[go: up one dir, main page]

login
A000538
Sum of fourth powers: 0^4 + 1^4 + ... + n^4.
(Formerly M5043 N2179)
81
0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 25333, 39974, 60710, 89271, 127687, 178312, 243848, 327369, 432345, 562666, 722666, 917147, 1151403, 1431244, 1763020, 2153645, 2610621, 3142062, 3756718, 4463999, 5273999, 6197520, 7246096, 8432017, 9768353
OFFSET
0,3
COMMENTS
This sequence is related to A000537 by the transform a(n) = n*A000537(n) - Sum_{i=0..n-1} A000537(i). - Bruno Berselli, Apr 26 2010
A formula for the r-th successive summation of k^4, for k = 1 to n, is ((12*n^2+(12*n-5)*r+r^2)*(2*n+r)*(n+r)!)/((r+4)!*(n-1)!), (H. W. Gould). - Gary Detlefs, Jan 02 2014
The number of four dimensional hypercubes in a 4D grid with side lengths n. This applies in general to k dimensions. That is, the number of k-dimensional hypercubes in a k-dimensional grid with side lengths n is equal to the sum of 1^k + 2^k + ... + n^k. - Alejandro Rodriguez, Oct 20 2020
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 222.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
Bruno Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
Stefano Capparelli, Notes on Discrete Math, Società Editrice Esculapio SRL (2019) 3-4.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30.
The preceding formula is due to al-Kachi (1394-1437). - Juri-Stepan Gerasimov, Jul 12 2009
G.f.: x*(1+11*x+11*x^2+x^3)/(1-x)^6. More generally, the o.g.f. for Sum_{k=0..n} k^m is x*E(m, x)/(1-x)^(m+2), where E(m, x) is the Eulerian polynomial of degree m (cf. A008292). The e.g.f. for these o.g.f.s is: x/(1-x)^2*(exp(y/(1-x))-exp(x*y/(1-x)))/(exp(x*y/(1-x))-x*exp(y/(1-x))). - Vladeta Jovovic, May 08 2002
a(n) = Sum_{i = 1..n} J_4(i)*floor(n/i), where J_4 is A059377. - Enrique Pérez Herrero, Feb 26 2012
a(n) = 5*a(n-1) - 10* a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24. - Ant King, Sep 23 2013
a(n) = -Sum_{j=1..4} j*Stirling1(n+1,n+1-j)*Stirling2(n+4-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = -30*(4 + 3/cos(sqrt(7/3)*Pi/2))*Pi/7. - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)*(n + 1/2)*n*(n + 1/2 + sqrt(7/12))*(n + 1/2 - sqrt(7/12))/5, see the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015
MAPLE
A000538 := n-> n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30;
A000538:=(1+z)*(z**2+10*z+1)/(z-1)**6; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
MATHEMATICA
Accumulate[Range[0, 40]^4] (* Harvey P. Dale, Jan 13 2011 *)
CoefficientList[Series[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 07 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 17, 98, 354, 979}, 35] (* Jean-François Alcover, Feb 09 2016 *)
Table[x^5/5+x^4/2+x^3/3-x/30, {x, 40}] (* Harvey P. Dale, Jun 06 2021 *)
PROG
(Sage) [bernoulli_polynomial(n, 5)/5 for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
(Haskell)
a000538 n = (3 * n * (n + 1) - 1) * (2 * n + 1) * (n + 1) * n `div` 30
-- Reinhard Zumkeller, Nov 11 2012
(Maxima) A000538(n):=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30$
makelist(A000538(n), n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(PARI) a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30 \\ Charles R Greathouse IV, Nov 20 2012
(Python)
A000538_list, m = [0], [24, -36, 14, -1, 0, 0]
for _ in range(10**2):
for i in range(5):
m[i+1] += m[i]
A000538_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
(Python)
def A000538(n): return n*(n**2*(n*(6*n+15)+10)-1)//30 # Chai Wah Wu, Oct 03 2024
(Magma) [n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30: n in [0..35]]; // Vincenzo Librandi, Apr 04 2015
(PARI) concat(0, Vec(x*(1+11*x+11*x^2+x^3)/(1-x)^6 + O(x^100))) \\ Altug Alkan, Dec 07 2015
CROSSREFS
KEYWORD
nonn,easy,nice,changed
EXTENSIONS
The general V. Jovovic formula has been slightly changed after his approval by Wolfdieter Lang, Nov 03 2011
STATUS
approved