly used.
S400,沉积栅极7并蚀刻栅极7形成沟槽;S400, deposit the gate electrode 7 and etch the gate electrode 7 to form a trench;
沉积栅极7步骤为:栅极氧化层8的形成和多晶硅沉积。本发明采用湿法氧化或者干法氧化的方式沉积氧化层,根据氧化反应中氧化剂的不同,热氧化过程可分为干法氧化和湿法氧化,前者使用纯氧产生二氧化硅层,速度慢但氧化层薄而致密,后者需同时使用氧气和高溶解度的水蒸气,其特点是生长速度快但保护层相对较厚且密度较低。湿式氧化有两个主要步骤:空气中的氧从气相向液相的传质过程;溶解氧与基质之间的化学反应。若传质过程影响整体反应速率,可以通过加强搅拌来消除。在本发明实施例中,可以通过控制湿氧氧化时的温度、压强、反应气体的浓度来控制湿氧氧化形成源极10氧化层的速率,从而达到控制源极10氧化层厚度的目的。The steps of depositing the gate electrode 7 are: the formation of the gate oxide layer 8 and the deposition of polysilicon. The present invention uses wet oxidation or dry oxidation to deposit the oxide layer. According to the different oxidants in the oxidation reaction, the thermal oxidation process can be divided into dry oxidation and wet oxidation. The former uses pure oxygen to produce a silicon dioxide layer and is slow. However, the oxide layer is thin and dense, and the latter requires the use of both oxygen and highly soluble water vapor. It is characterized by a fast growth rate but a relatively thick protective layer and low density. Wet oxidation has two main steps: the mass transfer process of oxygen in the air from the gas phase to the liquid phase; and the chemical reaction between dissolved oxygen and the substrate. If the mass transfer process affects the overall reaction rate, it can be eliminated by strengthening stirring. In embodiments of the present invention, the temperature, pressure, and concentration of the reaction gas during wet oxygen oxidation can be controlled to control the rate at which the oxide layer of the source electrode 10 is formed by wet oxygen oxidation, thereby achieving the purpose of controlling the thickness of the oxide layer of the source electrode 10 .
干法氧化采用高温纯氧与晶圆直接反应的方式。干法氧化只使用纯氧气(O2),所以氧化膜的生长速度较慢,主要用于形成薄膜,且可形成具有良好导电性的氧化物。干法氧化的优点在于不会产生副产物(H2),且氧化膜的均匀度和密度均较高。Dry oxidation uses high-temperature pure oxygen to directly react with the wafer. Dry oxidation only uses pure oxygen (O 2 ), so the growth rate of the oxide film is slow. It is mainly used to form thin films and can form oxides with good conductivity. The advantage of dry oxidation is that no by-product (H 2 ) is produced, and the uniformity and density of the oxide film are high.
多晶硅沉积即在硅化物叠在第一层多晶硅(Poly1)上形成栅电极和局部连线,第二层多晶硅(Poly2)形成源极10/漏极11和单元连线之间的接触栓塞。硅化物叠在第三层多晶硅(Poly3)上形成单元连线,第四层多晶硅(Poly4)和第五层多晶硅(Poly5)则形成储存电容器的两个电极,中间所夹的是高介电系数的电介质。为了维持所需的电容值,可以通过使用高介电系数的电介质减少电容的尺寸。多晶硅沉积是一种低压化学气相沉积(LPCVD),通过在反应室内(即炉管中)将三氢化砷(AH3)、三氢化磷(PH3)或二硼烷(B2H6)的掺杂气体直接输入硅烷或DCS的硅材料气体中,就可以进行临场低压化学气相沉积的多晶硅掺杂过程。多晶硅沉积是在0.2-1.0Torr的低压条件及600、650℃之间的沉积温度下进行,使用纯硅烷或以氮气稀释后纯度为20%到30%的硅烷。这两种沉积过程的沉积速率都在100-200Å/min之间,主要由沉积时的温度决定。Polysilicon deposition is when silicide is stacked on the first layer of polysilicon (Poly1) to form gate electrodes and local connections, and the second layer of polysilicon (Poly2) forms contact plugs between source 10/drain 11 and cell connections. The silicide is stacked on the third layer of polysilicon (Poly3) to form the unit connection. The fourth layer of polysilicon (Poly4) and the fifth layer of polysilicon (Poly5) form the two electrodes of the storage capacitor. Sandwiched between them is a high dielectric coefficient of dielectric. To maintain the desired capacitance value, the size of the capacitor can be reduced by using a high-k dielectric. Polycrystalline silicon deposition is a type of low-pressure chemical vapor deposition (LPCVD), by placing arsenic (AH 3 ), phosphorus (PH 3 ) or diborane (B 2 H 6 ) in a reaction chamber (i.e., a furnace tube). By directly inputting the doping gas into the silicon material gas of silane or DCS, the polysilicon doping process of on-site low-pressure chemical vapor deposition can be carried out. Polysilicon deposition is carried out under low pressure conditions of 0.2-1.0 Torr and deposition temperatures between 600 and 650°C, using pure silane or silane with a purity of 20% to 30% after dilution with nitrogen. The deposition rate of both deposition processes is between 100-200Å/min, mainly determined by the temperature during deposition.
S500,在沟槽中沉积肖特基金属4后沉积源极10和漏极11。S500, after depositing the Schottky metal 4 in the trench, the source electrode 10 and the drain electrode 11 are deposited.
金属电极沉积工艺分为化学气相沉积(CVD)和物理气相沉积(PVD)。CVD是指通过化学方法在晶圆表面沉积涂层的方法,一般是通过给混合气体施加能量来进行。假设在晶圆表面沉积物质(A),则先向沉积设备输入可生成物质(A)的两种气体(B和C),然后给气体施加能量,促使气体B和C发生化学反应。Metal electrode deposition processes are divided into chemical vapor deposition (CVD) and physical vapor deposition (PVD). CVD refers to the method of chemically depositing coatings on the surface of wafers, generally by applying energy to a mixed gas. Assuming that substance (A) is deposited on the wafer surface, two gases (B and C) that can generate substance (A) are first input to the deposition equipment, and then energy is applied to the gas to promote a chemical reaction between gases B and C.
PVD(物理气相沉积)镀膜技术主要分为三类:真空蒸发镀膜、真空溅射镀膜和真空离子镀膜。物理气相沉积的主要方法有:真空蒸镀、溅射镀膜、电弧等离子体镀膜、离子镀膜和分子束外延等。相应的真空镀膜设备包括真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机。PVD (physical vapor deposition) coating technology is mainly divided into three categories: vacuum evaporation coating, vacuum sputtering coating and vacuum ion plating. The main methods of physical vapor deposition include: vacuum evaporation, sputtering coating, arc plasma coating, ion coating and molecular beam epitaxy, etc. Corresponding vacuum coating equipment includes vacuum evaporation coating machines, vacuum sputtering coating machines and vacuum ion coating machines.
化学气相沉积(CVD)和物理气相沉积(PVD)都可以作为沉积金属电极的技术手段。在本发明实施例中,采用化学气相沉积方法沉积金属电极,化学气相沉积过程分为三个阶段:反应气体向基体表面扩散、反应气体吸附于基体表面、在基体表面上发生化学反应形成固态沉积物及产生的气相副产物脱离基体表面。最常见的化学气相沉积反应有:热分解反应、化学合成反应和化学传输反应等。通常沉积TiC或TiN,是向850~1100℃的反应室通入TiCl4,H2,CH4等气体,经化学反应,在基体表面形成覆层。Both chemical vapor deposition (CVD) and physical vapor deposition (PVD) can be used as technical means to deposit metal electrodes. In embodiments of the present invention, a chemical vapor deposition method is used to deposit metal electrodes. The chemical vapor deposition process is divided into three stages: diffusion of reaction gas to the surface of the substrate, adsorption of the reaction gas on the surface of the substrate, and chemical reaction on the surface of the substrate to form a solid deposition. The substances and the gas phase by-products produced are separated from the surface of the matrix. The most common chemical vapor deposition reactions are: thermal decomposition reactions, chemical synthesis reactions and chemical transport reactions. Usually, to deposit TiC or TiN, gases such as TiCl 4 , H 2 , and CH 4 are introduced into a reaction chamber at 850 to 1100°C. After chemical reaction, a coating is formed on the surface of the substrate.
本发明在源极10下方设置肖特基二极管用于反向续流,当SiC器件正常工作时,肖特基二极管为高阻状态不导通,当SiC器件接反向电压时,肖特基二极管开启,提供续流通道,使电流能够从源极10流向肖特基金属4,然后从肖特基金属4流向漂移层,从漂移层流向衬底12最后流向漏极11,由于碳化硅材料禁带宽,体二极管开启电压非常高,在反向续流时难以保护SiC器件,所以本发明采用肖特基二极管保护SiC器件,肖特基二极管的开启电压远低于体二极管,在SiC器件反向时能够提供足够的电流路径,提高了SiC器件的安全性和稳定性。The present invention sets a Schottky diode under the source 10 for reverse freewheeling. When the SiC device is operating normally, the Schottky diode is in a high resistance state and does not conduct. When the SiC device is connected to a reverse voltage, the Schottky diode The diode is turned on, providing a freewheeling channel so that the current can flow from the source 10 to the Schottky metal 4, then from the Schottky metal 4 to the drift layer, from the drift layer to the substrate 12 and finally to the drain 11. Due to the silicon carbide material The forbidden bandwidth and the body diode turn-on voltage are very high, making it difficult to protect the SiC device during reverse freewheeling. Therefore, the present invention uses a Schottky diode to protect the SiC device. The turn-on voltage of the Schottky diode is much lower than that of the body diode. When the SiC device reverses the flow, It can provide sufficient current path to improve the safety and stability of SiC devices.
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。The above descriptions are only specific embodiments of the present invention, enabling those skilled in the art to understand or implement the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be practiced in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features claimed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311506113.4A CN117238914B (en) | 2023-11-13 | 2023-11-13 | A SiC device with integrated SBD and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311506113.4A CN117238914B (en) | 2023-11-13 | 2023-11-13 | A SiC device with integrated SBD and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117238914A true CN117238914A (en) | 2023-12-15 |
CN117238914B CN117238914B (en) | 2024-11-12 |
Family
ID=89093284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311506113.4A Active CN117238914B (en) | 2023-11-13 | 2023-11-13 | A SiC device with integrated SBD and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117238914B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102420251A (en) * | 2011-12-05 | 2012-04-18 | 电子科技大学 | VDMOS (Vertical Double-Diffusion Metal-Oxide-Semiconductor) device with non-uniform floating island structure |
CN102569207A (en) * | 2010-12-27 | 2012-07-11 | 上海华虹Nec电子有限公司 | Method for integrating Schottky diode in super junction MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) |
CN107580725A (en) * | 2015-02-11 | 2018-01-12 | 莫诺利斯半导体有限公司 | High-voltage semiconductor device and manufacturing method thereof |
CN115148791A (en) * | 2022-09-05 | 2022-10-04 | 深圳市威兆半导体股份有限公司 | A superjunction MOSFET |
CN115832057A (en) * | 2022-12-15 | 2023-03-21 | 南京芯干线科技有限公司 | A kind of silicon carbide MOSFET device and preparation method |
CN116314327A (en) * | 2023-02-03 | 2023-06-23 | 天狼芯半导体(成都)有限公司 | Vertical SiC Trench MOSFET with Integrated Schottky Diode |
CN116454137A (en) * | 2023-04-19 | 2023-07-18 | 重庆云潼科技有限公司 | SBD (integrated SBD) groove-type split source SiC VDMOS (vertical double-diffused metal oxide semiconductor) structure and manufacturing method thereof |
CN116845092A (en) * | 2023-07-18 | 2023-10-03 | 青岛中微创芯电子有限公司 | SiC power semiconductor device integrated with Schottky diode |
-
2023
- 2023-11-13 CN CN202311506113.4A patent/CN117238914B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569207A (en) * | 2010-12-27 | 2012-07-11 | 上海华虹Nec电子有限公司 | Method for integrating Schottky diode in super junction MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) |
CN102420251A (en) * | 2011-12-05 | 2012-04-18 | 电子科技大学 | VDMOS (Vertical Double-Diffusion Metal-Oxide-Semiconductor) device with non-uniform floating island structure |
CN107580725A (en) * | 2015-02-11 | 2018-01-12 | 莫诺利斯半导体有限公司 | High-voltage semiconductor device and manufacturing method thereof |
CN115148791A (en) * | 2022-09-05 | 2022-10-04 | 深圳市威兆半导体股份有限公司 | A superjunction MOSFET |
CN115832057A (en) * | 2022-12-15 | 2023-03-21 | 南京芯干线科技有限公司 | A kind of silicon carbide MOSFET device and preparation method |
CN116314327A (en) * | 2023-02-03 | 2023-06-23 | 天狼芯半导体(成都)有限公司 | Vertical SiC Trench MOSFET with Integrated Schottky Diode |
CN116454137A (en) * | 2023-04-19 | 2023-07-18 | 重庆云潼科技有限公司 | SBD (integrated SBD) groove-type split source SiC VDMOS (vertical double-diffused metal oxide semiconductor) structure and manufacturing method thereof |
CN116845092A (en) * | 2023-07-18 | 2023-10-03 | 青岛中微创芯电子有限公司 | SiC power semiconductor device integrated with Schottky diode |
Also Published As
Publication number | Publication date |
---|---|
CN117238914B (en) | 2024-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117334745A (en) | A source trench integrated SBD superjunction SiC MOS and its preparation method | |
CN117334746A (en) | Source electrode groove integrated SBD super-junction SiC MOS with oxide layer and preparation method | |
CN117253905A (en) | SiC device with floating island structure and preparation method thereof | |
CN117438446A (en) | Planar VDMOS with heterojunction and preparation method thereof | |
CN117334747A (en) | SiC planar MOS of source electrode groove integrated SBD and preparation method | |
CN117613085A (en) | A SiC MOSFET with self-controlled shielding area and preparation method | |
CN117423729A (en) | Trench gate VDMOS with heterojunction and preparation method | |
CN117525140A (en) | Integrated strip-shaped groove source electrode control freewheel channel SiC UMOS and preparation method | |
CN117423731A (en) | SJ SiC VDMOS with heterojunction and preparation method thereof | |
CN117423730A (en) | sJ SiC VDMOS with split gate and preparation method thereof | |
CN117253924A (en) | Silicon carbide LDMOS and preparation method | |
CN117238964A (en) | A superjunction SiC MOS with a homojunction freewheeling channel and its preparation method | |
CN117276342A (en) | A trench SiC MOSFET with built-in channel diode and its preparation method | |
CN117199136A (en) | SiC MOSFET integrated with heterojunction diode and preparation method | |
CN117438469A (en) | A SiC superjunction MOS with a homojunction freewheeling channel and its preparation method | |
CN117334740A (en) | SiC SGT MOSFET with reverse freewheel channel and preparation method | |
CN117276329A (en) | LDMOS with trench gate and preparation method | |
CN117238914B (en) | A SiC device with integrated SBD and preparation method thereof | |
CN117457748B (en) | A SiC super junction MOS with a P-type space layer under the gate and a preparation method thereof | |
CN117334748B (en) | Source electrode trench integrated SBD and HK medium SiC UMOS and preparation method | |
CN117457749B (en) | SiC LMOS with P-type space layer below grid electrode and preparation method | |
CN117393601A (en) | Vertical SiC MOSFET integrated with SBD and preparation method | |
CN117410322B (en) | Groove type super junction silicon MOSFET and preparation method | |
CN117525139A (en) | Integrated strip-shaped groove source electrode control follow current channel plane SiC MOS and preparation method | |
CN117525138A (en) | Integrated cylindrical trench source electrode control freewheel channel SiC UMOS and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |