[go: up one dir, main page]

login
A056932
Antichains (or order ideals) in the poset 2*2*2*n or size of the distributive lattice J(2*2*2*n).
14
1, 20, 168, 887, 3490, 11196, 30900, 75966, 170379, 354640, 693836, 1288365, 2287844, 3908776, 6456600, 10352796, 16167765, 24660252, 36824128, 53943395, 77656326, 110029700, 153644140, 211691610, 288086175, 387589176, 515950020, 680063833, 888147272
OFFSET
0,2
COMMENTS
a(n) is the number of order preserving maps from B_3 into [n+1]. a(n) is also the number of length n+1 multichains from bottom to top in J(B_3). See Stanley reference for bijections with description in title. - Geoffrey Critzer, Jan 07 2021
REFERENCES
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, page 256, Proposition 3.5.1.
LINKS
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = 48*C(n+8, 8) - 96*C(n+7, 7) + 63*C(n+6, 6) - 15*C(n+5, 5) + C(n+4, 4).
G.f.: (1+11*x+24*x^2+11*x^3+x^4)/(1-x)^9. [Berman and Koehler]
MATHEMATICA
Table[48*Binomial[n+8, 8] - 96*Binomial[n+7, 7] + 63*Binomial[n+6, 6] - 15*Binomial[n+5, 5] + Binomial[n+4, 4], {n, 0, nn}] (* T. D. Noe, May 29 2012 *)
KEYWORD
nonn,easy
AUTHOR
STATUS
approved