[go: up one dir, main page]

login
Search: a006542 -id:a006542
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.
+10
369
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 175, 105, 21, 1, 1, 28, 196, 490, 490, 196, 28, 1, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 1, 55, 825, 4950, 13860, 19404, 13860, 4950, 825
OFFSET
1,5
COMMENTS
Number of antichains (or order ideals) in the poset 2*(k-1)*(n-k) or plane partitions with rows <= k-1, columns <= n-k and entries <= 2. - Mitch Harris, Jul 15 2000
T(n,k) is the number of Dyck n-paths with exactly k peaks. a(n,k) = number of pairs (P,Q) of lattice paths from (0,0) to (k,n+1-k), each consisting of unit steps East or North, such that P lies strictly above Q except at the endpoints. - David Callan, Mar 23 2004
Number of permutations of [n] which avoid-132 and have k-1 descents. - Mike Zabrocki, Aug 26 2004
T(n,k) is the number of paths through n panes of glass, entering and leaving from one side, of length 2n with k reflections (where traversing one pane of glass is the unit length). - Mitch Harris, Jul 06 2006
Antidiagonal sums given by A004148 (without first term).
T(n,k) is the number of full binary trees with n internal nodes and k-1 jumps. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
From Gary W. Adamson, Oct 22 2007: (Start)
The n-th row can be generated by the following operation using an ascending row of (n-1) triangular terms, (A) and a descending row, (B); e.g., row 6:
A: 1....3....6....10....15
B: 15...10....6.....3.....1
C: 1...15...50....50....15....1 = row 6.
Leftmost column of A,B -> first two terms of C; then followed by the operation B*C/A of current column = next term of row C, (e.g., 10*15/3 = 50). Continuing with the operation, we get row 6: (1, 15, 50, 50, 15, 1). (End)
The previous comment can be upgraded to: The ConvOffsStoT transform of the triangular series; and by rows, row 6 is the ConvOffs transform of (1, 3, 6, 10, 15). Refer to triangle A117401 as another example of the ConvOffsStoT transform, and OEIS under Maple Transforms. - Gary W. Adamson, Jul 09 2012
For a connection to Lagrange inversion, see A134264. - Tom Copeland, Aug 15 2008
T(n,k) is also the number of order-decreasing and order-preserving mappings (of an n-element set) of height k (height of a mapping is the cardinal of its image set). - Abdullahi Umar, Aug 21 2008
Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A033282 for the corresponding array of f-vectors for associahedra of type A_n. See A008459 and A145903 for the h-vectors for associahedra of type B and type D respectively. The Hilbert transform of this triangle (see A145905 for the definition of this transform) is A145904. - Peter Bala, Oct 27 2008
T(n,k) is also the number of noncrossing set partitions of [n] into k blocks. Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings. - Peter Luschny, Apr 29 2011
Noncrossing set partitions are also called genus 0 partitions. In terms of genus-dependent Stirling numbers of the second kind S2(n,k,g) that count partitions of genus g of an n-set into k nonempty subsets, one has T(n,k) = S2(n,k,0). - Robert Coquereaux, Feb 15 2024
Diagonals of A089732 are rows of A001263. - Tom Copeland, May 14 2012
From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Generating function E(y)*E(x*y) = 1 + (1 + x)*y/(1!*2!) + (1 + 3*x + x^2)*y^2/(2!*3!) + (1 + 6*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*E(x*y).
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse A103364 has a generating function E(x*y)/E(y). (End)
T(n,k) is the number of nonintersecting n arches above the x axis, starting and ending on vertices 1 to 2n, with k being the number of arches starting on an odd vertice and ending on a higher even vertice. Example: T(3,2)=3 [16,25,34] [14,23,56] [12,36,45]. - Roger Ford, Jun 14 2014
Fomin and Reading on p. 31 state that the rows of the Narayana matrix are the h-vectors of the associahedra as well as its dual. - Tom Copeland, Jun 27 2017
The row polynomials P(n, x) = Sum_{k=1..n} T(n, k)*x^(k-1), together with P(0, x) = 1, multiplied by (n+1) are the numerator polynomials of the o.g.f.s of the diagonal sequences of the triangle A103371: G(n, x) = (n+1)*P(n, x)/(1 - x)^{2*n+1}, for n >= 0. This is proved with Lagrange's theorem applied to the Riordan triangle A135278 = (1/(1 - x)^2, x/(1 - x)). See an example below. - Wolfdieter Lang, Jul 31 2017
T(n,k) is the number of Dyck paths of semilength n with k-1 uu-blocks (pairs of consecutive up-steps). - Alexander Burstein, Jun 22 2020
In case you were searching for Narayama numbers, the correct spelling is Narayana. - N. J. A. Sloane, Nov 11 2020
Named after the Canadian mathematician Tadepalli Venkata Narayana (1930-1987). They were also called "Runyon numbers" after John P. Runyon (1922-2013) of Bell Telephone Laboratories, who used them in a study of a telephone traffic system. - Amiram Eldar, Apr 15 2021 The Narayana numbers were first studied by Percy Alexander MacMahon (see reference, Article 495) as pointed out by Bóna and Sagan (see link). - Peter Luschny, Apr 28 2022
From Andrea Arlette España, Nov 14 2022: (Start)
T(n,k) is the degree distribution of the paths towards synchronization in the transition diagram associated with the Laplacian system over the complete graph K_n, corresponding to ordered initial conditions x_1 < x_2 < ... < x_n.
T(n,k) for n=2N+1 and k=N+1 is the number of states in the transition diagram associated with the Laplacian system over the complete bipartite graph K_{N,N}, corresponding to ordered (x_1 < x_2 < ... < x_N and x_{N+1} < x_{N+2} < ... < x_{2N}) and balanced (Sum_{i=1..N} x_i/N = Sum_{i=N+1..2N} x_i/N) initial conditions. (End)
From Gus Wiseman, Jan 23 2023: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and k leaves. See the link by Marko Riedel. For example, row n = 5 counts the following trees:
((((o)))) (((o))o) ((o)oo) (oooo)
(((o)o)) ((oo)o)
(((oo))) ((ooo))
((o)(o)) (o(o)o)
((o(o))) (o(oo))
(o((o))) (oo(o))
The unordered version is A055277. Leaves in standard ordered trees are counted by A358371.
(End)
REFERENCES
Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), pp. 103-124.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 196.
P. A. MacMahon, Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, 1960, Sect. 495.
T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 2.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 17.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.36(a) and (b).
LINKS
M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
Jarod Alper and Rowan Rowlands, Syzygies of the apolar ideals of the determinant and permanent, arXiv:1709.09286 [math.AC], 2017.
C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv:1204.0362 [math.CO], 2012, p. 8, Lemma 2.4 A_n. [Tom Copeland, Oct 19 2014]
Arvind Ayyer, Matthieu Josuat-Vergès, and Sanjay Ramassamy, Extensions of partial cyclic orders and consecutive coordinate polytopes, arXiv:1803.10351 [math.CO], 2018.
Axel Bacher, Antonio Bernini, Luca Ferrari, Benjamin Gunby, Renzo Pinzani, and Julian West, The Dyck pattern poset, Discrete Math. 321 (2014), 12--23. MR3154009.
Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 5.
Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
M. Barnabei, F. Bonetti, and M. Silmbani, Two Permutation Classes Enumerated by the Central Binomial Coefficients, J. Int. Seq. 16 (2013) #13.3.8.
Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011) # 11.4.5.
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.8.
C. Bean, M. Tannock, and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015.
S. Benchekroun and P. Moszkowski, A bijective proof of an enumerative property of legal bracketings Discrete Math. 176 (1997), no. 1-3, 273-277.
Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
A. Bernini, L. Ferrari, R. Pinzani, and J. West, The Dyck pattern poset, arXiv:1303.3785 [math.CO], 2013.
Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, and Toufik Mansour, The perimeter of words, Discrete Mathematics, 340, no. 10 (2017): 2456-2465.
M. Bona and B. E. Sagan, On divisibility of Narayana numbers by primes, arXiv:math/0505382 [math.CO], 2005.
Miklós Bóna and Bruce E. Sagan, On Divisibility of Narayana Numbers by Primes, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.4.
J. M. Borwein, A short walk can be beautiful, 2015.
Jonathan M. Borwein, Armin Straub, and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015.
Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth, and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv:1812.07112 [math.CO], 2018.
Alexander Burstein, Distribution of peak heights modulo k and double descents on k-Dyck paths, arXiv:2009.00760 [math.CO], 2020.
D. Callan, T. Mansour, and M. Shattuck, Restricted ascent sequences and Catalan numbers, arXiv:1403.6933 [math.CO], 2014.
L. Carlitz, and John Riordan, Enumeration of some two-line arrays by extent. J. Combinatorial Theory Ser. A 10 1971 271--283. MR0274301(43 #66). (Coefficients of the polynomials A_n(z) defined in (3.9)).
Ricky X. F. Chen and Christian M. Reidys, A Combinatorial Identity Concerning Plane Colored Trees and its Applications, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.7.
Xi Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, Linear Algebra and its Applications, Volume 471, 15 April 2015, Pages 383-393.
Xi Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, arXiv:1601.05645 [math.CO], 2016.
Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 7.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 12.
R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv:1306.4628 [math.CO], 2013.
R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
R. De Castro, A. L. Ramírez, and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv:1310.2449 [cs.DM], 2013.
Colin Defant, Counting 3-Stack-Sortable Permutations, arXiv:1903.09138 [math.CO], 2019.
Yun Ding and Rosena R. X. Du, Counting Humps in Motzkin paths, arXiv:1109.2661 [math.CO], 2011.
T. Doslic, Handshakes across a (round) table, JIS 13 (2010) #10.2.7.
T. Doslic, D. Svrtan, and D. Veljan, Enumerative aspects of secondary structures, Discr. Math., 285 (2004), 67-82.
Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker, and Amanda Welch, Toggling, rowmotion, and homomesy on interval-closed sets, arXiv:2307.08520 [math.CO], 2023.
Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 18.
L. Ferrari and E. Munarini, Enumeration of Edges in Some Lattices of Paths, J. Int. Seq. 17 (2014) #14.1.5.
T. A. Fisher, A Caldero-Chapoton map depending on a torsion class, arXiv:1510.07484 [math.RT], 2015-2016.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 182.
S. Fomin and N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004.
Alessandra Frabetti, Simplicial properties of the set of planar binary trees, Journal of Algebraic Combinatorics 13, 41-65 (2001).
Samuele Giraudo, Intervals of balanced binary trees in the Tamari lattice, arXiv:1107.3472 [math.CO], 2011.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
R. L. Graham and J. Riordan, The solution of a certain recurrence, Amer. Math. Monthly 73, 1966, pp. 604-608.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Kevin G. Hare and Ghislain McKay, Some properties of even moments of uniform random walks, arXiv:1506.01313 [math.CO], 2015.
F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
H. E. Hoggatt, Jr., Triangular Numbers, Fibonacci Quarterly 12 (Oct. 1974), 221-230.
F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
M. Hyatt and J. Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv:1208.1052 [math.CO], 2012.
Matthieu Josuat-Verges, A q-analog of Schläfli and Gould identities on Stirling numbers, Ramanujan J 46, 483-507 (2018); arXiv preprint, 2016.
Thomas Koshy, Illustration of triangle with dark color for odd number, light for even number [Although the illustration says "Applet", this is simply a plain jpeg file]
Vladimir Kostov and Boris Shapiro, Narayana numbers and Schur-Szego composition, arXiv:0804.1028 [math.CA], 2008.
W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
G. Kreweras, and P. Moszkowski, A new enumerative property of the Narayana numbers, Journal of statistical planning and inference 14.1 (1986): 63-67.
Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
A. Laradji and A. Umar, Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.8.
A. Laradji and A. Umar, On certain finite semigroups of order-decreasing transformations I, Semigroup Forum 69 (2004), 184-200.
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 16.
P. A. MacMahon, Combinatory analysis.
K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
Toufik Mansour and Reza Rastegar, On typical triangulations of a convex n-gon, arXiv:1911.04025 [math.CO], 2019.
Toufik Mansour, Reza Rastegar, Alexander Roitershtein, and Gökhan Yıldırım, The longest increasing subsequence in involutions avoiding 3412 and another pattern, arXiv:2001.10030 [math.CO], 2020.
Toufik Mansour and Mark Shattuck, Pattern-avoiding set partitions and Catalan numbers, Electronic Journal of Combinatorics, 18(2) (2012), #P34.
Toufik Mansour and Gökhan Yıldırım, Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences, arXiv:1808.05430 [math.CO], 2018.
A. Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, Volume 30 (2015), #7, pp. 106-117.
MathOverflow, Narayana polynomials as numerator polynomials for Ehrhart series rational functions?, a MO question posed by Tom Copeland and answered by Richard Stanley, 2017.
D. Merlini, R. Sprugnoli, and M. C. Verri, Waiting patterns for a printer, Discrete Applied Mathematics, Volume 144, Issue 3, 2004, Pages 359-373.
A. Micheli and D. Rossin, Edit distance between unlabeled ordered trees, arXiv:math/0506538 [math.CO], 2005.
T. V. Narayana, Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités, Comptes Rendus de l'Académie des Sciences Paris, Vol. 240 (1955), p. 1188-1189.
J.-C. Novelli and J.-Y. Thibon, Polynomial realizations of some trialgebras, arXiv:math/0605061 [math.CO], 2006; Proc. Formal Power Series and Algebraic Combinatorics 2006 (San-Diego, 2006).
J.-C. Novelli and J.-Y. Thibon, Hopf algebras and dendriform structures arising from parking functions, Fundamenta Mathematicae 193 (2007), pp. 189-241; arXiv version, 0511200 [math.CO], 2005.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014. See Fig. 4.
Judy-anne Osborn, Bi-banded paths, a bijection and the Narayana numbers, Australasian Journal of Combinatorics, Volume 48 (2010), Pages 243-252.
T. K. Petersen, Chapter 2. Narayana numbers. In: Eulerian Numbers. Birkhäuser Basel, 2015. doi:10.1007/978-1-4939-3091-3.
Vincent Pilaud and V. Pons, Permutrees, arXiv:1606.09643 [math.CO], 2016-2017.
Lara Pudwell, On the distribution of peaks (and other statistics), 16th International Conference on Permutation Patterns, Dartmouth College, 2018. [Broken link]
Dun Qiu and Jeffery Remmel, Patterns in words of ordered set partitions, arXiv:1804.07087 [math.CO], 2018.
A. Sapounakis, I. Tasoulas, and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
Paul R. F. Schumacher, Descents in Parking Functions, J. Int. Seq. 21 (2018), #18.2.3.
M. Sheppeard, Constructive motives and scattering 2013 (p. 41). [Tom Copeland, Oct 03 2014]
R. P. Stanley, Theory and application of plane partitions, II. Studies in Appl. Math. 50 (1971), p. 259-279. DOI:10.1002/sapm1971503259. Thm. 18.1.
R. A. Sulanke, Catalan path statistics having the Narayana distribution, Discrete Math., vol. 180 (1998), 369--389. [Gives additional contexts where Narayana numbers appear. - N. J. A. Sloane, Nov 11 2020]
A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126.
W. Wang and T. Wang, Generalized Riordan arrays, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017.
Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See pp. 19-20.
L. K. Williams, Enumeration of totally positive Grassmann cells, arXiv:math/0307271 [math.CO], 2003-2004.
Anthony James Wood, Nonequilibrium steady states from a random-walk perspective, Ph. D. Thesis, The University of Edinburgh (Scotland, UK 2019), 44-46.
Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019.
F. Yano and H. Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
A. España, X. Leoncini, and E. Ugalde, Combinatorics of the paths towards synchronization, arXiv:2205.05948 [math.DS], 2022.
FORMULA
a(n, k) = C(n-1, k-1)*C(n, k-1)/k for k!=0; a(n, 0)=0.
Triangle equals [0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is Deléham's operator defined in A084938.
0<n, 1<=k<=n a(n, 1) = a(n, n) = 1 a(n, k) = sum(i=1..n-1, sum(r=1..k-1, a(n-1-i, k-r) a(i, r))) + a(n-1, k) a(n, k) = sum(i=1..k-1, binomial(n+i-1, 2k-2)*a(k-1, i)) - Mike Zabrocki, Aug 26 2004
T(n, k) = C(n, k)*C(n-1, k-1) - C(n, k-1)*C(n-1, k) (determinant of a 2 X 2 subarray of Pascal's triangle A007318). - Gerald McGarvey, Feb 24 2005
T(n, k) = binomial(n-1, k-1)^2 - binomial(n-1, k)*binomial(n-1, k-2). - David Callan, Nov 02 2005
a(n,k) = C(n,2) (a(n-1,k)/((n-k)*(n-k+1)) + a(n-1,k-1)/(k*(k-1))) a(n,k) = C(n,k)*C(n,k-1)/n. - Mitch Harris, Jul 06 2006
Central column = A000891, (2n)!*(2n+1)! / (n!*(n+1)!)^2. - Zerinvary Lajos, Oct 29 2006
G.f.: (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) = Sum_{n>0, k>0} a(n, k)*x^n*y^k.
From Peter Bala, Oct 22 2008: (Start)
Relation with Jacobi polynomials of parameter (1,1):
Row n+1 generating polynomial equals 1/(n+1)*x*(1-x)^n*Jacobi_P(n,1,1,(1+x)/(1-x)). It follows that the zeros of the Narayana polynomials are all real and nonpositive, as noted above. O.g.f for column k+2: 1/(k+1) * y^(k+2)/(1-y)^(k+3) * Jacobi_P(k,1,1,(1+y)/(1-y)). Cf. A008459.
T(n+1,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from the origin and finishing at lattice points on the x axis and which remain in the upper half-plane y >= 0 [Guy]. For example, T(4,3) = 6 counts the six walks RRL, LRR, RLR, UDL, URD and RUD, from the origin to the lattice point (1,0), each of 3 steps. Compare with tables A145596 - A145599.
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for this array is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... = 1/(1 - x*t/(1 - x/(1 - x*t/(1 - x/(1 - ...))))) (as a continued fraction). Cf. A108767, A132081 and A141618. (End)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy-x^2y/(1-... (continued fraction). - Paul Barry, Sep 28 2010
E.g.f.: exp((1+y)x)*Bessel_I(1,2*sqrt(y)x)/(sqrt(y)*x). - Paul Barry, Sep 28 2010
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ). - Paul D. Hanna, Oct 13 2010
With F(x,t) = (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2))/(2*x) an o.g.f. in x for the Narayana polynomials in t, G(x,t) = x/(t+(1+t)*x+x^2) is the compositional inverse in x. Consequently, with H(x,t) = 1/ (dG(x,t)/dx) = (t+(1+t)*x+x^2)^2 / (t-x^2), the n-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*D_x)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*D_u)u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 04 2011
With offset 0, A001263 = Sum_{j>=0} A132710^j / A010790(j), a normalized Bessel fct. May be represented as the Pascal matrix A007318, n!/[(n-k)!*k!], umbralized with b(n)=A002378(n) for n>0 and b(0)=1: A001263(n,k)= b.(n!)/{b.[(n-k)!]*b.(k!)} where b.(n!) = b(n)*b(n-1)...*b(0), a generalized factorial (see example). - Tom Copeland, Sep 21 2011
With F(x,t) = {1-(1-t)*x-sqrt[1-2*(1+t)*x+[(t-1)*x]^2]}/2 a shifted o.g.f. in x for the Narayana polynomials in t, G(x,t)= x/[t-1+1/(1-x)] is the compositional inverse in x. Therefore, with H(x,t)=1/(dG(x,t)/dx)=[t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, (see A119900), the (n-1)-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/du) u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 30 2011
T(n,k) = binomial(n-1,k-1)*binomial(n+1,k)-binomial(n,k-1)*binomial(n,k). - Philippe Deléham, Nov 05 2011
A166360(n-k) = T(n,k) mod 2. - Reinhard Zumkeller, Oct 10 2013
Damped sum of a column, in leading order: lim_{d->0} d^(2k-1) Sum_{N>=k} T(N,k)(1-d)^N=Catalan(n). - Joachim Wuttke, Sep 11 2014
Multiplying the n-th column by n! generates the revert of the unsigned Lah numbers, A089231. - Tom Copeland, Jan 07 2016
Row polynomials: (x - 1)^(n+1)*(P(n+1,(1 + x)/(x - 1)) - P(n-1,(1 + x)/(x - 1)))/((4*n + 2)), n = 1,2,... and where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 03 2017
The coefficients of the row polynomials R(n, x) = hypergeom([-n,-n-1], [2], x) generate the triangle based in (0,0). - Peter Luschny, Mar 19 2018
Multiplying the n-th diagonal by n!, with the main diagonal n=1, generates the Lah matrix A105278. With G equal to the infinitesimal generator of A132710, the Narayana triangle equals Sum_{n >= 0} G^n/((n+1)!*n!) = (sqrt(G))^(-1) * I_1(2*sqrt(G)), where G^0 is the identity matrix and I_1(x) is the modified Bessel function of the first kind of order 1. (cf. Sep 21 2011 formula also.) - Tom Copeland, Sep 23 2020
T(n,k) = T(n,k-1)*C(n-k+2,2)/C(k,2). - Yuchun Ji, Dec 21 2020
EXAMPLE
The initial rows of the triangle are:
[1] 1
[2] 1, 1
[3] 1, 3, 1
[4] 1, 6, 6, 1
[5] 1, 10, 20, 10, 1
[6] 1, 15, 50, 50, 15, 1
[7] 1, 21, 105, 175, 105, 21, 1
[8] 1, 28, 196, 490, 490, 196, 28, 1
[9] 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
...
For all n, 12...n (1 block) and 1|2|3|...|n (n blocks) are noncrossing set partitions.
Example of umbral representation:
A007318(5,k)=[1,5/1,5*4/(2*1),...,1]=(1,5,10,10,5,1),
so A001263(5,k)={1,b(5)/b(1),b(5)*b(4)/[b(2)*b(1)],...,1}
= [1,30/2,30*20/(6*2),...,1]=(1,15,50,50,15,1).
First = last term = b.(5!)/[b.(0!)*b.(5!)]= 1. - Tom Copeland, Sep 21 2011
Row polynomials and diagonal sequences of A103371: n = 4, P(4, x) = 1 + 6*x + 6*x^2 + x^3, and the o.g.f. of fifth diagonal is G(4, x) = 5* P(4, x)/(1 - x)^9, namely [5, 75, 525, ...]. See a comment above. - Wolfdieter Lang, Jul 31 2017
MAPLE
A001263 := (n, k)->binomial(n-1, k-1)*binomial(n, k-1)/k;
a:=proc(n, k) option remember; local i; if k=1 or k=n then 1 else add(binomial(n+i-1, 2*k-2)*a(k-1, i), i=1..k-1); fi; end:
# Alternatively, as a (0, 0)-based triangle:
R := n -> simplify(hypergeom([-n, -n-1], [2], x)): Trow := n -> seq(coeff(R(n, x), x, j), j=0..n): seq(Trow(n), n=0..9); # Peter Luschny, Mar 19 2018
MATHEMATICA
T[n_, k_] := If[k==0, 0, Binomial[n-1, k-1] Binomial[n, k-1] / k];
Flatten[Table[Binomial[n-1, k-1] Binomial[n, k-1]/k, {n, 15}, {k, n}]] (* Harvey P. Dale, Feb 29 2012 *)
TRow[n_] := CoefficientList[Hypergeometric2F1[1 - n, -n, 2, x], x];
Table[TRow[n], {n, 1, 11}] // Flatten (* Peter Luschny, Mar 19 2018 *)
aot[n_]:=If[n==1, {{}}, Join@@Table[Tuples[aot/@c], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n], Length[Position[#, {}]]==k&]], {n, 2, 9}, {k, 1, n-1}] (* Gus Wiseman, Jan 23 2023 *)
PROG
(PARI) {a(n, k) = if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)};
(PARI) {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*y^j)*x^m/m) +O(x^(n+1))), n, x), k, y)} \\ Paul D. Hanna, Oct 13 2010
(Haskell)
a001263 n k = a001263_tabl !! (n-1) !! (k-1)
a001263_row n = a001263_tabl !! (n-1)
a001263_tabl = zipWith dt a007318_tabl (tail a007318_tabl) where
dt us vs = zipWith (-) (zipWith (*) us (tail vs))
(zipWith (*) (tail us ++ [0]) (init vs))
-- Reinhard Zumkeller, Oct 10 2013
(Magma) /* triangle */ [[Binomial(n-1, k-1)*Binomial(n, k-1)/k : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 19 2014
(Sage)
@CachedFunction
def T(n, k):
if k == n or k == 1: return 1
if k <= 0 or k > n: return 0
return binomial(n, 2) * (T(n-1, k)/((n-k)*(n-k+1)) + T(n-1, k-1)/(k*(k-1)))
for n in (1..9): print([T(n, k) for k in (1..n)]) # Peter Luschny, Oct 28 2014
(GAP) Flat(List([1..11], n->List([1..n], k->Binomial(n-1, k-1)*Binomial(n, k-1)/k))); # Muniru A Asiru, Jul 12 2018
CROSSREFS
Other versions are in A090181 and A131198. - Philippe Deléham, Nov 18 2007
Cf. variants: A181143, A181144. - Paul D. Hanna, Oct 13 2010
Row sums give A000108 (Catalan numbers), n>0.
A008459 (h-vectors type B associahedra), A033282 (f-vectors type A associahedra), A145903 (h-vectors type D associahedra), A145904 (Hilbert transform). - Peter Bala, Oct 27 2008
Cf. A016098 and A189232 for numbers of crossing set partitions.
Cf. A243752.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
KEYWORD
nonn,easy,tabl,nice,look
EXTENSIONS
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved
4-dimensional pyramidal numbers: a(n) = n^2*(n^2-1)/12.
(Formerly M4135 N1714)
+10
120
0, 0, 1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, 19481, 23276, 27600, 32500, 38025, 44226, 51156, 58870, 67425, 76880, 87296, 98736, 111265, 124950, 139860, 156066, 173641, 192660, 213200, 235340
OFFSET
0,4
COMMENTS
Also number of ways to legally insert two pairs of parentheses into a string of m := n-1 letters. (There are initially 2C(m+4,4) (A034827) ways to insert the parentheses, but we must subtract 2(m+1) for illegal clumps of 4 parentheses, 2m(m+1) for clumps of 3 parentheses, C(m+1,2) for 2 clumps of 2 parentheses and (m-1)C(m+1,2) for 1 clump of 2 parentheses, giving m(m+1)^2(m+2)/12 = n^2*(n^2-1)/12.) See also A000217.
E.g., for n=2 there are 6 ways: ((a))b, ((a)b), ((ab)), (a)(b), (a(b)), a((b)).
Let M_n denote the n X n matrix M_n(i,j)=(i+j); then the characteristic polynomial of M_n is x^(n-2) * (x^2-A002378(n)*x - a(n)). - Benoit Cloitre, Nov 09 2002
Let M_n denote the n X n matrix M_n(i,j)=(i-j); then the characteristic polynomial of M_n is x^n + a(n)x^(n-2). - Michael Somos, Nov 14 2002 [See A114327 for the infinite matrix M in triangular form. - Wolfdieter Lang, Feb 05 2018]
Number of permutations of [n] which avoid the pattern 132 and have exactly 2 descents. - Mike Zabrocki, Aug 26 2004
Number of tilings of a <2,n,2> hexagon.
a(n) is the number of squares of side length at least 1 having vertices at the points of an n X n unit grid of points (the vertices of an n-1 X n-1 chessboard). [For a proof, see Comments in A051602. - N. J. A. Sloane, Sep 29 2021] For example, on the 3 X 3 grid (the vertices of a 2 X 2 chessboard) there are four 1 X 1 squares, one (skew) sqrt(2) X sqrt(2) square, and one 3 X 3 square, so a(3)=6. On the 4 X 4 grid (the vertices of a 3 X 3 chessboard) there are 9 1 X 1 squares, 4 2 X 2 squares, 1 3 X 3 square, 4 sqrt(2) X sqrt(2) squares, and 2 sqrt(5) X sqrt(5) squares, so a(4) = 20. See also A024206, A108279. [Comment revised by N. J. A. Sloane, Feb 11 2015]
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Number of distinct components of the Riemann curvature tensor. - Gene Ward Smith, Apr 24 2006
a(n) is the number of 4 X 4 matrices (symmetrical about each diagonal) M = [a,b,c,d;b,e,f,c;c,f,e,b;d,c,b,a] with a+b+c+d=b+e+f+c=n+2; (a,b,c,d,e,f natural numbers). - Philippe Deléham, Apr 11 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
a(n) is the number of Dyck (n+1)-paths with exactly n-1 peaks. - David Callan, Sep 20 2007
Starting (1,6,20,50,...) = third partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} C(n+3,i+3)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
4-dimensional square numbers. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Equals row sums of triangle A177877; a(n), n > 1 = (n-1) terms in (1,2,3,...) dot (...,3,2,1) with additive carryovers. Example: a(4) = 20 = (1,2,3) dot (3,2,1) with carryovers = (1*3) + (2*2 + 3) + (3*1 + 7) = (3 + 7 + 10).
Convolution of the triangular numbers A000217 with the odd numbers A004273.
a(n+2) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and w-x=max{w,x,y,z}-min{w,x,y,z}. - Clark Kimberling, May 28 2012
The second level of finite differences is a(n+2) - 2*a(n+1) + a(n) = (n+1)^2, the squares. - J. M. Bergot, May 29 2012
Because the differences of this sequence give A000330, this is also the number of squares in an n+1 X n+1 grid whose sides are not parallel to the axes.
a(n+2) gives the number of 2*2 arrays that can be populated with 0..n such that rows and columns are nondecreasing. - Jon Perry, Mar 30 2013
For n consecutive numbers 1,2,3,...,n, the sum of all ways of adding the k-tuples of consecutive numbers for n=a(n+1). As an example, let n=4: (1)+(2)+(3)+(4)=10; (1+2)+(2+3)+(3+4)=15; (1+2+3)+(2+3+4)=15; (1+2+3+4)=10 and the sum of these is 50=a(4+1)=a(5). - J. M. Bergot, Apr 19 2013
If P(n,k) = n*(n+1)*(k*n-k+3)/6 is the n-th (k+2)-gonal pyramidal number, then a(n) = P(n,k)*P(n-1,k-1) - P(n-1,k)*P(n,k-1). - Bruno Berselli, Feb 18 2014
For n > 1, a(n) = 1/6 of the area of the trapezoid created by the points (n,n+1), (n+1,n), (1,n^2+n), (n^2+n,1). - J. M. Bergot, May 14 2014
For n > 3, a(n) is twice the area of a triangle with vertices at points (C(n,4),C(n+1,4)), (C(n+1,4),C(n+2,4)), and (C(n+2,4),C(n+3,4)). - J. M. Bergot, Jun 03 2014
a(n) is the dimension of the space of metric curvature tensors (those having the symmetries of the Riemann curvature tensor of a metric) on an n-dimensional real vector space. - Daniel J. F. Fox, Dec 15 2018
Coefficients in the terminating series identity 1 - 6*n/(n + 5) + 20*n*(n - 1)/((n + 5)*(n + 6)) - 50*n*(n - 1)*(n - 2)/((n + 5)*(n + 6)*(n + 7)) + ... = 0 for n = 1,2,3,.... Cf. A000330 and A005585. - Peter Bala, Feb 18 2019
REFERENCES
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
R. Euler and J. Sadek, "The Number of Squares on a Geoboard", Journal of Recreational Mathematics, 251-5 30(4) 1999-2000 Baywood Pub. NY
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. [Annotated scanned copy]
Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
Duane DeTemple, Using Squares to Sum Squares, The College Mathematics Journal, ? (2010), 214-221.
Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
Reinhard O. W. Franz, and Berton A. Earnshaw, A constructive enumeration of meanders, Ann. Comb. 6 (2002), no. 1, 7-17.
M. Hyatt and J. Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv preprint arXiv:1208.1052 [math.CO], 2012.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
M. Jones, S. Kitaev, and J. Remmel, Frame patterns in n-cycles, arXiv preprint arXiv:1311.3332 [math.CO], 2013.
Sandi Klavžar, Balázs Patkós, Gregor Rus, and Ismael G. Yero, On general position sets in Cartesian grids, arXiv:1907.04535 [math.CO], 2019.
G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
Calvin Lin, Squares on a grid, April 2015
C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698).
C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
P. N. Rathie, A census of simple planar triangulations, J. Combin. Theory, B 16 (1974), 134-138. See Table I.
Royce A. Speck, The Number of Squares on a Geoboard, School Science and Mathematics, Volume 79, Issue 2, pages 145-150, February 1979
Eric Weisstein's World of Mathematics, Riemann Tensor.
A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
FORMULA
G.f.: x^2*(1+x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{i=0..n} (n-i)*i^2 = a(n-1) + A000330(n-1) = A000217(n)*A000292(n-2)/n = A000217(n)*A000217(n-1)/3 = A006011(n-1)/3, convolution of the natural numbers with the squares. - Henry Bottomley, Oct 19 2000
a(n)+1 = A079034(n). - Mario Catalani (mario.catalani(AT)unito.it), Feb 12 2003
a(n) = 2*C(n+2, 4) - C(n+1, 3). - Paul Barry, Mar 04 2003
a(n) = C(n+2, 4) + C(n+1, 4). - Paul Barry, Mar 13 2003
a(n) = Sum_{k=1..n} A000330(n-1). - Benoit Cloitre, Jun 15 2003
a(n) = n*C(n+1,3)/2 = C(n+1,3)*C(n+1,2)/(n+1). - Mitch Harris, Jul 06 2006
a(n) = A006011(n)/3 = A008911(n)/2 = A047928(n-1)/12 = A083374(n)/6. - Zerinvary Lajos, May 09 2007
a(n) = (1/2)*Sum_{1 <= x_1, x_2 <= n} (det V(x_1,x_2))^2 = (1/2)*Sum_{1 <= i,j <= n} (i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = C(n+1,3) + 2*C(n+1,4). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = (1/48)*sinh(2*arccosh(n))^2. - Artur Jasinski, Feb 10 2010
a(n) = n*A000292(n-1)/2. - Tom Copeland, Sep 13 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Nov 29 2011
a(n) = (n-1)*A000217(n-1) - Sum_{i=0..n-2} (n-1-2*i)*A000217(i) for n > 1. - Bruno Berselli, Jun 22 2013
a(n) = C(n,2)*C(n+1,3) - C(n,3)*C(n+1,2). - J. M. Bergot, Sep 17 2013
a(n) = Sum_{k=1..n} ( (2k-n)* k(k+1)/2 ). - Wesley Ivan Hurt, Sep 26 2013
a(n) = floor(n^2/3) + 3*Sum_{k=1..n} k^2*floor((n-k+1)/3). - Mircea Merca, Feb 06 2014
Euler transform of length 2 sequence [6, -1]. - Michael Somos, May 28 2014
G.f. x^2*2F1(3,4;2;x). - R. J. Mathar, Aug 09 2015
Sum_{n>=2} 1/a(n) = 21 - 2*Pi^2 = 1.260791197821282762331... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A080852(2,n-2). - R. J. Mathar, Jul 28 2016
a(n) = A046092(n) * A046092(n-1)/48 = A000217(n) * A000217(n-1)/3. - Bruce J. Nicholson, Jun 06 2017
E.g.f.: (1/12)*exp(x)*x^2*(6 + 6*x + x^2). - Stefano Spezia, Dec 07 2018
Sum_{n>=2} (-1)^n/a(n) = Pi^2 - 9 (See A002388). - Amiram Eldar, Jun 28 2020
EXAMPLE
a(7) = 6*21 - (6*0 + 4*1 + 2*3 + 0*6 - 2*10 - 4*15) = 196. - Bruno Berselli, Jun 22 2013
G.f. = x^2 + 6*x^3 + 20*x^4 + 50*x^5 + 105*x^6 + 196*x^7 + 336*x^8 + ...
MAPLE
A002415 := proc(n) binomial(n^2, 2)/6 ; end proc: # Zerinvary Lajos, Jan 07 2008
MATHEMATICA
Table[(n^4 - n^2)/12, {n, 0, 40}] (* Zerinvary Lajos, Mar 21 2007 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 1, 6, 20}, 40] (* Harvey P. Dale, Nov 29 2011 *)
PROG
(PARI) a(n) = n^2 * (n^2 - 1) / 12;
(PARI) x='x+O('x^200); concat([0, 0], Vec(x^2*(1+x)/(1-x)^5)) \\ Altug Alkan, Mar 23 2016
(Magma) [n^2*(n^2-1)/12: n in [0..50]]; // Wesley Ivan Hurt, May 14 2014
(GAP) List([0..45], n->Binomial(n^2, 2)/6); # Muniru A Asiru, Dec 15 2018
CROSSREFS
a(n) = ((-1)^n)*A053120(2*n, 4)/8 (one-eighth of fifth unsigned column of Chebyshev T-triangle, zeros omitted). Cf. A001296.
Second row of array A103905.
Third column of Narayana numbers A001263.
Partial sums of A000330.
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers (A000027) with the k-gonal numbers.
KEYWORD
nonn,easy,nice
EXTENSIONS
Typo in link fixed by Matthew Vandermast, Nov 22 2010
Redundant comment deleted and more detail on relationship with A000330 added by Joshua Zucker, Jan 01 2013
STATUS
approved
Sum of 5th powers: 0^5 + 1^5 + 2^5 + ... + n^5.
(Formerly M5241 N2280)
+10
69
0, 1, 33, 276, 1300, 4425, 12201, 29008, 61776, 120825, 220825, 381876, 630708, 1002001, 1539825, 2299200, 3347776, 4767633, 6657201, 9133300, 12333300, 16417401, 21571033, 28007376, 35970000, 45735625, 57617001, 71965908, 89176276, 109687425, 133987425, 162616576
OFFSET
0,3
COMMENTS
This sequence is related to A000538 by a(n) = n*A000538(n) - Sum_{i=0..n-1} A000538(i). - Bruno Berselli, Apr 26 2010
See comment in A008292 for a formula for r-th successive summation of Sum_{k=1..n} k^j. - Gary Detlefs, Jan 02 2014
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Bruno Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Faulhaber's Formula
FORMULA
a(n) = n^2*(n+1)^2*(2*n^2+2*n-1)/12.
a(n) = sqrt(Sum_{j=1..n}Sum_{i=1..n}(i*j)^5). - Alexander Adamchuk, Oct 26 2004
a(n) = Sum_{i = 1..n} J_5(i)*floor(n/i), where J_5 is A059378. - Enrique Pérez Herrero, Feb 26 2012
a(n) = 6*a(n-1) - 15* a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + 120. - Ant King, Sep 23 2013
a(n) = 120*C(n+3,6) + 30*C(n+2,4) + C(n+1,2) (Knuth). - Gary Detlefs, Jan 02 2014
a(n) = -Sum_{j=1..5} j*Stirling1(n+1,n+1-j)*Stirling2(n+5-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} 1/a(n) = 60 - 4*Pi^2 + 8*sqrt(3)*Pi * tan(sqrt(3)*Pi/2). - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)^2*n^2*(n + 1/2 + sqrt(3/4))*(n + 1/2 - sqrt(3/4))/6. See the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015
G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^7. - Robert Israel, Dec 07 2015
a(n) = (4/3)*A000217(n)^3 - (1/3)*A000217(n)^2. - Michael Raney, Feb 19 2016
a(n) = (binomial(n+1,4) + 6*binomial(n+2,4) + binomial(n+3,4))*(binomial(n+2,3) - binomial(n+1,3)). - Tony Foster III, Oct 21 2018
a(n) = 24*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, May 04 2024
E.g.f.: exp(x)*x*(12 + 186*x + 360*x^2 + 195*x^3 + 36*x^4 + 2*x^5)/12. - Stefano Spezia, May 04 2024
MAPLE
A000539:=-(1+26*z+66*z**2+26*z**3+z**4)/(z-1)**7; # Simon Plouffe in his 1992 dissertation
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^5 od: seq(a[n], n=0..30); # Zerinvary Lajos, Feb 22 2008
a:=n->sum(j^5, j=0..n): seq(a(n), n=0..30); # Zerinvary Lajos, Jun 05 2008
MATHEMATICA
Accumulate[Range[0, 40]^5]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 33, 276, 1300, 4425, 12201}, 41] (* Jean-François Alcover, Feb 09 2016 *)
PROG
(PARI) a(n)=n^2*(n+1)^2*(2*n^2+2*n-1)/12 \\ Charles R Greathouse IV, Jul 15 2011
(Maxima) A000539(n):=n^2*(n+1)^2*(2*n^2+2*n-1)/12$ makelist(A000539(n), n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(Magma) [n^2*(n+1)^2*(2*n^2+2*n-1)/12: n in [0..30]]; // Vincenzo Librandi, Apr 04 2015
(Python)
A000539_list, m = [0], [120, -240, 150, -30, 1, 0, 0]
for _ in range(10**2):
for i in range(6):
m[i+1] += m[i]
A000539_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
(PARI) concat(0, Vec(x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^7 + O(x^100))) \\ Altug Alkan, Dec 07 2015
CROSSREFS
Partial sums of A000584. Row 5 of array A103438.
KEYWORD
nonn,easy
STATUS
approved
Number of Baxter permutations of length n (also called Baxter numbers).
(Formerly M1661 N0652)
+10
42
1, 1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240, 1882960, 11140560, 67329992, 414499438, 2593341586, 16458756586, 105791986682, 687782586844, 4517543071924, 29949238543316, 200234184620736, 1349097425104912, 9154276618636016, 62522506583844272
OFFSET
0,3
COMMENTS
As shown by Dulucq and Guilbert (see for example "Baxter Permutations", Discrete Math., 1998), a(n) is also the number of possible paths for three vicious walkers of length n-1 (a.k.a. "vicious 3-watermelons") [Essam & Guttmann (1995), Eq. (63)], Jensen (2017), Eqs. (1), (2)]. The proof follows easily by comparing Ollerton's recurrence here and the recurrence in Eq. (60) of Essam & Guttmann. In fact, as discussed by Dulucq and Guilbert, this interpretation of the sequence has been known for a long time. - N. J. A. Sloane, Mar 19 2021; additional references provided by Olivier Gerard, Mar 22 2021.
From Roger Ford, Apr 11 2020: (Start)
a(n) is also the number of meanders with n top arches that as the number of arches is reduced by combining the first and last arches every even number of arches produces a meander.
Example: For n = 4, this meander has this trait.
/\ arches= 8
/\ / \
/ \ --> /\ //\ \
Starting meander: /\ /\ / /\ \ Split and /\/\//\\ ///\\/\\
\ \/ \ \/ / / rotate
\ \ / / bottom arches /\
\ \/ / / \ arches= 7
\ / / /\\ /\
\ / Combine start //\//\\\ //\\/\
\ / first arch with
meander: \/ end of last arch
/\ /\
/\ / \ Combine arches /\ //\\ arches= 6
\ \ / /\ \ again then /\ //\\ ///\\\
\ \ \/ / / rotate and join
\ \ / / <-- /\
\ \/ / //\\ /\ arches= 5
\ / Combine ///\\\ //\\
\/ /\
meander: / \
/ /\ \ Combine /\
\/ \/ <-- //\\ /\/\ arches= 4
/\
Combine /\ //\\ arches= 3
meander: /\ Combine
\/ <-- /\ /\ arches= 2
(End)
REFERENCES
Arthur T. Benjamin and Naiomi T. Cameron, Counting on determinants, American Mathematical Monthly, 112.6 (2005): 481-492.
W. M. Boyce, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2 (1967), 19-26.
William M. Boyce, Commuting functions with no common fixed point, Transactions of the American Mathematical Society 137 (1969): 77-92.
T. Y. Chow, Review of "Bonichon, Nicolas; Bousquet-Mélou, Mireille; Fusy, Éric; Baxter permutations and plane bipolar orientations. Sem. Lothar. Combin. 61A (2009/10), Art. B61Ah, 29 pp.", MathSciNet Review MR2734180 (2011m:05023).
S. Dulucq and O. Guibert, Baxter permutations, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995).
J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), 1995, pp. 5849ff. See (60) and (63).
Iwan Jensen, Three friendly walkers, Journal of Physics A: Mathematical and Theoretical, Volume 50:2 (2017), #24003, 14 pages; https://doi.org/10.1088/1751-8121/50/2/024003. See (1), (2).
S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399, Table A.7.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.55.
Doron Zeilberger, The method of creative telescoping, J. Symb. Comput. 11.3 (1991): 195-204. See Section 7.8.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1119 (first 101 terms from T. D. Noe)
E. Ackerman et al., On the number of rectangular partitions, SODA '04, 2004.
A. Asinowski, G. Barequet, M. Bousquet-Mélou, T. Mansour, and R. Pinter, Orders induced by segments in floorplans and (2-14-3,3-41-2)-avoiding permutations, Electronic Journal of Combinatorics, 20:2 (2013), Paper P35; also arXiv preprint arXiv:1011.1889 [math.CO], 2010-2012.
Andrei Asinowski, Jean Cardinal, Stefan Felsner, and Éric Fusy, Combinatorics of rectangulations: Old and new bijections, arXiv:2402.01483 [math.CO], 2024. See p. 10.
Jean-Christophe Aval, Adrien Boussicault, Mathilde Bouvel, Olivier Guibert, and Matteo Silimbani, Baxter Tree-like Tableaux, arXiv:2108.06212 [math.CO], 2021.
N. R. Beaton, M. Bouvel, V. Guerrini, and S. Rinaldi, Slicings of parallelogram polyominoes, or how Baxter and Schroeder can be reconciled, arXiv preprint arXiv:1511.04864 [math.CO], 2015.
Nicolas Bonichon, Mireille Bousquet-Mélou, and Éric Fusy, Baxter permutations and plane bipolar orientations, Sem. Lothar. Combin. 61A (2009/10), Art. B61Ah, 29 pp.
Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
Alin Bostan, Jordan Tirrell, Bruce W. Westbury, and Yi Zhang, On sequences associated to the invariant theory of rank two simple Lie algebras, arXiv:1911.10288 [math.CO], 2019.
Alin Bostan, Jordan Tirrell, Bruce W. Westbury, and Yi Zhang, On some combinatorial sequences associated to invariant theory, arXiv:2110.13753 [math.CO], 2021.
F. Bousquet-Mélou, Four classes of pattern-avoiding permutations under one roof: generating trees with two labels, Electron. J. Combin. 9 (2002/03), no. 2, Research paper 19, 31 pp.
Mathilde Bouvel, Veronica Guerrini, Andrew Rechnitzer, and Simone Rinaldi, Semi-Baxter and strong-Baxter: two relatives of the Baxter sequence, arXiv:1702.04529 [math.CO], 2017.
W. M. Boyce, Generation of a class of permutations associated with commuting functions, 1967; annotated and corrected scanned copy.
W. M. Boyce, Baxter Permutations and Functional Composition, Houston Journal of Mathematics, Volume 7, No. 2, 1981
S. Burrill, S. Melczer, and M. Mishna, A Baxter class of a different kind, and other bijective results using tableau sequences ending with a row shape, arXiv preprint arXiv:1411.6606 [math.CO], 2014-2015.
H. Canary, Aztec diamonds and Baxter permutations, arXiv:math/0309135 [math.CO], 2003-2004.
Jean Cardinal and Vincent Pilaud, Rectangulotopes, arXiv:2404.17349 [math.CO], 2024. See p. 14.
G. Chatel and V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015. and [DOI]
T. Y. Chow, H. Eriksson, and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr., and M. Kleiman, The number of Baxter permutations J. Combin. Theory Ser. A 24 (1978), no. 3, 382-394.
CombOS - Combinatorial Object Server, Generate diagonal rectangulations
Colin Defant, Stack-Sorting Preimages of Permutation Classes, arXiv:1809.03123 [math.CO], 2018.
Anand Deopurkar, Eduard Duryev, and Anand Patel, Ramification divisors of general projections, arXiv:1901.01513 [math.AG], 2019.
Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019).
S. Dulucq and O. Guibert, Permutations de Baxter, Séminaire Lotharingien de Combinatoire, B33c (1994), 9 pp.
S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
S. Dulucq and O. Guibert, Baxter permutations, Discrete Math. 180 (1998), no. 1-3, 143--156. MR1603713 (99c:05004).
Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
P. Gawrychowski and P. K. Nicholson, Optimal Encodings for Range Top-k, Selection, and Min-Max, arXiv:1411.6581 [cs.DS], 2014-2015.
P. Gawrychowski and P. K. Nicholson, Optimal Encodings for Range Top-k, Selection, and Min-Max, in Automata, Languages, and Programming, Volume 9134 of the series Lecture Notes in Computer Science, 2015, pp. 593-604.
S. Giraudo, Algebraic and combinatorial structures on Baxter permutations, DMTCS proc. AO, FPSAC 2011 Rykjavik, (2011) 387-398.
S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, arXiv:1204.4776 [math.CO], 2012.
S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, Journal of Algebra, Volume 360, 15 June 2012, Pages 115-157.
O. Guibert and S. Linusson, Doubly alternating Baxter permutations are Catalan, Discrete Math., 217 (2000), 157-166.
Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
Don Knuth, Twintrees, Baxter Permutations, and Floorplans, Christmas Lecture, Stanford 2022 (YouTube video).
Laszlo Kozma and T. Saranurak, Binary search trees and rectangulations, arXiv preprint arXiv:1603.08151 [cs.DS], 2016.
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016 [Section 2.25].
Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
A. Peder and M. Tombak, Finding the description of structure by counting method: a case study, SOFSEM 2011, LNCS 6543 (2011) 455-466 doi:10.1007/978-3-642-18381-2_38.
Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv:1505.07665 [math.CO], 2015.
V. Reiner, D. Stanton, and V. Welker, The Charney-Davis quantity for certain graded posets, Sem. Lothar. Combin. 50 (2003/04), Art. B50c, 13 pp.
Jannik Silvanus, Improved Cardinality Bounds for Rectangle Packing Representations, Doctoral Dissertation, University of Bonn (Rheinische Friedrich Wilhelms Universität, Germany 2019).
FORMULA
a(n) = Sum_{k=1..n} C(n+1,k-1) * C(n+1,k) * C(n+1,k+1) / (C(n+1,1) * C(n+1,2)).
(n + 1)*(n + 2)*(n + 3)*(3*n - 2)*a(n) = 2*(n + 1)*(9*n^3 + 3*n^2 - 4*n + 4)*a(n - 1) + (3*n - 1)*(n - 2)*(15*n^2 - 5*n - 14)*a(n - 2) + 8*(3*n + 1)*(n - 2)^2*(n - 3)*a(n - 3), if n>1. [Stanley, 1999] - Michael Somos, Jul 19 2002
From Richard L. Ollerton, Sep 13 2006: (Start)
D-finite with recurrence (n + 2)*(n + 3)*a(n) = (7*n^2 + 7*n - 2)*a(n-1) + 8*(n - 1)*(n - 2)*a(n-2), a(0) = a(1) = 1.
a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -1). (End)
[The coefficients of the polynomials p(n, x) = hypergeom([-1-n, -n, 1-n], [2, 3], -x) are given by the triangular form of A056939. - Peter Luschny, Dec 28 2022]
G.f.: -1 + (1/(3*x^2)) * (x-1 + (1-2*x)*hypergeom([-2/3, 2/3],[1],27*x^2/(1-2*x)^3) - (8*x^3-11*x^2-x)*hypergeom([1/3, 2/3],[2],27*x^2/(1-2*x)^3)/(1-2*x)^2 ). - Mark van Hoeij, Oct 23 2011
a(n) ~ 2^(3*n+5)/(Pi*sqrt(3)*n^4). - Vaclav Kotesovec, Oct 01 2012
0 = +a(n)*(+a(n+1)*(+512*a(n+2) + 2624*a(n+3) - 960*a(n+4)) +a(n+2)*(-1216*a(n+2) + 3368*a(n+3) - 1560*a(n+4)) + a(n+3)*(+600*a(n+3) + 120*a(n+4))) + a(n+1)*(+a(n+1)*(-64*a(n+2) - 1288*a(n+3) + 600*a(n+4)) +a(n+2)*(-136*a(n+2) + 295*a(n+3) - 421*a(n+4)) +a(n+3)*(+161*a(n+3) + 41*a(n+4))) + a(n+2)*(+a(n+2)*(+72*a(n+2) + 17*a(n+3) - 19*a(n+4)) + a(n+3)*(-a(n+3) - a(n+4))) if n>=0. - Michael Somos, Mar 09 2017
G.f.: ((x^3+3*x^2+3*x+1)/(1-8*x)^(3/4)*hypergeom([1/4, 5/4],[2],64*x*(1+x)^3/(8*x-1)^3) - 1 + x)/(3*x^2). - Mark van Hoeij, Nov 05 2023
EXAMPLE
G.f. = x + 2*x^2 + 6*x^3 + 22*x^4 + 92*x^5 + 422*x^6 + 2074*x^7 + ...
a(4) = 22 since all permutations of length 4 are Baxter except 2413 and 3142. - Michael Somos, Jul 19 2002
MAPLE
C := binomial; A001181 := proc(n) local k; add(C(n+1, k-1)*C(n+1, k)* C(n+1, k+1)/ (C(n+1, 1)*C(n+1, 2)), k = 1..n); end;
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 1,
((7*n^2+7*n-2)*a(n-1)+8*(n-1)*(n-2)*a(n-2))/((n+2)*(n+3)))
end:
seq(a(n), n=0..24); # Alois P. Heinz, Jul 29 2022
MATHEMATICA
A001181[n_] := HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, -1] (* Richard L. Ollerton, Sep 13 2006 *)
a[0]=1; a[1]=1; a[n_] := a[n] = ((7n^2+7n-2)*a[n-1] + 8(n-1)(n-2)*a[n-2]) / ((n+2)(n+3)); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 28 2015, from 3rd formula *)
PROG
(PARI) {a(n) = if( n<0, 0, sum( k=1, n, binomial(n+1, k-1) * binomial(n+1, k) * binomial(n+1, k+1) / (binomial(n+1, 1) * binomial(n+1, 2))))}; /* Michael Somos, Jul 19 2002 */
(Haskell)
a001181 0 = 1
a001181 n =
(sum $ map (\k -> product $ map (a007318 (n+1)) [k-1..k+1]) [1..n])
`div` (a006002 n)
-- Reinhard Zumkeller, Oct 23 2011
(Python)
from sympy import binomial as C
def a(n): return sum([(C(n + 1, k - 1)*C(n + 1, k)*C(n + 1, k + 1))/(C(n + 1, 1) * C(n + 1, 2)) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
(Magma) [1] cat [2*(&+[Binomial(n+1, k-1)*Binomial(n+1, k)* Binomial(n+1, k+1): k in [1..n]])/(n*(n+1)^2): n in [1..30]]; // G. C. Greubel, Jul 24 2019
(Sage) [1]+[2*sum(binomial(n+1, k-1)*binomial(n+1, k)*binomial(n+1, k+1) for k in (1..n))/(n*(n+1)^2) for n in (1..30)] # G. C. Greubel, Jul 24 2019
print([BaxterPermutations(n).cardinality() for n in range(25)])
# Peter Luschny, May 21 2024
(GAP) Concatenation([1], List([1..30], n-> 2*Sum([1..n], k-> Binomial(n+1, k-1)* Binomial(n+1, k)*Binomial(n+1, k+1) )/(n*(n+1)^2) )); # G. C. Greubel, Jul 24 2019
KEYWORD
nonn,nice,easy,changed
EXTENSIONS
Changed initial term to a(0) = 1 (it was a(0) = 0, but there were compelling reasons to change it). - N. J. A. Sloane, Sep 14 2021
STATUS
approved
5-dimensional pyramidal numbers: a(n) = n*(n+1)*(n+2)*(n+3)*(2n+3)/5!.
(Formerly M4387)
+10
41
1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, 5005, 7371, 10556, 14756, 20196, 27132, 35853, 46683, 59983, 76153, 95634, 118910, 146510, 179010, 217035, 261261, 312417, 371287, 438712, 515592, 602888, 701624, 812889, 937839, 1077699, 1233765, 1407406
OFFSET
1,2
COMMENTS
Convolution of triangular numbers (A000217) and squares (A000290) (n>=1). - Graeme McRae, Jun 07 2006
p^k divides a(p^k-3), a(p^k-2), a(p^k-1) and a(p^k) for prime p > 5 and integer k > 0. p^k divides a((p^k-3)/2) for prime p > 5 and integer k > 0. - Alexander Adamchuk, May 08 2007
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
5-dimensional square numbers, fourth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+4, i+4)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Antidiagonal sums of the convolution array A213550. - Clark Kimberling, Jun 17 2012
Binomial transform of (1, 6, 14, 16, 9, 2, 0, 0, 0, ...). - Gary W. Adamson, Jul 28 2015
2*a(n) is number of ways to place 4 queens on an (n+3) X (n+3) chessboard so that they diagonally attack each other exactly 6 times. The maximal possible attack number, p=binomial(k,2)=6 for k=4 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form a corresponding complete graph. - Antal Pinter, Dec 27 2015
While adjusting for offsets, add A000389 to find the next in series A000389, A005585, A051836, A034263, A027800, A051843, A051877, A051878, A051879, A051880, A056118, A271567. (See Bruno Berselli's comments in A271567.) - Bruce J. Nicholson, Jun 21 2018
Coefficients in the terminating series identity 1 - 7*n/(n + 6) + 27*n*(n - 1)/((n + 6)*(n + 7)) - 77*n*(n - 1)*(n - 2)/((n + 6)*(n + 7)*(n + 8)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A040977. - Peter Bala, Feb 18 2019
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (first 121 terms from Alexander Adamchuk)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
C. H. Karlson and N. J. A. Sloane, Correspondence, 1974
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
R. P. Stanley and F. Zanello, The Catalan case of Armstrong's conjecture on core partitions, arXiv preprint arXiv:1312.4352 [math.CO], 2013.
FORMULA
G.f.: x*(1+x)/(1-x)^6.
a(n) = 2*C(n+4, 5) - C(n+3, 4). - Paul Barry, Mar 04 2003
a(n) = C(n+3, 5) + C(n+4, 5). - Paul Barry, Mar 17 2003
a(n) = C(n+2, 6) - C(n, 6), n >= 4. - Zerinvary Lajos, Jul 21 2006
a(n) = Sum_{k=1..n} T(k)*T(k+1)/3, where T(n) = n(n+1)/2 is a triangular number. - Alexander Adamchuk, May 08 2007
a(n-1) = (1/4)*Sum_{1 <= x_1, x_2 <= n} |x_1*x_2*det V(x_1,x_2)| = (1/4)*Sum_{1 <= i,j <= n} i*j*|i-j|, where V(x_1,x_2) is the Vandermonde matrix of order 2. First differences of A040977. - Peter Bala, Sep 21 2007
a(n) = C(n+4,4) + 2*C(n+4,5). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), a(1)=1, a(2)=7, a(3)=27, a(4)=77, a(5)=182, a(6)=378. - Harvey P. Dale, Oct 04 2011
a(n) = (1/6)*Sum_{i=1..n+1} (i*Sum_{k=1..i} (i-1)*k). - Wesley Ivan Hurt, Nov 19 2014
E.g.f.: x*(2*x^4 + 35*x^3 + 180*x^2 + 300*x + 120)*exp(x)/120. - Robert Israel, Nov 19 2014
a(n) = A000389(n+3) + A000389(n+4). - Bruce J. Nicholson, Jun 21 2018
a(n) = -a(-3-n) for all n in Z. - Michael Somos, Jun 24 2018
From Amiram Eldar, Jun 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 40*(16*log(2) - 11)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 20*(8*Pi - 25)/3. (End)
a(n) = A004302(n+1) - A207361(n+1). - J. M. Bergot, May 20 2022
a(n) = Sum_{i=0..n+1} Sum_{j=i..n+1} i*j*(j-i)/2. - Darío Clavijo, Oct 11 2023
a(n) = (A000538(n+1) - A000330(n+1))/12. - Yasser Arath Chavez Reyes, Feb 21 2024
EXAMPLE
G.f. = x + 7*x^2 + 27*x^3 + 77*x^4 + 182*x^5 + 378*x^6 + 714*x^7 + 1254*x^8 + ... - Michael Somos, Jun 24 2018
MAPLE
[seq(binomial(n+2, 6)-binomial(n, 6), n=4..45)]; # Zerinvary Lajos, Jul 21 2006
A005585:=(1+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
With[{c=5!}, Table[n(n+1)(n+2)(n+3)(2n+3)/c, {n, 40}]] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {1, 7, 27, 77, 182, 378}, 40] (* Harvey P. Dale, Oct 04 2011 *)
CoefficientList[Series[(1 + x) / (1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
PROG
(Magma) I:=[1, 7, 27, 77, 182, 378]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Jun 09 2013
(PARI) a(n)=binomial(n+3, 4)*(2*n+3)/5 \\ Charles R Greathouse IV, Jul 28 2015
CROSSREFS
a(n) = ((-1)^(n+1))*A053120(2*n+3, 5)/16, (1/16 of sixth unsigned column of Chebyshev T-triangle, zeros omitted).
Partial sums of A002415.
Cf. A006542, A040977, A047819, A111125 (third column).
Cf. a(n) = ((-1)^(n+1))*A084960(n+1, 2)/16 (compare with the first line). - Wolfdieter Lang, Aug 04 2014
KEYWORD
nonn,easy
STATUS
approved
Triangle of Narayana (A001263) with 0 <= k <= n, read by rows.
+10
41
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0, 1, 55, 825, 4950, 13860
OFFSET
0,9
COMMENTS
Number of Dyck n-paths with exactly k peaks. - Peter Luschny, May 10 2014
FORMULA
Triangle T(n, k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938. T(0, 0) = 1, T(n, 0) = 0 for n>0, T(n, k) = C(n-1, k-1)*C(n, k-1)/k for k>0.
Sum_{j>=0} T(n,j)*binomial(j,k) = A060693(n,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*10^k = A143749(n+1). - Philippe Deléham, Oct 14 2008
From Paul Barry, Nov 10 2008: (Start)
Coefficient array of the polynomials P(n,x) = x^n*2F1(-n,-n+1;2;1/x).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*C(2n-j,j)*C(j,k)*A000108(n-j). (End)
Sum_{k=0..n} T(n,k)*5^k*3^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-2)^k = A152681(n); Sum_{k=0..n} T(n,k)*(-1)^k = A105523(n). - Philippe Deléham, Feb 03 2009
Sum_{k=0..n} T(n,k)*2^(n+k) = A156017(n). - Philippe Deléham, Nov 27 2011
T(n, k) = C(n,n-k)*C(n-1,n-k)/(n-k+1). - Peter Luschny, May 10 2014
E.g.f.: 1+Integral((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x dx). - Peter Luschny, Oct 30 2014
G.f.: (1+x-x*y-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x). - Alois P. Heinz, Nov 28 2021, edited by Ron L.J. van den Burg, Dec 19 2021
T(n, k) = [x^k] (((2*n - 1)*(1 + x)*p(n-1, x) - (n - 2)*(x - 1)^2*p(n-2, x))/(n + 1)) with p(0, x) = 1 and p(1, x) = x. - Peter Luschny, Apr 26 2022
Recursion based on rows (see the Python program):
T(n, k) = (((B(k) + B(k-1))*(2*n - 1) - (A(k) - 2*A(k-1) + A(k-2))*(n-2))/(n+1)), where A(k) = T(n-2, k) and B(k) = T(n-1, k), for n >= 3. # Peter Luschny, May 02 2022
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 1, 3, 1;
[4] 0, 1, 6, 6, 1;
[5] 0, 1, 10, 20, 10, 1;
[6] 0, 1, 15, 50, 50, 15, 1;
[7] 0, 1, 21, 105, 175, 105, 21, 1;
[8] 0, 1, 28, 196, 490, 490, 196, 28, 1;
[9] 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
MAPLE
A090181 := (n, k) -> binomial(n, n-k)*binomial(n-1, n-k)/(n-k+1): seq(print( seq(A090181(n, k), k=0..n)), n=0..5); # Peter Luschny, May 10 2014
# Alternatively:
egf := 1+int((sqrt(t)*exp((1+t)*x)*BesselI(1, 2*sqrt(t)*x))/x, x);
s := n -> n!*coeff(series(egf, x, n+2), x, n); seq(print(seq(coeff(s(n), t, j), j=0..n)), n=0..9); # Peter Luschny, Oct 30 2014
MATHEMATICA
Flatten[Table[Sum[(-1)^(j-k) * Binomial[2n-j, j] * Binomial[j, k] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 11}, {k, 0, n}]] (* Indranil Ghosh, Mar 05 2017 *)
p[0, _] := 1; p[1, x_] := x; p[n_, x_] := ((2 n - 1) (1 + x) p[n - 1, x] - (n - 2) (x - 1)^2 p[n - 2, x]) / (n + 1);
Table[CoefficientList[p[n, x], x], {n, 0, 9}] // TableForm (* Peter Luschny, Apr 26 2022 *)
PROG
(Sage)
def A090181_row(n):
U = [0]*(n+1)
for d in DyckWords(n):
U[d.number_of_peaks()] +=1
return U
for n in range(8): A090181_row(n) # Peter Luschny, May 10 2014
(Python) from functools import cache
@cache
def Trow(n):
if n == 0: return [1]
if n == 1: return [0, 1]
if n == 2: return [0, 1, 1]
A = Trow(n - 2) + [0, 0]
B = Trow(n - 1) + [1]
for k in range(n - 1, 1, -1):
B[k] = (((B[k] + B[k - 1]) * (2 * n - 1)
- (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 2)) // (n + 1))
return B
for n in range(10): print(Trow(n)) # Peter Luschny, May 02 2022
(PARI)
c(n) = binomial(2*n, n)/ (n+1);
tabl(nn) = {for(n=0, nn, for(k=0, n, print1(sum(j=0, n, (-1)^(j-k) * binomial(2*n-j, j) * binomial(j, k) * c(n-j)), ", "); ); print(); ); };
tabl(11); \\ Indranil Ghosh, Mar 05 2017
(Magma) [[(&+[(-1)^(j-k)*Binomial(2*n-j, j)*Binomial(j, k)*Binomial(2*n-2*j, n-j)/(n-j+1): j in [0..n]]): k in [0..n]]: n in [0..10]];
CROSSREFS
Mirror image of triangle A131198. A000108 (row sums, Catalan).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n) for x=0,1,2,3,4,5,6,7,8,9. - Philippe Deléham, Aug 10 2006
Sum_{k=0..n} x^(n-k)*T(n,k) = A090192(n+1), A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Oct 21 2006
Sum_{k=0..n} T(n,k)*x^k*(x-1)^(n-k) = A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Oct 20 2007
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jan 19 2004
STATUS
approved
Array read by antidiagonals: number of antichains (or order ideals) in the poset 3*m*n or plane partitions with rows <= m, columns <= n and entries <= 3.
+10
26
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 50, 20, 1, 1, 35, 175, 175, 35, 1, 1, 56, 490, 980, 490, 56, 1, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
OFFSET
0,5
COMMENTS
Triangle of generalized binomial coefficients (n,k)_3; cf. A342889. This array is the main subject of the long article by Felsner et al. (2011). - N. J. A. Sloane, Apr 03 2021
This triangle is mentioned by Hoggatt (1977). - N. J. A. Sloane, Mar 27 2021
Determinants of 3 X 3 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present). - Gerald McGarvey, Feb 24 2005
Also determinants of 3 X 3 arrays whose entries come from a single row: T(n,k) = det [C(n,k),C(n,k-1),C(n,k-2); C(n,k+1),C(n,k),C(n,k-1); C(n,k+2),C(n,k+1),C(n,k)]. - Peter Bala, May 10 2012
From Gary W. Adamson, Jul 10 2012: (Start)
The triangular view of this triangle is
1;
1, 1;
1, 4, 1;
1, 10, 10, 1;
1, 20, 50, 20, 1;
The n-th row of this triangle is generated by applying the ConvOffs transform to the first n terms of 1, 4, 10, 20, ... (A000292 without leading zero). See A214281 for a procedural definition of the transformation and search "ConvOffs" for more examples. (End)
Define polynomials p(n, x) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -x). If the triangle is extended by the diagonal 1, 0, 0,... on the right side the resulting (0, 0)-based triangle is T*(n, k) = [x^k] p(n, x). The polynomials evaluated at x = 1 gives the number of Baxter permutations of length n (see the formula given by Richard L. Ollerton in A001181). - Peter Luschny, Dec 28 2022
REFERENCES
Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
P. A. MacMahon, Combinatory analysis, section 495, 1916.
FORMULA
Product_{k=0..2} binomial(n+m+k, m+k)/binomial(n+k, k) gives the array as a square.
T(n,m) = 2*binomial(n, m)*binomial(n+1, m+1)*binomial(n+2, m+2)/((n-m+1)^2*(n-m+2)). - Roger L. Bagula, Jan 28 2009
From Peter Bala, Oct 13 2011: (Start)
T(n,k) = 2/((n+1)*(n+2)*(n+3))*C(n+1,k)*C(n+2,k+2)*C(n+3,k+1);
T(n,k) = 2/((n+1)*(n+2)*(n+3))*C(n+1,k+1)*C(n+2,k)*C(n+3,k+2). Cf. A197208.
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).
Define a(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is a(r,0)*a(r,n)/(a(r,k)*a(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
The column generating functions of the square array (starting at column 1) are 1/(1 - x)^4, (1 + 3*x + x^2)/(1 - x)^7, (1 + 10*x + 20*x^2 + 10*x^3 + x^4)/(1 - x)^10, ..., where the numerator polynomials are the row polynomials of A087647. See Barry p. 31. - Peter Bala, Oct 18 2023
EXAMPLE
The initial rows of the array are:
1 1 1 1 1 1 ...
1 4 10 20 35 56 ...
1 10 50 175 490 1176 ...
1 20 175 980 4116 14112 ...
1 35 490 4116 24696 116424 ...
1 56 1176 14112 116424 731808 ...
...
Considered as a triangle, the initial rows are:
[1],
[1, 1],
[1, 4, 1],
[1, 10, 10, 1],
[1, 20, 50, 20, 1],
[1, 35, 175, 175, 35, 1],
[1, 56, 490, 980, 490, 56, 1],
[1, 84, 1176, 4116, 4116, 1176, 84, 1],
[1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1],
[1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1],
[1, 220, 9075, 108900, 457380, 731808, 457380, 108900, 9075, 220, 1]
...
MAPLE
# To get initial terms of the array - N. J. A. Sloane, Apr 20 2021
bb := (k, l) -> binomial(k+l, k)*binomial(k+l+1, k)*binomial(k+l+2, k)*2/((k+1)^2*(k+2));
for k from 0 to 8 do
lprint([seq(bb(k, l), l=0..8)]);
od:
MATHEMATICA
t[n_, m_] = 2*Binomial[n, m]*Binomial[n + 1, m + 1]* Binomial[n + 2, m + 2]/((n - m + 1)^2*(n - m + 2)); Flatten[Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]] (* Roger L. Bagula, Jan 28 2009 *)
PROG
(PARI) \\ cf. A359363
C=binomial;
T(n, k)=if(n==0&&k==0, 1, (C(n+1, k-1)*C(n+1, k)*C(n+1, k+1))/(C(n+1, 1)*C(n+1, 2)));
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print()); \\ Joerg Arndt, Jan 04 2024
CROSSREFS
Antidiagonals sum to A001181 (Baxter permutations). Cf. A197208.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1..12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
KEYWORD
nonn,easy,tabl,nice
AUTHOR
STATUS
approved
Squares of tetrahedral numbers: a(n) = binomial(n+3,n)^2.
+10
20
1, 16, 100, 400, 1225, 3136, 7056, 14400, 27225, 48400, 81796, 132496, 207025, 313600, 462400, 665856, 938961, 1299600, 1768900, 2371600, 3136441, 4096576, 5290000, 6760000, 8555625, 10732176, 13351716, 16483600, 20205025, 24601600, 29767936, 35808256
OFFSET
0,2
COMMENTS
Total area of all square and rectangular regions from an n+1 X n+1 grid. E.g., n = 2, there are 9 individual squares, 4 2 X 2's and 1 3 X 3, total area 9 + 16 + 9 = 34. The rectangular regions include 6 2 X 1's, 6 1 X 2's, 3 3 X 1's, 3 1 X 3's, 2 3 X 2's and 2 2 X 3's, total area 12 + 12 + 9 + 9 + 12 + 12 = 66, hence a(2) = 34 + 66 = 100. - Jon Perry, Jul 29 2003 [Index/grid size adjusted by Rick L. Shepherd, Jun 27 2017]
Number of 3 X 3 submatrices of an n+3 X n+3 matrix. - Rick L. Shepherd, Jun 27 2017
The inverse binomial transform gives row n=2 of A087107. - R. J. Mathar, Aug 31 2022
FORMULA
From R. J. Mathar, Aug 19 2008: (Start)
a(n) = (A000292(n+1))^2.
O.g.f.: (1+x)(x^2+8x+1)/(1-x)^7. (End)
a(n) = C(n+4, 3)*C(n+4, 4)/(n+4) + A001303(n) = C(n+4, 3)*C(n+3, 3)/4 + A001303(n) = C(n+4, 6) + 3*C(n+5, 6) + C(n+6,6) + A001303(n). - Gary Detlefs, Aug 07 2013
-n^2*a(n) + (n+3)^2*a(n-1) = 0. - R. J. Mathar, Aug 15 2013
a(n) = 9*A040977(n-1) + A000579(n+6) + A000579(n+3). - R. J. Mathar, Aug 15 2013
a(n) = (n+3)*C(n+2, 2)*C(n+3, 3)/3. - Gary Detlefs, Jan 06 2014
a(n) = A000290(n+1)*A000290(n+2)*A000290(n+3)/36. - Bruno Berselli, Nov 12 2014
G.f. 2F1(4,4;1;x). - R. J. Mathar, Aug 09 2015
E.g.f.: exp(x)*(1 + 15*x + 69*x^2/2! + 147*x^3/3! + 162*x^4/4! + 90*x^5/5! + 20*x^6/6!). Computed from the o.g.f with the formulas (23) - (25) of the W. Lang link given in A060187. - Wolfdieter Lang, Jul 27 2017
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 9*Pi^2 - 351/4.
Sum_{n>=0} (-1)^n/a(n) = 63/4 - 3*Pi^2/2. (End)
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Aug 29 2022
a(n) = a(n-1)+A000217(n+1)*A000330(n+1). - J. M. Bergot, Aug 29 2022
MAPLE
A001249 := proc(n) binomial(n+3, n)^2 end proc: seq(A001249(n), n=0..10) ; # Zerinvary Lajos, May 17 2006
MATHEMATICA
Table[Binomial[n + 3, 3]^2, {n, 0, 100}] (* T. D. Noe, Jun 26 2012 *)
PROG
(PARI) a(n)=binomial(n+3, 3)^2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A000290, A000292, A006542, A033455, A108674 (first diffs.), A086020 (partial sums).
Third column of triangle A008459.
KEYWORD
nonn,easy
STATUS
approved
Sum of 7th powers: 1^7 + 2^7 + ... + n^7.
(Formerly M5394 N2343)
+10
19
0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456, 8080425, 18080425, 37567596, 73399404, 136147921, 241561425, 412420800, 680856256, 1091194929, 1703414961, 2597286700, 3877286700, 5678375241, 8172733129, 11577558576, 16164030000, 22267545625
OFFSET
0,3
COMMENTS
a(n) is divisible by A000537(n) if and only n is congruent to 1 mod 3 (see A016777) - Artur Jasinski, Oct 10 2007
This sequence is related to A000540 by a(n) = n*A000540(n) - Sum_{i=0..n-1} A000540(i). - Bruno Berselli, Apr 26 2010
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = n^2*(n+1)^2*(3*n^4 + 6*n^3 - n^2 - 4*n + 2)/24.
a(n) = sqrt(Sum_{j=1..n} Sum_{i=1..n} (i*j)^7). - Alexander Adamchuk, Oct 26 2004
Jacobi formula: a(n) = 2(A000217(n))^4 - A000539(n). - Artur Jasinski, Oct 10 2007
G.f.: x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1-x)^9. - Colin Barker, May 25 2012
a(n) = 8*a(n-1) - 28* a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + 5040. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..7} j*Stirling1(n+1,n+1-j)*Stirling2(n+7-j,n). - Mircea Merca, Jan 25 2014
a(n) = 2*A000217(n)^4 - (4/3)*A000217(n)^3 + (1/3)*A000217(n)^2. - Michael Raney, Feb 19 2016
a(n) = 72*A288876(n-2) + 48*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, Apr 27 2024
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^7 od: seq(a[n], n=0..25); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
Table[Sum[k^7, {k, 1, n}], {n, 0, 100}] (* Artur Jasinski, Oct 10 2007 *)
s = 0; lst = {s}; Do[s += n^7; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456}, 35] (* Vincenzo Librandi, Feb 20 2016 *)
PROG
(PARI) a(n)=n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24 \\ Edward Jiang, Sep 10 2014
(PARI) a(n) = sum(i=1, n, i^7); \\ Michel Marcus, Sep 11 2014
(Python)
A000541_list, m = [0], [5040, -15120, 16800, -8400, 1806, -126, 1, 0, 0]
for _ in range(10**2):
for i in range(8):
m[i+1] += m[i]
A000541_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
(Magma) [n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24: n in [0..30]]; // Vincenzo Librandi, Feb 20 2016
CROSSREFS
Row 7 of array A103438.
KEYWORD
nonn,easy
STATUS
approved
a(n) = n^4 - (n-1)^4 + (n-2)^4 - ... 0^4.
+10
18
0, 1, 15, 66, 190, 435, 861, 1540, 2556, 4005, 5995, 8646, 12090, 16471, 21945, 28680, 36856, 46665, 58311, 72010, 87990, 106491, 127765, 152076, 179700, 210925, 246051, 285390, 329266, 378015, 431985, 491536, 557040, 628881, 707455, 793170, 886446, 987715
OFFSET
0,3
COMMENTS
Number of edges in the join of two complete graphs of order n^2 and n, K_n^2 * K_n - Roberto E. Martinez II, Jan 07 2002
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-5)(P(4,1)-(-1)^k P(4,2k+1))|. - Peter Luschny, Jul 12 2009
Define an infinite symmetric array by T(n,m) = n*(n-1) + m for 0 <= m <= n and T(n,m) = T(m,n), n >= 0. Then a(n) is the sum of terms in the top left (n+1) X (n+1) subarray: a(n) = Sum_{r=0..n} Sum_{c=0..n} T(r,c). - J. M. Bergot, Jul 05 2013
a(n) is the sum of all positive numbers less than A002378(n). - J. M. Bergot, Aug 30 2013
Except the first term, these are triangular numbers that remain triangular when divided by their index, e.g., 66 divided by 11 gives 6. - Waldemar Puszkarz, Sep 14 2017
REFERENCES
T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
FORMULA
a(n) = n*(n+1)*(n^2 + n - 1)/2 = n^4 - a(n-1) = A000583(n) - a(n) = A000217(A028387(n-1)) = A000217(n)*A028387(n-1).
a(n) = Sum_{i=0..n} A007588(i) for n > 0. - Jonathan Vos Post, Mar 15 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Oct 19 2011
G.f.: x*(x*(x + 10) + 1)/(1 - x)^5. - Harvey P. Dale, Oct 19 2011
a(n) = A000384(A000217(n)). - Bruno Berselli, Jan 31 2014
a(n) = A110450(n) - A002378(n). - Gionata Neri, May 13 2015
Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*2*Pi/sqrt(5). - Amiram Eldar, Jan 22 2024
a(n) = sqrt(144*A288876(n-2) + 72*A006542(n+2) + A000537(n)). - Yasser Arath Chavez Reyes, Jul 22 2024
EXAMPLE
From Bruno Berselli, Oct 30 2017: (Start)
After 0:
1 = -(1) + (2);
15 = -(1 + 2) + (3 + 4 + 5 + 2*3);
66 = -(1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 11 + 3*4);
190 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 19 + 4*5);
435 = -(1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 29 + 5*6), etc. (End)
MAPLE
a := n -> (2*n^2+n^3-1)*n/2; # Peter Luschny, Jul 12 2009
MATHEMATICA
Table[n (n + 1) (n^2 + n - 1)/2, {n, 0, 40}] (* Harvey P. Dale, Oct 19 2011 *)
PROG
(PARI) { a=0; for (n=0, 1000, write("b062392.txt", n, " ", a=n^4 - a) ) } \\ Harry J. Smith, Aug 07 2009
CROSSREFS
Cf. A000538, A000583. A062393 provides the result for 5th powers, A011934 for cubes, A000217 for squares, A001057 (unsigned) for nonnegative integers, A000035 (offset) for 0th powers.
Cf. A236770 (see crossrefs).
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 21 2001
STATUS
approved

Search completed in 0.043 seconds